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In the production of the Higgs through a bottom-quark loop, the transverse momentum distribution
of the Higgs at large PT is complicated by its dependence on two other important scales: the bottom
quark mass mb and the Higgs mass mH . A strategy for simplifying the calculation of the cross section at
large PT is to calculate only the leading terms in its expansion in m2

b=P
2
T . In this paper, we consider the

bottom-quark-loop contribution to the parton process qq̄ → H þ g at leading order in αs. We show that the
leading power of 1=P2

T can be expressed in the form of a factorization formula that separates the large scale
PT from the scale of the masses. All the dependence on mb and mH can be factorized into a distribution
amplitude for bb̄ in the Higgs, a distribution amplitude for bb̄ in a real gluon, and an end point contribution.
The factorization formula can be used to organize the calculation of the leading terms in the expansion in
m2

b=P
2
T so that every calculation involves at most two scales.

DOI: 10.1103/PhysRevD.97.096014

I. INTRODUCTION

The discovery of the Higgs boson in the year 2012
completed the Standard Model (SM) of particle physics
[1,2]. Many properties of the Higgs have since been
measured, and they are in agreement with the theoretical
predictions of the SM [3]. As the experimental precision
improves with the collection of more and more data at the
Large Hadron Collider (LHC), it is important that theo-
retical uncertainties in the SM predictions are under
control. The most straightforward way to reduce the
theoretical uncertainties is to carry out calculations to
higher orders in perturbation theory and to resum to all
orders logarithmic terms that spoil the perturbative expan-
sion in certain kinematic regions.
The dominant contribution to the cross section for Higgs

production is through a top-quark loop due to the large
Yukawa coupling yt ¼ mt=v of the top quark, where mt is
the top-quark mass and v ¼ 246 GeV is the vacuum
expectation value of the Higgs field. The contribution to
the cross section from the interference between the bottom-
quark loop and the top-quark loop can be as large as 8% of

the contribution from the top-quark loop [4]. That con-
tribution is suppressed by the Yukawa coupling yb ¼mb=v,
where mb is the bottom-quark mass. However, the ampli-
tude for the parton process ij → H þ k from a bottom-
quark loop at leading order (LO) in the QCD coupling
constant αs reveals the existence of double logarithms of
m2

H=m
2
b and P

2
T=m

2
b, wheremH is the mass of the Higgs and

PT is its transverse momentum. Since the high-lminosity
LHC may be able to measure the Higgs PT distribution
with a few percent accuracy, it is important to understand
the bottom-quark-loop contribution to the same level of
precision. This requires calculating the process to higher
orders in αs and resumming large logarithms to all orders.
The b-quark-loop contribution to the Higgs PT distri-

bution was first calculated in 1987 [5,6], but a complete
calculation at next-to-leading order (NLO) in αs is still not
available. The difficulty of the NLO calculation is mainly
due to the existence of multiple scales, including the two
mass scales mH and mb and the two kinematic scales PT

and
ffiffiffî
s

p
, where ŝ is the square of the parton center-of-mass

energy. In the kinematic region where mb is much smaller
than the other scales, the calculation can be simplified by
taking the limit mb → 0. This limit is nontrivial because of
nonanalytic functions of mb, such as logðP2

T=m
2
bÞ, that

diverge in the mb → 0 limit. The mb → 0 limit can be
calculated by solving the differential equations for master
integrals in this limit [7]. This method has been used by
Mueller and Öztürk to calculate bottom-quark-loop con-
tributions to the inclusive cross section for Higgs produc-
tion to NLO [7]. The method has also been used by
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Melnikov, Tancredi, and Wever to calculate the helicity
amplitudes for ij → H þ k from a bottom-quark loop at
NLO [8,9]. Terms suppressed by powers of mb are
neglected, and all logarithms of mb are included. As
discussed in Ref. [4], calculating the limit mb → 0 using
differential equations for master integrals is very demand-
ing of computing resources. A method for taking the limit
at an earlier stage of the calculation would be desirable.
An NLO calculation does not necessarily produce a

dramatic increase in accuracy. The relative error in an
exclusive amplitude is probably order α2s log4ðPT=mbÞ,
and the relative error in a sufficiently inclusive cross section
is order α2s log2ðPT=mbÞ. To decrease the relative error to
order αs requires resumming the leading logarithms to all
orders. Much effort has been devoted to resumming the large
logarithms ofPT=mb withPT ≪ mb [10–20]. The sources of
large logarithms of mb=PT with PT ≫ mb are completely
different. At leading order, the large logarithms come from
collinear regions of the loop momentum in which b and b̄
have nearly collinear momenta and from soft regions in
which b or b̄ has momentum small compared to PT . The
effects of partial resummation of large logarithms ofmb=PT
have been studied empirically without understanding their
origin at higher orders [21–24]. The resummation of loga-
rithms in abelianQCDhas been studied inRef. [25]. It would
be useful to develop systematic methods to resum large
logarithms from QCD radiative corrections.
Calculations to higher orders can be simplified, and the

resummation of logarithms can be facilitated by separating
scales. An example is the Higgs effective field theory
(HEFT), in which the top-quark mass mt is taken to be
much larger than all other scales and the top quark is
integrated out of the theory. Using HEFT, the total cross
section for Higgs production has been calculated to the
impressive precision of N3LO [26,27]. The accuracy has
been further improved by the resummation of threshold
logarithms [28–33].HEFThas also been used to calculate the
cross section for Higgs plus one jet to N2LO [34–37] and the
cross section forHiggs plus twoormore jets toNLO[38–40].
A new approach to Higgs production at large transverse

momentum PT based on separation of scales has been
introduced in Refs. [41,42]. The separation of scales was
accomplished by using factorization formulas that were
deduced from factorization theorems for perturbative QCD.
When there is a large kinematic scale Q, it is reasonable to
expand in powers of M2=Q2, where M represents scales
provided by masses and nonperturbative low-energy scales.
The expansion may not be straightforward because of terms
that are nonanalytic inM2=Q2, such as logarithms ofM2 or
functions of mass ratios. In Ref. [41], a factorization
formula for the inclusive Higgs PT distribution at the
leading power ofM2=P2

T was used to factor the nonanalytic
terms into fragmentation functions. The factorization for-
mula reproduces the LO result up to corrections of order
M2=Q2, indicating that theoretical errors are under control

at large Q2. In the factorization approach, different energy
scales are separated into different pieces in the factorization
formula. Since fewer scales need to be considered in each
piece, calculations to higher order are much simpler. The
factorization formula also makes it possible to sum large
logarithms of M2=P2

T to all orders by solving evolution
equations for the fragmentation functions.
InRef. [42],we showed that the factorization approach can

also be used to simplify amplitudes for Higgs production
through a top quark loop at large PT . The all-orders proof of
factorization and the renormalization group equations are
very similar to those for the inclusive production of heavy
quarkonium [43,44]. The specific example considered in
Ref. [42] was the top-quark-loop contribution to the parton
process qq̄ → H þ g at LO. The relevant scales are the hard
kinematic scales Q ∼ PT;

ffiffiffî
s

p
and the soft mass scales

M ∼mH;mt. The leading power in the expansion of the
amplitude in powers ofM2=Q2 was expressed in the form of
a factorization formula in which the scales M and Q are
separated. The factorization formula involves a distribution
amplitude for a tt̄ pair in the Higgs, a distribution amplitude
for a tt̄ pair in a real gluon, and an end point contribution from
the transition tþ t̄ → H þ gvia the exchange of a soft quark.
The factorization formula provides a systematic approxima-
tion with errors of order M2=Q2 that go to zero as the
kinematic scaleQ increases. Every piece in the factorization
formulawas calculated diagrammatically in such away that it
involved either the scaleQ or the scaleM. We also presented
an improved factorization formula that includes all depend-
ence on mt that is not suppressed by m2

H=Q
2, so that the

largest errors are reduced fromorderm2
t =Q2 to orderm2

H=Q
2.

In this paper, we apply the factorization method of
Ref. [42] to the bottom-quark-loop contribution to the
parton process qq̄ → H þ g at LO. The relevant scales are
the hard kinematic scales Q ∼ PT;

ffiffiffî
s

p
and the soft mass

scalesM ∼mH;mb. The leading power in the expansion of
the amplitude in powers ofM2=Q2 is expressed in the form
of a factorization formula in which the scales M and Q are
separated. We also present an improved factorization
formula that includes all dependence on mH that is not
suppressed by m2

b=Q
2, so that the largest errors are reduced

from order m2
H=Q

2 to order m2
b=Q

2.
This paper is organized as follows. In Sec. II, we

introduce the form factor for the bottom-quark-loop con-
tribution to the matrix element for qq̄ → H þ g. We define
the leading-power (LP) form factor to be the leading term in
the expansion of the form factor in powers of M2=Q2. In
Sec. III, we calculate the LP form factor using dimensional
regularization and rapidity regularization to regularize the
divergences that arise from separating the contributions
from different regions. In Sec. IV, we renormalize all the
ultraviolet divergences to obtain a finite factorization
formula for the LP form factor. We also present an
improved factorization formula with errors of order
m2

b=Q
2. In Sec. V, we show that the improved factorization
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formula gives a good approximation to the full form factor
whose error decreases to 0 rapidly as PT increases. We
discuss the prospects for extending our approach to NLO in
αs in Sec. VI.

II. HIGGS PRODUCTION BY qq̄ → H + g
THROUGH A b LOOP

In this section, we define the form factor that determines
the bottom-quark-loop contribution to the cross section for
qq̄ → H þ g at leading order in αs. We give the leading
power in the expansion of the form factor in powers of
M2=Q2. We also present the schematic form of a factori-
zation formula for the LP form factor.

A. Form factor for g� → H + g

The reaction qq̄ → H þ g proceeds at leading order in
the QCD coupling constant gs through the two one-loop
Feynman diagrams in Fig. 1. The matrix element for
qðp1Þq̄ðp2Þ → HðPÞ þ gðp3Þ at LO has the form

M ¼ gs
2ŝ

Tb
ijv̄2γμu1T

μνðP; p3Þε�3ν; ð1Þ

where Tb
ij is the color factor, v̄2 and u1 are the Dirac spinors

for q̄ and q, and ε3 is the polarization vector for the final-
state gluon. The qq̄ invariant mass ŝ ¼ ðp1 þ p2Þ2 is also
the invariant mass of the Higgs and the final-state gluon.
The bottom-quark-loop contribution to the amplitude T μν

for g� → H þ g is

T μνðP; p3Þ ¼ ig2syb

Z
q

Tr½ðqþ PþmbÞγμðq − p3 þmbÞγνðqþmbÞ� − ðmb → −mbÞ
½ðqþ PÞ2 −m2

b þ iϵ�½q2 −m2
b þ iϵ�½ðq − p3Þ2 −m2

b þ iϵ� ; ð2Þ

where the integration measure is
R
q ¼

R
d4q=ð2πÞ4. The color trace tr(TaTb) has been absorbed into the prefactor of T μν in

Eq. (1). The explicit Dirac trace in Eq. (2) comes from the first diagram in Fig. 1. Since the only nonzero terms in the trace
are proportional to mb or m3

b, the two diagrams are equal.
The Ward identities ðPþ p3ÞμT μν ¼ 0 and p3νT μν ¼ 0 imply that the tensor T μν can be expressed in terms of two scalar

form factors that are dimensionless functions of ŝ and masses [45–47]. Only one of the form factors contributes to the matrix
element M in Eq. (1). It can be expressed as

F ðŝ; m2
b; m

2
HÞ ¼

1

ðD − 2Þ4mb

�
gμν −

p3μðPþ p3Þν
P:p3

�
T μνðP; p3Þ; ð3Þ

whereD ¼ 4 is the number of space-time dimensions. The contribution to the form factor from a bottom-quark loop can be
expressed as an integral over a loop momentum:

F ðŝ; m2
b; m

2
HÞ ¼ ig2syb

Z
q

q2 þ 2p3:qþ 2P:p3 þ 3m2
b − 4ðPþ p3Þ:qp3:q=P:p3

½ðqþ PÞ2 −m2
b þ iϵ�½q2 −m2

b þ iϵ�½ðq − p3Þ2 −m2
b þ iϵ� : ð4Þ

The square of the matrix element M for qq̄ → H þ g summed over spins and colors is proportional to jF j2:
1

4N2
c

X
jMj2 ¼ 2ðN2

c − 1Þg2sm2
b

N2
c

t̂2 þ û2

ŝðŝ −m2
HÞ2

jF ðŝ; m2
b; m

2
HÞj2: ð5Þ

The bottom-quark-loop contribution to the matrix elements for gq → H þ q and gq̄ → H þ q̄ at LO can be expressed in
terms of the same function F as the form factor for qq̄ → H þ g but with the positive Mandelstam variable ŝ replaced by a
negative Mandelstam variable t̂. If the form factorF for qq̄ → H þ g is expressed in terms of the complex variable ŝþ iϵ, it
can be applied to gq → H þ q and gq̄ → H þ q̄ by analytic continuation.

B. LP form factor

The form factorF is a function of the three energy scales ŝ1=2,mb, andmH, which satisfy the inequalitiesmb < mH ≤
ffiffiffî
s

p
.

Analytic expressions forF are given in Refs. [5,6]. The analytic expression forF can be simplified in the limitmb,mH ≪ ŝ1=2

by expanding in powers ofm2
H=ŝ andm

2
b=ŝ.

1We refer to the leading term in the expansion of the form factor in powers ofm2
b=ŝ

and m2
H=ŝ as the leading-power form factor. The LP form factor can be derived from the full form factor in Refs. [5,6]:

j

i

P

qj

i

P

−q

p
2

p
1

p
3 p

3

p
1

p
2

FIG. 1. Feynman diagrams for qq̄ → H þ g through a bottom-
quark loop at LO.

1We treat the dimensionless Yukawa coupling yb as an independent parameter from the quark mass mb.
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FLPðŝ;m2
b;m

2
HÞ¼

g2syb
32π2

�
−log2

−ŝ− iϵ
m2

b

þ4 log
−ŝ− iϵ
m2

b

þ
�
log

rþ
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p

r−
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p − iπ

�
2

−
4

ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p

r

�
log

rþ
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p

r−
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p − iπ

�
−4

�
;

ð6Þ

where r is the mass ratio defined by

r≡mH=ð2mbÞ: ð7Þ
It can also be obtained from the top-quark loop contribution to theLP form factor inRef. [42] by analytically continuing the top-
quark mass mt to mb − iϵ and replacing the top-quark Yukawa coupling yt by yb.
Another limit in which the analytic expression for F can be simplified is mb ≪ mH; ŝ1=2. The leading term in the

expansion in powers of m2
b=m

2
H and m2

b=ŝ depends logarithmically on mb, and we must keep the mb dependence in the
logarithms. The mb → 0 limit of the form factor is

F ðŝ; m2
b → 0; m2

HÞ ¼
g2syb
32π2

�
−log2

−ŝ − iϵ
m2

H
−
�
2 log

m2
H

m2
b

−
4ŝ

ŝ −m2
H

�
log

ŝþ iϵ
m2

H
− π2 − 4

�
: ð8Þ

C. Leading-power regions

The LP form factor in Eq. (6) can be calculated directly
using the method of regions [48,49]. There are four regions
of the loop integral over the momentum q in Eq. (4) that
contribute at leading power:

(i) the hard region, in which qμ is order Q, so q2, P:q,
and p3:q are all order Q2,

(ii) the Higgs collinear region, in which p3:q is order
Q2, but q2 and P:q are order M2,

(iii) the gluon collinear region, in which P:q is order Q2,
and q2 and p3:q are order M2, and

(iv) the soft region, in which qμ is orderM, so q2 is order
M2, and P:q and p3:q are order MQ.

The LP form factor F in Eq. (6) is finite, but the
contributions from the individual leading-power regions have
ultraviolet divergences and infrared divergences. The diver-
gences cancel when all the contributions are added. Some of
the divergences can be regularized using dimensional regu-
larization. The generalization of the integral in Eq. (4) toD ¼
4 − 2ϵ space-time dimensions can be obtained by the con-
traction inEq. (3) of the tensorT μν inEq. (2).After evaluating
the Dirac trace, the form factor reduces to

F ðŝ; m2
b; m

2
HÞ ¼

2ig2syb
D − 2

Z
q

1

½ðqþ PÞ2 −m2
b þ iϵ�½q2 −m2

b þ iϵ�½ðq − p3Þ2 −m2
b þ iϵ�

×

�
ð5 −DÞq2 − 4

ðPþ p3Þ:qp3:q
P:p3

þ 2ðD − 3Þp3:qþ ðD − 2ÞP:p3 þ ðD − 1Þm2
b

�
; ð9Þ

where the integration measure for the loop momentum is
Z
q

≡ μ2ϵ
ð4πÞ−ϵ
Γð1þ ϵÞ

Z
dDq
ð2πÞD : ð10Þ

The regularized contributions to the LP form factor
from each of the regions itemized above can be obtained
from the expression for the integral in Eq. (9) by
keeping only the leading terms at large Q=M in
the numerator and the leading terms in each of the
denominators.

D. Factorization formula

In order to understand the dependence of the leading-
power form factor in Eq. (6) on the masses, it is necessary to
separate the dependence on ŝ from the dependence on the
massesmH andmb. We refer to the kinematic scaleQ ¼ ŝ1=2

as the hard scale. We refer to the scale M provided by the
masses mH and mb as the soft scale. The four regions
itemized above correspond to four contributions to the LP
form factor:

(i) direct production of H þ g, in which the Higgs H
and the real gluon g are produced by the process
g� → H þ g at the hard scale Q,

(ii) bb̄ fragmentation into H, in which a nearly collinear
bb̄ pair and the real gluon are created by the process
g� → bb̄þ g at the hard scale Q, and the Higgs is
produced by the subsequent transition bb̄ → H at
the soft scale M,

(iii) bb̄ fragmentation into g, in which a nearly collinear
bb̄ pair and the Higgs are created by the process
g� → H þ bb̄ at the hard scale Q, and the real gluon
is produced by the subsequent transition bb̄ → g at
the soft scale M,
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(iv) end point production of H þ g, in which a b and b̄
are created by the process g� → bþ b̄ at the hard
scale Q, and the Higgs and the real gluon are
produced by the subsequent transition bþ b̄ → H þ
g at the soft scale M.

In Ref. [42], we showed that the top-quark-loop
contribution to the LP form factor for g� → H þ g at LO
can be expressed in terms of a factorization formula that
separates the hard scale Q from the masses mt and mH.
The analogous factorization formula for the bottom-
quark-loop contribution to the LP form factor has the
schematic form

FLP½H þ g� ¼ F̃ ½H þ g� þ F̃ ½bb̄1V þ g� ⊗ d½bb̄1V → H�
þ F̃ ½H þ bb̄8T � ⊗ d½bb̄8T → g�
þ F endpt½H þ g�: ð11Þ

The terms on the right side correspond to the four
contributions itemized above. The subscripts on bb̄ indicate
the color channel, which can be color-singlet (1) or color-
octet (8), and the Lorentz channel, which can be vector (V)
or tensor (T). The⊗ represents an integral over the relative
longitudinal momentum fraction ζ of the bb̄ pair, whose
range is −1 ≤ ζ ≤ þ1. The factors represented by F̃ are
hard form factors that depend only on the hard scaleQ. The
factors represented by d are distribution amplitudes that
depend only on the soft scale M. Regularized expressions
for each of the pieces in the factorization formula in
Eq. (11) will be obtained in Sec. III. Renormalized
expressions for each of the pieces in the factorization
formula will be given in Sec. IV.

III. REGULARIZED FACTORIZATION
FORMULA

In this section, we calculate each of the pieces in the
factorization formula for the LP form factor in Eq. (11) in a
way that involves only the single scale Q or M. We use
dimensional regularization and rapidity regularization to
regularize the divergences in the contributions to the LP
form factor from each of the leading-power regions. The
divergences cancel when the four terms on the right side of
Eq. (11) are added.

A. Rapidity regularization and zero-bin subtraction

The contributions to the LP form factor from the
individual leading-power regions have ultraviolet diver-
gences and infrared divergences. Some of the divergences
are regularized by the dimensional regularization of the
loop integral in Eq. (9). There are additional infrared
divergences called rapidity divergences that require some
other regularization procedure. We regularize the rapidity
divergences using a method called rapidity regulariza-
tion. Rapidity regularization in conjunction with zero-bin

subtraction was introduced as a method for regulari-
zing rapidity divergences by Manohar and Stewart [50].
Rapidity regularization separates the contributions from
collinear and soft regions by explicitly breaking the boost
invariance. Zero-bin subtractions of collinear contributions
are required to avoid double counting of soft contributions.
With rapidity regularization and zero-bin subtraction, the
rapidity divergence from each region is an ultraviolet
divergence. This allows the cancellation of rapidity diver-
gences to be implemented as a renormalization procedure.
In order to specify the rapidity regularization factors, it is

convenient to introduce light-like vectors n and n̄ such that
the only components of Pμ and pμ

3 that are of order Q are
P:n and p3:n̄. We choose the normalizations of n and n̄ so
that n:n̄ ¼ 2, which implies P:np3:n̄ ¼ ŝ. Dimensional
regularization is used to separate the hard contribution
from the sum of the remaining contributions. The integra-
tion measure of the loop momentum in Eq. (10) can be
expressed as

Z
q
≡
Z

dðq:nÞdðq:n̄Þ
8π2

Z
q⊥
; ð12Þ

where the measure of the dimensionally regularized trans-
verse momentum integral is

Z
q⊥

≡ μ2ϵ
ð4πÞ−ϵ
Γð1þ ϵÞ

Z
d2−2ϵq⊥
ð2πÞ2−2ϵ : ð13Þ

We can use the 4-vectors n and n̄ to define regions of the
loop momentum q. In the n collinear region, q:n̄ is orderQ,
q2 is order M2, and q:n is order M2=Q. In the n̄ collinear
region, q:n is order Q, q2 is order M2, and q:n̄ is order
M2=Q. In the soft region, q:n, q:n̄, and q⊥ are all order M.
With rapidity regularization, different regularization

factors may be used in different regions. The specific
forms of the regularization factors required for our problem
were used in Ref. [51] and described more explicitly in
Ref. [52]. The regularization factors in each of the regions
of q are

n collinear∶ ðjq:n̄j=ν−Þ−η; ð14aÞ

n̄ collinear∶ ðjq:nj=νþÞ−η; ð14bÞ

soft∶ ðjq:ðn − n̄Þj=νÞ−η; ð14cÞ

where η is the regularization parameter and νþ, ν−, and ν
are regularization scales. The term jq:ðn − n̄Þj in the soft
factor reduces to jq:n̄j in the n collinear region and to jq:nj
in the n̄ collinear region, so the essential difference between
the three factors in Eq. (14) is in the regularization scales.
They are constrained by an equation that depends on the
application. In most previous cases, the equation was either
νþν− ¼ ν2 or νþν− ¼ −ν2.
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B. Hard contribution

The contribution to the LP form factor from the hard region in which qμ is order Q is

FLP
hardðŝÞ ¼

2ig2syb
D − 2

Z
q

1

½ðqþ P̃Þ2 þ iϵ�½q2 þ iϵ�½ðq − p3Þ2 þ iϵ�

×
�
ð5 −DÞq2 − 4

ðP̃þ p3Þ:qp3:q

P̃:p3

þ 2ðD − 3Þp3:qþ ðD − 2ÞP̃:p3

�
: ð15Þ

The 4-momentum P of the Higgs has been replaced by a
light-like 4-vector P̃whose 3-vector component is collinear
to P and whose normalization is given by 2P̃:p3 ¼ ŝ. The
integral in Eq. (15) can be calculated analytically. A
Laurent expansion in ϵ gives

FLP
hardðŝÞ ¼ −

g2syb
16π2

�
−ŝ − iϵ

μ2

�
−ϵ
�
1

ϵ2
þ 2

ϵ
þ 6 −

π2

6

�
: ð16Þ

The poles in ϵ have an infrared origin, but they can be
transformed into ultraviolet poles in ϵ by adding integrals
that have no scale and therefore vanish with dimensional
regularization.

C. Higgs collinear contribution

As shown in Ref. [42], the scales Q and M in the Higgs
collinear contribution to the LP form factor can be
separated by expressing it as an integral over the relative
longitudinal momentum fraction ζ of the collinear b and b̄
that form the Higgs:

FLP
H coll ¼

Z þ1

−1
dζF̃ bb̄1VþgðζÞdbb̄1V→HðζÞ: ð17Þ

The integrand is the product of a hard form factor F̃ bb̄1Vþg

for producing a collinear bb̄ pair in the color-singlet
Lorentz-vector (1V) channel plus a gluon and a distribution
amplitude dbb̄1V→H for a bb̄ pair in the Higgs. The hard form
factor depends only on the scale Q. The distribution
amplitude depends on the scale M. With rapidity regulari-
zation, it also depends logarithmically on P:n.
The hard form factor in Eq. (17) is derived from the

amplitude T μν for g� → bb̄þ g, which is given by the sum
of the two diagrams in Fig. 2. Since we only want the

leading power, we can set mb ¼ 0. We need the amplitude
for producing b and b̄ in the color-singlet Lorentz-vector
(1V) channel and with collinear momenta 1

2
ð1þ ζÞP̃ and

1
2
ð1 − ζÞP̃ plus a real gluon with momentum p3. The bb̄

pair can be projected onto the color-singlet state by tracing
over the color indices of b and b̄ and dividing by

ffiffiffiffiffiffi
Nc

p
,

where Nc ¼ 3 is the number of quark colors. The bb̄ pair
can be projected onto the Lorentz-vector channel by
replacing the outer product vū of the b̄ and b spinors by
=̃P. The 1V contribution to the tensor amplitude is

T μν
1VðP; p3Þ

¼ −
4g2sffiffiffiffiffiffi
Nc

p
�
P̃:p3gμν − ðP̃μpν

3 þ pμ
3P̃

νÞ − ð1 − ζÞP̃μP̃ν

ð1 − ζÞP̃:p3

− ðζ → −ζÞ
�
: ð18Þ

The hard form factor for g� → bb̄1V þ g is obtained by
the contraction in Eq. (3) of the tensor T μν

1V in Eq. (18), with
P replaced by P̃. We choose to move a factor 1=ð1 − ζ2Þ
from the hard form factor to the distribution amplitude to
allow the poles in the regularization parameters to be made
explicit. A canceling factor 1 − ζ2 must appear in the hard
form factor. We choose to also move the factor 1=ð ffiffiffiffiffiffi

Nc
p

mbÞ
to the distribution amplitude to simplify the expressions for
both the hard form factor and the distribution amplitude.
The resulting expression for the hard form factor is

F̃ bb̄1VþgðζÞ¼−2g2sζ: ð19Þ

The distribution amplitude for bb̄1V → H in Eq. (17) is a
function of the relative longitudinal momentum fraction ζ
that describes how the longitudinal momentum of the
Higgs is distributed between a b and a b̄. The distribution
amplitude can be calculated by using ingredients from the
Feynman rules for double-parton fragmentation functions
in Ref. [53]. A fragmentation function can be expressed as
the sum of cut diagrams that are products of an amplitude
and the complex conjugate of an amplitude. The amplitude
for bb̄ fragmentation into a specific final state is the
amplitude for that final state to be produced by sources
that create the b and the b̄ in a specified color and Lorentz

p
3

p
3

1_
2

1_
2

1_
2

1_
2

FIG. 2. Feynman diagrams for the tensor amplitude T μν for
g� → bb̄þ g at LO.

ERIC BRAATEN, HONG ZHANG, and JIA-WEI ZHANG PHYS. REV. D 97, 096014 (2018)

096014-6



channel with relative longitudinal momentum fraction ζ.
The sources are the end points of eikonal lines that extend
to future infinity. The Feynman rule for the sources that
create the bb̄ pair in the 1V channel is the product of a color
matrix, a Dirac matrix, and a delta function that are given
in Ref. [42].
The leading-order diagram for the distribution amplitude

for a bb̄ pair in the Higgs is shown in Fig. 3. The expression
for the distribution amplitude is

ffiffiffiffiffiffi
Nc

p
ybmbζdðζÞ, where the

function dðζÞ is

dðζÞ ¼ −i
Z
q

δðζ − 2q:n=P:nÞ
½ð1
2
Pþ qÞ2 −m2

b þ iϵ�½ð1
2
P− qÞ2 −m2

b þ iϵ� :

ð20Þ
We have suppressed the rapidity regularization factor and
zero-bin subtractions for the integral over the loop momen-
tum q. The rapidity regularization factor is the product of
two factors like that in Eq. (14b) with q replaced by 1

2
Pþ q

and by 1
2
P − q. Multiplying by the factors 1=ð ffiffiffiffiffiffi

Nc
p

mbÞ and
1=ð1 − ζ2Þ that were removed from the form factor for
g� → bb̄1V þ g in Eq. (19), we obtain the distribution
amplitude

dbb̄1V→HðζÞ ¼ ybζ
dðζÞ
1 − ζ2

: ð21Þ

The function dðζÞ is calculated with rapidity regularization
and with appropriate zero-bin subtractions in the appendix
of Ref. [42]. It has ultraviolet divergences that can be made
explicit as poles in the regularization parameters ϵ and η if
the function is divided by 1 − ζ2:

dðζÞ
1 − ζ2

¼ 1

32π2

�
μ2

m2
b

�
ϵ
�
P:n
ν1

�
−2η 1

ϵ

×

�
−

1

2η
δð1 − ζ2Þ þ 1

ð1 − ζ2Þþ

�

× ½1 − ð1 − ζ2Þr2 − iϵ�−ϵ: ð22Þ
We have set the rapidity regularization scale to ν1. The plus
distribution can be defined by giving the integral of the

product of the distribution and a smooth function fðzÞ over
the closed interval −1 ≤ z ≤ þ1:Z þ1

−1
dζgðζÞþfðζÞ

≡
Z þ1

−1
dζgðζÞ fðζÞ þ fð−ζÞ − fð1Þ − fð−1Þ

2
: ð23Þ

The distribution amplitude in Eq. (21) is

dbb̄1V→HðζÞ ¼
yb

32π2

�
μ2

m2
b

�
ϵ
�
P:n
ν1

�
−2η

× ζ

�
1

ϵ

�
−

1

2η
δð1 − ζ2Þ þ 1

ð1 − ζ2Þþ

�

−
logð1 − ð1 − ζ2Þr2 − iϵÞ

1 − ζ2

�
: ð24Þ

The Higgs collinear contribution to the LP form factor is
obtained by evaluating the integral over ζ in Eq. (17):

FLP
Hcollðm2

b; P̃:nÞ ¼
g2syb
16π2

�
μ2

m2
b

�
ϵ
�
1

ϵ

�
1

2η
− log

P̃:n
ν1

þ 2

�

þ
Z þ1

−1
dζζ2

logð1 − ð1 − ζ2Þr2 − iϵÞ
1 − ζ2

�
:

ð25Þ
It depends logarithmically on P̃:n. The remaining integral
over ζ is

Z þ1

−1
dζζ2

logð1 − ð1 − ζ2Þr2 − iϵÞ
1 − ζ2

¼ 1

2

�
log

rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p

r −
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p − iπ

�2

−
2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p

r

�
log

rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p

r −
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p − iπ

�
þ 4: ð26Þ

D. Gluon collinear contribution

As shown in Ref. [42], the scales Q and M in the gluon
collinear contribution to the LP form factor can be
separated by expressing it as an integral over the relative
longitudinal momentum fraction ζ:

FLP
gcoll ¼

Z þ1

−1
dζF̃Hþbb̄8T ðζÞdbb̄8T→gðζÞ: ð27Þ

The integrand is the product of the hard form factor
F̃Hþbb̄8T for producing a Higgs plus a collinear bb̄ pair
in the color-octet Lorentz-tensor (8T) channel and the
distribution amplitude dbb̄8T→g for a bb̄ pair in a real gluon.
The hard form factor depends only on the scale Q. The
distribution amplitude depends on the scale M. With

P

1_
2 P+q 1_

2 P− q

FIG. 3. Feynman diagram for the distribution amplitude for
bb̄1V → H at LO.
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rapidity regularization, it also depends logarithmically
on p3:n̄.
The hard form factor in Eq. (27) is determined from the

amplitude T μ for g� → H þ bb̄, which is given by the sum
of the two diagrams in Fig. 4. Since we only want the
leading power, we can set mb ¼ 0. We need the amplitude
for producing b and b̄ in the color-octet Lorentz-tensor (8T)
channel with collinear momenta 1

2
ð1þζÞp3 and

1
2
ð1 − ζÞp3

plus a Higgs with momentum P̃. The bb̄ pair can be
projected onto a color-octet state with the color index a by
tracing the amplitude with the color matrix

ffiffiffi
2

p
Ta. The bb̄

pair can be projected onto the Lorentz-tensor channel with
a Lorentz index ν by replacing the outer spinor product vū
by p3γ

ν⊥, where γν⊥ ¼ gνα⊥ γα are Dirac matrices that are
perpendicular to n and n̄, and gνα⊥ is the perpendicular
metric tensor:

g⊥αβ ¼ gαβ −
nαn̄β þ n̄αnβ

n:n̄
: ð28Þ

The 8T contribution to the vector amplitude T μ defines the
tensor amplitude

T μν
8TðP; p3Þ ¼ −4

ffiffiffi
2

p
gsybg

μν
⊥
�

1

1þ ζ
þ 1

1 − ζ

�
: ð29Þ

The hard form factor for g� → H þ bb̄8T can be obtained
by the contraction in Eq. (3) of the tensor T μν

8T in
Eq. (29), with P replaced by P̃. We choose to move a
factor 1=ð1 − ζ2Þ to the distribution amplitude to allow the
poles in the regularization parameters to be made explicit.
A canceling factor 1 − ζ2 must appear in the hard form
factor. We also choose to move the factor

ffiffiffi
2

p
=mb to the

distribution amplitude to simplify the expressions for both
the hard form factor and the distribution amplitude. The
resulting expression for the hard form factor is

F̃Hþbb̄8T ðζÞ ¼ −2gsyb: ð30Þ
The distribution amplitude for bb̄8T → g in Eq. (27) is a

function of the relative longitudinal momentum fraction ζ
that describes how the longitudinal momentum of the real

gluon is distributed between a b and a b̄. It can be
calculated from the diagram in Fig. 5 by using ingredients
from the Feynman rules for double-parton fragmentation
functions in Ref. [53]. The Feynman rule for the sources
that create the bb̄ pair in the 8T channel is the product of a
color matrix, a Dirac matrix, and a delta function that are
given in Ref. [42].
The leading-order diagram for the distribution amplitude

for a bb̄ pair in a real gluon is shown in Fig. 5. The
amplitude for the source to produce a real gluon with
transverse polarization vector in the same direction as the
source and with the same color index as the source is
ðgsmb=

ffiffiffi
2

p Þd0ðζÞ, where the function d0ðζÞ is

d0ðζÞ¼−i
Z
q

δðζ − 2q:n̄=p3:n̄Þ
½ð1
2
p3þqÞ2−m2

bþ iϵ�½ð1
2
p3−qÞ2−m2

bþ iϵ� :

ð31Þ
We have suppressed rapidity regularization factors and
zero-bin subtractions in the integral over the loop momen-
tum q. Multiplying by the factors

ffiffiffi
2

p
=mb and 1=ð1 − ζ2Þ

that were removed from the form factor for g� →Hþbb̄8T,
we obtain the distribution amplitude

dbb̄8T→gðζÞ ¼ gs
d0ðζÞ
1 − ζ2

: ð32Þ

The function d0ðζÞ=ð1 − ζ2Þ with rapidity regularization
can be obtained from the function dðζÞ=ð1 − ζ2Þ in Eq. (22)
by setting r ¼ 0 and replacing P:n with p3:n̄. The
distribution amplitude in Eq. (32) is

dbb̄8T→gðζÞ ¼
gs

32π2

�
μ2

m2
b

�
ϵ
�
p3:n̄
ν3

�
−2η 1

ϵ

×

�
−

1

2η
δð1 − ζ2Þ þ 1

ð1 − ζ2Þþ

�
: ð33Þ

We have set the rapidity regularization scale to ν3. The
poles in ϵ and η have ultraviolet origins. The plus
distribution is defined in Eq. (23).
The gluon collinear contribution to the LP form factor is

obtained by evaluating the integral over ζ in Eq. (27):

PP

3

33

3

1_
2

1_
2

1_
2

1_
2

FIG. 4. Feynman diagrams for the tensor amplitude T μa;b for
g� → H þ bb̄ at LO.

p
3

p −q
3p +q

3
1_
2

1_
2

FIG. 5. Feynman diagram for the distribution amplitude for
bb̄8T → g at LO.
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FLP
g collðm2

b; p3:n̄Þ ¼
g2syb
16π2

�
μ2

m2
b

�
ϵ 1

ϵ

�
1

2η
− log

p3:n̄
ν3

�
: ð34Þ

It depends logarithmically on p3:n̄.

E. Soft contribution

In the soft region of the loop momentum q, all the
components of q are order M. The soft contribution to the
LP form factor with rapidity regularization is

FLP
soft ¼ 2ig2syb

Z
q

P̃:p3

½2P̃:qþ iϵ�½q2 −m2
b þ iϵ�½−2p3:qþ iϵ�

×

�jq:ðn − n̄Þj
ν

�
−2η

: ð35Þ

The 4-momentum P of the Higgs has been replaced by the
light-like 4-vector P̃. The rapidity divergences from the two
denominators 2P̃:q and −2p3:q have been regularized by
multiplying the integrand by two identical copies of the
factor in Eq. (14c). The integral over q in Eq. (35) gives
ultraviolet poles in η and in ϵþ η. After a Laurent
expansion in η, the soft contribution reduces to

FLP
softðm2

bÞ ¼ −
g2syb
16π2

�
μ2

m2
b

�
ϵ
�
1

ϵη
−

1

ϵ2
þ 1

ϵ
log

ν2

m2
b

þ π2

6

�
:

ð36Þ

F. LP form factor

In the sum of the Higgs collinear contribution in
Eq. (25), the gluon collinear contribution in Eq. (34),
and the soft contribution in Eq. (36), the ultraviolet poles in
η from rapidity divergences cancel. The only divergences
that remain are double and single poles in ϵ:

FLP
Hcoll þ FLP

gcoll þ FLP
soft

¼ g2syb
16π2

�
μ2

m2
b

�
ϵ
�
1

ϵ2
−
1

ϵ

�
log

P̃:n
ν1

þ log
p3:n̄
ν3

þ log
ν2

m2
b

− 2

�

−
π2

6
þ
Z þ1

−1
dζζ2

logð1 − ð1 − ζ2Þr2 − iϵÞ
1 − ζ2

�
: ð37Þ

Upon adding the hard contribution in Eq. (16) to get the
complete LP form factor, the double poles in ϵ cancel:

FLP ¼ g2syb
16π2

�
μ2

m2
b

�
ϵ
�
−
1

ϵ

�
log

P̃:np3:n̄
−ŝ − iϵ

þ log
ν2

ν1ν3

�

−
1

2
log2

−ŝ − iϵ
m2

b

þ 2 log
−ŝ − iϵ
m2

b

− 6þ
Z þ1

−1
dζζ2

logð1 − ð1 − ζ2Þr2 − iϵÞ
1 − ζ2

�
: ð38Þ

Since P̃:np3:n̄ ¼ ŝ, the single poles in ϵ cancel provided
the rapidity regularization scales satisfy

ν1ν3 ¼ eþiπν2: ð39Þ
This nontrivial constraint on the rapidity regularization
scales is necessary to separate the contributions from the
different regions. In Ref. [42], this constraint was verified
by comparing with the result using analytic regularization.
It would be preferable to derive it from deeper theoretical
considerations. The final result for the LP form factor is
obtained by inserting the integral in Eq. (26) into Eq. (38).
It agrees with the result in Eq. (6) obtained from Refs. [5,6].

IV. RENORMALIZED FACTORIZATION
FORMULA

In this section, we present a renormalized factorization
formula for the LP form factor in which each of the pieces
is separately finite. Such a form would be necessary for the
resummation of large logarithms since solving evolution
equations numerically requires finite inputs as initial
conditions. The ultraviolet divergences in each of the
regularized pieces of the factorization formula are removed
by the minimal subtraction of the poles from dimensional
regularization and from rapidity regularization. This
renormalization procedure is equivalent to canceling the
divergences by moving the divergent terms between differ-
ent regions. The renormalized contribution from each
region depends on the renormalization scheme, but the
sum over all regions is scheme independent. We also define
an LPb form factor in which the errors are reduced from
order m2

H=Q
2 to order m2

b=Q
2.

A. LP form factor

The factorization formula for the LP form factor is given
in a schematic form in Eq. (11). The explicit form of the
renormalized factorization formula is

FLPðŝ; m2
b; m

2
HÞ

≡ F̃HþgðŝÞ þ
Z þ1

−1
dζF̃ bb̄1VþgðζÞdbb̄1V→Hðζ;m2

b; m
2
H; P:nÞ

þ
Z þ1

−1
dζF̃Hþbb̄8T ðζÞdbb̄8T→gðζ;m2

b; p3:n̄Þ þ F endptðm2
bÞ:

ð40Þ
All the dependences on physical scales are indicated explic-
itly by the arguments in Eq. (40). Each of the individual
pieces in the factorization formula is given below.
The regularized hard contribution to the LP form factor is

given in Eq. (16). We define the renormalized contribution
from the direct production ofH þ g by minimal subtraction
of the poles in ϵ:

F̃HþgðŝÞ¼
g2syb
16π2

�
−
1

2
log2

−ŝ− iϵ
μ2

þ2 log
−ŝ− iϵ
μ2

þπ2

6
−6

�
:

ð41Þ
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With the measure of the dimensionally regularized momen-
tum integral defined in Eq. (10), the minimal subtraction of
the poles in ϵ corresponds to the modified minimal
subtraction (MS) renormalization scheme. The renormal-
ized hard contribution depends logarithmically on ŝ.
The Higgs collinear contribution to the LP form factor is

given by the integral over the relative longitudinal momen-
tum fraction ζ in Eq. (17). The hard form factor for g� →
bb̄1V þ g is given in Eq. (19). The distribution amplitude
for bb̄1V → H with rapidity regularization is given in
Eq. (24). We define a renormalized distribution amplitude
by minimal subtraction of the ultraviolet poles in η and in ϵ:

dbb̄1V→HðζÞ¼
yb

32π2
ζ

�
log

μ2

m2
b

�
log

P:n
ν1

δð1−ζ2Þþ 1

ð1−ζ2Þþ

�

−
logð1−ð1−ζ2Þr2− iϵÞ

1−ζ2

�
; ð42Þ

where r ¼ mH=ð2mbÞ. The distribution amplitude depends
logarithmically on P:n. The first integral over ζ in Eq. (40)
can be evaluated by inserting the renormalized distribution
amplitude in Eq. (42). The result agrees with that obtained
by the minimal subtraction of the poles in the regularized
integral in Eq. (25).
The gluon collinear contribution to the LP form factor is

given by the integral over ζ in Eq. (27). The form factor for
g� → H þ bb̄8T is given in Eq. (30). The distribution
amplitude for bb̄8T → g with rapidity regularization is
given in Eq. (33). We define a renormalized distribution
amplitude by minimal subtraction of the ultraviolet poles in
η and in ϵ:

dbb̄8T→gðζÞ¼
gs

32π2
log

μ2

m2
b

�
log

p3:n̄
ν3

δð1−ζ2Þþ 1

ð1−ζ2Þþ

�
:

ð43Þ

The distribution amplitude depends logarithmically on
p3:n̄. The second integral over ζ in Eq. (40) can be
evaluated by inserting the renormalized distribution ampli-
tude in Eq. (43). The result agrees with that obtained by the
minimal subtraction of the poles in the regularized integral
in Eq. (34).
The soft contribution to the LP form factor using rapidity

regularization is given in Eq. (36). We define the renor-
malized end point contribution by minimal subtraction of
the ultraviolet poles in η and in ϵ:

F endptðm2
bÞ ¼

g2syb
16π2

�
1

2
log2

μ2

m2
b

− log
μ2

m2
b

log
ν2

m2
b

−
π2

6

�
:

ð44Þ

The end point contribution depends logarithmically on mb.
The sum of the four terms in Eq. (40) reproduces the LP

form factor in Eq. (6). The logarithms of P:n from the

Higgs collinear term and p3:n̄ from the gluon collinear term
combine to give a logarithm of ŝ. The last three terms in
Eq. (40) depend on the rapidity regularization scales ν1, ν3,
and ν. The dependence on these scales cancels upon using
the relation among ν1, ν3, and ν in Eq. (39). All four terms
in Eq. (40) depend on the dimensional regularization scale
μ. The dependence on μ cancels when the four terms
are added.

B. Improved mass dependence

The leading errors in the LP form factor come from the
omission of terms in the form factor that are suppressed
either by m2

b=Q
2 or by m2

H=Q
2. Since mH is an order of

magnitude larger than 2mb, one should be able to improve
the accuracy by keeping the leading terms of the expansion
in m2

b=Q
2 without expanding in m2

H=Q
2. This will not

change the parametric dependence of the error, which still
decreases as 1=Q2, but one might hope for a decrease in the
numerical size of the error by two orders of magnitude. We
refer to the leading term in the expansion of the form factor
in powers of m2

b=Q
2 as the LPb form factor, and we denote

it by FLPbðŝ; m2
b; m

2
HÞ. It can be defined as the leading

power in M2=Q2, where the hard scale is Q ∼ PT;
ffiffiffî
s

p
, and

the soft scale isM ∼mb, butmH is an arbitrary intermediate
scale. The LPb form factor includes terms of all powers in
m2

H=Q
2 that are not suppressed bym2

b=Q
2 and therefore has

an error of order m2
b=Q

2. We will show that it can be
expressed in the same form as the factorization formula
for the LP form factor in Eq. (40), with the only change
being that the hard form factor F̃HþgðŝÞ is replaced by an

mH-dependent hard form factor F̃ ðHÞ
Hþgðŝ; m2

HÞ. The sche-
matic form of the LPb factorization formula is

FLPb½H þ g�
≡ F̃ ðHÞ½H þ g� þ F̃ ½bb̄1V þ g� ⊗ d½bb̄1V → H�
þ F̃ ½H þ bb̄8T � ⊗ d½bb̄8T → g� þ F endpt½H þ g�:

ð45Þ

We first explain how the mH-dependent hard form factor
F̃ ðHÞ½H þ g� in Eq. (45) can be obtained. The schematic
factorization formula for the LP form factor FLP½H þ g� in
Eq. (11) can be solved for the hard form factor F̃ ½H þ g�.
Since this hard form factor does not depend onmH ormb, it
can be expressed as a double limit asmb → 0 andmH → 0:

F̃ ½H þ g� ¼ ½FLP½H þ g� − F̃ ½bb̄1V þ g� ⊗ d½bb̄1V → H�
− F̃ ½H þ bb̄8T � ⊗ d½bb̄8T → g�
− F endpt½H þ g��mb→0

mH→0
: ð46Þ

The LP form factor differs from the full form factor only by
terms with higher powers of mH and mb, so FLP½H þ g�
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can be replaced by F ½H þ g� inside the limits. We define a
regularized mH-dependent hard form factor by making this
replacement and then removing the limit mH → 0:

F̃ ðHÞ½Hþg�≡ ½F ½Hþg�− F̃ ½bb̄1V þg�⊗ d½bb̄1V →H�
− F̃ ½Hþbb̄8T �⊗ d½bb̄8T → g�
−F endpt½Hþg��mb→0: ð47Þ

All four terms on the right side have additional infrared
divergences in the limit mb → 0. The additional infrared
divergences cancel in the sum of the four terms, leaving the
same infrared poles in ϵ as in the regularized hard form
factor in Eq. (16).
We now proceed to show that the errors in the LPb form

factor defined by Eq. (45) are order m2
b=Q

2. The difference
between the LPb form factor and the LP form factor in
Eq. (11) is equal to the difference F̃ ðHÞ½H þ g� − F̃ ½H þ g�
between the hard form factors, which is order m2

H=ŝ. Since
the error in the LP form factor decreases as 1=ŝ, the error in
the LPb form factor must also decrease as 1=ŝ. By inserting
the expression for F̃ ðHÞ½H þ g� in Eq. (47) into the
expression for FLPb½H þ g� in Eq. (45), we find that the
difference between the LPb form factor and the full form
factor can be expressed as

FLPb½Hþ g�−F ½Hþ g�
¼ ðF ½Hþ g�jmb¼0 −F ½Hþ g�Þ
þ F̃ ½bb̄1V þ g�⊗ ðd½bb̄1V →H�− d½bb̄1V →H�jmb¼0Þ
þ F̃ ½Hþ bb̄8T �⊗ ðd½bb̄8T → g�− d½bb̄8T → g�jmb¼0Þ
þ ðF endpt½Hþ g�−F endpt½Hþ g�jmb¼0Þ: ð48Þ

Each term on the right side is 0 formb ¼ 0, so the right side
is proportional tom2

b. Since the error in the LPb form factor
decreases as 1=ŝ, it must be order m2

b=ŝ.
The additional infrared divergences in the terms on the

right side of Eq. (47) could be regularized by the b quark
mass. This requires calculating all four terms on the right side
ofEq. (47)with nonzeromb and then taking the limitmb → 0
at the end. The additional infrared divergences appear as
logarithms ofmb, and they cancel between the four terms on
the right side of Eq. (47). Calculating the full form factor F
and then taking the limit mb → 0 still requires a calculation
involving all three scales ŝ, mH, and mb. If this were
necessary, the LPb form factor would have no calculational
advantage over the full form factor. However instead of
taking the limitmb → 0, themH-dependent hard form factor
can be calculated more easily by setting mb ¼ 0 from the
beginning in all four terms. The additional infrared diver-
gences from settingmb ¼ 0 can be regularized using dimen-
sional regularization. The additional poles in ϵ cancel in the
sum of the four terms.
We proceed to calculate each of the four terms on the right

side of Eq. (47) withmb ¼ 0. The first term on the right side
of Eq. (47) can be obtained by setting mb ¼ 0 in the
dimensionally regularized expression for the full form factor
in Eq. (9):

F ðŝ; 0; m2
HÞ

¼ 2ig2syb
D − 2

Z
q

1

½ðqþ PÞ2 þ iϵ�½q2 þ iϵ�½ðq − p3Þ2 þ iϵ�

×

�
ð5 −DÞq2 − 4

ðPþ p3Þ:qp3:q
P:p3

þ 2ðD − 3Þp3:q

þ ðD − 2ÞP:p3

�
: ð49Þ

After evaluating the loop integral, we get

F ðŝ; 0; m2
HÞ ¼

g2syb
16π2

�
μ2

m2
H

�
ϵ

eiπϵ
�
−
1

2
log2

ŝþ iϵ
m2

H
þ
�
1

ϵ
þ 2ŝ
ŝ −m2

H

�
log

ŝþ iϵ
m2

H
− 2

�
: ð50Þ

The pole in ϵ has an infrared origin.
In the second term on the right side of Eq. (47), all the dependence onmb is in the function dðζÞ in the expression for the

distribution amplitude dbb̄1V→HðζÞ in Eq. (21). The expression for dðζÞ is obtained by setting mb ¼ 0 in Eq. (20):

dðζÞ ¼ −i
Z
q

δðζ − 2q:n=P:nÞ
½ð1
2
Pþ qÞ2 þ iϵ�½ð1

2
P − qÞ2 þ iϵ� : ð51Þ

The integral has no rapidity divergences, so dimensional regularization is sufficient. The analytic expression for the integral is

dðζÞ ¼ 1

32π2ϵ

�
μ2

m2
H

�
ϵ
�
e−iπ

1 − ζ2

4

�−ϵ
: ð52Þ

The poles in ϵ can be made explicit by using the expansion

1

1 − ζ2

�
1 − ζ2

4

�
−ϵ

¼ −
Γ2ð1 − ϵÞ
ϵΓð1 − 2ϵÞ δð1 − ζ2Þ þ 1

ð1 − ζ2Þþ
− ϵ

�
logð1 − ζ2Þ − 2 log 2

1 − ζ2

�
þ
þOðϵ2Þ: ð53Þ
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The resulting expression for the regularized distribution amplitude in Eq. (21) is

dbb̄1V→HðζÞjmb¼0 ¼
ybζ
32π2

�
μ2

m2
H

�
ϵ

eiπϵ
��

−
1

ϵ2
þ π2

6

�
δð1 − ζ2Þ þ 1

ϵ

1

ð1 − ζ2Þþ
−
�
logð1 − ζ2Þ − 2 log 2

1 − ζ2

�
þ

�
: ð54Þ

Multiplying by the hard form factor in Eq. (19) and integrating over ζ, we obtain
Z þ1

−1
dζF̃ bb̄1VþgðζÞdbb̄1V→HðζÞjmb¼0 ¼

g2syb
16π2

�
μ2

m2
H

�
ϵ

eiπϵ
�
1

ϵ2
þ 2

ϵ
−
π2

6
þ 4

�
: ð55Þ

In the third term on the right side of Eq. (47), all the dependence on mb is in the function d0ðζÞ in the expression for the
distribution amplitude dbb̄8T→gðζÞ in Eq. (32). The expression for d0ðζÞ is obtained by setting mb ¼ 0 in Eq. (31). The
resulting dimensionally regularized integral is 0 because it has no scale. The last term on the right side of Eq. (47) is given
by the integral in Eq. (35) with mb ¼ 0. The three denominators are proportional to q:n̄, q2, and q:n. This dimensionally
regularized integral is also zero because it has no scale. Thus, the only nonzero terms on the right side of Eq. (47) with
mb ¼ 0 are the first and second terms, which are given in Eqs. (50) and (55).
Subtracting Eq. (55) from Eq. (50), we get the regularized mH-dependent hard form factor:

FLPb
hardðŝ; m2

HÞ ¼ −
g2syb
16π2

�
−ŝ − iϵ

μ2

�
−ϵ
�
1

ϵ2
þ 2

ϵ
−
π2

6
þ 6 −

2m2
H

ŝ −m2
H
log

ŝþ iϵ
m2

H

�
: ð56Þ

This reduces to the hard form factor in Eq. (16) in the limit mH → 0. The renormalizedmH-dependent hard form factor can
be obtained by minimal subtraction of the poles in ϵ:

F̃ ðHÞ
Hþgðŝ; m2

HÞ ¼
g2syb
16π2

�
−
1

2
log2

−ŝ − iϵ
μ2

þ 2 log
−ŝ − iϵ

μ2
þ π2

6
− 6þ 2m2

H

ŝ −m2
H
log

ŝþ iϵ
m2

H

�
: ð57Þ

The explicit form of the LPb factorization formula in Eq. (45), which includes all terms at a leading power of m2
b=Q

2, is

FLPbðŝ;m2
b;m

2
HÞ≡ F̃ ðHÞ

Hþgðŝ;m2
HÞþ

Z þ1

−1
dζF̃ bb̄1VþgðζÞdbb̄1V→Hðζ;m2

b;m
2
H;P:nÞþ

Z þ1

−1
dζF̃Hþbb̄8T ðζÞdbb̄8T→gðζ;m2

b;p3:n̄Þ

þF endptðm2
bÞ: ð58Þ

It differs from the LP form factor in Eq. (6) only by the difference between the mH-dependent hard form factor in Eq. (57)
and the hard form factor in Eq. (41):

FLPbðŝ; m2
b; m

2
HÞ ¼ FLPðŝ; m2

b; m
2
HÞ þ

g2syb
32π2

�
4m2

H

ŝ −m2
H
log

ŝþ iϵ
m2

H

�
: ð59Þ

V. COMPARISON WITH FULL FORM FACTOR

We proceed to compare our approximations to the form
factor at LO for qq̄ → H þ g from the bottom-quark loop.
The full form factor F ðŝ; m2

b; m
2
HÞ is given in Refs. [5,6].

The three approximations are
(i) the LP form factor FLPðŝ; m2

b; m
2
HÞ in Eq. (6), which

is leading power in m2
H=ŝ and m2

b=ŝ,
(ii) the LPb form factor FLPbðŝ; m2

b; m
2
HÞ in Eq. (59),

which is leading power in m2
b=ŝ only, and

(iii) the mb → 0 form factor F ðŝ; m2
b → 0; m2

HÞ in
Eq. (8), which is obtained from the full form factor
by taking the limit mb → 0 except in logarithms
of mb.

The full form factor and the approximations depend on the
coupling constants gs and yb ¼ mb=v and on the masses

mH andmb. The mass of the Higgs ismH ¼ 125 GeV. The
running bottom-quark mass at the scale of the Higgs mass
is mbðmHÞ ¼ 3.06 GeV.
The form factorF at LO has an overall coupling constant

factor g2syb. The coupling constants depend logarithmically
on momentum scales that can range from mb to mH and toffiffiffî
s

p
. One advantage of the LP factorization formula is that

the separation of scales allows the momentum scales of the
coupling constants to be determined. In the hard form factor
in Eq. (41), the appropriate scale is

ffiffiffî
s

p
, so the coupling

constant factor is g2sð
ffiffiffî
s

p Þybð
ffiffiffî
s

p Þ. In the Higgs collinear
contribution, the coupling constant factor in the hard form
factor for g� → bb̄1V þ g in Eq. (19) is g2sð

ffiffiffî
s

p Þ, and the
Yukawa coupling constant in the distribution amplitude for
bb̄1V → H in Eq. (42) is ybðmHÞ. In the gluon collinear
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contribution, the coupling constant factor in the hard form
factor for g� → H þ bb̄8T in Eq. (30) is gsð

ffiffiffî
s

p Þybð
ffiffiffî
s

p Þ, and
the coupling constant in the distribution amplitude for
bb̄8T → g in Eq. (43) is gsðmbÞ. In the end point contri-
bution in Eq. (44), the coupling constant in the hard
amplitude for producing bþ b̄ is gsð

ffiffiffî
s

p Þ, and the coupling
constant factor in the soft amplitude for the transition bb̄ →
H þ g is gsðmbÞybðmHÞ. Replacing the coupling constants
by the appropriate running coupling constants resums some
leading logarithms to all orders. However, there is little to
be gained by this partial resummation unless all the leading

logarithms are summed to all orders. If we choose the
common scale mH for all the coupling constants, the
coupling constant factor g4sy2b in jF j2 is approximately
2.4 × 10−4. We will compare the approximations to jF j2 in
ways that do not depend on the coupling constant factor.
In Fig. 6, the absolute squares of the form factors divided

by the coupling constant factor g4sy2b are shown as functions
of the center-of-mass energy

ffiffiffî
s

p
, which ranges from the

threshold mH for producing the Higgs to 250 GeV. The
mb → 0 form factor is indistinguishable from the full form
factor in this plot. The LPb form factor is almost indis-
tinguishable from the full form factor. The error in the LP
form factor does not seem to be decreasing as ŝ increases.
In Fig. 7, we compare the percentage errors in the three

approximations to jF j2. The percentage error is defined as
the difference from jF j2 divided by jF j2. In the left panel of
Fig. 7, which is linear in

ffiffiffî
s

p
out to 10mH, all three

approximations appear to be converging to jF j2 as ŝ
increases but with very different rates of convergence.
The percentage error in the LP form factor approaches 0
from above, decreasing to less than 5% for

ffiffiffî
s

p
greater than

about 400 GeV. The LPb form factor is a much better
approximation. The percentage error approaches 0 from
below, and it is already less than 5% at

ffiffiffî
s

p ¼ 129 GeV.
The mb → 0 form factor seems to be a much better
approximation than the LPb form factor. The percentage
error seems to be approaching 0 from above, and it is
always less than 0.08%. In the right panel of Fig. 7, which
is logarithmic in

ffiffiffî
s

p
from 10mH to 100mH, all three

approximations seem to continue converging to jF j2.

FIG. 6. Form factors for qq̄ → H þ g with a bottom-quark loop
as functions of the center-of-mass energy

ffiffiffî
s

p
: the full form factor

jF j2 (solid curve), the LP form factor (dotted curve), and the LPb
form factor (dashed curve). The mb → 0 form factor is indis-
tinguishable from the full form factor in this plot.

FIG. 7. Percentage errors in form factors for qq̄ → H þ g with a bottom-quark loop as functions of the center-of-mass energy
ffiffiffî
s

p
: the

LP form factor (dotted curve), the LPb form factor (dashed curve), and themb → 0 form factor (dot-dashed curve). The ranges of
ffiffiffî
s

p
are

from mH to 10mH on a linear scale (left panel) and from 10mH to 100mH on a log scale (right panel).
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However, the rates of convergence of the LPb form factor
and the LP form factor are much more rapid, consistent
with errors that scale as 1=ŝ. The LPb form factor is a better
approximation than the mb → 0 form factor for

ffiffiffî
s

p
greater

than about 330 GeV. The LP form factor is a better
approximation than the mb → 0 form factor for

ffiffiffî
s

p
greater

than about 4.1 TeV. The error in the mb → 0 form factor
actually approaches a nonzero constant at large ŝ. The
leading term in the expansion of the error in powers of
m2

b=m
2
H is

F ðŝ; m2
b → 0; m2

HÞ − F ðŝ; m2
b; m

2
HÞ

→
g2sybm2

b

8π2m2
H

�
− log

m2
H

m2
b

− 2þ iπ

�
: ð60Þ

The error is small because it is suppressed by a factor of
m2

b=m
2
H. In the right panel of Fig. 7, the decrease in the

percentage error for the mb → 0 form factor as ŝ increases
is due to the denominator jF j2 increasing as log4ðŝ=m2

HÞ.

VI. SUMMARY AND OUTLOOK

In this work, we applied factorization methods devel-
oped for QCD to the amplitude for Higgs production at
large transverse momentum through a bottom-quark loop.
That amplitude is complicated by multiple energy scales:
the hard kinematic scales Q ∼ PT; ŝ1=2 and the soft mass
scales M ∼mb;mH. Factorization can be used to separate
the scales M and Q and expand the amplitude in powers of
M2=Q2. To illustrate the factorization approach, we applied
it to the bottom-quark-loop contribution to the amplitude
for the parton process qq̄ → H þ g at LO in αs. The matrix
element for this parton process is determined by the form
factor F ðŝ; m2

b; m
2
HÞ defined in Eq. (3). We defined the

leading-power form factor FLP to be the leading terms in
the expansion of F in powers of M2=Q2. A factorization
formula for the LP form factor in which the scalesQ andM
are separated is given schematically in Eq. (11). The
explicit renormalized form of the factorization formula is
given in Eq. (40). Each piece in the LP factorization
formula was obtained through a diagrammatic calculation
that involves fewer scales than those in the calculation of
the full form factor. We also defined the LPb form factor
FLPb to be the leading terms in the expansion of F in
powers of m2

b=ŝ, keeping all dependence on mH that is not
suppressed by m2

b=ŝ. The LPb form factor is defined by the
factorization formula in Eq. (58), and it is given expliicitly
in Eq. (59).
In the regularized form of the factorization formula for

the LP form factor given schematically in Eq. (11), each of
the four terms comes from a different region of the loop
momentum of the b quark. The method of regions
introduces rapidity divergences in addition to the infrared
and ultraviolet divergences that are regularized by

dimensional regularization in 4 − 2ϵ dimensions. We regu-
larized the rapidity divergences using rapidity regulariza-
tion with regularization parameter η. The poles in η cancel
when the last three terms in the factorization formula in
Eq. (11) are added. The poles in ϵ also cancel when all four
terms in the factorization formula are added, provided the
rapidity regularization scales satisfy the constraint in
Eq. (39). It would be preferable to deduce this constraint
from deeper theoretical considerations. With rapidity regu-
larization and zero-bin subtraction, the poles in η are
ultraviolet divergences. The minimal subtraction of the
poles in η and in ϵ in each of the regularized pieces of the
factorization formula can therefore be interpreted as a
renormalization procedure.
In the renormalized factorization formula for the LP form

factor in Eq. (40), the hard scales Q and the soft scales M
are separated. The hard contribution depends only on the
hard scaleQ, and it is given in Eq. (41). The Higgs collinear
and gluon collinear contributions were each expressed as an
integral over the relative longitudinal momentum fraction ζ
of a b quark of the product of a form factor that depends on
the hard scale Q and a distribution amplitude that depends
on the soft scale M. The integrand for the Higgs collinear
contribution is the product of the hard form factor for
tt̄1V þ g in Eq. (19) and the distribution amplitude for tt̄1V
in the Higgs in Eq. (42). The integrand for the gluon
collinear contribution is the product of the hard form factor
for H þ tt̄8T in Eq. (30) and the distribution amplitude for
tt̄8T in a real gluon in Eq. (43). The end point contribution
to the LP form factor depends only on the scaleM, and it is
given in Eq. (44).
The LP form factor FLP is a good approximation to the

full form factor only at extremely large ŝ. The error is of
order m2

H=ŝ, so the error decreases to 0 as ŝ increases. As
shown in Fig. 7, the percentage error in jFLPj2 does not
decrease to less than 5% until

ffiffiffî
s

p
> 400 GeV. Thus, the

LP form factor has no practical use at LHC energies. We
defined the LPb form factor FLPb by the simple modifi-
cation of the factorization formula in Eq. (58). It differs
from the LP form factor only in the mH-dependent hard
form factor, which is given in Eq. (59). This hard form
factor can be obtained from additional calculations with
mb ¼ 0. The error in the LPb form factor is orderm2

b=ŝ. As
shown in Fig. 7, the percentage error in jFLPbj2 is already
less than 5% at

ffiffiffî
s

p ¼ 129 GeV.
Our factorization formula for the form factor F for the

parton process qq̄ → H þ g is the sum of four terms: a hard
term, two collinear terms, and an end point term. It can be
adapted to the bottom-quark-loop contributions to the form
factors for the parton processes gq → H þ q and gq̄ →
H þ q̄ by analytically continuing the positive Mandelstam
variable ŝ to a negative Mandelstam variable t̂. The
factorization formula for those form factors involves a
distribution amplitude for bb̄ in an incoming gluon instead
of the distribution amplitude for bb̄ in an outgoing gluon.
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The factorization formula for the bottom-quark-loop con-
tribution for the parton process gg → H þ g at LO can be
derived using similar methods, but it is more complicated.
It has a hard term, four collinear terms, and perhaps as
many as six end point terms. All the pieces in the
factorization formula can be obtained directly from
Feynman diagrams by calculations that involve fewer
scales than the full matrix element.
Our factorization approach can be extended to NLO in

αs. The NLO calculation of the form factor for qq̄ → H þ g
would require calculating each of the pieces in the
factorization formula in Eq. (40) to NLO. The NLO
calculations of the hard form factors F̃Hþg, F̃ bb̄1Vþg, and

F̃Hþbb̄8T require straightforward perturbative QCD calcu-
lations with massless quarks and massless Higgs. The NLO
calculation of the end point form factor F endpt may also
require factorization since it may have nontrivial depend-
ence on the scale Q through the hard form factor F̃ bþb̄ for
producing bþ b̄. The NLO calculation of the fragmenta-
tion amplitudes for bb̄1V → H and for bb̄8T → g may be
the most challenging step in the NLO calculation of the LP
form factor. At NLO, there may be additional terms in the
factorization formula associated with other double-parton
channels, such as bb̄1S, bb̄1T , bb̄8S, and bb̄8V . These
additional terms would require only LO calculations.
Our factorization formula could be derived more for-

mally using effective field theory methods analogous to
those used in soft collinear effective field theory in QCD.
The individual pieces in the factorization formula could all
be expressed in terms of matrix elements of operators in the
effective field theory. These formal definitions could be
useful in the calculation of the form factor to higher orders
in αs. They would also facilitate the all-order resummation
of large logarithms of P2

T=m
2
b by solving renormalization

group equations.
Our factorization formula can also be extended to

study the interference of top-quark-loop diagrams with

bottom-quark-loop diagrams for Higgs production. For the
interference contribution relevant to the LHC phenomenol-
ogy, it is most convenient to use HEFT for the diagrams
with a top-quark loop and to use our LPb formalism for the
diagrams with a bottom-quark loop. The top-quark loop
amplitude involves only the amplitude for direct Higgs
production. The bottom-quark loop amplitude involves the
amplitude for direct Higgs production as well as bb̄-to-
Higgs distribution amplitudes. The all-orders proof of
factorization and the derivation of the evolution equations
for Higgs production are straightforward generalizations of
those for the factorization of power corrections in
QCD [54].
We expect the LPb factorization formula at NLO to be

useful phenomenologically at the LHC. The effect of the
bottom-quark mass on the Higgs PT distribution at the LHC
is expected to be at most −8% for PT < 50 GeV [55]. The
fractional error of the LPb factorization formula at LO is
order m2

b=Q
2. If the leading logarithms of PT=mb can be

resummed to all orders, the fractional error of the LPb
factorization formula at NLO is order αsm2

b=Q
2. This error

may be sufficient for phenomenological purposes at
the LHC.

ACKNOWLEDGMENTS

This work of E. B. and H. Z. was supported in part by the
Department of Energy under Award No. DE-SC0011726.
J. W. Z. was supported in part by the Natural Science
Foundation of China under Grant No. 11347024, the
Natural Science Foundation Project of CQCSTC under
Grants No. 2014jcyjA00030 and No. 2016jcyjA0336, the
Scientific and Technological Research Program of
Chongqing Municipal Education Commission under
Grant No. KJ1401313, and the Research Foundation of
Chongqing University of Science and Technology under
Grant No. CK2016Z03. We acknowledge the use of
FeynCalc [56,57] in this research.

[1] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[3] D. de Florian et al. (LHC Higgs Cross Section Working
Group), Handbook of LHC Higgs cross sections: 4. Deci-
phering the nature of the Higgs sector, CERN Yellow
Reports: Monographs (2017), Vol. 2.

[4] J. M. Lindert, K. Melnikov, L. Tancredi, and C. Wever,
Top-Bottom Interference Effects in Higgs Plus Jet
Production at the LHC, Phys. Rev. Lett. 118, 252002
(2017).

[5] R. K. Ellis, I. Hinchliffe, M. Soldate, and J. J. van der Bij,
Higgs decay to τþτ−: a possible signature of intermediate
mass Higgs bosons at the SSC, Nucl. Phys. B297, 221
(1988).

[6] U. Baur and E. W. N. Glover, Higgs boson production at
large transverse momentum in hadronic collisions, Nucl.
Phys. B339, 38 (1990).

MASS DEPENDENCE OF HIGGS BOSON PRODUCTION AT … PHYS. REV. D 97, 096014 (2018)

096014-15

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.23731/CYRM-2017-002
https://doi.org/10.23731/CYRM-2017-002
https://doi.org/10.1103/PhysRevLett.118.252002
https://doi.org/10.1103/PhysRevLett.118.252002
https://doi.org/10.1016/0550-3213(88)90019-3
https://doi.org/10.1016/0550-3213(88)90019-3
https://doi.org/10.1016/0550-3213(90)90532-I
https://doi.org/10.1016/0550-3213(90)90532-I


[7] R. Mueller and D. G. Öztürk, On the computation of finite
bottom-quark mass effects in Higgs boson production, J.
High Energy Phys. 08 (2016) 055.

[8] K. Melnikov, L. Tancredi, and C. Wever, Two-loop gg →
Hg amplitude mediated by a nearly massless quark, J. High
Energy Phys. 11 (2016) 104.

[9] K. Melnikov, L. Tancredi, and C. Wever, Two-loop ampli-
tudes for qg → Hq and qq̄ → Hg mediated by a nearly
massless quark, Phys. Rev. D 95, 054012 (2017).

[10] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, The qT
spectrum of the Higgs boson at the LHC in QCD perturba-
tion theory, Phys. Lett. B 564, 65 (2003).

[11] A. Kulesza, G. F. Sterman, and W. Vogelsang, Joint re-
summation for Higgs production, Phys. Rev. D 69, 014012
(2004).

[12] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini,
Transverse-momentum resummation and the spectrum of
the Higgs boson at the LHC, Nucl. Phys. B737, 73 (2006).

[13] S. Catani and M. Grazzini, Higgs boson production at
hadron colliders: hard-collinear coefficients at the NNLO,
Eur. Phys. J. C 72, 2013 (2012); Erratum,Eur. Phys. J. C 72,
2132 (2012).

[14] T. Becher, M. Neubert, and D. Wilhelm, Higgs-boson
production at small transverse momentum, J. High Energy
Phys. 05 (2013) 110.

[15] D. Neill, I. Z. Rothstein, and V. Vaidya, The higgs transverse
momentum distribution at NNLL and its theoretical errors,
J. High Energy Phys. 12 (2015) 097.

[16] S. Forte and C. Muselli, High energy resummation of
transverse momentum distributions: Higgs in gluon fusion,
J. High Energy Phys. 03 (2016) 122.

[17] P. F. Monni, E. Re, and P. Torrielli, Higgs Transverse-
Momentum Resummation in Direct Space, Phys. Rev. Lett.
116, 242001 (2016).

[18] F. Caola, S. Forte, S. Marzani, C. Muselli, and G. Vita, The
Higgs transverse momentum spectrum with finite quark
masses beyond leading order, J. High Energy Phys. 08
(2016) 150.

[19] C. Muselli, S. Forte, and G. Ridolfi, Combined threshold
and transverse momentum resummation for inclusive ob-
servables, J. High Energy Phys. 03 (2017) 106.

[20] W. Bizon, P. F. Monni, E. Re, L. Rottoli, and P. Torrielli,
Momentum-space resummation for transverse observables
and the Higgs p⊥ at N3LLþ NNLO, J. High Energy Phys.
02 (2018) 108.

[21] H. Mantler and M. Wiesemann, Top- and bottom-mass
effects in hadronic Higgs production at small transverse
momenta through LOþ NLL, Eur. Phys. J. C 73, 2467
(2013).

[22] M. Grazzini and H. Sargsyan, Heavy-quark mass effects in
Higgs boson production at the LHC, J. High Energy Phys.
09 (2013) 129.

[23] A. Banfi, P. F. Monni, and G. Zanderighi, Quark masses in
Higgs production with a jet veto, J. High Energy Phys. 01
(2014) 097.

[24] E. Bagnaschi, R. V. Harlander, H. Mantler, A. Vicini, and M.
Wiesemann, Resummation ambiguities in the Higgs trans-
verse-momentum spectrum in the Standard Model and
beyond, J. High Energy Phys. 01 (2016) 090.

[25] K. Melnikov and A. Penin, On the light quark mass effects
in Higgs boson production in gluon fusion, J. High Energy
Phys. 05 (2016) 172.

[26] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, and B.
Mistlberger, Higgs Boson Gluon-Fusion Production in
QCD at Three Loops, Phys. Rev. Lett. 114, 212001 (2015).

[27] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F.
Herzog, A. Lazopoulos, and B. Mistlberger, High precision
determination of the gluon fusion Higgs boson cross-section
at the LHC, J. High Energy Phys. 05 (2016) 058.

[28] V. Ahrens, T. Becher, M. Neubert, and L. L. Yang,
Renormalization-group improved prediction for Higgs pro-
duction at hadron colliders, Eur. Phys. J. C 62, 333 (2009).

[29] M. Bonvini and S. Marzani, Resummed Higgs cross section
at N3LL, J. High Energy Phys. 09 (2014) 007.

[30] Y. Li, A. von Manteuffel, R. M. Schabinger, and H. X. Zhu,
Soft-virtual corrections to Higgs production at N3LO, Phys.
Rev. D 91, 036008 (2015).

[31] M. Bonvini and L. Rottoli, Three loop soft function for
N3LL gluon fusion Higgs production in soft-collinear
effective theory, Phys. Rev. D 91, 051301 (2015).

[32] T. Schmidt and M. Spira, Higgs boson production via gluon
fusion: soft-gluon resummation including mass effects,
Phys. Rev. D 93, 014022 (2016).

[33] M. Bonvini, S. Marzani, C. Muselli, and L. Rottoli, On the
Higgs cross section at N3LOþ N3LL and its uncertainty, J.
High Energy Phys. 08 (2016) 105.

[34] R. Boughezal, F. Caola, K. Melnikov, F. Petriello, and M.
Schulze, Higgs boson production in association with a jet at
next-to-next-to-leading order in perturbative QCD, J. High
Energy Phys. 06 (2013) 072.

[35] X. Chen, T. Gehrmann, E. W. N. Glover, and M. Jaquier,
Precise QCD predictions for the production of
Higgsþ jet final states, Phys. Lett. B 740, 147 (2015).

[36] R. Boughezal, F. Caola, K. Melnikov, F. Petriello, and M.
Schulze, Higgs Boson Production in Association with a Jet
at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 115,
082003 (2015).

[37] R. Boughezal, C. Focke, W. Giele, X. Liu, and F.
Petriello, Higgs boson production in association with a
jet at NNLO using jettiness subtraction, Phys. Lett. B 748, 5
(2015).

[38] J. M. Campbell, R. K. Ellis, and G. Zanderighi, Next-to-
leading order Higgsþ 2 jet production via gluon fusion, J.
High Energy Phys. 10 (2006) 028.

[39] J. M. Campbell, R. K. Ellis, and C. Williams, Hadronic
production of a Higgs boson and two jets at next-to-leading
order, Phys. Rev. D 81, 074023 (2010).

[40] G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P.
Mastrolia, E. Mirabella, G. Ossola, T. Peraro, and F.
Tramontano, NLO QCD Corrections to Higgs Boson
Production Plus Three Jets in Gluon Fusion, Phys. Rev.
Lett. 111 (2013) 131801.

[41] E. Braaten and H. Zhang, Inclusive Higgs production at
large transverse momentum, Phys. Rev. D 93, 053014
(2016).

[42] E. Braaten, H. Zhang, and J. W. Zhang, Mass dependence of
Higgs production at large transverse momentum, J. High
Energy Phys. 11 (2017) 127.

ERIC BRAATEN, HONG ZHANG, and JIA-WEI ZHANG PHYS. REV. D 97, 096014 (2018)

096014-16

https://doi.org/10.1007/JHEP08(2016)055
https://doi.org/10.1007/JHEP08(2016)055
https://doi.org/10.1007/JHEP11(2016)104
https://doi.org/10.1007/JHEP11(2016)104
https://doi.org/10.1103/PhysRevD.95.054012
https://doi.org/10.1016/S0370-2693(03)00656-7
https://doi.org/10.1103/PhysRevD.69.014012
https://doi.org/10.1103/PhysRevD.69.014012
https://doi.org/10.1016/j.nuclphysb.2005.12.022
https://doi.org/10.1140/epjc/s10052-012-2013-2
https://doi.org/10.1140/epjc/s10052-012-2132-9
https://doi.org/10.1140/epjc/s10052-012-2132-9
https://doi.org/10.1007/JHEP05(2013)110
https://doi.org/10.1007/JHEP05(2013)110
https://doi.org/10.1007/JHEP12(2015)097
https://doi.org/10.1007/JHEP03(2016)122
https://doi.org/10.1103/PhysRevLett.116.242001
https://doi.org/10.1103/PhysRevLett.116.242001
https://doi.org/10.1007/JHEP08(2016)150
https://doi.org/10.1007/JHEP08(2016)150
https://doi.org/10.1007/JHEP03(2017)106
https://doi.org/10.1007/JHEP02(2018)108
https://doi.org/10.1007/JHEP02(2018)108
https://doi.org/10.1140/epjc/s10052-013-2467-x
https://doi.org/10.1140/epjc/s10052-013-2467-x
https://doi.org/10.1007/JHEP09(2013)129
https://doi.org/10.1007/JHEP09(2013)129
https://doi.org/10.1007/JHEP01(2014)097
https://doi.org/10.1007/JHEP01(2014)097
https://doi.org/10.1007/JHEP01(2016)090
https://doi.org/10.1007/JHEP05(2016)172
https://doi.org/10.1007/JHEP05(2016)172
https://doi.org/10.1103/PhysRevLett.114.212001
https://doi.org/10.1007/JHEP05(2016)058
https://doi.org/10.1140/epjc/s10052-009-1030-2
https://doi.org/10.1007/JHEP09(2014)007
https://doi.org/10.1103/PhysRevD.91.036008
https://doi.org/10.1103/PhysRevD.91.036008
https://doi.org/10.1103/PhysRevD.91.051301
https://doi.org/10.1103/PhysRevD.93.014022
https://doi.org/10.1007/JHEP08(2016)105
https://doi.org/10.1007/JHEP08(2016)105
https://doi.org/10.1007/JHEP06(2013)072
https://doi.org/10.1007/JHEP06(2013)072
https://doi.org/10.1016/j.physletb.2014.11.021
https://doi.org/10.1103/PhysRevLett.115.082003
https://doi.org/10.1103/PhysRevLett.115.082003
https://doi.org/10.1016/j.physletb.2015.06.055
https://doi.org/10.1016/j.physletb.2015.06.055
https://doi.org/10.1088/1126-6708/2006/10/028
https://doi.org/10.1088/1126-6708/2006/10/028
https://doi.org/10.1103/PhysRevD.81.074023
https://doi.org/10.1103/PhysRevLett.111.131801
https://doi.org/10.1103/PhysRevLett.111.131801
https://doi.org/10.1103/PhysRevD.93.053014
https://doi.org/10.1103/PhysRevD.93.053014
https://doi.org/10.1007/JHEP11(2017)127
https://doi.org/10.1007/JHEP11(2017)127


[43] Z. B. Kang, J. W. Qiu, and G. Sterman, Heavy Quarkonium
Production and Polarization, Phys. Rev. Lett. 108, 102002
(2012).

[44] S. Fleming, A. K. Leibovich, T. Mehen, and I. Z. Rothstein,
The systematics of quarkonium production at the LHC and
double parton fragmentation, Phys. Rev. D 86, 094012 (2012).

[45] T. Gehrmann, M. Jaquier, E.W. N. Glover, and A.
Koukoutsakis, Two-loop QCD corrections to the helicity
amplitudes for H → 3 partons, J. High Energy Phys. 02
(2012) 056.

[46] W. B. Kilgore, One-loop single-real-emission contributions
to pp → H þ X at next-to-next-to-next-to-leading order,
Phys. Rev. D 89, 073008 (2014).

[47] S. Dawson, I. M. Lewis, and M. Zeng, Effective field theory
for Higgs boson plus jet production, Phys. Rev. D 90,
093007 (2014).

[48] M. Beneke and V. A. Smirnov, Asymptotic expansion of
Feynman integrals near threshold, Nucl. Phys. B522, 321
(1998).

[49] V. A. Smirnov, Applied asymptotic expansions in momenta
and masses, Springer Tracts Mod. Phys. 177, 1 (2002).

[50] A. V. Manohar and I. W. Stewart, The zero-bin and mode
factorization in quantum field theory, Phys. Rev. D 76,
074002 (2007).

[51] J. Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, The
Rapidity Renormalization Group, Phys. Rev. Lett. 108,
151601 (2012).

[52] J. Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A
formalism for the systematic treatment of rapidity loga-
rithms in quantum field theory, J. High Energy Phys. 05
(2012) 084.

[53] Y. Q. Ma, J. W. Qiu, and H. Zhang, Heavy quarkonium
fragmentation functions from a heavy quark pair. I. S wave,
Phys. Rev. D 89, 094029 (2014).

[54] J. W. Qiu and G. Sterman, Power corrections to hadronic
scattering. 2. Factorization, Nucl. Phys. B353, 137
(1991).

[55] W. Y. Keung and F. J. Petriello, Electroweak and finite
quark-mass effects on the Higgs boson transverse
momentum distribution, Phys. Rev. D 80, 013007
(2009).

[56] R. Mertig, M. Bohm, and A. Denner, FEYNCALC:
Computer algebraic calculation of Feynman amplitudes,
Comput. Phys. Commun. 64, 345 (1991).

[57] V. Shtabovenko, R. Mertig, and F. Orellana, New develop-
ments in FeynCalc 9.0, Comput. Phys. Commun. 207, 432
(2016).

MASS DEPENDENCE OF HIGGS BOSON PRODUCTION AT … PHYS. REV. D 97, 096014 (2018)

096014-17

https://doi.org/10.1103/PhysRevLett.108.102002
https://doi.org/10.1103/PhysRevLett.108.102002
https://doi.org/10.1103/PhysRevD.86.094012
https://doi.org/10.1007/JHEP02(2012)056
https://doi.org/10.1007/JHEP02(2012)056
https://doi.org/10.1103/PhysRevD.89.073008
https://doi.org/10.1103/PhysRevD.90.093007
https://doi.org/10.1103/PhysRevD.90.093007
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1007/3-540-44574-9
https://doi.org/10.1103/PhysRevD.76.074002
https://doi.org/10.1103/PhysRevD.76.074002
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1103/PhysRevD.89.094029
https://doi.org/10.1016/0550-3213(91)90504-Q
https://doi.org/10.1016/0550-3213(91)90504-Q
https://doi.org/10.1103/PhysRevD.80.013007
https://doi.org/10.1103/PhysRevD.80.013007
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008

