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We derive the probability for a newly formed binary black hole (BBH) to undergo an eccentric
gravitational wave (GW) merger during binary-single interactions inside a stellar cluster. By integrating
over the hardening interactions such a BBH must undergo before ejection, we find that the observable rate
of BBH mergers with eccentricity > 0.1 at 10 Hz relative to the rate of circular mergers can be as high as
∼5% for a typical globular cluster (GC). This further suggests that BBH mergers forming through GW
captures in binary-single interactions, eccentric or not, are likely to constitute ∼10% of the total BBH
merger rate from GCs. Such GW capture mergers can only be probed with an N-body code that includes
general relativistic corrections, which explains why recent Newtonian cluster studies have not been able to
resolve this population. Finally, we show that the relative rate of eccentric BBH mergers depends on the
compactness of their host cluster, suggesting that an observed eccentricity distribution can be used to probe
the origin of BBH mergers.
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I. INTRODUCTION

Gravitational waves (GWs) from merging binary black
holes (BBHs) have been observed [1–5], but their astro-
physical origin is still unknown. Several formation channels
and sites have been proposed in the literature, including
stellar clusters [6–14], isolated field binaries [15–19], galac-
tic nuclei [20–24], active galactic nuclei disks [25–27], as
well as primordial black holes [28–31], however, how to
observationally distinguish them from each other has shown
to be a major challenge. For this, several recent studies have
explored to which degree the distributions of BBH spins and
orbital eccentricities might differ between different models
[32,33], as these are quantities that can be extracted from the
observed GW waveform [34–37]. In general, for BBH
merges evolved in isolation one finds the spins to be
preferentially aligned with the orbit [38] and eccentricity
to be indistinguishable from zero, whereas dynamically
assembled BBHmergers will have random spin orientations,
and a nonzero probability for appearing eccentric at obser-
vation [20,29,39,40]. For such studies it has especially
become clear that implementing general relativistic (GR)
effects are extremely important, e.g. GR precession and spin-
orbit coupling affect both the eccentricity [41] and the
BBH spins [42] in secular evolving systems, where GW
emission in few-body scatterings is essential for resolving the
fraction of highly eccentric mergers [39,43]. Despite this
importance, many recent studies are still based on purely
Newtonian codes.

In this paper we study the evolution of BBHs undergoing
hardening binary-single interactions inside a dense stellar
cluster, and how the inclusion of GR corrections affect both
the dynamical history of the BBHs and their GW merger
distribution. We especially follow the GW mergers that
form during the hardening binary-single interactions
through GW captures, e.g. [39,40]. By integrating over
the binary-single interactions a typical BBH undergoes
inside its host cluster, we derive that the rate of BBH
mergers forming during binary-single interactions with an
eccentricity > 0.1 at 10 Hz (eccentric mergers) relative to
the rate of classically ejected BBH mergers (circular
mergers) can be as high as ∼5% for a typical globular
cluster (GC). This rate is within observable limits, sug-
gesting that the eccentricity distribution of BBH mergers
can be used to constrain their origin. We note that the
binary-single GW captures that lead to this large fraction of
eccentric mergers only can be probed when GR effects are
included in the N-body equation of motion (EOM), which
explains why recent Newtonian Monte Carlo (MC) cluster
studies have not been able to resolve this population, e.g.
[11,44]. In fact, we explicitly prove in this paper that a
Newtonian code will always underestimate the eccentric
fraction by a factor of ∼100.
Our present study further suggests that GW capture

mergers forming during three-body interactions, eccentric
or not, are likely to constitute ∼10% of the total observable
BBH merger rate from GCs. This population is currently
unexplored, but is likely to play a key role in constraining
the time dependent dynamical state of BHs in clusters,
as it might leave unique imprints across frequencies*jsamsing@gmail.com
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observable by both the “Laser Interferometer SpaceAntenna”
(LISA) and the “Laser Interferometer Gravitational-
Wave Observatory” (LIGO).
Throughout the paper we assume that all three interacting

BHs have the same mass m, and that the total initial energy
of the three-body system is dominated by that of the initial
target binary; a limit formally known as the hard binary
(HB) limit [45,46]. We only discuss effects from dynamical
GW emission, which appears in the post-Newtonian (PN)
expansion formalism at the 2.5 order [47]. The lower PN
terms leading to precession are important for describing
secular systems [48], but not the chaotic ones we consider
in this work [39,40].

II. ECCENTRIC CAPTURE DISTANCES

There are two characteristic pericenter distances related
to the formation of eccentric BBH mergers: the distance at
which the GW peak frequency of a BBH has a certain value
f, denoted by rf, and the distance from which a BBH can
undergo a GW capture and still have a non-negligible
eccentricity ef when its GW peak frequency is f, denoted
by rEM, where “EM” is short for “eccentric merger.” In the
resonating three-body problem [40], a third relevant dis-
tance also exists, namely the characteristic distance from
which two of the three interacting BHs will be able to
undergo a GW capture during the interaction without being
interrupted by the bound single, referred to as rcap. As
shown in [49], the distance rcap does not equal a constant
value, in contrast to rf and rEM, but differs between each of
the temporarily lived BH pairs, also referred to as inter-
mediate state (IMS) BBHs [40,49], assembled during the
resonating three-body state. In this paper we assume that
rcap > rEM, i.e., we work in the limit where all IMS BBHs
with pericenter distance rp ≤ rEM also undergo a GW
capture merger. This is an excellent approximation for
LIGO sources, but not necessarily for LISA sources, due to
their difference in frequency sensitivity. In the following
three paragraphs we estimate rf (GW frequency distance),
rEM (eccentric merger distance), and rcap (GW capture
distance), respectively. For further descriptions of the
resonating three-body problem with and without GR we
refer the reader to [40,43,49–52].

A. GW frequency distance rf
The GW peak frequency f of a BBH with semi-major

axis (SMA) a and eccentricity e, can be approximated by
that found from assuming the two BHs are on a circular
orbit with a SMA equal to the pericenter distance rp ¼
að1 − eÞ [53]. Using that the emitted GW frequency is 2
times the Keplerian orbital frequency follows directly that

f ≈ π−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm=r3f

q
. For a BBH to emit GWs with peak

frequency f, its pericenter distance must therefore be

rf ≈
�
2Gm
f2π2

�
1=3

: ð1Þ

As a result, if a BBH has a pericenter distance rp ≤ rf
ðf ¼ 10 HzÞ then it will emit GWs at a frequency f ≥
10 Hz and therefore be immediately observable by an
instrument similar to LIGO. As the relevant distance rf for
LIGO is ≪ a for all realistic astrophysical systems, the
corresponding BBH eccentricity will therefore be
extremely high, as indeed found using numerical PN
scattering experiments [43]. Such GW sources are said
to be born in the LIGO band [43].

B. Eccentric merger distance rEM
A BBH that forms with an initial pericenter distance

rp>rf is not immediately observable at GW frequency f.
For that, its pericenter distance must decrease, which
naturally happens through GW emission during inspiral
[54]. However, in that process, the BBH also undergoes
significant circularization [54], and will as a result gen-
erally appear with a relative low eccentricity once the
GW peak frequency is f. To estimate the characteristic
pericenter distance rEM for which the eccentricity is ef at
frequency f, we make use of the analytical relation between
the time evolving pericenter distance and eccentricity
derived in [54],

rpðeÞ ¼ rf × FðeÞ=FðefÞ; ð2Þ

where FðeÞ denotes the function,

FðeÞ ¼ e12=19

1þ e

�
1þ 121

304
e2
�

870=2299
: ð3Þ

We have here normalized the expression for rpðeÞ such that
rp ¼ rf when e ¼ ef. Using that the eccentricity of a
typical IMS BBH at the time of its formation is close to
unity, as rEM ≪ a, one finds that rEM is simply given by
Eq. (2) evaluated in the limit for which e → 1,

rEM ≈ rf ×
1

2FðefÞ
�
425

304

�
870=2299

: ð4Þ

For ef ¼ 0.1 follows that rEM=rf ≈ 2.7, i.e., GW capture
mergers with an initial rp up to about 3 times the distance rf
will appear eccentric at the time of observation for an
instrument similar to LIGO. Note here that this ratio is
independent of the frequency f.

C. GW capture distance rcap
The characteristic pericenter distance from which two of

the three interacting BHs can undergo a GW capture merger,
rcap, is that for which the GWenergy loss integrated over one

pericenter passage, ΔEpðrpÞ ≈ ð85π=12ÞG7=2c−5m9=2r−7=2p
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(see [55]), is comparable to the total energy of the three-body
system [49,50] that in the HB limit is that of the initial
target binary, EBðaÞ ≈ Gm2=ð2aÞ (see [40]). Solving for the
pericenter distance for which ΔEpðrcapÞ ¼ EBðaÞ, one now
finds [50]

rcap ≈Rm × ða=RmÞ2=7; ð5Þ

where Rm denotes the Schwarzschild radius of a BH with
massm. As described in the introduction to Sec. II, rcap is not
a fixed distance, but varies throughout the resonating state
[40,49], the normalization of the estimate given by the above
Eq. (5) is therefore only approximate.However, to get a sense
of the relevant scale, one finds form ¼ 20 M⊙ anda ¼ 1 au
that rcap=Rm ≈ 100, i.e., for these values if two of the three
BHs pass each other within a distance of ∼100 ×Rm, then
they are likely to undergo a GW capture merger. For a more
extensive solution and description of the problem, where the
varying capture distance is taken into account, we refer the
reader to [49]. An example of aGWcapture forming during a
resonating binary-single interaction is shown in Fig. 1.

III. ECCENTRIC MERGER PROBABILITY

The total probability for a BBH to undergo an eccentric
GW capture merger during binary-single interactions
(Fig. 1) inside a cluster (Fig. 2), can be estimated by
simply summing up the probability for each of the

hardening interactions the BBH must undergo before
ejection from the cluster is possible. In the sections below
we estimate this integrated probability, show how it
depends on the properties of the host cluster, and compare
it to other BBH merger types. For our calculations we
assume that the probability for the BBH in question to
undergo a merger before ejection is possible ≪ 1, which
allow us to express the total probability for any merger type
as a simple uncorrelated sum over the interactions. As later
derived in Sec. III D 2, and illustrated in Sec. IV, this
assumption is valid for standard GC systems, but will break
down for dense nuclear star clusters. The process of BBH
hardening and cluster ejection is further illustrated and
described in Fig. 2.

A. A single interaction

We first estimate the probability for an IMS BBH to form
and undergo a GW capture merger with an initial rp ≤ rEM,
during an interaction between a BBH with initial SMA a,
and a single incoming BH. We generally refer to this
probability as PEMðaÞ. For this, we start by noting that the
SMA of each formed IMS BBH, denoted by aIMS, is similar
to the SMA of the initial target binary, i.e., aIMS ≈ a. For a
BBH to form with an initial rp < rEM its eccentricity
at formation must therefore be > eEM, where eEM ¼
1 − rEM=a. The probability for a single IMS BBH to form
with rp < rEM is therefore equal to that of forming with
e > eEM, which is given by ð1 − e2EMÞ ≈ 2ð1 − eEMÞ ¼
2rEM=a, under the assumption that the eccentricity
distribution follows a so-called thermal distribution
PðeÞ ¼ 2e [45]. By weighting with the average number
of IMS BBHs forming during a HB binary-single inter-
action, denoted here by NIMS, one now finds

PEMðaÞ ≈
2rEM
a

× NIMS: ð6Þ

We note here that NIMS in the collisionless nonrelativistic
HB limit is independent of both the absolute mass scale and
the initial SMA [46,56]. As rcap ≪ a, we can therefore take
NIMS to be constant in this work. Its value can be
analytically estimated by using that the normalized orbital
energy distribution of binaries assembled in three-body
interactions approximately follows [45,57]

PðEBÞ ≈ ð7=2ÞEBðaÞ7=2 × E−9=2
B ; ð7Þ

Following this approach, the number NIMS is simply equal
to the probability for an assembled BBH to have EB <
EBðaÞ (single is bound) divided by the probability for EB >
EBðaÞ (single is unbound). These probabilities can be
found from integrations of Eq. (7), from which follows
that NIMS ≈ ðmaxðaIMSÞ=aÞ7=2, where maxðaIMSÞ denotes
the maximum value of aIMS. The ratio maxðaIMSÞ=a is
between 2–3 (an exact value cannot be derived, as our
framework breaks down when the three-body state no

FIG. 1. Formation of an eccentric BBH GW merger during a
resonating binary-single interaction between three equal mass
BHs. The location of the eccentric GW capture merger is denoted
by “GW capture,” where the initial paths of the incoming BBH
and single BH, are denoted by “Binary” and “Single,” respec-
tively. The GW capture forms as a result of GWemission during a
close encounter between two of the three BHs while they
temporarily form a bound three-body state. Such GW capture
mergers often appear highly eccentric at 10 Hz.
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longer can be described by a binary with a bound single
[49]), which then translates to an NIMS between ∼10–40.
Using a large set of isotropic three-body scatterings we
determined its average value to be NIMS ≈ 20, which is the
value we will use throughout the paper.

B. Integrating over hardening interactions

The majority of BBHs in a cluster are formed with an
initial a, denoted by ain, which is greater than the maximum

a that leads to a dynamical ejection of the BBH out of the
cluster through a binary-single interaction (we determine
this value later in the paper), a value we refer to as aej. A
newly formed BBHwill therefore typically have to undergo
several hardening binary-single interactions, each of which
slightly decreases its SMA, before ejection from the cluster
is possible. During each of these interactions there is a finite
probability for two of the three BHs to undergo an eccentric
GW capture merger, implying that the relative number of
eccentric mergers forming per BBH is larger than the
number evaluated at, e.g. aej. The eccentric merger fraction
must therefore be larger than the recently reported 1%–2%
by [43,49]. In the paragraphs below we estimate the
expected increase from including the dynamical hardening
process.

1. Binary-single hardening process

We start by considering a single BBH, and assume that
its SMA per interaction changes from a (before the binary-
single interaction) to δa (after the interaction), where δ < 1
(see Fig. 2). We note here that δ can be considered a
constant in the HB limit, due to the scale free nature of the
problem [46]. A representative value for δ can be found by
the use of the binary energy distribution PðEBÞ ∝ E−9=2

B
introduced in Eq. (7). By changing the variable from EB to
δ, one finds that the mean value of δ, denoted here by hδi, is
given by

hδi ¼ 7

2

Z
1

0

δ7=2dδ ¼ 7

9
: ð8Þ

For simplicity, we will therefore use δ ¼ 7=9 throughout
the paper when evaluating actual numbers; however, we do
note that to estimate the true expectation values of the
different observables we consider in this paper the full
distribution of δ must in principle be used. This is not easy,
but we do hope to improve on this in upcoming studies.
Finally, it is worth noting that the average value of EB,
found by simply integrating over EBPðEBÞ, is given by
hEBi ¼ ð7=5ÞEBðaÞ, which implies that the average frac-
tional increase in binding energy per binary-single inter-
action is 7=5 − 1 ¼ 0.4. This estimate is in full agreement
with that found from numerical scatterings experiments
[14], which validates at least this part of our approach.
Following this approach, each binary-single interaction

therefore releases an amount of energy equal to
ΔEbs ¼ ð1=δ − 1Þ × EBðaÞ, which relates to the recoil
velocity the BBH receives in the three-body center of
mass asΔEbs ¼ 3mv2B, where vB is the BBH recoil velocity
defined at infinity. When a is such that vB > vesc, where
vesc denotes the escape velocity of the cluster, then, per
definition, the BBH escapes. By assuming that vesc is about
the velocity dispersion of the cluster, one can write the ratio
between the HB limit for a [46], denoted by aHB, and the
ejection value aej by

FIG. 2. Illustration of a BBH undergoing hardening binary-
single interactions in a stellar cluster. Initially the BBH (labeled
by “initial“) forms with a SMA aej < ain < aHB, either dynami-
cally or primordially, after which it sinks to the core due to
dynamical friction. The BBH here undergoes a HB binary-single
interaction, which classically concludes with the BBH receiving a
kick velocity vB that unbinds it from the single and sends it back
into the cluster. It then sinks back to the core, after which the
process repeats. Each of these HB binary-single interactions
gradually decreases the SMA of the BBH, which correspondingly
leads to increasing dynamical kicks. When the SMA of the BBH
reaches a ≈ aej, i.e., when the dynamical kick velocity is about
the escape velocity of the cluster, then the following binary-single
interaction will eject the BBH out of the cluster (labeled by
“ejected”), after which it merges in isolation. However, if GW
emission is included in the N-body solver, then the BBH can also
undergo a GW capture merger inside the cluster core during one
of its hardening binary-single interactions, as illustrated in Fig. 1.
The grey inset circle shows a zoom-in on the core region. As
described, the BBH here undergoes binary-single interactions
that either will lead to hardening (the SMA changes from a to δa,
labeled “hardening”), or a GW merger during the interaction if
GR effects are included (labeled “GW merger”).
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aHB
aej

≈
9

1=δ − 1
: ð9Þ

We note here that this is a lower limit as vesc in general is
slightly greater than the dispersion value. For δ ¼ 7=9 one
finds aHB=aej ≈ 30, i.e., a binary formed with a ¼ aHB
needs to decrease its SMA by a factor of ∼30 before its
binding energy is large enough for the three-body recoil to
eject it from the cluster.
Finally, the number of binary-single interactions required

to bring a BBH from ain to aej, denoted by Nbsðain; aejÞ, is
given by

Nbsðain; aejÞ ¼
Z

ain

aej

1

1 − δ

1

a
da ¼ 1

1 − δ
ln

�
ain
aej

�
; ð10Þ

where we have used that da ¼ −að1 − δÞdNbs. For δ ¼
7=9 one finds that NbsðaHB; aejÞ ≈ 15, which illustrates the
point that a BBH formed in a cluster generally undergoes a
non-negligible number of scatterings before ejection (see
[14,58] for complementary descriptions of the binary
hardening and ejection process).

2. Eccentric mergers forming during hardening

We now estimate the probability for a BBH to undergo a
GW capture merger with an initial rp < rEM (eccentric GW
capture merger), during the binary-single interactions that
harden it from its initial SMA ain to its final ejection value
aej, a probability we refer to as PEMðain; aejÞ. By using
that the differential eccentric merger probability can be
written as dPEMðaÞ ¼ PEMðaÞdNbs, together with da ¼
−að1 − δÞdNbs, one finds

PEMðain; aejÞ ¼
1

1 − δ

Z
ain

aej

PEMðaÞ
a

da ≈
PEMðaejÞ
1 − δ

; ð11Þ

where for the last term we have assumed that ain ≫ aej. As
seen, in this limit PEM does not depend on ain, i.e., our
estimate is not strongly dependent on the initial conditions
of the BBH and how it exactly formed. For δ ¼ 7=9, we
therefore conclude that our model, although idealized,
seems to robustly predict that the series of hardening
binary-single interactions the BBH must undergo before
ejection, leads to a relative increase in the eccentric GW
capture merger probability by a factor of ≈9=2, compared
to simply evaluating the probability at aej.

C. Relation to cluster compactness

The value of PEMðain; aejÞ depends on aej, which we note
in turn depends on the cluster environment through its
escape velocity vesc. By using the relations for ΔEbs
presented back in Sec. III B 1, and that vB ≈ vesc when
a ≈ aej, per definition, one finds the following relation:

aej ≈
1

6

�
1

δ
− 1

�
Gm
v2esc

: ð12Þ

The probability PEM is therefore ∝ v2esc, leading to the
general result that the higher vesc is, the higher PEM is.
Using that the escape velocity relates to the cluster
compactness as v2esc ≈ GMC=RC, whereMC and RC denote
the characteristic mass and radius of the cluster, respec-
tively, one finds

PEMðain; aejÞ ≈
12δNIMS

ð1 − δÞ2
rEM
m

×
MC

RC
: ð13Þ

This leads to the important conclusion that the fraction of
BBHs that undergoes an eccentric GW capture merger
before being ejected from the cluster, increases linearly
with the compactness of the cluster. Measuring the fraction
of eccentric to circular merges can therefore be used to
probe the environmental origin of BBH mergers, as
described later in Sec. IV.
In addition, this further suggests that GW capture

mergers could play a significant dynamical role in relative
compact clusters, as they are intrinsically formed inside and
bound to the cluster in contrast to the ejected population. If
this would lead to a run-away BH buildup, or unique GW
observables, is straightforward to study with full N-body
simulations including PN effects (as with the MC cluster
studies [11,13], recent N-body studies on BH dynamics in
clusters do not include PN terms [14]). We reserve that for a
future study.

D. Three-body vs two-body mergers

So far we have only considered the probability for a
BBH to undergo a merger inside the cluster during three-
body interactions; however, a non-negligible fraction of the
BBHs will undergo a two-body merger inside the cluster
between interactions, or outside the cluster after being
ejected. In the sections below we start by comparing the
probability for a BBH to undergo an eccentric merger
inside the cluster doing three-body interactions to the
probability that an ejected BBH merger is eccentric. We
perform this comparison to illustrate the importance of the
three-body GW capture mergers considered in this work,
and thereby the inclusion of PN terms in the N-body EOM.
We then estimate the probability for a BBH to undergo an
isolated two-body merger between interactions inside the
cluster before dynamical ejection is possible. Finally we list
how these different merger types and outcomes scale with
the BH mass and host cluster properties.

1. Importance of three-body mergers and PN terms

Cluster simulations that are based on Newtonian codes,
e.g. [11,13], are in principle only able to probe the
population of BBHs that merge outside the cluster after
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being dynamically ejected; however, the ejected BBHs are
not representative for the population of eccentric BBH
mergers, e.g. [43]. Recent Newtonian studies have there-
fore underestimated the fraction of BBH mergers that will
appear eccentric at the time of observation. To quantify how
many more eccentric BBH mergers are expected to form
when our considered GW capture mergers are taken into
account, we first use that the probability for an ejected BBH
to have rp < rEM, i.e., to appear with an e > ef at
frequency f, denoted here by Pej;bin

EM ðaejÞ, is simply given
by PEMðaejÞ=NIMS. This leads us to the following ratio:

PEMðain; aejÞ
Pej;bin
EM ðaejÞ

¼ NIMS

1 − δ
≈ 100; ð14Þ

which states that if one takes into account the eccentric GW
capture mergers then the probability for forming an
eccentric BBH merger is about 2 orders of magnitude
higher than one finds from only considering the ejected
BBH population. This clearly illustrates the importance of
including PN terms.

2. Isolated two-body mergers between interactions

Our approach for calculating the total probability for a
BBH to undergo an eccentric merger during its hardening
binary-single interactions, relies on the assumption that the
probability for it to undergo a merger before ejection is
≪ 1. However, in very dense stellar systems aej will be so
low that the BBH has a non-negligible probability to merge
between its binary-single interactions before the ejection
limit is reached, e.g. [23]. In the following we estimate the
probability for a BBH to merge between interactions
integrated from ain to aej, a probability we denote by
PIMðain; aejÞ, where “IM” is short for “isolated merger.”
To estimate PIMðain; aejÞ we first need to derive the

probability that a BBH with SMA a undergoes an isolated
merger before its next binary-single interaction, PIMðaÞ.
Using that the GW inspiral lifetime can be written as
tlifeða; eÞ ≈ tlifeðaÞð1 − e2Þ7=2 [54], where tlifeðaÞ denotes
the “circular life time” for which e ¼ 0, and assuming the
BBH eccentricity distribution follows PðeÞ ¼ 2e [45], one
finds that [49]

PIMðaÞ ≈
� ðtbsðaÞ=tlifeðaÞÞ2=7; tlifeðaÞ > tbsðaÞ
1; tlifeðaÞ ≤ tbsðaÞ;

ð15Þ

where tbsðaÞ denotes the average time between binary-
single encounters at SMA a. The time tbsðaÞ is to leading
order inversely proportional to the BH binary-single
encounter rate, i.e., tbsðaÞ ≈ 1=Γbs ≈ ðnsσbsvdispÞ−1, where
ns is the number density of single BHs, σbs is the binary-
single interaction cross section, and vdisp is the local
velocity dispersion (see e.g. [49]). With this expression
for PIMðaÞ, we can now estimate PIMðain; aejÞ by simply

integrating PIMðaÞ over the BBH hardening interactions, in
the same way as we estimated PEMðain; aejÞ in Sec. III B 2.
Following this approach we find

PIMðain; aejÞ ≈
1

1 − δ

Z
ain

aej

PIMðaÞ
a

da ≈
7

10

PIMðaejÞ
1 − δ

; ð16Þ

where for the last term we have assumed that ain ≫ aej. The
normalization of this expression is only approximate, as we
assume that each PIMðaÞ is uncorrelated and neither the
local cluster environment nor the BBH change properties
between interactions. A similar expression was derived in
[23], but using a slightly different approach. We will
evaluate PIMðain; aejÞ for different clusters and BH masses
in Sec. IV.

E. Black hole merger scaling relations

We conclude this section by here presenting the relevant
scalings of the different BBH merger types described so far
including isolated mergers, GW capture mergers, eccentric
mergers, and ejected BBHs that merge within a Hubble
time. As above, we assume that the probability for merger
before ejection is≪ 1, which allows us to treat the different
outcomes as uncorrelated. Solving for the general case will
be the topic of future studies.
First, the probability for a BBH to undergo an isolated

merger between interactions is given by Eqs. (15) and (16),
which also can be written as

PIMðain; aejÞ ∝ n−2=7s m−6=7v22=7esc ∝ ðMC=mÞ4=7v10=7esc ; ð17Þ

where for the last equality we have assumed that
ns ∝ ðMC=mÞR−3

C . As seen, PIMðain; aejÞ increases both
with the escape velocity, vesc, and with the number of single
BHs in the core, Ns. The rather surprising scaling with Ns
originates from that if Ns increases for a fixed vesc, then the
core has to expand which leads to a decrease in the density
and thereby the binary-single encounter rate.
The probability that a BBH undergoes a GW capture

merger during a binary-single interaction integrated from
ain to aej, denoted by Pcapðain; aejÞ, is proportional to
Eq. (6), but with rcap from Eq. (5) instead of rEM, e.g. [49].
From this follows the relation,

Pcapðain; aejÞ ∝ v10=7esc : ð18Þ

As seen, Pcapðain; aejÞ is surprisingly independent of the
BH mass m, the probability for a GW capture merger to
form during hardening depends therefore only on the
compactness of the cluster. By comparing with PIM from
Eq. (17), one finds Pcap=PIM ∝ ðMC=mÞ−4=7, which sug-
gests that the number of binary-single GW capture mergers
relative to the number of two-body isolated mergers scales
inversely with the number of BHs in the core.
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The probability for a GW capture merger to appear
eccentric at the time of observation is given by Eq. (11),
which can be written as

PEMðain; aejÞ ∝ m−2=3v2esc: ð19Þ

As described in Sec. IV below, the ratio between PEM and
the probability that an ejected BBH undergoes a merger
within a Hubble time, denoted here by PHMðaejÞ, directly
relates to the observable fraction of eccentric mergers. The
probability PHMðaejÞ is given by Eq. (15), but with the
Hubble time tH as the time limit instead of the binary-single
encounter time tbs [49]. From this follows the relation,

PHMðaejÞ ∝ m−2=7v16=7esc : ð20Þ

This lead us to the ratio PEM=PHM ∝ m−8=21v−2=7esc , which
suggests that the largest fraction of eccentric BBH mergers
is formed in interactions involving lower mass BHs in
clusters with a relative low velocity dispersion. In the
section below we include the correct normalizations, from
which we are able to estimate the fraction of eccentric BBH
mergers observable by LIGO.

IV. RATE OF ECCENTRIC MERGERS

The relevant measure for using eccentric GW mergers to
constrain the formation environment of merging BBHs, is
not the absolute probability PEM, but instead the fraction
between the rate of eccentric and circular mergers, as this is
directly observable, whereas PEM itself is not (PEM might
be indirectly observable if the in-cluster GW capture
mergers are able to significantly alter the cluster dynamics,
which could affect the overall BBH merger rate, spin and
mass distributions). For deriving this fraction, we first need
to estimate the probability for an ejected BBH to merge
within a Hubble time tH, denoted here by P<tH

CM, where
“CM” refers to “circular merger” as the ejected population
greatly dominates the circular population. As described in
Sec. III E this probability is given by Eq. (15), but with the
Hubble time tH instead of tbs [49]. By then assuming that
the average rate of binary-single interactions is approx-
imately constant, one can now approximate the ratio
between the present rate of eccentric mergers (forming
during binary-single interactions inside the cluster), ΓEM,
and circular mergers (dominated by the ejected population),
ΓCM, by

RE=C ¼ ΓEM

ΓCM
≈

1

1 − δ

PEMðaejÞ
P<tH
CM ðaejÞ

; ð21Þ

as further described in [49]. The ratio RE=C evaluated for the
relevant LIGO values ef ¼ 0.1 and f ¼ 10 Hz is shown
with black contour lines in Fig. 3, as a function of cluster
escape velocity vesc, and BH mass m, where the green

colored region roughly indicates where our estimate for
PEM is valid [PIMðain; aejÞ < 0.1 assuming a constant
single BH density of ns ¼ 106 pc−3]. As seen, our model
suggests that ∼5% of all observable GW mergers origi-
nating from GCs will have an eccentricity e > 0.1 when
entering the LIGO band for BHs with masses ≲50 M⊙
assembled in a typical GC system. In more dense envi-
ronments, such as in galactic nuclei where the escape
velocity is significantly higher, e.g. [59], our estimate
breaks down as the probability for the interacting BBHs
to merge between encounters before ejection is possible is
close to unity (red colored region). Eccentric mergers will
still form in such dense environments, but estimating their
relative rate requires higher order corrections to our
formalism, which will be the topic of future work. Some

FIG. 3. The black solid contours show the ratio
PEMðain; aejÞ=P<tH

CM ðaejÞ, evaluated for the relevant LIGO values
ef ¼ 0.1 and f ¼ 10 Hz, as a function of the escape velocity of
the host cluster vesc (x-axis), and the BH mass m (y-axis). As
described in Sec. IV, this ratio approximately equals the ratio
between the present rate of eccentric GW capture mergers and
ejected circular mergers, RE=C ¼ ΓEM=ΓCM, which observatio-
nally can be used to constrain the fraction of all BBH mergers
forming in clusters. As seen, the relative rate of BBH mergers
with e ≥ 0.1 at 10 Hz is ∼5% for a typical GC, which
interestingly suggests that eccentric LIGO sources assembled
in clusters will be relatively frequent. The blue dotted contours
show the integrated probability for a given BBH to undergo an
isolated merger between encounters during hardening from SMA
ain to aej, PIMðain; aejÞ, derived in Sec. III D 2. For this estimate
we have assumed that ns ¼ 106 pc−3 and that vdisp ≈ vesc. The
green region indicates where our estimate of RE=C is valid
[PIMðain; aejÞ ≪ 0.1, i.e., merger before ejection is unlikely],
the red region where it breaks down (all BBHs will merge before
ejection), and the grey region the transition. As seen, our estimate
is valid for classical GC systems, but corrections are needed for
describing dense nuclear star clusters.
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work has been done on this limit by [23], but without the
PN terms we have shown to be crucial in this work.
Finally, we do note from Fig. 3 that RE=C does not take

unique values across vesc and m, making it difficult to
accurately infer the environment based on RE=C alone.
However, it is possible to break this degeneracy by the use
of absolute rates, which illustrates both the promising
future and necessity for including GR terms in cluster
studies.

V. CONCLUSIONS

We have in this paper studied the dynamical and GR
evolution of BBHs undergoing three-body interactions in
dense clusters, from which we find that the rate of eccentric
BBH mergers observable by LIGO (eccentricity > 0.1 at
10 Hz) relative to the rate of circular BBH mergers is likely
to be ≈5% (see Fig. 3), for standard GC systems. This
eccentric population form through GW captures during
resonating binary-single interactions (Fig. 1), and can
therefore only be resolved using an N-body code that
includes the 2.5 PN term, which accounts for orbital energy
dissipation through the emission of GWs, e.g. [47]. This
explains why recent Newtonian MC studies, e.g. [11], have
not been able to resolve this population (see Sec. III D 1).
Therefore, despite what have been concluded in the recent
literature, our results strongly suggest that eccentricity can
be used to observationally distinguish different BBH
merger channels from each other. For example, if no
eccentric BBH mergers are observed in the first, say,
100 LIGO observations, then the field binary channel is
likely to be in favor of the GC channel. This greatly
motivates recent work on eccentric wave forms, e.g.
[35–37], and might be one of the only reliable tests if
the majority of BHs are born with intrinsic small spin.

Our results further suggest that the rate of GW capture
mergers forming during binary-single interactions, eccen-
tric or not (see Sec. II C), to the rate of ejected mergers is
higher than the ∼2% previously stated [43,49], as a newly
formed BBH generally undergoes several interactions
before being ejected, and not only one. The relative
increase from this hardening process can be found by
integrating the capture probability Pcap from ain to aej,
similar to the procedure described in Sec. III B 2, which
evaluates to ð7=5Þ × ð1=ð1 − δÞÞ ≈ 6 for δ ¼ 7=9, sug-
gesting that GW capture mergers forming during binary-
single interactions are likely to constitute ∼10% of all
observable BBH mergers assembled in GCs. As noted by
[49], the GW capture mergers will remain bound to their
host cluster if the GW kick is low, which could lead to
significant dynamical changes of the cluster at especially
early times where the GW capture scenario likely domi-
nates the BBH merger rate [49]. These changes could
propagate to what we observe today, implying that GW
captures might be indirectly probed even if their current
rate is low. This is straightforward to study using a PN N-
body code and will be the topic of future studies.

ACKNOWLEDGMENTS

The author thanks B. Bar-Or, A. Hammers, M.
Zaldarriaga, D. Spergel, N. Leigh, M. MacLeod, L.
Randell, E. Ramirez-Ruiz, M. Giersz, A. Askar, B.
McKernan, and N. Stone, for stimulating discussions.
Support for this work was provided by NASA through
Einstein Postdoctoral Fellowship Grant No. PF4-150127
awarded by the Chandra X-ray Center, which is operated by
the Smithsonian Astrophysical Observatory for NASA
under Contract No. NAS8-03060.

[1] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[2] B. P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016).
[3] B. P. Abbott et al., Phys. Rev. X 6, 041015 (2016).
[4] B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017).
[5] B. P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017).
[6] S. F. Portegies Zwart and S. L. W. McMillan, Astrophys. J.

528, L17 (2000).
[7] S. Banerjee, H. Baumgardt, and P. Kroupa, Mon. Not. R.

Astron. Soc. 402, 371 (2010).
[8] A. Tanikawa, Mon. Not. R. Astron. Soc. 435, 1358 (2013).
[9] Y.-B. Bae, C. Kim, and H.M. Lee, Mon. Not. R. Astron.

Soc. 440, 2714 (2014).
[10] C. L. Rodriguez, M. Morscher, B. Pattabiraman, S.

Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett.
115, 051101 (2015).

[11] C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Phys. Rev. D
93, 084029 (2016).

[12] C. L. Rodriguez, C.-J. Haster, S. Chatterjee, V. Kalogera,
and F. A. Rasio, Astrophys. J. Lett. 824, L8 (2016).

[13] A. Askar, M. Szkudlarek, D. Gondek-Rosińska, M.
Giersz, and T. Bulik, Mon. Not. R. Astron. Soc. 464,
L36 (2017).

[14] D. Park, C. Kim, H. M. Lee, Y.-B. Bae, and K. Belczynski,
Mon. Not. R. Astron. Soc. 469, 4665 (2017).

[15] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti,
T. Bulik, I. Mandel, and R. O'Shaughnessy, Astrophys. J.
759, 52 (2012).

[16] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti,
T. Bulik, I. Mandel, and R. O'Shaughnessy, Astrophys. J.
779, 72 (2013).

JOHAN SAMSING PHYS. REV. D 97, 103014 (2018)

103014-8

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1086/312422
https://doi.org/10.1086/312422
https://doi.org/10.1111/j.1365-2966.2009.15880.x
https://doi.org/10.1111/j.1365-2966.2009.15880.x
https://doi.org/10.1093/mnras/stt1380
https://doi.org/10.1093/mnras/stu381
https://doi.org/10.1093/mnras/stu381
https://doi.org/10.1103/PhysRevLett.115.051101
https://doi.org/10.1103/PhysRevLett.115.051101
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.3847/2041-8205/824/1/L8
https://doi.org/10.1093/mnrasl/slw177
https://doi.org/10.1093/mnrasl/slw177
https://doi.org/10.1093/mnras/stx1015
https://doi.org/10.1088/0004-637X/759/1/52
https://doi.org/10.1088/0004-637X/759/1/52
https://doi.org/10.1088/0004-637X/779/1/72
https://doi.org/10.1088/0004-637X/779/1/72


[17] M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K.
Belczynski, C. Fryer, D. E. Holz, T. Bulik, and F. Pannarale,
Astrophys. J. 806, 263 (2015).

[18] K. Belczynski, S. Repetto, D. E. Holz, R. O’Shaughnessy, T.
Bulik, E. Berti, C. Fryer, and M. Dominik, Astrophys. J.
819, 108 (2016).

[19] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy,
Nature (London) 534, 512 (2016).

[20] R. M. O’Leary, B. Kocsis, and A. Loeb, Mon. Not. R.
Astron. Soc. 395, 2127 (2009).

[21] J. Hong and H. M. Lee, Mon. Not. R. Astron. Soc. 448, 754
(2015).

[22] J. H. VanLandingham, M. C. Miller, D. P. Hamilton, and
D. C. Richardson, Astrophys. J. 828, 77 (2016).

[23] F. Antonini and F. A. Rasio, Astrophys. J. 831, 187 (2016).
[24] B.-M. Hoang, S. Naoz, B. Kocsis, F. A. Rasio, and F.

Dosopoulou, Astrophys. J. 856, 140 (2018).
[25] I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, Astrophys. J.

835, 165 (2017).
[26] N. C. Stone, B. D. Metzger, and Z. Haiman, Mon. Not. R.

Astron. Soc. 464, 946 (2017).
[27] B. McKernan et al., arXiv:1702.07818.
[28] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M.

Kamionkowski, E. D. Kovetz, A. Raccanelli, and A. G.
Riess, Phys. Rev. Lett. 116, 201301 (2016).

[29] I. Cholis, E. D. Kovetz, Y. Ali-Haïmoud, S. Bird, M.
Kamionkowski, J. B. Muñoz, and A. Raccanelli, Phys.
Rev. D 94, 084013 (2016).

[30] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Phys.
Rev. Lett. 117, 061101 (2016).

[31] B. Carr, F. Kühnel, and M. Sandstad, Phys. Rev. D 94,
083504 (2016).

[32] C. L. Rodriguez, M. Zevin, C. Pankow, V. Kalogera, and
F. A. Rasio, Astrophys. J. Lett. 832, L2 (2016).

[33] X. Chen and P. Amaro-Seoane, Astrophys. J. Lett. 842, L2
(2017).

[34] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Phys.
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