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In a strong magnetic field, a high-energy photon can be absorbed and then produce an electron-positron
pair. The produced electron/positron will in turn radiate a high-energy photon via synchrotron radiation,
which then initiates a cascade. We built a one-dimensional Monte Carlo code to study the development of
the cascade especially after it reaches the saturated status, when almost all the energy of the primary
particles transfers to the photons. The photon spectrum in this status has a cutoff due to the absorption by
magnetic fields, which is much sharper than the exponential one. Below the cutoff, the spectral energy
distribution (SED) manifest itself as a broken power-law with a spectral index of 0.5 and 0.125,
respectively, below and above the broken energy. The SED can be fitted by a simple analytical function,
which is solely determined by the product of the cascade scale R and the magnetic field perpendicular to the
motion of the particle B⊥, with an accuracy better than 96%. The similarity of the spectrum to that from the
cascade in an isotropic black-body photon field is also studied.
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I. INTRODUCTION

The process of an electromagnetic (EM) cascade in a
magnetic field is of important relevance in high-energy
astrophysics, such as the detection of ultra-high-energy
photons at the Earth [1], and the nonthermal emission in
some extreme astrophysical objects with intense magnetic
fields. The EM cascade in the magnetic field requires an
extreme condition, in terms of χ ¼ ϵB⊥=mec2Bcr ≳ 1,
where Bcr ¼ 4.414 × 1013 G is the quantum critical mag-
netic field, B⊥ is the magnetic field perpendicular to the
momentum of the electron or the photon, ϵ is the energy of
the incident electron or photon,me is the electronmass and c
is the speed of light. More specifically, in the condition of
χ ≳ 1, the one-photon pair production process can happen,
in which the magnetic field absorbs a photon with energy
larger than 2mec2 and produces an e� pair [2–6]. In addition,
the synchrotron radiation by an electron (or positron, here-
after we do not distinguish the positron from the electron)
needs to bemodified in the quantumelectrodynamics (QED)
regime. In the classical regime, the typical synchrotron

photon energy is ℏωa ¼ 0.29ℏωc ≃ 0.44χγmec2, where
ωc ≃ 1.5γ2eB⊥=mec. The classical synchrotron radiation is
valid onlywhenℏωa ≪ γmec2 is satisfied, namely χ ≪ 1. In
the QED regime, the average energy of the synchrotron
photon can be comparable to the primary electron energy
[2,7,8]. Thus, the synchrotron radiation from the secondary
pairs will regenerate high-energy photons which would
again produce pairs, and thus an EM cascade will be
triggered.
Various attempts have been made to study the EM

cascade in the magnetic field, such as solving the kinetic
equations directly [5], using Monte Carlo simulations [6],
and solving the adjoint cascade equations numerically [8].
These researches studied the properties of cascades, but
only in the first few hundreds of the propagation lengths of
the primary particle, where the interaction probability is
unity in one propagation length as defined in Eq. (3).
However, in reality, the cascade generally develops very
deeply in the astrophysical scale, which is much larger than
a few hundred propagation lengths of the primary particle.
On the other hand, those numerical methods are sometimes
quite expensive, although effective. In this work, we aim to
constitute a simple yet accurate analytical solution for the
development of the cascade in the case assuming that the
spatial scale of the region where the cascade has developed
is much larger than the mean propagation length of the

*jiesh.wang@gmail.com
†ruoyu.liu@desy.de
‡Felix.Aharonian@mpi-hd.mpg.de
§dzg@nju.edu.cn

PHYSICAL REVIEW D 97, 103016 (2018)

2470-0010=2018=97(10)=103016(7) 103016-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.103016&domain=pdf&date_stamp=2018-05-29
https://doi.org/10.1103/PhysRevD.97.103016
https://doi.org/10.1103/PhysRevD.97.103016
https://doi.org/10.1103/PhysRevD.97.103016
https://doi.org/10.1103/PhysRevD.97.103016


electrons and gamma rays due to the synchrotron radiation
and the pair production, respectively.
Such cascades could happen in some astrophysical sources

and be responsible for their high-energy gamma-ray (≳GeV)
radiation. Based on the Hillas criterion [9], the maximum
energy of a particle with charge number Z can be accelerated
by an astrophysical object isEmax ∼ 300ZBRa eV, whereRa
is the characteristic spatial scale of the acceleration region.
Denoting the energy of the secondary photon or electron
produced by the accelerated particlewithαE (withα < 1),we
have χ ∼ 1000αZðB=104 GÞ2ðRa=1012 cmÞ. Usually, we
expect α ∼ 0.001–0.1 from the Bethe-Heitler process or
hadronic interactions of accelerated cosmic rays, so these
astrophysical objects (summarized in [10]) can in principle
meet the condition χ > 0.1, and hence be potentially inter-
esting sources for such a process.
The paper is organized as follows: we study the develop-

ment of the synchrotron-pair cascade with a Monte Carlo
method in Sec. II. In Sec. III, we fit the SED obtained by the
Monte Carlo simulation with a simple function. In Sec. IV,
we study the EM cascade in the presence of a black-body
photon field, and discuss similarity between the cascade in
a magnetic field and in a photon field with a black-body
distribution. The summary is given in Sec. V.

II. ONE-DIMENSIONAL MONTE CARLO
SIMULATION OF PHOTON-PAIR CASCADES

IN INTENSE MAGNETIC FIELDS

The main processes in the cascade are the synchrotron
radiation and pair production. The differential probability
(in units of cm−1) of an electron with energy E ¼ γmec2

producing a photon with energy ϵ via synchrotron radiation
ðPsynÞ, and the probability of a photon with energy ϵ
producing an electron with energy E through pair produc-
tion ðPppÞ are given by [4–6],

Psynðχe;χγÞdχγ

¼ e2meB⊥dχγffiffiffi
3

p
πℏ2Bcrχ

2
e

�Z
∞
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respectively, where χe ¼ EB⊥=Bcrmec2 with for an electron,
χγ ¼ ϵB⊥=Bcrmec2 for a photon, andy ¼ 2χγ=3χeðχe − χγÞ.
The modified Bessel functions K5=3 and K2=3 are used in
these formulas.

The development of the cascade is characterized by the
mean propagation length, which is related to the proba-
bility of interaction as

L ¼ P−1: ð3Þ

Note that in the case of the synchrotron radiation in
the classical regime, when the electron in a single inter-
action with the magnetic field looses a very small fraction
of its energy, ΔE ≪ E, this definition becomes rather
meaningless. Therefore the radiation length is defined as
L ¼ cE=ðdE=dtÞ where dE=dt is the continuous energy
loss rate of electrons. In the quantum regime of the
synchrotron radiation, when the electron loses a significant
fraction of its energy, Eq. (3) appropriately describes
the propagation length as it does for the pair production.
In the deep QED regime (χ ≫ 1), the probability of the
synchrotron radiation and pair production have asympto-
tic forms: Psyn;tot¼6.23×10−6B⊥ χ−1=3e cm−1, and Ppp;tot¼
1.62×10−6B⊥ χ−1=3γ cm−1, respectively [5,6]. Thus the
interaction probabilities of both processes are scaled as
χ−1=3. The probability of the classical synchrotron radi-
ation ( χ ≪ 1), can be obtained by Psyn;tot ¼ Pc ¼
2e4B2⊥γ2=3m2

ec4ℏωa ¼ 6.56 × 10−6B⊥ cm−1. While the
probability of the pair production at χ < 1 is Ppp;tot ¼
9.84 × 10−7B⊥ exp ð−8=3χγÞ cm−1 [2]. We show the
normalized interaction probabilities P=Pc of the synchro-
tron radiation and pair production with solid curves
in Fig. 1. Photon splitting, whose total probability is
Psp;tot ¼ 8.4 × 10−15B⊥ χ5γ cm−1 [11], will dominate over

FIG. 1. The solid curves are the normalized interaction prob-
abilities (P=Pc) of the synchrotron radiation (solid red curve) and
pair production (solid blue curve) in the magnetic fields as
functions of χ. The dashed curves are the normalized interaction
probabilities of the inverse Compton radiation (dashed red curve)
and pair production (dashed blue curve) in the black body
radiation fields as functions of ϒ.
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the pair production, if χγ < 0.086. However, as will be
shown below, in our consideration, only the photons with
χγ ≳ 0.1 will be absorbed by magnetic fields. Thus, photon
splitting is not important in this study, and we will neglect it
in the following calculation.
We built a one-dimensional Monte Carlo code to study

the synchrotron-pair cascade in the intense and homo-
geneous magnetic field. According to [12,13], the high-
energy secondary particle will generally follow the same
direction of the primary particle in an arbitrarily orientated
magnetic field, if the energy of emitted secondary particle is
≫ mec2, which is usually true in the considered scenario of
this work. Thus, the one-dimension assumption works well
for the high-energy range of the cascade. This is also the
reason why the magnetic field is usually assumed to be
perpendicular to the momentum of the particle in the
simulations (e.g. [6,8])]. Also we find that the interaction
probability of the primary particle and the spectrum of the
secondary particle depend on B⊥ only [e.g. see Eqs. (1) and
(2)]. Therefore, no matter how is the magnetic field
orientated with respect to the particle’s velocity, we will
only take the perpendicular component B⊥. The character-
istic cascade scale in this paper is chosen to be much larger
than the propagation length of the initial particle
[R ≫ Lðχ0; B⊥Þ], so that the cascade is saturated, namely,
the energy of primary particle goes eventually into the
photons with energies below the pair production limit. We
note that although one would expect that electrons could be
deflected in the magnetic field so that the scenario may not
be described in one dimension. However, for most cases,
we concentrate on the photons with χγ ≳ 10−5, which are
produced by electrons with χe ≳ 5 × 10−3. The Larmor
radii of electrons above this energy are much larger than the
energy loss length, so these photons are emitted before the
electrons are significantly deflected. What’s more, even if
the motion of electrons are significantly deflected away
from the initial direction by the magnetic field, the one-
dimensional treatment still works as long as the pitch angle
of the particle remains almost unchanged. In this case, R is
just not the displacement of the particle but the distance
covered by the particle. Thus, a one-dimensional treatment
is sufficient for this study.
We then let particles propagate in the magnetic field

with the step size Δs, which is from the condition
Δs · Ptot ¼ 0.05. The energies of the secondary photons
and electrons are determined by Eqs. (1) and (2) respec-
tively, with 400 bins being divided from χmax=400 to χmax.
Here χmax equals to the energy of the incident particle χ0 for
the pair production and for the synchrotron radiation with
χ0 > 0.15, while χmax equals to 3ℏωcB⊥=Bcrmec2 for the
synchrotron radiation when χ0 < 0.15. We trace each
secondary particle in terms of its energy and distance
propagated, regardless of the directions of their velocities.
The energies of the particles will be recorded after certain
expected cascade development scale R. To reduce as much

as possible the statistical error in the Monte Carlo simu-
lation and in the meantime keep the calculation not too
expensive, we select the number of the primary particles at
injection from hundreds to several thousands in different
cases so that there will be at least 1000 particles in each
energy bin of the recorded spectrum of secondary particles.
We firstly compare the cascades initiated by electrons

and by photons. The background magnetic field is fixed at
106 G in both two scenarios, and the energies of the
primary electrons or photons are 2 × 108mec2. In Fig. 2,
we show the spectrum of photons in the cascades at three
cascade scales, i.e., R ¼ 108 cm, 1010 cm and 1014 cm
respectively. We can see that the photon spectrum in the
electron-initiated cascade and that in the photon-initiated
cascade are identical to each other. Thus, the type of the
primary particles makes no difference to cascade as long as
the cascade is saturated.
Secondly, we study the influence of the energy of the

initial particle on the cascade, employing electron as the
primary particle. Three different initial Lorentz factors of
electron, say, 2 × 108, 4 × 108 and 6 × 108, are considered,
while we fix the background magnetic field at B⊥ ¼ 106 G,
and the cascade scale atR ¼ 1014 cm. The results are shown
in Fig. 3. It can be found that the amplitude of energy spectra
is proportional to the energy of the primary particle which is
obvious from the condition of energy conservation, while
the spectral shapes in the three cases coincide with each
other precisely. Thus, hereafter we will normalize the SED
with ϵ2dn=ϵ0dϵ. The advantage of using this normalized
SED is that it is only a function of χγ , i.e.,

ϵ2dn=ϵ0dϵ ¼ fðχγÞ: ð4Þ

FIG. 2. The SEDs (ϵ2dn=dϵ) of the synchrotron-pair cascades
initiated by electrons and photons are shown with filled circles
and crosses, respectively. The energy spectra of cascades in scales
of R ¼ 108 cm, 1010 cm, and 1014 cm are show with blue, green,
and red, respectively.
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Due to the conversation of energy
R
ϵdn=ϵ0 ≈ 1 for the

saturated cascade, we have
Z

fð χγÞdχγ=χγ ≈ 1: ð5Þ

Finally, we study the cascades in magnetic fields of
different strength: 106 G and 104 G. The energies of
primary particle are chosen to make χ0 ¼ 4.53 in both
two cases which is also identical to that in Fig. 2. The
results are shown in Fig. 4. We find that for different

background magnetic fields, the energy spectra (as func-
tions of χγ) and their evolutions are identical, as long as the
quantity RB⊥ keeps the same. This can be understood
through Eqs. (1) and (2). Specifically, given the same χ0 for
electrons, their propagation lengths are then inversely
proportional to the magnetic fields, i.e., Lsyn ∝ 1=B⊥.
Thus, if RB⊥ is a constant for these electrons, their
interaction probabilities will be exactly the same. The
produced photon spectra are also identical since the spectral
shape is determined only by χe as shown in Eq. (1). In brief,
the normalized SED in the saturated cascade is only
determined by the product RB⊥, neither the type nor the
energy of the primary particle.

III. SPECTRAL FITTING OF THE CASCADES
IN INTENSE MAGNETIC FIELDS

The SED of the photons in the cascade can be treated
as consisting of three parts. From high energy to low
energy, the first part is a sharp cutoff at χ ∼ 0.1, which
is due to the absorption of the highest energy photon by
the magnetic fields. The cutoff energy χc could be found
via equating the propagation length of the particle to
the cascade scale, namely, Lð χcÞ ¼ R. Empirically,
we obtain χc ¼ 2.67=½2.30 log10ðRB⊥=ðcm · GÞÞ − 13.74�
valid for log10½RB⊥=ðcm · GÞ� ≥ 12. The spectrum starts to
drop roughly at ∼0.95χc.
The second part is in the range of χb < χγ < χc with a

power-law index at 0.125 approximately, where χb is the
break energy separating the second part from the third part.
Photons in this energy range is emitted by electrons
produced by photons with energy χγ > χc via the one-
photon pair production in the magnetic field. Thus, χb
corresponds to the typical energy of the synchrotron photon
emitted by electrons that are produced in the pair produc-
tion of cutoff photons with energy χc. Considering χc ∼ 0.1,
the energy of the generated electrons are around χe ∼ 0.5χc.
Using the classical synchrotron radiation formulas, the
break energy can be obtained by χb ≈ 0.38χ2c. The normal-
ized spectrum between χb and χc is quite robust, and can be
fitted by fð χγÞ ¼ 0.323χ0.125γ , independent of the product
RB⊥.
As mentioned above, χb corresponds to the typical

energy of the synchrotron radiation by the electrons of
the lowest energy generated in the pair production. Thus,
photons with energies < χb, which constitute the third part
of the spectrum, are emitted by those electrons cooled from
higher energies via synchrotron radiation in the classical
regime. Without injection at such energies, the electron
spectrum is solely regulated by the synchrotron cooling,
resulting in a spectrum ∝ γ−2. Hence, the third part of the
SED behaves as fðχγÞ ∝ χ0.5γ .
We find that we can use an empirical function fð χγÞ to

fit the SED below the cutoff (namely χγ < 0.95χc) very
well,

FIG. 3. The SEDs (ϵ2dn=dϵ) of the electron initiated
synchrotron-pair cascades. The background magnetic field is
B⊥ ¼ 106 G, and the cascade scale is R ¼ 1014 cm. The Lorentz
factor of primary particles are shown with different colors, as
listed in the legend.

FIG. 4. Normalized SEDs (fð χγÞ ¼ ϵ2dn=ϵ0dϵ) of the
synchrotron-pair cascades in different magnetic fields: 106 G
(filled circles) and 104 G (crosses). Spectra of different cascade
scales are shown with different colors. χ0 ¼ 4.53 is fixed for the
initial particle.
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fð χÞ ¼
�

1

1=ðaχ0.5γ Þ4 þ 1=ð0.323χ0.125γ Þ4
�
1=4

; ð6Þ

where the pre-factor a can be obtained by the normalizationR 0.975χc
0 fð χγÞ=χγdχγ ¼ 1 [14]. We also give a quite accu-
rate empirical formula to calculate it approximately,
a ¼ 0.225 log10½RB⊥=ðcm · GÞ� − 0.67. Two examples
are shown in Fig. 5. We can see that the errors of our
fittings are less than 4%. For the cutoff part, we give an
example of fitting for the case of RB⊥ ¼ 1018 cm · G by a
function 0.23 expð−6.0 × 1024χ24.4γ Þ with an accuracy of
90%. The fitting is shown in Fig. 6.
The above results are from the cascades induced by the

particles injected at the same position. We here also study
the case that the particles are evenly injected from the
whole cascade region. If fresh particles are injected at a
distance l from the initial injection position, then the
cascade scale of these new particles is R − l. The spectrum
is then contributed by the cascades initiated by the particles
injected from l ¼ 0 to l ¼ R. If the injection rate of the
particle source is NsðlÞ in units of cm−1, the normalized
space-integrated spectrum can then be obtained as
fsi ¼

R
R
0 Nsfð χγÞdl=

R
R
0 Nsdl. Assuming that Ns ¼ C is

a constant, this spectrum is fsi ¼
R
R
0 fð χγÞdl=R. We draw

particular attention to the cutoff part. The cutoff of the SED
produced by the particles injected at l happens at around
0.95χcðlÞ ¼ 2.53=½2.30 log10ðR − lÞB⊥=ðcm · GÞ − 13.74�.
For l1 < l2, we have χcðl1Þ < χcðl2Þ, therefore the particles
injected at l < l2 won’t contribute to the high-energy
spectral part with χγ > χcðl2Þ. We assume the SED is
truncated at ∼0.95χcðlÞ, and then the SED at the cutoff
can be described as fð0.95χcðlÞÞ ¼ 0.323ð0.95χcðlÞÞ0.125,
as a result, the space-integrated spectral cutoff can be
written as

fsið0.95χcðlÞÞ ¼
Z

R

l
fð0.95χcÞdl=R

≈ 0.323½0.95χcðlÞ�0.125ðR − lÞ=R: ð7Þ

We show the cutoff of the cascade spectrum at RB⊥ ¼
1018 cm, the cutoff of the space-integrated spectrum (inte-
grated from l ¼ 0 cm to l ¼ 1018=B⊥ cm), and a sketch of
the pure classical synchrotron spectral cutoff (exponential-
type cutoff) in Fig. 6. The cutoff in cascades are much
sharper than that in the pure synchrotron radiation.

IV. COMPARISON WITH THE CASCADES
IN BLACK-BODY PHOTON FIELDS

The EM cascade can also develop in a photon field, via
the γγ annihilation (or pair production) and inverse
Compton process. Such a process has been widely studied
and applied in various environments (e.g. [8,15])]. It has
been pointed out that the energy spectrum of secondary
particles produced in the cascade developed in the magnetic
field are similar to the spectrum of the cascade in the
radiation field with a black body distribution [8]. In this
section, we will show the spectrum evolution in the later
process can be fitted by a similar function to that used in the
previous section.
The EM cascade can happen in photon fields when the

conditionϒ≡ ϵω0=m2
ec4 ≫ 1 ismet,whereω0 is the energy

of the background photon. We here study this cascade in an
isotropic black-body radiation field as an example. In the
black-body radiation field, we takeω0 ≈ 2.7kT, which is the

FIG. 5. The normalized SEDs for RB⊥ ¼ 1014 cm · G, and
1018 cm · G are presented. The error is defined as |simulated
value−analytical value|/simulated value.

FIG. 6. The spectral cutoff from the cascade spectrum (red
crosses), its analytical fitting (green solid line), the space-
integrated spectrum by Eq. (7) (black solid line). The x axis is
the photon energy in unit of the cutoff energy, i.e., χ=χc. For
comparison, we also show the cutoff regime of spectrum of the
classical synchrotron radiation of an electron with χe ¼ 3 × 10−4

and B⊥ ¼ 104 G (blue solid line) which represents the exponen-
tial cutoff. The x axis for this curve is ω=ωc with ωc being the
classical synchrotron radiation frequency.

ANALYTICAL TREATMENT FOR THE DEVELOPMENT OF … PHYS. REV. D 97, 103016 (2018)

103016-5



average photon energywith a temperatureT. Given a scaleR,
the interaction probabilities is

PðϒÞ ¼ R
Z

∞

0

nðT; xÞdx
Z

1

−1
ð1 − μÞσ½2ϒxð1 − μÞ�dμ

¼ Rn0

Z Z
gðT; xÞð1 − μÞσ½2ϒxð1 − μÞ�dxdμ

¼ Rn0σtotðϒÞ; ð8Þ

where μ is the cosine of the angle between two colliding
particles, R is the cascade scale, nðT; xÞ ¼ n0gðT; xÞ is the
background photon number density with x being the photon
energy in unit ofω0,n0 is the normalized number density andR
gðT; xÞdx ¼ 1. σ is the differential cross section for the

Compton scattering or the pair production while σtotðϒÞ is
the weighted cross section depending only on ϒ. We also
show the normalized total interaction probabilities of these
two processes P=Pc ¼ σtot=σT in Fig. 1, where σT is the
Thomson scattering cross section. It can be found that the
interaction probabilities in photon fields are similar to these
in magnetic fields.
It has been pointed out that the resulting spectrum from

the cascades in the black-body photon fields are quite
similar to these in magnetic fields in the first few hundreds
propagation lengths [8]. We here study the saturated
cascade using the same Monte Carlo method, and then
compare it with the saturated cascade in the magnetic
fields. The results are shown in Fig. 7. We show the spectra
evolution with Rn0σT . It is shown that the SED is almost
unchanged when Rn0σT > 106. We then also find an
analytical function to fit the photon SED in the range
ϒγ ≲ϒc,

ϵ2dn=ϵ0dϵ ¼ ½ðbϒ0.5
γ Þ−8 þ ð0.37ϒ0.14

γ Þ−8�−1=8; ð9Þ

where ϒc is the cutoff of the spectrum. Empiri-
cally, we find ϒc ≈ 0.52 − 0.055 log10ðRn0σTÞ and
b ≈ 0.21 log10ðRn0σTÞ þ 0.32 for Rn0σT ≤ 106. When
106 < Rn0σT ≤ 1014, we obtain b ≈ 1.58 and ϒc ≈ 0.19.
The accuracy is around 95% for these empirical fittings.
Compared with Eq. (6), we find that the spectra from
cascades in magnetic fields and photon fields are quite
similar, which can also be seen in Fig. 7.

V. SUMMARY AND DISCUSSION

In this work, we find a simple yet rather accurate
analytical expression for the one-dimensional development
of an EM cascade in the intense magnetic field. We
employed the Monte Carlo method to simulate the cascade
development in various combinations of parameters. We
found that the normalized SED depends only on product of
RB⊥, while the species and energy of the primary particle
(photon or electron) do not have influence. The SED can be
described as fðχÞ ¼ ½1=ðaχ0.5γ Þ4 þ 1=ð0.323χ0.125γ Þ4�−1=4,
when χγ ≲ 0.95χc with a ¼ 0.225 log10½RB⊥=ðcm · GÞ�−
0.67. The error of the analytical expression is smaller than
4%. We can see the photon energy spectra behave as
ϵ2dn=ϵ0dϵ ∝ χ0.5γ at χγ ≲ 0.003, ∝ χ0.125γ at 0.003≲ χγ≲
0.1, and a sharp cutoff at χγ ∼ 0.1 (much sharper than that
of the pure synchrotron radiation). Such a behavior is very
similar to that in the EM cascade in a photon field with a
black-body distribution. We found that the energy spectrum
in the latter case can be fitted by a similar analytical
function. We note that such a similarity only establishes
when the cascades are saturated. Otherwise, the cascade
spectrum will be affected by the species (electron or
photon) and the energy of the primary particle, and also
the background field (magnetic field or photon field).
Given that the interaction probabilities in the photon fields
are scaled as P ∝ ∼ϒ−1

γ logð1þ 2ϒγÞ when ϒγ ≫ 1, while
the interaction probabilities in the magnetic fields are
scaled as P ∝ χ−1=3γ (as shown in Fig. 1), the cascade
spectra in magnetic field and in photon field may have big
difference for a given cascade scale when the energy of the
primary particle is very high, since the particle could have
more interactions in the magnetic field than in the photon
field.
The cascades in magnetic fields could be developed

in quite different astrophysical environments and on
different scales. The condition of effective development
of the cascade χ0 > 0.1, combined with the range of
the characteristic magnetic field in astrophysical sources,
tells us at which energies the cascade could be triggered,
E > 0.1Bcr=B⊥mec2. For example, in pulsars with
B ∼ 1012 G, the cascade can take place at GeV energies
of electrons and gamma rays; in accretion disks around
solar-mass black holes with B ∼ 106 G and in gamma-ray
burst fireballs possibly reaching up to B ∼ 103–106 G, the
cascade will take place at > TeV energies; in the inner jets

FIG. 7. The SEDs for different Rn0σT are presented with dotted
curves, while an example of the spectrum in synchrotron-pair
cascade is shown with the black cross line.
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of blazars with B ∼ 1–100 G, the cascade will be triggered
at energies of electrons and gamma rays 1017–1019 eV.
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