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We study the anisotropic neutrino emission from the core of neutron stars induced by the star’s magnetic
field. We model the core as made out of a magnetized ideal gas of strange quark matter and implement the
conditions for stellar equilibrium in this environment. The calculation is performed without resorting to
analytical simplifications and for temperature, density, and magnetic field values corresponding to typical
conditions for a neutron star’s evolution. The anisotropic neutrino emission produces a rocket effect that
contributes to the star’s kick velocity. We find that the computed values for the kick velocity lie within the
range of the observed values, reaching velocities of the order of ∼1000 km s−1 for magnetic fields between
1015 − 1018 G and radii of 20 to 5 km, respectively.
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I. INTRODUCTION

One of the great challenges faced by modern astrophysics
is the understanding of the internal composition of compact
objects such as neutron stars (NS). The interest is also
stimulated by current efforts to map the phase diagram of
nuclear matter in the high baryon density, low temperature
domain, where heavy-ion experiments have little or no
chance to contribute. It is speculated that at baryon densities
several times higher than normal nuclear density, strongly
interacting matter undergoes a phase transition into quark

matter. A nice argument based on the largeNc expansion [1]
shows that when the quark chemical potential exceeds the
constituent quark mass, the increase in pressure produces a
phase where chiral symmetry is restored, though quarks are
still confined and baryons are parity doubled. A further
increase in density produces that quarks roam on top of a
baryon Fermi surface to form the so called quarkyonic
matter. For sufficiently high densities, thismatter can contain
even strange quarks to form the so called strange quark
matter that could arrange itself into a quark color super-
conductor phase such as the color-flavor locked (CFL) phase.
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Compact objects can also sustain high intensity magnetic
fields, whose surface strength ranges form 108 G for milli-
second pulsars and 1012 G for radio pulsars [2], up to 1015 G
for magnetars [3]. It has been estimated that these surface
field intensities imply that in the NS core the magnetic
field can reach a strength as high as 1018−1019G [4,5].
Recently, the sophisticated techniques to detect gravita-

tional waves developed by LIGO and other observatories
[6,7], have opened a new window to astronomy. As an
example one can mention the recent detection of gravita-
tional waves corresponding to the merging of two neutron
stars [7,8]. These ground observatories, together with satel-
lite ones, such as the Neutron star Interior Composition
ExploreR (NICER) Mission [9] will soon provide con-
straining measurements of NS properties with uncertainties
below 10% [10]. This privileged modern scenario is encour-
aging to also carry out deeper theoretical studies on the
composition of neutron stars.
The presence of magnetic fields in the interior of

compact objects affects not only the equation of state
(EoS) but also the solutions to Einstein’s equations. For the
former, the magnetic field influences the microphysics, by
means of the Landau quantization of the energy levels
experienced by moving charged particles. This quantization
produces the anisotropy of the energy-momentum tensor
and the splitting of pressure into parallel and perpendicular
(to the magnetic field) components. Effects on the structure
equations come from this anisotropy in the energy-momen-
tum tensor. In previous works, the anisotropic effect of
magnetic fields on the EoS for white dwarfs (WD), neutron
stars and quark stars (QS) [11–13] as well as for the
evolution of the early universe [14] have been studied. The
possibility that unpaired magnetized quark matter be in a
superconductor state, and in particular in the CFL phase,
was explored in Refs. [15,16]. For WD and QS, calcu-
lations have been carried out to analyze the anisotropic
structure of equilibrium equations [17,18].
Another phenomenon that may be influenced by the

presence of a magnetic field in the interior of compact
objects is the translational velocity observed for some
pulsars. This velocity corresponds to a peculiar compact
object’s motion with respect to the surrounding stars and to
their progenitors. Data corresponding to the motion of 233
pulsars has been collected in Ref. [19] where velocities as
high as 1000 km s−1 as well as mean velocities for young
pulsar of 400 km s−1 are reported. These NS translational
velocities are commonly referred to as pulsar kick velocities.
Several mechanisms have been proposed to explain these

kicks, the most relevant ones can be found in Ref. [20].
Depending on the time of their appearance, whether at birth
or during the NS evolution, the kicks have been classified
into natal or post-natal, respectively. Since the kick corre-
sponds to aNS’s asymmetricmotion, all the proposedmodels
rely on some kind of asymmetric velocity producing mecha-
nism. Among these we can mention the asymmetric matter

ejection due to hydrodynamical perturbations during the core
collapse and the supernova explosion (natal kick) [21]; the
electromagnetic rocket effect produced by electromagnetic
radiation along theNS spin axis from an off-centered rotating
magnetic dipole (post-natal) [22] and the asymmetric emis-
sion of neutrinos from the core of a NS in the presence of
strong magnetic fields, coming from changing-flavor
charged currents [23]. The latter mechanism seems to be
the most natural one since the emission of neutrinos is the
most efficient for the NS cooling. This could be responsible
for either a natal or post-natal kick, depending on the main
reaction that is taking place in the core.
In this work, we study the asymmetric emission of

neutrinos from a NS core transiting into magnetized strange
quark (MSQ) matter. This process could lead to the
formation of either a hybrid star (namely, a core of
MSQ matter with a crust made out of nuclear matter), or
a bare MSQ star. For the purpose of our study, the final
stage of the NS does not matter, thus we refer indistinctly to
one or the other case as a MSQ.
The mechanism of asymmetric emission of neutrinos has

already been explored in Refs. [24,25] where it was shown
that, when ignoring neutrino quark scattering and for typical
values of temperature, density, andmagnetic field strength in
a NS core, it is possible to achieve kick velocities of order
1000 km s−1. These large velocities receive corrections due
to the smaller neutrino mean free path when neutrino
interactions are included. Such interactions produce that
the neutrino motion within the core quickly reaches a
diffusive stage which translates into a reduced anisotropic
neutrino motion. When considering these corrections, the
largest kick velocities that can be obtained are of order
100 km s−1 even when color superconductivity effects are
included. Corrections induced from non-Fermi liquid behav-
ior on the neutrino mean free path and emissivity beyond the
leading order have also been considered in Ref. [26,27].
Nevertheless, other important ingredients for neutrino propa-
gation within the core have not yet been explored. These
include the possible magnetic field induced decrease of the
neutrino coupling with the surrounding plasma. A similar
effect for QCD matter has been found, albeit for high
temperature and not for high density, for the coupling
constant in QCD and effective QCD models [28–31]. This
reduction of the coupling strength is linked to the so called
inverse magnetic catalysis phenomenon, observed by lattice
QCD calculations [32–34]. In addition, the effects on the
neutrino scattering arising from the anisotropic pressures are
yet to be explored. Since when considered, these ingredients
may play a significant role for the properties of neutrino
propagation in dense magnetized media, here we first revisit
the underlying main mechanism responsible for neutrino
emission during the evolution of a neutron star. Following
Ref. [25], we study a more realistic scenario by imposing the
stellar equilibrium (β equilibrium, charge neutrality and
baryon number conservation) conditions in the core of the
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NS treating it as a magnetized gas of strange quark matter
(SQM) and by taking into account the magnetic field
dependence in the chemical potential and temperature of
all of the thermodynamical quantities involved. The calcu-
lation is performed without resorting to analytical simplifi-
cations and for temperature, density, and magnetic field
values corresponding to typical conditions for a neutron
star’s evolution.
The paper is organized as follows: In Sec. II we start by

recalling the expression that relates the relevant thermo-
dynamical quantities to the kick velocity. In Sec. III we give
a brief sketch of the thermodynamical properties of
magnetized fermions. In Sec. III Awe compute the electron
polarization in the presence of a magnetic field and finite
chemical potentials. In Sec. III B we present our results for
the kick velocities when the stellar equilibrium equations
are considered. Finally, in Sec. IV we discuss the plau-
sibility of our approach in light of effects that can influence
the neutrino mean free path within the NS core and we give
our conclusions.

II. PULSAR KICK VELOCITY

We consider a scenario where the neutrino emission
mainly comes from the NS core, where the density is taken
high enough so that the significant degrees of freedom are
the u, d, and s quarks and neutrino (antineutrino) emission
comes from beta decay. Although the emitted particles can
travel in all directions, a rocket effect appears when an
imbalance in the emission of neutrinos with a momentum
component in one versus the opposite direction exists. This
direction is provided by the magnetic field, which is taken
to point in a single direction, at least for distances of the
size of the neutron stars core. Since beta decay is a parity
violating process, the relevant quantity entering the calcu-
lation of this kick velocity is the electron spin polarization
asymmetry, defined as the ratio between the difference and
the sum of the number of spins polarized electrons in the
directions along and opposite to the magnetic field.
Conservation of momentum and angular momentum in a
parity violating process require that the emitted neutrino-
positron (antineutrino-electron) spin polarization are corre-
lated with their direction of motion projected along or
opposite to the direction provided by the magnetic field.
Therefore the number of neutrinos (antineutrinos) emitted
in one or the opposite direction can simply be computed
from their spin asymmetry. Notice that the phase space
factors coming from the whole beta decay process cancel in
the ratio that leads to the calculation of the spin electron
polarization asymmetry, leaving only the expressions for
the number of particles (electrons) with one and the other
spin which can be computed accounting for a thermal
environment and in the presence of a magnetic field. The
efficiency for the process is a complicated function of
temperature, chemical potential and magnetic field
strength. It is 100% efficient only for extremely large

values of the magnetic field. However, as we show, for
finite field strengths, the polarization grows as the intensity
of the magnetic fields increases. Notice that for not too
extreme values one can achieve a nonvanishing asymmetry
and that, in fact, a rough estimation indicates that an
asymmetry of order 3% could be sufficient to power a kick
of order 1000 km s−1 for a 1.4 solar mass neutron star (see
Ref. [24]). We also assume that the angle between the
magnetic field direction and the axis of rotation is small for
the mechanism to be more efficient, as is discussed
in Ref. [35].
The produced kick velocity of the NS can be computed

as [24,25]

dv ¼ χ

MNS

4

3
πR3ϵdt; ð1Þ

where MNS and R are the NS mass and radius, ϵ is the
neutrino emissivity and χ is the electron spin polarization,
which determines the fraction of neutrinos asymmetrically
emitted as we mentioned before.
When the emissivity changes with temperature, the

cooling equation can be used, namely,

−ϵ ¼ dU
dt

¼ dU
dT

dT
dt

¼ Cv
dT
dt

; ð2Þ

where U is the internal energy density and Cv is the heat
capacity. Therefore, the kick velocity is given by

v ¼ −
1

MNS

4

3
πR3

Z
Tf

Ti

χCvdT: ð3Þ

This velocity can be written in the following form

v ¼ −803.925
km
s

�
1.4 M⊙

MNS

��
R

10 km

�
3
�

I
MeVfm−3

�
;

ð4Þ

where

I ¼
Z

Tf

Ti

χCvdT: ð5Þ

The integral I is a function of Cv and χ and both depend
on magnetic field, chemical potential, and temperature.
These quantities are also derived from thermodynamical
properties of the system which we proceed to calculate.

III. THERMODYNAMICS OF MAGNETIZED
FERMIONS AT LOW TEMPERATURES

In order to find Cv and χ we need to compute the
thermodynamical potential in the presence of a magnetic
field, including the contribution from all species subject to
the magnetic field effects.

KICKS OF MAGNETIZED STRANGE QUARK STARS … PHYS. REV. D 97, 103008 (2018)

103008-3



Let us consider the core of the NS made out of MSQM,
namely a gas composed of quarks u, d, and s and electrons
e in the presence of a magnetic field.
The thermodynamical potential for a fermion species f

in a constant magnetic field directed along the ẑ direction
reads

ΩfðB;μf;TÞ¼−
efdfB

2π2

Z
∞

0

dp3

X∞
l¼0

ð2−δl0Þ
�
Elfþ

1

β
lnð1þe−βðElf−μfÞÞð1þe−βðElfþμfÞÞ

�
;

ð6Þ

where

Elf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2jefjBlþm2

f

q
;

l ¼ νþ 1

2
þ s
2
; ν ¼ 0; 1; 2;…; s ¼ �1; ð7Þ

ef andmf are the fermion charge and mass respectively, l is
the Landau level, s is the particle’s spin and p3 is the
momentum along the magnetic field B.
From Eq. (6), we can find the expressions for all relevant

thermodynamical quantities such as the particle number
density, the entropy and the heat capacity, given by

nf ¼−
∂Ωf

∂μf ; Sf ¼−
∂Ωf

∂T and Cvf ¼T
∂Sf
∂T ; ð8Þ

respectively.
In particular, the explicit expression for particle density

nf and heat capacity Cvf read as

nf ¼
dfm3

f

2π2
bf

X∞
l¼0

ð2− δl0Þ
Z

∞

0

dx3
1

eð
mf
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
3
þ1þ2lbf

p
−xfÞ þ 1

;

ð9Þ

Cvf ¼
dfm2

4π2T2
bf

Z
∞

0

dp3

X∞
l¼0

ð2 − δl0Þ
ðElf − μfÞ2

½1þ cosh Elf−μf
T �

;

ð10Þ

where x3 ¼ p3=mf is the dimensionless momentum along
the magnetic field and bf ¼ B=Bc

f, being Bc
f ¼ m2

f=ef the
critical magnetic field. As a reference we take the electron
critical field value: Be

c ¼ m2
e=ee ¼ 4.41 × 1013 G and will

use as short notation be ≡ b ¼ B=Bc
e.

We can also obtain the well known expression for the
T ¼ 0 limit of the thermodynamical potential given by [13]

ΩfðB; μ; 0Þ ¼ −
dfm4

f

4π2
bf

Xlmax

l¼0

ð2 − δl0Þ

×

�
xfplf − ε2lf ln

�
xf þ plf

εlf

��
; ð11Þ

where xf ¼ μf=mf is the dimensionless chemical potential,
plf ¼ ðx2f − ε2lfÞ1=2, εlf ¼ ½1þ 2lbf�1=2 and the maximum
number of Landau levels is lmax ¼ I½ðx2f − 1Þ=ð2bfÞ�, with
I½ζ� denoting the integer part of ζ number.
Since NS chemical potential values associated to the

density are higher than their temperatures (μ ≫ T), the
approximation in Eq. (11) is good enough to construct an
EoS. However, when we are interested in studying temper-
ature dependent phenomena, it is important to properly
account for the temperature dependence. This is the case of
the present study since we want to describe a post-natal
kick appearing during the cooling stage of the NS. In this
stage, the temperature varies in the range of 10 MeV to
0.1 MeV. Thus, the low temperature limit can only be
considered as a leading order approximation to the prob-
lem. To account for next to leading order corrections, we
follow the general procedure described in Appendix B of
Ref. [36]. In this manner, we obtain the low temperature
expansion for the thermodynamical potential, given by

ΩðB; μ; TÞ ¼ Ω0ðB; μÞ þ
π2

6
T2Ω00

0ðB; μÞ

þ 7π4

360
T4Ωð4Þ

0 ðB; μÞ þ…; ð12Þ

where the low temperature condition μf −mfεlf ≫ T ≥ 0

is used.
Working up to second order corrections in T, Eq. (12)

reads explicitly as

ΩfðB; μ; TÞ ¼ −
dfm4

f

4π2
bf

�Xlmax

l¼0

ð2 − δl0Þ
�
xfplf

− ε2lf ln

�
xf þ plf

εlf

��

þ
Xlmax−1

l¼0

ð2 − δl0Þ
�
π2

3

xf
plf

T2

m2
f

��
; ð13Þ

where the second summation is up to lmax − 1 to formally
avoid divergences in the analytical expression. The numeri-
cal results however, are not affected by this condition since
what is missing is just a numerically small term for the
whole sum.
From Eq. (13), the low temperature expressions for the

thermodynamical quantities are given explicitly by
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nfðB; μ; TÞ ¼
dfm3

f

2π2
bf

�Xlmax

l¼0

ð2 − δl0Þplf

−
π2

6

T2

m2
f

Xlmax−1

l¼0

ð2 − δl0Þ
ε2lf
p3
lf

�
; ð14Þ

and

Cvf ¼
dfm2

f

6
bfT

Xlmax−1

l¼0

ð2 − δl0Þ
xf
plf

: ð15Þ

In addition to the approximate expression for the heat
capacity at low temperature, given by Eq. (15), we also
calculate the exact expression for the heat capacity from
Eq. (10). Both expressions will be used in the calculation of
the kick velocity, given by the integral I in Eq. (5). The
comparison between both results is shown in Sec. III B.

A. Electron polarization in a magnetic field

Now we need to compute the second ingredient to
determine the kick velocity, namely, the polarization of
emitted electrons. As we mentioned before, the fraction of
neutrinos asymmetrically emitted is equal to the number of
spin polarized electrons in the presence of themagnetic field.
Due to the constrains imposed by the relation among the
quantumnumbers, Eq. (7), the electrons in l ≠ 0with spin up
get aligned parallel (s ¼ þ1) to the magnetic field and those
with spin down antiparallel (s ¼ −1) to it. Meanwhile, the
electrons in the lowest Landau level (LLL) can only align
antiparallel to the direction of the magnetic field.
Then the fraction of spin polarized electrons could be

calculated as

χ ¼ n− − nþ
n− þ nþ

; ð16Þ

where n� are the number densities corresponding to spin
oriented parallel and antiparallel to the magnetic field
direction. In this way, n� are given by

nþ ¼ dem3
e

2π2
b
X∞
ν¼1

Z
∞

0

dx3
1

eð
me
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
3
þ1þ2νb

p
−xeÞ þ 1

; ð17Þ

n− ¼ dem3
e

2π2
b
X∞
ν¼0

Z
∞

0

dx3
1

eð
me
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
3
þ1þ2νb

p
−xeÞ þ 1

: ð18Þ

Here we used the relation between l, ν and s,
given by Eq. (7) and expressed the summation over l in
terms of the summation over ν. For this purpose, note
that the change in the summation is carried out consideringP∞

l¼0ð2 − δl0Þ →
P

s¼�1

P∞
ν¼0.

From Eqs. (16), (17) and (18) we can compute the
dependence of χ with the parameters B, T, and μ, obtaining

χ ¼
8<
:1þ

2
P∞

ν¼1

R∞
0 dx3 1

e
ðme
T

ffiffiffiffiffiffiffiffiffiffiffiffi
x2
3
þ1þ2νb

p
−xeÞþ1R∞

0 dx3 1

e
ðme
T

ffiffiffiffiffiffi
x2
3
þ1

p
−xeÞþ1

9=
;

−1

: ð19Þ

This equation is exact and will be computed numerically.
However, an analytical approximation for low temperatures
can be written as

χ ¼
8<
:1þ

2
Plmax

ν¼1 ple − π2

3
T2

m2
e

Plmax−1
ν¼1

ε2lf
p3
lf

p0e − π2

6
T2

m2
1
p3
0e

9=
;

−1

: ð20Þ

The behavior of the polarization as a function of the
chemical potential and temperature is shown in Figs. 1 and
2. The left panel of Fig. 1 shows that the polarization grows
when the magnetic field increases while the right panel
shows that the effect of increasing the temperature is to

10-1 100 101 102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0  T=0.1 MeV
 T=1.0 MeV
 T=10  MeV

 χ

b

0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

 b =105

 b =104

 b =103

 b =102

χ

T [MeV] 

FIG. 1. Polarization χ, for a fixed chemical potential of xe ¼ 10, as a function of the magnetic field, for different values of the
temperature (left panel), and as a function of temperature for several values of the magnetic field (right panel).
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inhibit the increase of the polarization. Also, notice the
typical effect of Landau number transitions for low temper-
atures can be appreciated. This is similar to the well-known
Haas-van Alphen oscillations for the magnetization.
Figure 2 shows how the polarization decreases with the

chemical potential and the temperature meanwhile
increases with the magnetic field.
In Fig. 3 we compare the numerical and analytical results

[Eq. (20)] in the low-temperature regime. As the temper-
ature decreases, the value of χ tends to its zero-temperature
limit. The tendency of the graphs is different when the
temperature increases, since the approximation grows
meanwhile the exact value decreases.
Figure 4 shows the behavior of χ with the magnetic field

for exact and for the limit of weak (χW) and strong magnetic
field (χS), whose analytical expressions found in Ref. [25]
are shown in Table I. In the left panel we depict the
numerical and analytical results for weak magnetic fields.
The analytical result corresponds to the first case of Table I.
The numerical and analytical results coincide only for weak
magnetic fields. The right panel shows the numerical and
analytical results corresponding to the second case of
Table I. Both results approach the value χ ¼ 1 in the limit
of a very strong magnetic field. This is the only regime
where both results coincide. Indeed, for fields as high as
b ¼ 102 − 103, both graphs already present very different
behaviors, even the approximation becomes negative for
magnetic fields around b ¼ 5 × 102. This indicates that one

0 20 40 60 80 100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

1.0

 b=105 T=10 MeV
 b=104 T=10 MeV
 b=102 T=10 MeV
 b=105 T=5   MeV
 b=104 T=5   MeV
 b=102 T=5   MeV

χ

xe

FIG. 2. Polarization χ as function of the chemical potential for
several values of the magnetic field and two fixed temperatures.

10-3 10-2 10-1
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  χlow T 
   χ

b = 10-1

x
e
 = 5

χ

T [MeV] 

FIG. 3. Comparison between the exact and the approximate
results for the polarization χ as function of the temperature for
fixed chemical potential of xe ¼ 5 and magnetic field of
b ¼ 10−1. Notice the large discrepancy between these two results
that start to be noticeable for temperatures around 10−2 MeV.
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FIG. 4. Polarization of electrons χ as a function of the magnetic field for a fixed value of chemical potential and temperature in the
weak field approximation (left panel) and as a function of the magnetic field in the strong field approximation (right panel).

TABLE I. Summary of analytical solutions for electron polari-
zation.

Case Polarization approximation (χ)

m ≫ T ≫
ffiffiffiffiffiffiffiffi
2eB

p
; μe ¼ 0 χW ¼ 1

2
me
T bffiffiffiffiffiffiffiffi

2eB
p

≫ T ≫ me; μe χS ¼ ð1 − 4
lnð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
πT

2me

ffiffiffiffi
2b

p
q

e−me

ffiffiffiffi
2b

p
=TÞ
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has to be careful with the range of values where the strong
field approximation can be applied.

B. Stellar equilibrium and numerical results

Going back to the kick velocities computation, recall that
we require to solve the integral in Eq. (5), considering the
dependence of χ and Cv on the magnetic field, the chemical
potential and temperature inside the neutron star. As we are
assuming that the kicks are of post-natal origin, we also
require to impose the conditions that exist in the core of
neutron stars which are determined by the β decay
equilibrium equations among the quark species

d → uþ eþ ν̄e; uþ e → dþ νe; ð21aÞ
s → uþ eþ ν̄e; uþ d → uþ s: ð21bÞ

Equations (22) also represent the charge neutrality and
baryon number conservation. All together these equations

are referred to as the stellar equilibrium conditions. Their
solutions provide the chemical potentials dependence on
the temperature. To impose these conditions we have to
solve the system of equations

μu þ μe − μd ¼ 0; μd − μs ¼ 0; ð22aÞ

2nu − nd − ns − 3ne ¼ 0; ð22bÞ

nu þ nd þ ns − 3nB ¼ 0; ð22cÞ

where the chemical potential of neutrinos have been
neglected, nf are given by Eq. (9) and nB is the baryon
density.
In Fig. 5 we show the solution (chemical potentials of the

fermion species as a function of temperature) of the system
of Eqs. (22) for a constant central density and a magnetic
field of b ¼ 105. We can see a very slight change in the
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chemical potential with the temperature for all the quark
species. The changes in the electron chemical potential are
more significant, as it can be appreciated in Fig. 6.
In Fig. 7 we show the specific heat as a function of the

temperature for two values of the magnetic field and a fixed
baryon density. The figure compares our numerical result
forCv with the ones obtained in Ref. [25] where Cv is taken
as independent of the magnetic field and the chemical
potential and temperature are fixed to 400 MeV and
10 MeV respectively. Notice that when Cv is computed
including its full dependence on the magnetic field, temper-
ature and chemical potential,Cv is consistently smaller than
the calculation of Ref. [25]. The effect of the number of
Landau Levels that contribute can be noticed in the jumps
of Cv for certain values of temperature.
In the left panel of Fig. 8 we show the behavior of the

velocity as a function of the neutron star radius for different
values of the magnetic field and a fixed central density. In
the right panel of Fig. 8 we see how the velocity is affected
when the baryon density changes: An increase in the
baryon density implies that the stars can reach higher
velocities for the same value of magnetic fields and the
radius. We compare our numerical calculation with pre-
vious results obtained in Ref. [25], where χ ¼ 1 (which is
tantamount to magnetic fields higher than 1018 G), Cv is
taken as independent of the magnetic field, the chemical
potential and temperature are fixed to 400 MeV and
10 MeV respectively, and the stellar equilibrium conditions
are neither accounted for. Notice that our result approaches
that of Ref. [25] when the magnetic field increases and
also that for the highest values of the magnetic field, the
neutron star can reach higher velocities for smaller radii,
while for low values of the magnetic field the star
would require a larger radius to reach velocities of order
vkick ∼ 1000 km s−1. These velocities are obtained for
magnetic fields between 1015 − 1018 G and radii between
20 to 5 km, respectively.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied the anisotropic neutrino
emission from the core of a NS in the presence of a
magnetic field as a possible mechanism to account for the
NS’s kick velocities. We have modeled the NS core as
made out of a magnetized gas of strange quark matter.
The neutrino emission is considered imposing stellar
equilibrium conditions and accounting for the magnetic
field dependence in the chemical potential and temper-
ature of all the thermodynamical quantities involved.
A main ingredient is the full numerical calculation both
of the polarization and of the heat capacity for low
temperatures.
For typical values of densities an temperatures, the

inclusion of stellar equilibrium conditions and the depend-
ence of all thermodynamical quantities on the magnetic
field allow us to obtain a more realistic model to describe
the kick velocity mechanism and cover a wider range of
magnetic field values. Our result for the kick velocity tends
asymptotically to the one of Ref. [25] where the ideal
condition of χ ¼ 1 was used, implying very high magnetic
fields.
The anisotropic neutrino emission as a source of NS’s

kick velocities faces many challenges. Reference [37]
argues that in thermal equilibrium no asymmetry can be
produced, even in the presence of parity-violating proc-
esses, such as the one considered in the present work.
Therefore, the process is more significant during stages
where the NS’s core is out of equilibrium, such as the very
early times after the NS’s birth [38] or during posterior
phase transitions of quark matter inside the core. The
problem can be translated to the small neutrino mean free
path within the thermalized matter [25]. It should be noted
however that the magnetic field effect on the interaction rate
and thus on the mean free path has not yet been calculated
and that, when the magnetic field strength is high, a strong
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nB ¼ 5n0 (left panel) and for different values of the central density at a fixed magnetic field of b ¼ 105 (right panel).

ALEJANDRO AYALA et al. PHYS. REV. D 97, 103008 (2018)

103008-8



modification of such interaction may be expected (see
however Ref. [39]). Studies aiming to incorporate non-
trivial effects of magnetic fields have been performed for
instance in Refs. [40–42]. Other effects such as the
magnetic field induced anisotropic pressures should be
consistently accounted for the study of the structural and
polarization properties of a strongly magnetized stellar
object. In particular, the effect of a smaller longitudinal
pressure than the transverse one, produces the appearance
of a longitudinal instability of the NS’s matter when the
magnetic field exceeds some critical value [5,12,13]. The
effects of some of these ingredients are being considered
and will be reported in the near future elsewhere.
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