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We examine the phase structure of a Uð1Þ ×Uð1Þ-symmetric model in three dimensional space-time
with a potential of sixth order in the scalar fields coupled to dynamic gauge fields with a mixed Chern-
Simons term. Using a large N technique, we compute the quantum effective potential and the
renormalization group functions of the various couplings to the next-to-leading order of the 1=N
expansion in terms of the mixed Chern-Simons coefficient. The model has a phase which exhibits
spontaneous breaking of scale symmetry accompanied by a massless dilaton which is a Goldstone mode.
We explicitly show that the various sextic couplings beta functions vanish to leading order in the 1=N
expansion; however, at the next order in the 1=N expansion, they exhibit nontrivial running that we analyze
explicitly in terms of the mixed Chern–Simons coefficient. We demonstrate that the gauge fluctuations split
the zeros of the beta functions and generate a variety of nontrivial fixed points. The stability of these
fixed points and the requirement of the positivity of the renormalization group improved effective
potential are also examined. Our study identifies a window in the parameter space of the mixed Chern-
Simons coefficient where the renormalization group flow has a stable infrared fixed point where scale
invariance is recovered.
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I. INTRODUCTION

Quantum criticality describes the collective fluctuations
associated with a second order phase transition at zero
temperature [1–3]. It is compelled by competing interactions
that promote different ground states separated by a quantum
critical point (QCP) at which the system’s degrees of
freedom show anomalously large fluctuations on a long-
wavelength scale compared with those of a normal system.
Handling such large fluctuations is challenging since stan-
dard theoretical schemes that assume small long-wavelength
fluctuations cease to be effective; consequently, one resorts
to novel methods such as the renormalization group for-
malism [4] combinedwith an expansion around the system’s
critical dimension or a large N technique [5]. Thesemethods
were successfully applied to problems involving self-
interacting scalar fields, which are the simplest nontrivial
field theories used as phenomenologicalmodels for a variety
of phenomena, notably systems exhibiting tricritical points
such as He-He mixtures or magnetic materials with com-
peting antiferromagnetic and ferromagnetic interactions [6].
This paper explores instabilities of QCPs induced by the

interplay between fluctuating scalar fields and gauge fields
in the context of Josephson junction arrays (JJAs). In these
systems the insulator–superconductor quantum transition
arises as a result of the competition between the charging

energy, which localizes Cooper pairs, and the Josephson
coupling, which tends to delocalize Cooper pairs [7]. JJAs
have been studied intensively because of their rich phase
diagram, frustration effects, and vortex dynamics; as a result,
they were used as generic models that capture essential
features of superconducting granular systems and inhomo-
geneous superconducting films. In particular, a special
self-dual Josephson junction array system (SDJJA) was
introduced in [8] andmodeled in [9] by a topologicalUð1Þ ×
Uð1Þ two-field Ginzburg–Landau theory. The appeal of such
a formulation is that it describes the insulator–superconduc-
tor quantum transition as arising from the condensation of
bosonic disorder fields. Furthermore, in this theory the
conserved currents of Cooper pairs and vortices are repre-
sented by dynamic fictitious gauge fields whose Maxwell
terms encode kinetic terms for charges and vortices, as well
as a mixed Chern–Simons term that describes the Lorentz
force exerted by the vortices on the charges and the Magnus
force exerted by the charges on the vortices [9]. Along with
these emerging gauge fields, the theory includes complex
scalar fields to account for quantum disorder due to electric
and magnetic excitations in the system. The resulting low
energy effective model is a Ginzburg–Landau theory with
two interacting disorder fields coupled to a mixed-Chern–
Simons gauge theory [9]. The competition between these
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disordering fields leads to a rich phase diagram that exhibits
phases such as the emergence of a superconducting phase
which occurswhen the charge disorder field condenseswhile
the magnetic disorder field resides in a vacuum. In addition
the insulating phase occurswhenmagnetic charges condense
while the charge disorder field is in a vacuum.Themodel also
accounts for the emergence of a Hall phase which occurs
when bound objects made up of electric and magnetic
charges condense [9].
The quantum gauge fluctuations add features in the

critical region that are well worth studying. For instance,
Coleman-Weinberg model [10] revealed that fluctuating
gauge fields can qualitatively change the nature of the
transition and lead to spontaneous mass generation in an
initially massless theory. In other words a first order
transition is induced when the mass of the scalar field
passes through zero. Similarly, the study of Halperin et al.
[11] established that the electromagnetic field fluctuations
induced a first order transition from a superconducting to a
metallic phase, although a mean-field model predicted a
second-order phase transition. Specifically, the phase tran-
sition remained of second order only when the number of
components N of the order parameter was large; instead, no
infrared stable charged fixed point was accessible in the
physical case (N ¼ 1). This fluctuation-driven change of
the order of the phase transition was debated intensively;
for example, the Monte Carlo simulations of [12] suggested
a second order phase transition, while the investigation of
[13] indicated the existence of a tricritical point in the phase
diagram separating first and second-order regimes.
On the other hand, Chern-Simons gauge interactions

bring about other peculiar properties. In contrast to a
Maxwell term, a Chern-Simons interaction is intimately
connected with odd dimensional space and cannot be
universally continued to other dimensions. Chern-Simons
theory proved to be an important theoretical framework to
study many condensed matter phenomena in three space-
time dimensions; for example, it was featured in the phase
transitions between quantum Hall liquids and insulators
[14], where a large N analysis revealed that the Chern-
Simons gauge field is a marginal perturbation to the scalar
field fixed point, giving rise to critical exponents that
depend on the coefficient of the Chern-Simons term. By
contrast, the analysis of [15] in the physically relevant case
N ¼ 1 showed that the phenomenon of statistical angle-
dependent critical exponents did not occur and suggested
the absence of a critical point, which implied a first order
transition driven by the fluctuations of the gauge field.
Our study in [9] focused on the critical behavior of a

Ginzburg-Landau theory containing up to the fourth-order
power of the fields ðΦ �ΦÞ2 coupled to gauge fields
described by Maxwell terms and a Mixed-Chern-Simons
term at fixed dimension d ¼ 3. Two different approaches
were used: a one-loop renormalization group calculation at
fixed dimension as popularized by Parisi in [16], and a

more systematic investigation in the framework of a 1=N
expansion as applied to critical phenomena by Ma [17].
The latter technique provided a convenient expansion
parameter (1=N) that allowed the summation of an infinite
class of Feynman graphs leading to non-perturbative
results. The model turned out to be renormalizable in
the 1=N expansion, and its β-functions, infrared fixed
points, and its critical exponents were obtained in a
systematic way [9]. Investigating these infrared fixed points
was essential because they naturally controlled the long
distance and low energy behavior of the theory, resulting in
scale-invariant correlation functions solely characterized by
universal critical exponents. However, when scale invari-
ance at an interacting fixed point is broken spontaneously, a
mass appears with a scale not determined by the funda-
mental parameters of the theory. This phenomenon was
demonstrated by Bardeen et al. [18,19] in an ungauged
OðNÞ symmetric scalar field theory ðΦ �ΦÞ3 in the limit of
infinitely many fieldsN. An interactingUV fixed point was
also analyzed in [20] using perturbative renormalization
group equations. Other aspects of that phenomenon includ-
ing 1=N corrections were analyzed in [21–28]. Recently,
the large N limit of this model was the focus of a study of
the exact behavior of conformal theories in higher than two
dimensions. Models with Chern-Simons gauge fields [29],
and the fate of light dilaton under 1=N corrections [30]
were also investigated.
Motivated by these issues, we propose in this paper an

extension of model [9] that incorporates self-interactions
terms up to sixth order in the scalar fields coupled to
dynamic gauge fields with a mixed Chern-Simons term.
The sextic terms are required to maintain stability of the
effective Ginzburg-Landau potential when the fourth
order terms change sign. The purpose is to address the
tricritical behavior driven by quantum fluctuations of
competing scalar and dynamic gauge fields. The critical
behavior will be analyzed with a controlled large N
technique combined with a renormalization group pro-
cedure. We develop a formalism that allows the compu-
tation of the quantum effective potential from which we
obtain information about the phase diagram and the beta
functions of the various coupling at the next order in the
1=N expansion. This paper is organized as follows. In
Sec. II, the model is introduced. In Sec. III, the effective
potential is derived to leading order of the large N
technique. In Sec. IV, the corrections to the effective
potential arising from the scalar fields and the fluctuating
gauge fields are computed and used to derive the various
renormalization group flow beta functions. In Sec. V, the
fixed points of the model are examined analytically and
numerically, and a window in the parameter space of the
mixed Chern-Simons coefficient is identified where the
renormalization group flow has a stable infrared fixed
point. Finally Sec. VI summarizes the results and dis-
cusses their implications.
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II. THE CONTINUUM MODEL

The low energy effective field theory describing the
dynamics of Cooper pairs and vortices in a self-dual
Josephson junction array consists of two complex fields
associated with disordering due to electric charges (Ψ) and
magnetic charges (Φ) interacting through fictitious gauge
fields aμ and bμ whose dual field strengths represent the
currents of Cooper pairs and vortices in the underlying
microscopic model. The derivation was presented in [9],
and the Euclidean Lagrangian including here sextic terms
in the scalar fields is given by

L ¼ jð∂μ − iaμÞΦj2 þ jð∂μ − ibμÞΨj2 þ iκNbμϵμνλ∂νaλ

þUðjΨj2; jΦj2Þ ð1aÞ

UðjΨj2; jΦj2Þ

¼ r1jΦj2þ r2jΨj2þ
1

2N
ðλ1jΦj4þ λ2jΨj4þ2λ3jΨj2jΦj2Þ

þ 1

6N2
ðg1jΦj6þg2jΨj6þ3g3jΨj2jΦj4þ3g4jΨj4jΦj2Þ

ð1bÞ

Because of quantum fluctuations and RG iterations
we start with the most general Landau-Ginzburg-Wilson
Lagrangian that is symmetric under Uð1Þ ×Uð1Þ trans-
formations and containing up to sextic interaction terms
described by the couplings λi and gi. In order to facilitate
the 1=N expansion, this theory is enlarged to an OðNÞ ×
OðNÞ symmetric model and all couplings are rescaled to
produce a meaningful N → ∞ limit. The model at hand is
renormalizable in ð2þ 1Þ dimensions by the standard
power counting procedure and possesses the usual UV
divergences.

III. EFFECTIVE POTENTIAL AT
THE LEADING ORDER

To get the effective potential, we examine the fluctua-
tions in the Euclidean functional integral

eWðJ;KÞ ¼
Z

DΦDΦ†DΨDΨ† exp

�
−
Z

d3xðL − J† ·Φ

− J ·Φ† − K† · Ψ − K ·Ψ†Þ
�
; ð2aÞ

where two sources J and K are introduced in order to use
the functional integral as a generating functional for the
correlators of Φ and Ψ. For instance the two-point con-
nected correlation functions are

δ2W
δJ†ðx1ÞδJðx2Þ

����
J¼K¼0

¼ hΦðx1ÞΦ†ðx2Þi ð2bÞ

δ2W
δK†ðx1ÞδKðx2Þ

����
J¼K¼0

¼ hΨðx1ÞΨ†ðx2Þi ð2cÞ

The generating functional of the connected one-particle
irreducible correlation functions is obtained by performing
a Legendre transformation

ΓðΦ;ΨÞ¼−WðJ;KÞ

þ
Z

d3xðJ† ·ΦþJ ·Φ†þK† ·ΨþK ·Ψ†Þ; ð3aÞ

ΓðnÞðx1; x2;…; xnÞ ¼
δnΓ

δφðx1Þδφðx2Þ…δφðxnÞ
; ð3bÞ

and with φ representing Φ or Ψ and Φ¼δW=δJ†,
Ψ¼δW=δK†. The effective potential is obtained from the
action for x-independent Φ and Ψ,

ΓðΦ;ΨÞ ¼ ð2πÞ3δ3ðp ¼ 0ÞVeffðΦ;ΨÞ: ð3cÞ

In order to facilitate a systematic 1=N expansion we
introduce a pair of two new auxiliary fields σi and χi with
i ¼ 1, 2 and rewrite the scalar potential in Eq. (1b) as

U ¼ σ1ðjΦj2 − Nχ1Þ þ σ2ðjΨj2 − Nχ2Þ

þ N
X
i¼1;2

riχi þ
λi
2
χ2i þ

gi
6
χ3i

þ λ3χ1χ2 þ
g3
2
χ21χ2 þ

g4
2
χ1χ

2
2: ð4Þ

The functional integrals over σi from −i∞ to i∞ give
delta functions which render the physical content of
Eqs. (4) and (1) identical. The leading order (in 1=N)
effective potential Veffðσi; χiÞ is obtained by integrating out
the Φ and Ψ which appear in (4) in a quadratic form

Veffðσ1; σ2; χ1; χ2Þ

¼ N
X
i¼1;2

�
−σiχi þ riχi þ

λi
2
χ2i þ

gi
6
χ3i þ

Z
p
lnðp2 þ σiÞ

�

þ λ3χ1χ2 þ
g3
2
χ21χ2 þ

g4
2
χ1χ

2
2 ð5Þ

here we adopt the convention that the Fourier integralR
p ≡

R
d3p=ð2πÞ3, which is used throughout this paper. We

study the region of phase diagram where theOðNÞ ×OðNÞ
is unbroken, but when the system is in a phase with
spontaneously broken scale invariance characterized by
nonzero condensates for χi and σi. In the symmetric phase
with zero expectation values of the fields Φ and Ψ, the
vacuum structure is characterized by the gap equations:

∂V
∂σi ¼ N

Z
p

1

p2 þ σi
− Nχi ¼ 0; i ¼ 1; 2 ð6aÞ
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whose solutions are

φi ¼
ffiffiffiffi
σi

p
4π

¼ mi

4π
; i ¼ 1; 2 ð6bÞ

where mi, i ¼ 1, 2 assume the role of masses and the
momentum integral has been cutoff at p ¼ Λ ≫ m. The
renormalized fields are defined by φi ¼ −χi þ Λ=ð2π2Þ,
with i ¼ 1, 2. Eliminating the unphysical fields σi using the
above gap equations, we obtain the leading order effective
potential:

Vð0Þ
eff ðφ1;φ2Þ=N ¼

�
16π2

3
−
g1
6

�
φ3
1 þ

�
16π2

3
−
g2
6

�
φ3
2

−
g3
2
φ2
1φ2 −

g4
2
φ1φ

2
2 þ

λ1
2
φ2
1 þ

λ2
2
φ2
2

þ λ3φ1φ2 − r1φ1 − r2φ2: ð7Þ

In Eq. (7), the parameters ri, λi have been renormalized
in order to make the effective potential cutoff independent.
At the leading order (in 1=N), the couplings gi remain
unrenormalized. Furthermore, for the theory to make sense,
we require that the effective potential to be bounded from
below. In the special case corresponding to the behavior
in the vicinity of the tricritical point (r1 ¼ r2 ¼ 0,
λ1 ¼ λ2 ¼ λ3 ¼ 0), nonzero masses can be generated
provided the couplings satisfy the relation

4ðg23 þ 2h1g4Þðg24 þ 2h2g3Þ ¼ ðg3g4 − 4h1h2Þ2; ð8aÞ

where h1 ¼ 16π2 − g1=2, h2 ¼ 16π2 − g2=2 and the
masses m1 and m2 are related by

½4h1h2 − g3g4�m1 ¼ 2½2h2g3 þ g24�m2 ð8bÞ

The physics described by Eq. (7) at the tricritical point
has been studied in [31] in the limit N ¼ ∞ in connection
with the spontaneous breaking of scale invariance due to
the nonperturbative mass generation. This was shown to
occur on a compact critical surface in the coupling space
defined by the couplings gi, and it manifests itself in various
phases, in some of which it is a consequence of internal-
symmetry breaking. In the next section we examine the
1=N corrections to the effective potential which will
introduce new Logarithmic divergences, and we show
how to handle such divergences with the renormalization
group equations.

IV. EFFECTIVE POTENTIAL AT
NEXT-TO-LEADING ORDER

A. Scalar field contribution

To find the effective action to the next-to-leading order in
large N, we expand the action to quadratic order in the
shifted fields δσ1;2, defined as σα ¼ m2

α þ iδσα with α ¼ 1,

2. Differentiating twice the action with respect to these
fields one obtains:

δ2V
δσ1δσ1

¼ δ2V
δσ2δσ2

¼ 0; ð9aÞ

δ2V
δσ1δχ1

¼ δ2V
δσ2δχ2

¼ −i ð9bÞ

δ2V
δχ1δχ1

¼ λ1 − g1φ1 − g3φ2 ≡ A1; ð9cÞ

δ2V
δχ2δχ2

¼ λ2 − g2φ2 − g4φ1 ≡ A2; ð9dÞ

δ2V
δχ1δχ2

¼ λ3 − g3φ1 − g4φ2 ≡ B; ð9eÞ

Integrating out the quadratic scalar fluctuations, we
obtain the next-to-leading order contribution to the effec-
tive action

S=N¼
Z X

i¼1;2

�
−
m3

i

6π
þφim2

i

�
þVðφ1;φ2Þ

þ 1

2N

Z
p
ln ½ð1þA1Π1Þð1þA2Π2Þ−B2Π1Π2� ð10aÞ

where

ΠαðpÞ¼
Z
k

1

ðk2þm2
αÞ½ðkþpÞ2þm2

α�
¼ 1

4πp
tan−1

�
p

2mα

�

ð10bÞ

The integral in the next-to-leading order contribution
Eq. (10a) presents new divergences which require renorm-
alization. In order to eliminate divergent terms involving
powers of mi in the numerator, we express the effective
action in terms of the renormalized masses Mi which are
defined from the self-energy Σðp;mÞ in diagram Fig. 1.
The two-point function and the renormalized mass Mi are
given by

Γð2Þðp;miÞ ¼ p2 þm2
i − Σðp;miÞ

M2
i ¼ m2

i − Σið0; miÞ þm2
iΣ0

i ð10cÞ

where Σ0
i ¼ ½∂Σiðp;miÞ

∂p2 �
p¼0

.

FIG. 1. Scalar field self-energy.
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Evaluating diagram Fig. 1. we find

Σ1ðp;mÞ ¼ −
Z
q

DσσðqÞ
ðqþ pÞ2 þm2

1

¼ −
Z
q

A1 þ ðA1A2 − B2ÞΠ2

½ðqþ pÞ2 þm2
1�½1þ A1Π1 þ A2Π2 þ ðA1A2 − B2ÞΠ1Π2�

: ð10dÞ

At this order in the large N expansion, in the pure scalar case no infiniteΦ-field wave-function renormalization is needed
as can be seen by inspecting

�∂Σ1ðp;mÞ
∂p2

�
p¼0

¼ −1
3

Z
q

�
1

ðq2 þm2
1Þ2

−
4m2

ðq2 þm2
1Þ3

�
DσσðqÞ ð10eÞ

which yields a finite contribution. The divergent terms in the self-energy form1 at zero momentum are found by expanding
DσσðqÞ in a Taylor expansion in A1, A2, and B

Σdiv
1 ð0; m1Þ ¼ −

Z
q

1

q2 þm2
1

fA1 − A2
1Π1ðqÞ − B2Π2ðqÞ þ � � �g ¼ −A1

�
Λ
2π2

−
m1

4π

�
þ A2

1 þ B2

16π2
ln

�
Λ
m1

�
: ð10fÞ

Similarly the divergent terms in the self-energy for m2 at zero momentum are

Σdiv
2 ð0; m2Þ ¼ −A2

�
Λ
2π2

−
m2

4π

�
þ A2

2 þ B2

16π2
ln

�
Λ
m2

�
: ð10gÞ

Now replacing m1 and m2 in (10a) by their renormalized quantities

m2
1 ¼ M2

1 þ Σ1ð0;M1Þ −M2
1Σ0

1; m2
2 ¼ M2

2 þ Σ2ð0;M2Þ −M2
2Σ0

2 ð10hÞ

results in the cancellation of all divergent terms proportional to m1 and m2 in the next-to-leading order contribution to the
effective potential [these are the first, second, and third order terms in a Taylor expansion in A1, A2, and B of the last term in
(10a)]. The remaining divergent terms involving φ1 and φ2 can be cancelled by counterterms added to Vðφ1;φ2Þ, which
introduce a scale μ, and the effective potential now reads as

Veff=N ¼ Vðφ1;φ2Þþ
X
i¼1;2

�
−
M3

i

6π
þφiM2

i þ
1

N

�
φi−

Mi

4π

�
ðΣreg

i −M2
iΣ0

iÞ
�
þ 1

2N

Z
F:P

p
ln ½ð1þA1Π1Þð1þA2Π2Þ−B2Π1Π2�

þ 1

16Nπ2

�
φ1ðA2

1þB2Þþφ2ðA2
2þB2Þþ 1

128
B2ðA1þA2Þþ

1

384
ðA3

1þA3
2Þ
�
ln

�
μ

M

�
: ð10iÞ

The letters F.P on the integral indicate that its divergent terms have been subtracted out to make the integral finite. The last
logarithmic terms in this renormalized effective potential clearly show that scale invariance is indeed violated. Since the
effective potential is a physical quantity that should not depend on the renormalization scale [32], we require its couplings to
depend on that scale in such a way that the coefficients of Veff when expanded in powers of the fields φi do not depend on
the scale μ. This yields the following β-functions of the ungauged model:

β0ðr1Þ ¼
1

16π2N

�
λ23 þ λ21 −

1

128
g1λ23 −

1

128
g4λ23 −

1

128
λ21g1 −

1

128
λ22g4 −

1

64
λ1λ3g3 −

1

64
λ2λ3g3

�
ð11aÞ

β0ðr2Þ ¼
1

16π2N

�
λ23 þ λ22 −

1

128
g3λ23 −

1

128
λ23g2 −

1

128
λ21g3 −

1

128
g2λ22 −

1

64
λ1λ3g4 −

1

64
λ2λ3g4

�
ð11bÞ

β0ðλ1Þ ¼
−1

16π2N

�
−4g3λ3 − 4g1λ1 þ

1

32
g3λ3ðg1 þ g4Þ þ

1

64
g23ðλ1 þ λ2Þ þ

1

64
g21λ1 þ

1

64
g24λ2

�
ð11cÞ
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β0ðλ2Þ ¼
−1

16π2N

�
−4g4λ3 − 4g2λ2 þ

1

32
g4λ3ðg3 þ g2Þ þ

1

64
g24ðλ1 þ λ2Þ þ

1

64
g23λ1 þ

1

64
g22λ2

�
ð11dÞ

β0ðλ3Þ ¼
−1

16π2N

�
−2g4λ3 − 2g3λ3 − 2λ1g3 − 2λ2g4 þ

1

64
g1λ3g4 þ

1

64
g23λ3

þ 1

64
λ1g4g3 þ

1

64
g24λ3 þ

1

64
g2λ3g3 þ

1

64
λ2g4g3 þ

1

64
λ1g1g3 þ

1

64
λ2g4g2

�
ð11eÞ

β0ðg1Þ ¼
1

16π2N

�
6g21 þ 6g23 −

g31
64

−
g34
64

−
3g1g23
64

−
3g4g23
64

�
ð11fÞ

β0ðg2Þ ¼
1

16π2N

�
6g22 þ 6g24 −

g32
64

−
g33
64

−
3g2g24
64

−
3g3g24
64

�
ð11gÞ

β0ðg3Þ ¼
1

16π2N

�
2g23 þ 2g24 þ 4g3g4 þ 4g3g1 −

1

32
g1g4g3 −

g33
64

−
1

32
g24g3 −

1

64
g2g23 −

1

64
g3g21 −

1

64
g2g24

�
ð11hÞ

β0ðg4Þ ¼
1

16π2N

�
2g24 þ 2g23 þ 4g3g4 þ 4g2g4 −

1

32
g2g3g4 −

g34
64

−
1

32
g23g4 −

1

64
g1g24 −

1

64
g1g23 −

1

64
g4g22

�
ð11iÞ

which are indeed suppressed by 1=N. These beta functions
of the enlarged OðNÞ ×OðNÞ-symmetric model reproduce
those in the model with only an internal OðNÞ symmetry
[23]when the system is decoupled, i.e., λ3 ¼ g3 ¼ g4 ¼ 0. It
is worth pointing out some known facts about this special
case in which the beta function for either g1 or g2 (denoted
by g) reduces to β0ðgÞ ¼ ð3=8π2NÞðg2 − g3=384Þ. For a
positive potential (g > 0), it follows from the quadratic term
in this beta function that the coupling ismarginally irrelevant
for small values of g, for which it increases toward the UV.
As g increases, the cubic term becomes important and a
perturbativeUV fixed point is reached at g� ¼ 384. In [18], a
self-consistent nonperturbativeUV fixed pointwas found, in
the strict N ¼ ∞ limit, at a smaller value g ¼ 32π2 < g�.
The effective potential in the OðNÞ vector model at the
tricritical point is V ¼ ðN=6Þðg� − gÞφ3. The system has
various phases. For values of g smaller than g� the system
consists of N massless noninteracting Φ particles. These
particles do not interact in the infinite N limit and the
correlation functions do not depend on g. For the special
value g ¼ g� a flat direction in φ opens up. For a zero
value of the expectation value of φ, the theory continues
to consist of N massless Φ fields. For any nonzero value
of the expectation value the system has N massive Φ
particles, which all have the same mass due to the unbroken
OðNÞ symmetry. At the same time scale invariance is
broken spontaneously and the vacuum energy still vanishes.
The Goldstone boson associated with the spontaneous
breaking of scale invariance, the dilaton, is massless and
identified as theOðNÞ singlet field φ − hφi. All the particles
are noninteracting in the infinite N limit. This theory is
not conformal: in the infrared limit, it flows to another
theory containing a single, massless, OðNÞ-singlet particle.

For larger values of g the effective potential is unbounded
from below. The system is unstable. The analysis of [18]
suggests that the apparent instability reflects the inability to
define a renormalizable interacting theory, all masses are of
the order of the cutoff and there is no mechanism to scale
them down to low mass values. In other words, the theory
depends strongly on its UV completion.
Going back to theOðNÞ ×OðNÞ-symmetric model at the

tricritical point, Eqs. (11f)–(11i) have several fixed points:
g1 ¼ g2 ¼ g3 ¼ g4 ¼ g�, which corresponds to the noncriti-
cal fixed point of the enlarged Oð2NÞ model. The second
fixed point has all couplings equal to zero. In addition we
have a fixed point with g1 ¼ g� and g2 ¼ g3 ¼ g4 ¼ 0 and
another fixed point with g2 ¼ g� and g1 ¼ g3 ¼ g4 ¼ 0. In
Sec. IV C we show that these beta functions receive
corrections from the gauge fields fluctuations which have
the effect of splitting the zeros of the beta functions and
generating a variety of nontrivial fixed points.

B. Particle content of the tricritical model in the phase
with broken scale invariance at next-to-leading order

Since the OðNÞ ×OðNÞ symmetry is unbroken in this
model, we expect two massive OðNÞ vector fields. The
broken scale invariance leads to a massless dilaton, which
manifests as a zero pole in some appropriate correlator. To
proceed we rewrite the effective potential in (10i) as

Veff=N ¼
X
i¼1;2

�
−
M3

i

6π
þ φiM2

i

�
−
g1
6
φ3
1 −

g2
6
φ3
2 −

g3
2
φ2
1φ2

−
g4
2
φ1φ

2
2 þ

1

N
WðSÞðφ1;φ2;M1;M2Þ ð12aÞ
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where

WðSÞðφ1;φ2;M1;M2Þ

¼
X
i¼1;2

��
φi−

Mi

4π

�
ðΣreg

i −M2
iΣ0

iÞ
�

þ1

2

Z
F:P

p
ln½ð1þA1Π1Þð1þA2Π2Þ−B2Π1Π2� ð12bÞ

is a homogeneous function of φ1;φ2;M1;M2 which can be
written in the following convenient form

WðSÞðφ1;φ2;M1;M2Þ¼
f1
6
φ3
1þ

f2
6
φ3
2þ

f3
2
φ2
1φ2þ

f4
2
φ1φ

2
2

ð12cÞ

where the functions fi ¼ ð1=NÞfiðM1=φ1;M2=φ2Þ. We
seek solutions of the equations of motion,

∂Veff

∂Mi
¼ 0;

∂Veff

∂φi
¼ 0 ð12dÞ

which read

φi ¼
Mi

4π
−

1

2NMi

∂WðSÞ

∂Mi

M2
i ¼ −

∂V
∂φi

−
1

N
∂WðSÞ

∂φi
ð12eÞ

with i ¼ 1, 2. This minimization of the effective potential
leads to the following equations

ð2h1þf1Þφ2
1− ðg3−f3Þφ2

2−2ðg3−f3Þφ1φ2 ¼ 0

−ðg3−f3Þφ2
1þð2h2þf2Þφ2

2−2ðg4−f4Þφ1φ2 ¼ 0; ð12fÞ

which have nontrivial solutions provided the couplings
satisfy the following consistency relation:

½4H1H2−G3G4�2 ¼ 4½G2
3þ2H1G4�½G2

4þ2H2G3� ð12gÞ

where Hi ¼ 16π2 − gi=2þ fi=2, Gi ¼ gi − fi and the
masses are related by

½4H1H2 − G3G4�M1 ¼ 2½G2
4 þ 2H2G3�M2 ð12hÞ

To look for the dilaton which is a Goldstone boson for
spontaneous breaking of the scale symmetry, we examine
the fluctuations matrix about the solution (12e):

S ¼ N
2

Z
δϕi

δ2S
δϕiδϕj

δϕj ð13aÞ

here δϕ1¼δφ1;δϕ2¼δφ2;δϕ3¼δM1;δϕ4¼δM2. Inverting
this matrix we find the correlator

hδφ1ð−qÞδφ1ðqÞi ¼
K2

K1K2 − Δ2
ð13bÞ

where Ki¼Aiþaii−4M2
i =Di−4Micii=Di, aij¼δ2WðSÞ=

δφiδφj, cij ¼ δ2WðSÞ=δMiδφj, bij ¼ δ2WðSÞ=δMiδMj,
DiðqÞ ¼ −Mi=π þ 2φi þ bii þ q2=ð96πMiÞ, and Δ¼ B−
2M1c12=D1 − 2M2c22=D2 þ 4M1M2b12=ðD1D2Þ. Using
(12g) and (12h), we find in the limit of low momenta q
and to leading order in 1=N:

hδφ1ð−qÞδφ1ðqÞi

¼ 6M1M2

Nπ

M1g4−2h2M2

ðg3þg4ÞM1M2−2h1M2
1−2h2M2

2

1

q2
ð13cÞ

This correlator is singular at zero momentum reflecting
the presence of the dilaton pole which is a Goldstone boson
for spontaneous breaking of the scale symmetry.

C. Gauge fields contribution

In this section we consider the full gauge invariant action
in Eq. (1). The first step is to integrate out the Φ and Ψ
degrees of freedom which leads to an effective action for
the gauge fields that has, besides the mixed-Chern-Simons
term in Eq. (1), induced Maxwell terms from the bosonic
functional determinant

SGðaμ; bμÞ ¼ NTr lnð−ð∂μ − iaμÞ2 þm2
1Þ

þ NTr lnð−ð∂μ − ibμÞ2 þm2
2Þ ð14aÞ

Expanding this nonlocal term about aμ ¼ 0 and bμ ¼ 0
and keeping only quadratic terms in the fields gives at an
intermediate step

SGðaμ; bμÞ ¼
N
2

Z
q
aμð−qÞΓaðqÞδTμνaνðqÞ

þ bμð−qÞΓbðqÞδTμνbνðqÞ
− 2κbμð−qÞϵμλνqλaνðqÞ ð14bÞ

here δTμν ¼ ðδμν − qμqν=q2Þ and where the ΓαðqÞ term
arises from the usual bosonic one-loop polarization dia-
grams [9], which are expressed as

2

Z
k

δμν
k2 þm2

α
−
Z
k

½2kμ þ qμ�½2kν þ qν�
ðk2 þm2

αÞððkþ qÞ2 þm2
αÞ

¼ ΓαðqÞδTμν:

ð14cÞ
A full analytic evaluation of the integrals is possible

using some standard steps [9], and the result is

ΓαðqÞ ¼
q2 þ 4m2

α

8πq
tan−1

�
q

2mα

�
−
mα

4π
: ð14dÞ

The resulting gauge propagators in Landau gauge are then
ðα; β ¼ a; bÞ
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Gαβ
μνðqÞ ¼ 1

N
½FαðqÞδTμνδαβ þ GðqÞϵμλνqλð1 − δαβÞ� ð14eÞ

FaðqÞ ¼
ΓbðqÞ

ΓaðqÞΓbðqÞ þ q2κ2
ð14fÞ

GðqÞ ¼ κ

ΓaðqÞΓbðqÞ þ q2κ2
: ð14gÞ

Next, integrating out the gauge fluctuations yields a new
next-to-leading order contribution to the effective potential

Vð1Þ
gauge ¼

Z
q
ln ½Γ1Γ2 þ κ2q2�: ð15aÞ

We find it convenient to subtract out the zero mass terms
from this contribution and write it as

Vð1Þ
gaugeðm1;m2Þ−Vð1Þ

gaugeð0;0Þ¼
Z
q
ln
�
1þϵ

�
162Γ1Γ2

q2
−1

��

ð15bÞ
where the parameter ϵ ¼ 1=½1þ ð16κÞ2� takes values in the
interval [0, 1] with ϵ ¼ 0 corresponding to no gauge
coupling (pure scalar model) and ϵ ¼ 1 corresponding to
zero mixed-Chern-Simons term (gauge model with induced
Maxwell terms). The gauge fields contribution to the
effective potential (15b) presents divergences which are
contained in the first, second, and third order terms in a
Taylor expansion in ϵ. To handle such divergences we first
express the effective action in terms of the renormalized
masses Mi which involve another self-energy Σgaugeðp;mÞ
in diagram Fig. 2 and by adding counterterms to Vðφ1;φ2Þ

Σgauge
1 ðp;mÞ ¼

Z
q

ð2pμ þ qμÞGμνðqÞð2pν þ qνÞ
ðpþ qÞ2 þm2

1

¼ 4

Z
q

½p2 − ðp · qÞ2=q2Þ�Γ2ðqÞ
ðΓ1Γ2 þ κ2q2Þ½ðpþ qÞ2 þm2

1�
ð15cÞ

Σgauge
1 ð0; mÞ ¼ 0 ð15dÞ

�∂Σgauge
1 ðp;mÞ
∂p2

�
p¼0

¼ 64ϵ

3π2
ln

�
Λ
m1

�
: ð15eÞ

The divergence in (15e) introduces infinite scalar fields
wave-function renormalizationΦ ¼ Z1=2 ΦR,Ψ ¼ Z1=2 ΨR

with Z ¼ 1þ ∂Σgauge=∂p2. The terms introduced by mass
renormalization are

−
X
i¼1;2

�
φi −

Mi

4π

�
M2

i

�∂Σgauge
i ðp;mÞ
∂p2

�
p¼0

: ð15fÞ

These terms are proportional to ðφi −
Mi
4πÞ and vanish on

shell. The remaining terms in the gauge field contribution
to the effective potential including logarithmic divergent
terms are

Vð1Þ
gauge ¼

Z
F:P:

q
ln

�
1þ ϵ

�
162Γ1Γ2

q2
− 1

��

þ 210

3
ϵ ln

�
μ

M

���
−1þ 3ϵ −

16

π2
ϵ2
�
ðφ3

1 þ φ3
2Þ

− ϵð1 − ϵÞ
�
1 −

16

π2
ϵ

�
ðφ2

1φ2 þ φ1φ
2
2Þ
�
; ð15gÞ

Collecting the leading order contribution in Eq. (7) and the
two next-to-leading order contributions in Eqs. (10i) and
(15g) give the complete effective potential to that order
which has an explicit dependence on the renormalization
scale. Since this scale is unphysical, there must be implicit
dependence of Veff on μ through the couplings and the
fields so that μ dV

dμ ¼ 0. This renormalization group equation
leads to the new β-functions which now take account of
wave-function renormalization and are expressed in terms
of the ones we already found in the ungauged model as:

βðg1Þ ¼ β0ðg1Þ − g1
64ε

π2N
−
211

N
ϵ

�
1 − 3ϵþ 16

π2
ϵ2
�

ð16aÞ

βðg2Þ¼ β0ðg2Þ−g2
64ε

π2N
−
211

N
ϵ

�
1−3ϵþ16

π2
ϵ2
�
; ð16bÞ

βðg3Þ¼ β0ðg3Þ−g3
64ε

π2N
−
211

N
ϵð1− ϵÞ

�
1−

16

π2
ϵ

�
; ð16cÞ

βðg4Þ¼ β0ðg4Þ−g4
64ε

π2N
−
211

N
ϵð1− ϵÞ

�
1−

16

π2
ϵ

�
: ð16dÞ

The correction termswith powers of ϵ arise from the gauge
fields contribution. The beta functionsβðriÞ, i ¼ 1, 2 are as in
Eqs. (11a)–(11b) but with an extra term −ri64ε=ð3π2NÞ
which accounts for the wave-function renormalization.
Similarly βðλiÞ, i ¼ 1, 2, 3 are as in Eqs. (11c)–(11e) but
with an extra term −λi128ε=ð3π2NÞ.
Before analyzing the fixed points of this model, we

comment here on how the gauge interactions modify the
calculation of the previous section. The equations of motion
(12d) now include additional terms induced by the gauge
interactions. The homogeneous functionW consists of two
contributions W ¼ WðSÞ þWðGÞ whereFIG. 2. Gauge fields self-energy.
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WðGÞ ¼
Z

F:P:

q
ln

�
1þ ϵ

�
162Γ1Γ2

q2
− 1

��
ð17aÞ

The massesM1 andM2 are related as in Eq. (12h), but with
the parameters fi receiving contribution from WðSÞ and
WðGÞ. Since these parameters are of order 1=N, the expan-
sion of the mass ratio to that same order gives

R¼M1

M2

¼ α

�
1−f1

g3ð2g3h2þg24Þ
ðg3g4−4h1h2Þðg23þ2g4h1Þ

−2f2
h1

ðg3g4−4h1h2Þ
þf3

ðg23g4−8g3h1h2−2g24h1Þ
ðg3g4−4h1h2Þðg23þ2g4h1Þ

−f4
ðg33þ8h21h2Þ

ðg3g4−4h1h2Þðg23þ2g4h1Þ
	

ð17bÞ

where α ¼ Mð0Þ
1 =Mð0Þ

2 is mass ratio at the leading order
Eq. (8b) and f2 ¼ α3f1, f3 ¼ αf1=3, f4 ¼ α2f1=3 with f1
given by

f1¼
3π

N
·26

Z
∞

0

dxx2 ln

��
1−

ðg1þg3=αÞarctanðxÞ
32π2x

�

×

�
1−

ðg4þg2=αÞarctanðαxÞ
32π2x

�

−
ðg3þg4=αÞ2arctanðxÞarctanðαxÞ

ð32π2Þ2x2
	

þ3π

N
·27

Z
∞

0

dxx2 ln

�
1−ϵ

�
1−

4

π2
FðxÞFðαxÞ

��
ð17cÞ

where FðxÞ ¼ ½1þ 1=x2� arctanðxÞ − 1=x. As before, the
divergent parts in these integrals have been subtracted,
which means that their Taylor expansion in terms of gi
and ϵ starts at the fourth order terms. It is not easy to compute
these integrals analytically, but one can compute their Taylor
expansion term by term. For example the ϵ4 term from the
gauge field contribution involves the following integral

IðαÞ ¼
Z∞

0

dxx2
�
1 −

4

π2
FðxÞFðαxÞ

�
4

ð17dÞ

whose computation for some values of α is given in the
following table. Note that Ið1=αÞ ¼ α3IðαÞ.
α 1 2 3 4 5

IðαÞ 8.33684 3.47153 2.3985 1.95064 1.7085

To examine how the gauge interactions modify the two-
point correlator hδφ1ð−qÞδφ1ðqÞi, we start from a gap
equation similar to Eq. (12d) but including additional terms
induced by the gauge interactions. Making use of a con-
sistency relation between the couplings similar to Eq. (12g)
where the parameters fi now receive contributions from the

scalar fields as well as from the gauge fields, the scalar two-
point correlator hδφ1ð−qÞδφ1ðqÞi is found to be equal to

hδφ1ð−qÞδφ1ðqÞi ¼
6M1

Nπ

1

1þ R2 g3=R−2h1
Rg4−2h2

1

q2
ð17eÞ

where the mass ratio R is given by Eq. (17b). As before, the
scalar current correlator is singular at zero momentum
reflecting the presence of the dilaton pole in the massive
phase of the theory. The residue of the pole is determined by
the masses M1, M2, and the physical couplings. Eq. (17e)
shows that the dilaton retains its feature at the next to leading
order in 1=N.

V. FIXED POINTS ANALYSIS

The analysis of the fixed point of the beta functions
Eqs. (16a)–(16d) and the evolution of all the different
couplings with the energy scale is a formidable task. To
make some progress, we specialize to the more manageable
case g1 ¼ g2 and g3 ¼ g4 redefined in what follows respec-
tively as 384x and 384y, and we examine the theory at its
tricritical point r1 ¼ r2 ¼ λ1 ¼ λ2 ¼ λ3 ¼ 0. The reduced
beta functions are

_x¼ x2−
9ϵx
4

−x3þy2−4y3−3xy2−
π2ϵ

27

�
1−3ϵþ16

π2
ϵ2
�

ð18aÞ

_y ¼ 2xy
3

þ 4y2

3
−
9ϵy
4

− x2y − 4xy2 − 3y3

−
π2ϵ

27
ð1 − ϵÞ

�
1 −

16ϵ

π2

�
ð18bÞ

where _x stands for π
2N
144

dx=d lnðμÞ and the condition express-
ing the positivity of the effective potential is

x <
π2

12
;

�
x − y −

π2

12

��
xþ 3y −

π2

12

�
> 0 ð18cÞ

A. Pure scalar case

The limit ϵ going to zero corresponds to the decoupling
of the gauge fields. In this case the theory is characterized
only by the scalar interactions and the solutions of the beta
functions are easy to find

x ¼ y ¼ 0; x ¼ 1; y ¼ 0;

x ¼ y ¼ 1=4; x ¼ 35

36
; y ¼ −

5

36
: ð19Þ

The only stable fixed point, as shown in Fig. 3, is the
Gaussian one x ¼ y ¼ 0. The other solutions lie in the
instability region.
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B. Fixed points in the gauged model

The inclusion of the gauge fields corrections in the
nonlinear system Eqs. (18a) and (18b) makes the analytical
task of finding the flow trajectories challenging. Even with
the aid of a Computer Algebra System the formulas obtained
are too complicated to providemuch insight; instead,wewill
first examine analytically the behavior of the solutions
around the Gaussian fixed point found in the previous
section in order to show the phenomenon of splitting of
the zeros of the beta functions induced by the gauge
fluctuations. After that we provide results of a numerical
computation of the complete system Eqs. (18a) and (18b)
showing the most salient features of the phase portraits.

To proceed with the analytical approach, we note that for
those fixed points near the origin (0,0), it is safe to omit
cubic terms in Eqs. (18a) and (18b) and keep only the
quadratic ones. The reduced system has the form:

_x ¼ Fðx; yÞ; _y ¼ Gðx; yÞ ð20Þ
Fðx;yÞ¼x2þy2−9ϵx=4−a, Gðx; yÞ ¼ 4y2=3þ 2xy=3−
9ϵy=4 − b, with a¼π2ϵð1−3ϵþ16ϵ2=π2Þ=27, b¼π2ϵð1−
ϵÞð1−16ϵ=π2Þ=27. To find the fixed points for this system,
we solve _x ¼ 0 and _y ¼ 0 simultaneously. Four real fixed
points are found for small ϵ, provided that a2 þ 12ab−
9b2 ≥ 0: these are ðx−;y−Þ, ð−x−;−y−Þ, ðxþ;yþÞ,

FIG. 3. Fixed points and flow diagram of the pure scalar case (ϵ ¼ 0).

FIG. 4. Gauge field fluctuation effects on the RG flow of the couplings x and y showing the splitting of the zeros of the beta functions
around the Gaussian fixed point of the pure scalar model.
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ð−xþ;−yþÞ with y2� ¼ ðaþ6b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ12ab−9b2

p
Þ=10

and x� ¼ 3b=2y� − 2y�. To examine the stability, we
approximate the phase portrait near these fixed points by
that of a corresponding linear system. Denoting by ðx�; y�Þ
one of the four fixed points and u ¼ x − x�, v ¼ y − y� the
components of a small disturbance from the fixed point,
the linearized system which describes the growth or decay
of these disturbances is given in terms of the Jacobian
matrix

�
_u

_v

�
¼

�
6x� 6y�

2y� 2x�y� þ 8y�

��
u

v

�
: ð21Þ

The infrared stability of the fixed points is done as usual
through the positivity analysis of the eigenvalues of the
Jacobian matrix at each fixed point. The eigenvalues of the
Jacobian are λ1;2 ¼ ðτ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 4Δ

p
Þ=2, its determinant is

Δ¼λ1λ2¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ12ab−9b2

p
and its trace τ¼λ1þλ2¼

8ðx�þy�Þ. IR stable fixed points correspond to positive
real eigenvalues (Δ > 0, τ > 0 and τ2 − 4Δ > 0). In this
case ðx−; y−Þ (denoted by F1 in Fig. 4) turns out to be the
only stable fixed point with two attractive directions, while
ð−x−;−y−Þ is infrared unstable since its has two repulsive
eigenvalues. The other two fixed points ðxþ; yþÞ and
ð−xþ;−yþÞ are also infrared unstable since they each have
one repulsive eigenvalue.

FIG. 5. All seven fixed points and flow diagram for small ϵ here ϵ ¼ 0.01.

FIG. 6. Collision between fixed points F3 and F4.
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Next we performed a numerical solution of the complete
Eqs. (18a) and (18b) for various values of ϵ. A sudden
qualitative change in the solutions is observed as the
parameter ϵ is moved passed a threshold value. Figure 5
shows the phase plane pictures and all possible seven fixed
points for very small ϵ. Among these seven fixed points, F1

is the only infrared stable one and the other six fixed points
have different degree of instability. As ϵ rises, the numerical
analysis shows neighboring fixed points (F1, F2) and (F3,
F4) migrating toward each other as is shown in Figs. 6
and 7. Of particle interest is the fate of the infrared stable
fixed point F1 which approaches the unstable F2 as ϵ
increases. These two fixed points are observed to collide
when ϵ ¼ ϵC ¼ 0.047127065 and form a semistable fixed

point. For ϵ > ϵC those two fixed points annihilate each
other and disappear as shown in Fig 8. As ϵ approaches 1,
only one infrared unstable fixed point survives as shown in
Fig. 9. This limit corresponds to zero Chern-Simons term in
Eq. (1), but the theory has an induced Maxwell terms.
The numerical study confirms the splitting of the zeros of

the beta function around the Gaussian fixed point of the
pure scalar case and the existence of other nontrivial fixed
points. It also indicates that there is a window in the
parameter ϵ < ϵC where the RG flows has one infrared
stable fixed point among other fixed points. We should note
that the numerical analysis is restricted to the tricritical
region of the coupling space, which corresponds to the
region where a second order critical line is ending. The flow

FIG. 7. Collision between F1 and F2.

FIG. 8. Disappearance of fixed points F1 and F2.
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diagrams above correspond to fluctuation induced first
order quantum phase transition between the normal and the
scale symmetry breaking phases. It is the Chern-Simons
gauge coupling which is driving the remaining couplings
toward the fixed point. At the infrared stable fixed point F1,
the dimensionless couplings remain unchanged under a
change of renormalization scale. This implies that scale
invariance is recovered at the stable fixed point F1. The
picture that emerges is that for ϵ < ϵC the model exhibits a
quantum transition between broken and unbroken scale
symmetry. One phase has RG trajectories terminating at the
IR-fixed point and scale symmetry is recovered and hence
no dilaton. Away from the basin of attraction of the infrared
fixed point, the RG-trajectories run away from it and this
defines a second phase where the couplings gi are scale
dependent running couplings and can be arranged so that
spontaneous breakdown of scale invariance occurs and a
dilaton appears in the spectrum. For ϵ > ϵC, the model has
no stable-infrared fixed point and the only phase that exists
is the one with broken scale symmetry.

VI. SUMMARY AND DISCUSSION

In summary, the tricritical behavior of a Uð1Þ ×Uð1Þ
Ginzburg-Landau theory with a potential of sixth order in
the scalar fields coupled to a mixed Chern-Simons term was
investigated in the framework of a 1=N expansion at fixed
dimension d ¼ 3. The sextic coupling terms play crucial
roles for stability when the quartic terms are negative. We
computed the quantum effective potential which included
contributions from the self-interactions of the scalar fields
and from the gauge fields fluctuations, and used it to derive
the renormalization group functions of the various cou-
plings to the next-to-leading order of the 1=N expansion in
terms of the mixed Chern-Simons coefficient. We showed

that the beta functions for the various sextic couplings at the
next order in the 1=N expansion exhibit nontrivial running
which we analyzed explicitly in terms of the mixed Chern–
Simons coefficient. Near the tricritical point, we demon-
strated that dynamic gauge field fluctuations split the zeros
of the beta functions and generate a variety of non-trivial
fixed points. The stability conditions for these fixed points
and the requirement of the positivity of the renormalization
group improved effective potential were also examined.
Both an analytical investigation for small couplings and a
numerical calculation in the whole coupling space con-
firmed the splitting of the zeros of the beta functions around
the Gaussian fixed point of the pure scalar model and the
existence of an infrared stable fixed point and other fixed
points of various instability degree. Our numerical study
identified a window in the parameter ϵ ≤ 0.047 space of the
mixed Chern-Simons coefficient (κ ≥ 0.28) where the RG
flow had an infrared stable fixed point at which scale
invariance is recovered. Outside that window there was no
infrared stable fixed point accessible under renormalization
flows. The emerging picture is that the model exhibits a
quantum transition between broken and unbroken scale
symmetry when ϵ ≤ 0.047. In one phase RG-trajectories
terminate at the IR-fixed point at which the scale symmetry
is explicitly realized and it becomes exact and hence no
dilaton. In the second phase RG-trajectories do not reach
the IR-fixed point and scale symmetry is spontaneously
broken and a dilaton appears in the spectrum. For
ϵ > 0.047, the stable-infrared fixed point is annihilated
by an unstable fixed point and the only phase that exists is
the one with broken scale symmetry and a dilaton in the
spectrum.
These results are relevant for Josephson junction arrays

which remain an inspiringproblemandoffer a genericmodel
that captures essential features of the superconducting-
insulating transition in a wide class of systems ranging from
artificiallymanufactured Josephson junction arrays to super-
conducting granular systems and inhomogeneous super-
conducting films. Indeed, based on the expectation that the
transition in these systems is continuous, one usually
attempts a description in terms of an effective Ginzburg-
Landau functional which is obtained from a coarse grained
approach path integral decoupling procedure for the
Josephson energies [7]. However, such a procedure gener-
ates fourth order terms in the Ginzburg-Landau potential
which change sign when the screening length exceeds a few
lattice constants; consequently, the sixth order terms in the
scalar fields become decisive for stability of the effective
Ginzburg-Landau potential and the associated tricritical
point where the second order transition becomes first order
is of paramount importance. On the other hand, the gauge
fields fluctuations describe physically the fluctuations
expected to appear in vortex currents and Cooper pairs
currents in these systems. The resulting competition of the
effects of the gauge fields fluctuations against the scalar

FIG. 9. Fixed point when ϵ ¼ 1.
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fluctuations is of great importance for the critical behavior.
The possibility that these systems exhibit fluctuations driven
first order transitions has important experimental implica-
tions such as the appearance of coexisting phases that give
rise to the phenomenon of hysteresis for example when
changing magnetic fields.
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Note added.—Recently, we became aware that the new
added Ref. [33] also deals with a mutual Chern-Simons

theory in which are coupled bosonic fields denoting Z2

charge and Z2 vortex quasiparticles. But the approach of
[33] uses K-matrices representation as developed in the
fractional quantum Hall hierarchy theory in order to
examine possible phases that such quasiparticles can have,
and utilizes that as a means to access the phase transition
involving topological states. It suggests that the effective
theory at the critical point is a 2þ 1 dimensional quartic
model. Our approach uses sextic terms in the complex
fields in order to obtain the correct tricritical behavior. Our
paper showed that these couplings are ultimately respon-
sible for driving the system to the tricritical point, and paid
special attention to their behavior under the renormalization
group iterations.
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