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We provide the complete set of radiative corrections to the Dalitz decays ηð0Þ → lþl−γ beyond the soft-
photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy
of a radiative photon. The corrections inevitably depend on the ηð0Þ → γ�γð�Þ transition form factors.
For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent
dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the
doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account
the η-η0 mixing.
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I. INTRODUCTION AND SUMMARY

Looking for effects of new physics is certainly one of the
major contemporary goals of particle physics. The discov-
ery and quantification of new phenomena at this frontier is
a very complicated task, as we must first be confident in our
current theories and models. Due to the fact that exper-
imental devices and techniques are getting more and more
precise, theorists should provide sufficiently low uncer-
tainties together with their predictions. Only in this way can
an eventual discrepancy be clearly and correctly revealed.
New physics has therefore no meaning without the “old
one” being fully explored. Unfortunately, the low-energy
sector of strong interactions remains a significant chal-
lenge. The correct incorporation of radiative corrections in
the QED sector might help to extract information about the
strong sector for the chosen processes. It is the subject of
this paper to study the next-to-leading-order (NLO) radi-
ative corrections to the Dalitz decays ηð0Þ → lþl−γ.
Unlike in the neutral pion case, the ηð0Þ Dalitz decays do

not belong to those with the highest branching ratio, since

due to the higher ηð0Þ rest masses hadronic decay channels
are open. Nevertheless, studying these decays provides a
way to access the electromagnetic transition form factors
and consequently information about the structure of related
mesons. The form factors in turn represent a valuable input
for precision predictions of some other quantities like the
anomalous magnetic moment (g − 2) of a muon. Moreover,
these decays are used as normalization channels in rare
decay (ηð0Þ → lþl−) searches.
In Ref. [1], motivated by the contemporary experimental

needs of the NA62 experiment [2], we revisited the
classical paper of Mikaelian and Smith (M&S) [3]. We
concentrated on the detailed recalculation and completion
of the full set of NLO QED radiative corrections to the
Dalitz decay of a neutral pion, i.e., to the process
π0 → eþe−γ. In doing so, we avoided simplifications
connected to neglecting higher orders in the final-state
lepton mass and thus retained generality for future used, in
particular for Dalitz decays including muon pairs. The one-
photon-irreducible (1γIR) contribution at the one-loop
level, which turned out to be indeed non-negligible in
view of the twofold differential NLO decay width, was also
included. Finally, we discussed contributions that were
numerically irrelevant for the pion case but were expected
to became important, e.g., for η decays. Here, muon loops
as a part of the virtual radiative corrections need to be taken
into account. Most importantly, we also touched on the fact
that the deviations due to the slope of the η transition form
factor cannot be overlooked and provided expressions
covering a related correction.
In this paper, we aim to discuss in detail not only the case

of η decays, but also the η0 decays. In the former case, we
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could conveniently and extensively draw from the previous
work [1], which governed the neutral pion Dalitz decay,
since it was already written in a sufficiently general way.
Consequently, we could proceed along very similar lines
and after properly treating the η-η0 mixing and generalizing
the one-photon-irreducible contribution beyond the effec-
tive approach, we could immediately provide the relevant
tables and plots. What really brings the current topic to a
different level of difficulty is a desire to tackle the radiative
corrections for the η0 decays. The resulting framework is, of
course, directly applicable for the η case and one can check
that the results are (backward) compatible with the previous
(although somewhat generalized) approach used in Ref. [1].
Needless to say, the same framework introduced here
applies for the pion case as well and it provides some
minor corrections compared to the numerical results given
in Ref. [1]. This stems from the fact that therein we
intentionally neglected the form-factor dependence of the
bremsstrahlung correction. Let us only mention that
the numerical results obtained for the pion decay using
the new framework are indeed compatible with the form-
factor slope correction suggested at the end of Sec. V of
Ref. [1]. There is thus no particular need to use the
presented framework for the pion case: one only gains a
correction to the correction at the level of 1%. For the Dalitz
decay of a neutral pion, the approach shown in Ref. [1] is
sufficient.
Let us briefly discuss the subtleties and difficulties that

one encounters and needs to deal with when facing the
Dalitz decays of ηð0Þ mesons and associated NLO radiative
corrections and which are mainly driven by the properties
of the η0 meson. The main differences compared to the pion
case stem from the following facts. First, it is the higher rest
mass, which in the case of η is above the production of a
muon pair and in the case of η0 is even above the lowest
lying resonances ρ and ω, the former of which is a broad
resonance in ππ scattering. This is connected to the fact that
the form-factor slope parameter is not negligible as it was in
the pion case: the form factor cannot be scaled out any-
more, and we must take its particular model into account.
We then need to distinguish between two separate cases.
Similarly to the leading-order (LO) decay width, in the case
of the bremsstrahlung correction the singly virtual tran-
sition form factor appears. The calculation of this contri-
bution includes integration over angles and energies of the
bremsstrahlung photon. For these integrals to be well
defined in order to obtain reasonable results, including
the width of the lowest-lying vector-meson resonances
becomes necessary. Due to the fact that such a calculation
will be unavoidably sensitive to the width of the broad ρ
resonance, we have decided to incorporate the recent
dispersive calculations [4,5]. In the case of the 1γIR
correction, one needs to take into account the doubly
virtual transition form factor. Here we do not expect any
substantial dependence of the result on the vector-meson

decay widths and we use a simple model, which incorpo-
rates the strange-flavor content of ηð0Þ mesons and the η-η0
mixing.
Naive radiative corrections for the η → eþe−γ process

were already published [6] soon after Ref. [3]: compared to
Ref. [3], the numerical results presented in Ref. [6]
correspond to the case in which only the numerical value
of the physical mass of the decaying pseudoscalar was
changed. Other work related to this paper is Ref. [7], where
the two-photon exchange contributions to the cross sections
of eþe− → ηð0Þγ processes were calculated. In the current
work, we provide a complete systematic study of the
NLO radiative corrections to the differential decay widths
of the four processes under consideration: η → eþe−γ,
η → μþμ−γ, η0 → eþe−γ, and η0 → μþμ−γ.
As in the pion case, radiative corrections for these

processes are crucial in order to extract relevant information
from the data. This goes together with the fact that currently
an ambitious experimental ηð0Þ program aiming for an
accuracy never reached before is running, for instance,
at the experiments BES-III [8], A2 [9], and GlueX [10].
Note that in Ref. [1] and also throughout the present work
we study fully inclusive radiative corrections, i.e., no
momentum or angular cuts on the additional bremsstrah-
lung photon(s) are applied. Consequently we are free of
the collinear divergences (sensitivity to the smallness of the
electron mass) that would otherwise appear; see, e.g., the
corresponding discussion in Ref. [11].
The main goals of the present work are to complete the

list of the NLO corrections in the QED sector and improve
upon the previous approach [6]. Compared to Ref. [6],
which was related to the case of the η → eþe−γ decay, we
take into account muon loops and hadronic corrections as a
part of the vacuum polarization contribution, 1γIR con-
tribution, higher-order final-state lepton mass correction,
and form-factor effects. Moreover, we treat three additional
processes including η0 decays: η → μþμ−γ, η0 → eþe−γ,
and η0 → μþμ−γ. All of the formulas necessary for the
calculation of the considered correction are listed in
the present paper or, whenever a repetition should occur,
the reader is referred to the previous work [1]. Let us
mention that in contrary to the pion case, the eventual NLO
Monte Carlo event generator would not be able to profit
from the real-time code calculating the desired correction at
a given kinematical point. This is due to the much higher
CPU time caused by the higher complexity of the involved
integrals. On the other hand, sufficiently dense tables of
values suitable for interpolation are submitted together with
this text in the form of Supplemental Material [12].
Our paper is organized as follows. First, we recapitulate

some basic facts about the LO differential decay width
calculation in Sec. II. Then we proceed to a review
of the NLO radiative corrections in the QED sector in
Secs. III, IV, and V. In particular, in Sec. III we discuss
the virtual corrections, in Sec. IV we introduce the
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one-photon irreducible contribution, and in Sec. V we
describe the bremsstrahlung correction calculation. Some
technical details together with extensive results concerning
the bremsstrahlung and 1γIR contributions to the NLO
correction have been moved to appendices. The building
blocks for the 1γIR matrix element in terms of scalar form
factors can be found in Appendix A. In Appendix B we
present explicit results regarding the bremsstrahlung matrix
element squared. This is related to Appendix C, where new
basic integrals are listed which must be to appended to the
previously used basis presented in Ref. [1] due to a necessary
generalization. Appendix D shows the partial fraction
decompositions used to simplify the bremsstrahlung matrix
element squared. In Appendix E we briefly describe how a
simple vector-meson dominance (VMD)-inspired model for
the η and η0 electromagnetic transition form factors is derived
and provide its phenomenological test. Finally, we make use
of the doubly virtual transition form factor from Appendix E
and show in Appendix F a simple example of the approach
discussed in Sec. IV in the case of the P → lþl− decays.

II. LEADING ORDER

In what follows we will stick to the notation used in
Ref. [1]. Let us briefly recapitulate it for completeness.
Throughout the text we denote the four-momenta of the
decaying pseudoscalar meson (of mass MP), lepton (mass
ml), antilepton, and photon by P, p, q, and k, respectively.
For a parent meson we have in mind η or η0. Traditionally,
we introduce kinematical variables x and y defined as

x ¼ ðpþ qÞ2
M2

P
; y ¼ −

2

M2
P

P · ðp − qÞ
ð1 − xÞ ; ð1Þ

where x is a normalized lepton-antilepton pair invariant
mass squared and y is the rescaled cosine of the angle
between the directions of the outgoing photon and anti-
lepton in the lþl− center-of-mass system (CMS). If we
introduce a lepton-specific constant νl ¼ 2ml=MP and
associated CMS lepton speed

βl ¼ βlðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ν2l
x

r
; ð2Þ

we can write the limits on x and y as

x ∈ ½ν2l; 1�; y ∈ ½−βl; βl�: ð3Þ

Consequently, these depend on the final-state lepton mass.
The leading-order diagram of the decay P → lþl−γ is

shown in Fig. 1. The shaded blob corresponds to the singly
virtual electromagnetic transition form factor F ððpþ qÞ2Þ,
which is closely related to the doubly virtual transition form
factor by

F ððpþ qÞ2Þ≡FPγ�γ�ð0; ðpþ qÞ2Þ ¼ FPγ�γ� ððpþ qÞ2;0Þ:
ð4Þ

The twofold differential decay rate reads

d2ΓLO
P→ll̄γ

dxdy
¼ α

π
ΓLO
P→γγ

����F ðM2
PxÞ

F ð0Þ
����2 ð1 − xÞ3

4x

�
1þ y2 þ ν2l

x

�
:

ð5Þ

Above, we have used the LO expression for the most
prominent (electromagnetic) decay rate of a neutral pseu-
doscalar meson P:

ΓLO
P→γγ ¼

e4M3
P

64π
jF ð0Þj2: ð6Þ

Integrating Eq. (5) over y, we find the onefold differential
decay width

dΓLO
P→ll̄γ

dx
¼ α

π
ΓLO
P→γγ

����F ðM2
PxÞ

F ð0Þ
����2 8βl3 ð1 − xÞ3

4x

�
1þ ν2l

2x

�
:

ð7Þ

Moving beyond the leading order, it is convenient
to introduce the NLO correction δ to the LO differential
decay width, which allows us to write schematically
dΓ ¼ ð1þ δþ � � �ÞdΓLO. In particular, in the case of the
twofold differential decay width we define

δðx; yÞ ¼ d2ΓNLO

dxdy = d
2ΓLO

dxdy
; ð8Þ

and in the onefold differential case we have

δðxÞ ¼ dΓNLO

dx = dΓ
LO

dx
: ð9Þ

Concluding the definitions closely related to the previous
work [1], such a correction can be divided into three parts
emphasizing its origin,

δ ¼ δvirt þ δ1γIR þ δBS: ð10Þ

FIG. 1. Leading-order diagram of the decay P → lþl−γ in the
QED expansion.
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Here, δvirt stands for the virtual radiative corrections, δ1γIR

stands for the one-photon-irreducible contribution (which
is treated separately from δvirt in our approach due to
reasons of historical development), and δBS stands for the
bremsstrahlung. As a trivial consequence of the previous
equations, having knowledge of δðx; yÞ allows us to obtain
δðxÞ using the following prescription:

δðxÞ ¼ 3

8βl

1

ð1þ ν2l
2xÞ

Z
βl

−βl
dy δðx; yÞ

�
1þ y2 þ ν2l

x

�
: ð11Þ

In the following sections we discuss the individual con-
tributions one by one. We mainly point out the differences
in comparison to the pion case.

III. VIRTUAL RADIATIVE CORRECTIONS

What we call the virtual radiative corrections are
obtained from the interference terms of the LO diagram
shown in Fig. 1 and the diagrams in Figs. 2(a) and 2(b). In
the pion case, the vacuum polarization was dominated
by the electron loop. It turns out though that in the

high-invariant-mass region of the photon propagator the
hadronic effects become significant, which should be taken
into account for the ηð0Þ decays. Thus, in general, we shall
deal with the photon self-energy in the form

ΠðsÞ ¼ ΠLðsÞ þ ΠHðsÞ; ð12Þ

where ΠL and ΠH stand for the leptonic and hadronic parts,
respectively. We discuss these contributions separately in
the following. At NLO, the contribution of the vacuum
polarization (12) to the virtual radiative correction then
reads

δvirtΠ ðx; yÞ ¼ 2Ref−ΠðM2
PxÞg: ð13Þ

Note that δvirtΠ ðx; yÞ does not depend on y and consistently
with Eq. (11) we have δvirtΠ ðxÞ ¼ δvirtΠ ðx; yÞ.
Regarding the lepton part, all of the necessary formulas

connected with the contributions of lepton loops to the
vacuum polarization were stated in Sec. III of Ref. [1] and
hold also in the current cases. However, we shall point out
some interesting details. It was already discussed in Ref. [1]
that in the case of the ηð0Þ-meson decays not only the
electron loop but also the muon loop should be taken into
account as a part of the vacuum polarization contribution.
The contribution of the leptonic vacuum polarization
insertion—i.e., the contribution of the lepton loops to
the photon propagator—to the correction δvirt can be
expressed as (cf. the formulas in Sec. III of Ref. [1])

δvirtΠL
ðxÞ ¼ 2Ref−ΠLðM2

PxÞg

≡ −2
α

π

X
l0¼e;μ

�
8

9
−
β2l0

3
−
�
1 −

β2l0

3

�
jβl0 j

×

�
θðβ2l0 Þarctanh βl0 þ θð−β2l0 Þ arctan

1

jβl0 j
�	

:

ð14Þ

Here, M2
Px is the invariant mass of the final-state lepton

pair and l0 stands for the leptons circulating in the loop.
Consistently with Eq. (2), we have βl0 ≡ βðM2

Px;m
2
l0 Þ and

jβl0 j ¼
ffiffiffiffiffiffiffiffiffi
jβ2l0 j

q
. Let us note that βl0 no longer stands for the

CMS speed of the final-state leptons as was the case for βl
in Eq. (2). Since β depends on x, which for the given
process of a decay to a lepton pair of flavor l satisfies the
limit x ∈ ½ν2l; 1�, we can run into different kinematical
regimes, which are explicitly covered by Eq. (14); for this
purpose, the Heaviside step function θ was used. Whenever
β2l0 < 0, i.e., βl0 itself becomes imaginary, no on-shell
lepton-antilepton pair can be created in the loop and the
diagram in Fig. 2(a) lacks the imaginary part. This happens
if the invariant mass of the final-state lepton pair is under
the production threshold of the two-loop leptons of flavor

(a) (b)

(c) (d)

(e)

FIG. 2. NLO QED radiative corrections to the Dalitz decay
P → lþl−γ: (a) vacuum polarization insertion, (b) correction to
the QED vertex, (c),(d) one-loop one-photon-irreducible contri-
butions, and (e) bremsstrahlung. Note that “cross” in panel
(c) corresponds to a diagram where the photon is emitted from
the outgoing positron line. Needless to say, “cross” in panel
(e) stands for the diagrams with outgoing photons interchanged.
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l0∶ ν2l ≤ x < ν2l0 . In turn, this condition can be, of course,
only realized in the case of the muon loop contribution to
the NLO decay widths of the π0 → eþe−γ decay and in the
process ηð0Þ → eþe−γ, where the kinematical condition
ν2e ≤ x < ν2μ is met within a part of the kinematically
allowed region.
The hadronic contribution to the photon self-energy can

be expressed via a dispersive integral [13],

ΠHðsÞ ¼ −
s

4π2α

Z
∞

4m2
π

σHðs0Þds0
s − s0 þ iϵ

: ð15Þ

Here, σH is the total cross section of the eþe− annihilation
into hadrons and is related to the ratio RðsÞ as
σHðsÞ ¼ ð4πα2=3sÞRðsÞ. In order to obtain a smooth curve
from the data [14], we fit the experimental values in a
similar way as in Ref. [13]. Concerning the upper bound of
the integral in Eq. (15), in practice it is sufficient to use the
scale Λcut ≃ 4 GeV. It is set in such a way that all of the
important resonances are covered while the higher-energy
region does not contribute significantly for s≲Mη0. The
resulting contribution to the radiative corrections is plotted
as one of the constituent curves in Fig. 4.
Instead of Eq. (13), one might take into account the

whole geometric series of vacuum polarization insertions
and sum it in order to find

δvirtΠ ðxÞ ¼ 1

j1þ ΠðM2
PxÞj2

− 1

¼ −
2ReΠðM2

PxÞ þ jΠðM2
PxÞj2

j1þ ΠðM2
PxÞj2

: ð16Þ

Equation (13) is then recovered by taking the linear
expansion of Eq. (16), since jΠðsÞj ≪ 1. Note that in
Eq. (16) one should use the full form of the vacuum
polarization including its imaginary part, similarly to how it
was defined, e.g., in Eq. (20) of Ref. [1] for the lepton case:

ΠLðM2
PxÞ

¼ α

π

X
l0¼e;μ

�
8

9
−
β2l0

3
þ
�
1 −

β2l0

3

�
βl0

2
log ½−γl0 þ iϵ�

	
;

ð17Þ

with γl ≡ ð1 − βlÞ=ð1þ βlÞ. But since jΠðsÞj ≪ 1, also
jImΠðsÞj ≪ 1þ ReΠðsÞ and 2ReΠðsÞ ≫ jΠðsÞj2. One
could thus safely use only the real part of ΠðsÞ, as it
was defined in Eq. (13), for the purpose of the numerical
evaluation of Eq. (16). This is equivalent to effectively
using ImΠðsÞ → 0. On the other hand, the numerical
difference between the definitions (13) and (16) is
ΔδvirtΠ ðxÞ ≃ 0.25% at s ≃M2

ω. Therefore, we take into
account the precise formula (16) together with Eqs. (15)
and (17).

For completeness, let us revise at this point what we
mean by the virtual correction. In agreement with Eq. (16)
in Ref. [1], we use

δvirtðx; yÞ ¼ 1

j1þ ΠðM2
PxÞj2

− 1

þ 2Re
�
F1ðxÞ þ

2F2ðxÞ
1þ y2 þ ν2

x

	
; ð18Þ

where ΠðsÞ contains not only single electron and muon
loops, but also the whole hadronic contribution to the
photon self-energy. For the expressions of the form factors
F1 and F2, which arise from the vertex correction diagram
in Fig. 2(b), the reader is referred to Ref. [1].

IV. ONE-PHOTON-IRREDUCIBLE VIRTUAL
RADIATIVE CORRECTION

Considering the QED expansion, the NLO diagrams
contributing to the one-loop 1γIR correction to the P →
lþl−γ process are shown in Figs. 2(c) and 2(d). We treat
this contribution separately from the virtual correction to
emphasize the fact that it was not included in the original
approach [3]. Therein, it was considered to be negligible
already for the pion case. This statement was corrected in
Ref. [15] many years before the debate about this issue was
finally closed. Note also that in the pion case, the 1γIR
contribution was studied in Ref. [16] in connection with the
bremsstrahlung correction to the π0 → eþe− rare decay.
In the 1γIR contribution one cannot factorize out the

electromagnetic transition form factor. This correction
becomes therefore unavoidably model dependent already
at the twofold differential level and it is necessary to choose
a particular model to evaluate the correction numerically.
Compared to the previous calculations of the LO diagram
and NLO virtual radiative corrections, a doubly virtual
transition form factor FPγ�γ� ðl2; ðP − lÞ2Þ must be used.
This form factor enters the loop and the integration over the
unconstrained momentum l is then performed. Note that P
stands for both the decaying pseudoscalar and its four-
momentum.
Let us now proceed further and consider that during

the calculation of the 1γIR loop diagrams the following
structure inevitably appears:

FPγ�γ�ðl2; ðP − lÞ2Þ
½l2 þ iϵ�½ðP − lÞ2 þ iϵ� : ð19Þ

By construction, the arguments of the form factor coincide
with the photon propagators in the loop; l denotes the loop
momentum, as is usual. In what follows we consider a
family of large-Nc-motivated analytic resonance-saturation
models, which were discussed in detail in Ref. [17] (Nc
denotes the number of colors). Here FPγ�γ� is a rational
function with vector-meson poles. We then realize that due
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to the use of the partial fraction decomposition one can
perform—within the loop integrals appearing during the
evaluation of the diagrams—the following substitution:

FPγ�γ�ðp2; q2Þ
p2q2

¼ −
Nc

12π2Fπ

X
i

αihðc1;i; c2;i; M2
1;i;M

2
2;iÞ:

ð20Þ

Note that from now on we will not explicitly write the
“þiϵ” part. Above,

hðc1; c2;M2
1;M

2
2Þ≡ 1

p2q2
þ c2
ðp2 −M2

1Þðq2 −M2
2Þ

− c1

�
1

p2ðq2 −M2
1Þ

þ 1

q2ðp2 −M2
1Þ
�
:

ð21Þ

In this way we come from the matrix element M1γIR toP
αiMh

1γIR½hi�; note that the normalization constant
F π0γ�γ�ð0; 0Þ ¼ −Nc=ð12π2FπÞ from the decomposition
(20) is already included in Mh

1γIR½hi� and that we have
used the shorthand notation hi ≡ hðc1;i; c2;i; M2

1;i; M
2
2;iÞ. In

order to get results for the whole family of models it is
necessary to analytically integrate over the loop momentum
just once; this is the main advantage of this approach. At the
end one can choose the particular model of the form factor
by setting the parameters in the final matrix element
appropriately. We can find the constants c1 and c2 used
above by projecting on the product of the normalized form
factor and the photon propagators; for instance, in the case
MV1

¼ MV2
we have

c2 ¼ lim
p2;q2→M2

V1

FPγ�γ�ðp2; q2Þ
F π0γ�γ�ð0; 0Þ

ðp2 −M2
V1
Þðq2 −M2

V1
Þ

p2q2
:

ð22Þ

This little trick is very convenient when it is necessary to
create a universal code for calculating radiative corrections
within different models. Let us also note that the sub-
stitution (21) obviously does not conserve term by term the
desired property of the doubly virtual form factors—the
symmetry in their arguments. However, this ansatz works
generally for the rational models mentioned above, which
might have a rather complicated structure. The symmetry in
question is then always restored in the final result after
including all of the pieces Mh

1γIR½hi�. Moreover, we realize
that if we define

gðM2
1;M

2
2Þ≡ 1

ðp2 −M2
1Þðq2 −M2

2Þ
; ð23Þ

we can immediately write

hðc1; c2;M2
1;M

2
2Þ ¼ gð0; 0Þ þ c2gðM2

1;M
2
2Þ

− c1½gð0;M2
1Þ þ gðM2

1; 0Þ�: ð24Þ

This trivial observation simplifies the loop integration even
further. Instead of Eq. (20), we can then write

FPγ�γ�ðp2; q2Þ
p2q2

¼ −
Nc

12π2Fπ

X
i

βigðM2
1;i; M

2
2;iÞ: ð25Þ

During the calculation of the amplitude it is only necessary
to perform the following substitution:

FPγ�γ� ðp2; q2Þ
p2q2

→ −
Nc

12π2Fπ
gðM2

1;M
2
2Þ: ð26Þ

The desired final amplitude for the particular model is then
obtained by writing a suitable combination [in the spirit of
Eq. (25)] of such amplitudes which are calculated using the
substitution (26). One only needs to insert the correct
masses and coefficients into this combination, which goes
along the lines of Eqs. (24), (22), and (21).
Let us discuss the previous procedure for a particular

case and consider for a while the eta-meson decays: P ¼ η.
The simplest physically relevant model we can imagine is
based on the VMD scenario, i.e., an ansatz which assumes
that the form factor is saturated by the lowest-lying
multiplet of vector mesons. It has the following form:

e2FVMD
ηγ�γ� ðp2; q2Þ

¼ −
Nc

8π2Fπ

2e2

3

�
5

3

cosϕ
fl

M4
ω=ρ

ðp2 −M2
ω=ρÞðq2 −M2

ω=ρÞ

−
ffiffiffi
2

p

3

sinϕ
fs

M4
ϕ

ðp2 −M2
ϕÞðq2 −M2

ϕÞ
�
: ð27Þ

Above, ϕ is the η-η0 mixing angle and fl together with fs
are the associated decay constants in the quark-flavor
basis of the quark currents [18,19]; for further details
concerning the derivation of this model, see Appendix E. It
is then clear after counting the loop-momenta powers that
such a form factor guarantees thew UV convergence of the
loop integrals. The matrix element for such a form factor
can be schematically written as

MVMD
1γIR ¼ 5

3

cosϕ
fl

Mh
1γIR½hð1; 1;M2

ω=ρ;M
2
ω=ρÞ�

−
ffiffiffi
2

p

3

sinϕ
fs

Mh
1γIR½hð1; 1;M2

ϕ;M
2
ϕÞ�: ð28Þ

Following the subsequent decomposition (24) and using
linearity, one then finds
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Mh
1γIR½hð1; 1;M2

V ;M
2
VÞ�

¼ Mh
1γIR½gð0; 0Þ� þMh

1γIR½gðM2
V ;M

2
VÞ�

−Mh
1γIR½gð0;M2

VÞ� −Mh
1γIR½gðM2

V ; 0Þ�: ð29Þ

As the only building block, one needs to calculate
Mh

1γIR½gðM2
1;M

2
2Þ� obtained in terms of the substitution

(26) in the original matrix element. For the purpose of the
1γIR contribution to the correction δðx; yÞ at the one-loop
level, the same decomposition will work. Indeed, the
interference of M1γIR with the LO matrix element needs
to be considered and thus linearity is preserved. Therefore,
it is necessary to take into account a linear combination of
δh1γIR defined according to the prescription (26) in Ref. [1]:

δh1γIR½gðM2
1;M

2
2Þ�

¼ 2Re

�
−
α

π

F π0γ�γ� ð0; 0Þ
F ðM2

PxÞ
iπ2MP

½1þ y2 þ ν2l
x �

× f4νlT½gðM2
1;M

2
2Þ�ðx; yÞ

þ ½A½gðM2
1;M

2
2Þ�ðx; yÞMP½xð1 − yÞ2 − ν2l�

þ ðy → −yÞ�g
	
: ð30Þ

The explicit expressions for the building-block form factors
A and T are shown in Appendix A. Let us have a look at the
ratio of the electromagnetic form factors in Eq. (30).
Clearly, irrespective of the model that we use for the
doubly virtual form factor, it is convenient that the
normalization of the form factor in such a model equals
to F ð0Þ appearing in the LO expression; see also Eq. (4).
This leads to the fact that the correction will be independent
of any overall normalization effects. In the next section we
introduce a spectral representation of a normalized form
factor; see Eq. (41). Following what we have just assumed,
we can write

F π0γ�γ� ð0; 0Þ
F ðM2

PxÞ
¼ F ð0Þ

F ðM2
PxÞ

F π0γ�γ� ð0; 0Þ
FPγ�γ� ð0; 0Þ

; ð31Þ

and using the VMD-based scenario, for instance, for η as in
Eq. (27), we find

F π0γ�γ�ð0; 0Þ
FVMD

ηγ�γ� ð0; 0Þ
¼

�
5

3

cosϕ
fl

−
ffiffiffi
2

p

3

sinϕ
fs

�−1
: ð32Þ

A simple example of this approach applied to the P →
lþl− decays is shown in Appendix F. There is also a
complementary way to cover the whole set of form factors
under consideration. Instead of putting the particular form
factor into our diagrams, we can use the local Wess-
Zumino-Witten (WZW) term. In other words, we trade
the form factor for the constant given by the chiral anomaly.
It is then clear from simple considerations that the

contributions from Fig. 2(c) need counterterms to com-
pensate UV divergences. The convergent part of such a
counterterm carries an undetermined constant χðrÞðμÞ
renormalized at the scale μ, which can effectively mimic
the high-energy behavior of the would-be complete form
factor. Using a proper matching procedure, it is possible to
acquire a numerical value of this constant χðrÞðμÞ for a given
form-factor model. Up to mass corrections we can use an
approximate formula to estimate this effective parameter
[see Eq. (46) in Ref. [17]]. The question is whether this
procedure can also be used for the box diagram in Fig. 2(d),
which is already convergent for the local WZW form factor.
It turns out that the corrections are of order m2

l=M
2
V and

M2
P=M

2
V . Hence, for the pion case this assumption works

well. On the other hand, for ηð0Þ it does not and one would
need to introduce additional effective parameters in a
consistent way. However, this is not a trivial task and is
beyond the scope of this work. Let us also mention that
χðrÞðμÞ enters the corrections being multiplied by ν2l, and its
effect is thus negligible for the decays with electrons in the
final state.
In the results section (Sec. VI), we will use the simple

VMD-inspired model for the doubly virtual transition form
factor to estimate the importance of the 1γIR contributions;
for details of the model, see Appendix E. For completeness,
let us then present the correction δ1γIRðx; yÞ within the
model under consideration:

δ1γIRVMDðx; yÞ× ¼
X

A∈fl;sg
κPAfδh1γIR½gð0; 0Þ� þ δh1γIR½gðM2

A;M
2
AÞ�

− δh1γIR½gð0;M2
AÞ� − δh1γIR½gðM2

A; 0Þ�g:
ð33Þ

For the η case, we have κηl ≡ 5
3
cosϕ
fl

, κηs ≡ −
ffiffi
2

p
3

sinϕ
fs
. The η0

case then corresponds to the simultaneous interchange
fcosϕ → sinϕ; sinϕ → − cosϕg, of course followed by
specifying the right MP within the building blocks δh1γIR.
For the resonance masses we put Ml ≡Mρ=ω (the average
physical mass of ρ and ω mesons) for the light sector and
Ms ≡Mϕ (the physical mass of theϕmeson) for the strange
sector. However, we would like to stress again that the
framework presented in the present section is also capable of
dealing with more sophisticated form-factor models. In
general, the model dependence of part of the radiative
corrections is, of course, a nuisance. But for the doubly
virtual transition form factors of η and η0 there is at present no
alternative. In the next section the singly virtual transition
form factors are required.Here themodel dependence can be
reduced by the use of dispersive methods [4,5].

V. BREMSSTRAHLUNG

In this section we briefly build on Ref. [1]—which
discussed the bremsstrahlung correction calculation for the
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pion case—and show the differences which come into play
due to the fact that we are now interested in ηð0Þ mesons. We
also show some ways to deal with the obstacles that arise.
Concerning the notation, we will restrict ourselves to that
used in previous works.
The diagrams that contribute to the Dalitz decay brems-

strahlung are shown in Fig. 2(e). Their contribution is
(among other things) important for canceling IR divergen-
ces stemming from the virtual corrections depicted in
Fig. 2(b). The corresponding invariant matrix element
(including cross terms) can be written in the form

iMBS ¼
F ððlþ pþ qÞ2Þ
ðlþ pþ qÞ2 þ iϵ

Iðk; lÞ þ ðk ↔ lÞ; ð34Þ

where

Iðk; lÞ ¼ ūðpÞIρσðk; lÞvðqÞϵ�ρðkÞϵ�σðlÞ ð35Þ

with

Iαβðk; lÞ ¼ −i5e4εðlþpþqÞðkÞμα

×

�
γβ

ð=lþ =pþmÞ
2l · pþ iϵ

γμ − γμ
ð=lþ =q −mÞ
2l · qþ iϵ

γβ
�
:

ð36Þ
Here, we use l and k for the photons and p and q for the
electron and positron four-momenta, respectively, and
F ððpþ qÞ2Þ≡ FPγ�γ�ð0; ðpþ qÞ2Þ. Note that we use the
shorthand notation for the product of the Levi-Civita tensor
and four-momenta in which εðkÞ… ¼ εμ…kμ. Inasmuch as
an additional photon comes into play, it is convenient to
introduce a new kinematical variable which stands for the
normalized invariant mass squared of the two photons,

xγ ¼
ðkþ lÞ2
M2

P
: ð37Þ

It has a similar meaning as x in the case of the lepton-
antilepton pair. The contribution of the bremsstrahlung to
the next-to-leading-order twofold differential decay width
can be written as

d2ΓNLO
BS

dxdy
¼ ð1 − xÞ

4MPð2πÞ8
π3M4

P

16

Z
JfjMBSj2gdxγ: ð38Þ

The operator J used above .is defined for an arbitrary
invariant fðk; lÞ of the momenta k and l as follows:

Jffðk; lÞg ¼ 1

2π

Z
d3k
k0

d3l
l0

fðk; lÞδð4ÞðP − p − q − k − lÞ:

ð39Þ

In the case of the pion Dalitz decay, the value of the s
lope parameter of the form factor is small: aπ ≃ 0.03.

Consequently, the form factor F ððlþ pþ qÞ2Þ which
enters Eq. (34) can be conveniently expanded in the
following way:

F ððlþ pþ qÞ2Þ ≃ F ðM2
PxÞ

�
1þ a

2l · ðpþ qÞ
M2

P

�
: ð40Þ

Therefore, F ððlþ pþ qÞ2Þ can be approximated by
F ðM2

PxÞ for the process π0 → eþe−γ. This squared leads
to the direct cancellation with jF ðM2

PxÞj2 appearing in the
leading-order expression. The bremsstrahlung contribution
to the radiative corrections then becomes effectively inde-
pendent of the particular model of the pion transition form
factor. However, in the case of an η meson, the slope
parameter is aη ≃ 0.5, which is definitely no longer
negligible. One would need to include higher-order cor-
rections in the expansion (40), the convergence would be
slower, and things would become in general more com-
plicated since additional terms would need to be treated;
see also the discussion at the end of Sec. V of Ref. [1].
However, the real obstacles appear with the η0-meson case.
Due to the fact that aη0 ≃ 1.4, the expansion (40) is not
applicable at all. One thus needs to use the full form factor.
Although in such a case the situation is somewhat

different compared to the one in which the form factor
cancels out, in general it is possible to use a similar
framework as in the pion case—at least in the sense of
treating the kinematical integrals. Accordingly, one needs
to rewrite the bremsstrahlung correction in terms of
integrals which are known from the pion case. These need
to be somewhat generalized due to the presence of poles in
the form factor; for results, see Appendix C. This becomes
more important in the η case compared to the pion decay
and needs to be taken into account explicitly. For the η0
case, this procedure then becomes absolutely crucial since
in the hadron spectrum the mass of the η0 meson lies above
the masses of the lightest vector-meson resonances ρ and ω
and close to the ϕ-meson mass. The subsequent (numerical)
integrations over all of the relevant kinematical configu-
rations of the bremsstrahlung photon become significantly
nontrivial due to the running over these poles, which are
regulated by incorporating physical widths of the reso-
nances. The narrow resonances like ω and ϕ are somewhat
straightforward to include. However, the width of the broad
ρ resonance is sensitive to the π-π scattering. This can also
be taken into account by the use of recent dispersive
approaches [4,5]. To this extent, it is convenient to use the
Källén-Lehmann spectral representation of the Feynman
propagator, which allows for the use of a common spectral
density function for all of the mentioned resonances. The
facts stated above make the bremsstrahlung contribution—
especially in the case of the η0 meson—significantly
sensitive to the form-factor model. To minimize the model
dependence, whenever possible, data and general principles
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of quantum field theory, analyticity, and unitarity are used
that give rise to a dispersive framework.
In the Källén-Lehmann spectral representation, the form

factor has the following form:

F ðq2Þ
F ð0Þ ≃ 1þ q2

Z
Λ2

4m2
π

AðsÞds
q2 − sþ iϵ

≡ 1þ q2Iðq2Þ: ð41Þ

Concerning the integration range, we restrict ourselves to
ð4m2

π;Λ2Þ. This is sufficient for our purpose and covers all
of the important physics. In the lower bound,mπ is the mass
of a charged pion π� and 4m2

π then constitutes the squared
mass of the lowest hadronic state that can couple to a
photon. The upper bound is governed by the cutoff Λ ≃
1.05 GeV which is chosen in such a way as to just cover the
peak and width of the ϕ resonance. In the chosen energy
range the spectral function has two main contributions
distinguished by isospin, AðsÞ ¼ A0ðsÞ þA1ðsÞ.
The narrow resonancesω and ϕ contribute to the isospin-

zero part,

A0ðsÞ ¼ wωAωðsÞ þ wϕAϕðsÞ; ð42Þ

with the narrow-resonance spectral function

AVðsÞ≡Aðs;MV ;ΓVÞ≡ −
1

π

MVΓV

ðs −M2
VÞ2 þ ðMVΓVÞ2

:

ð43Þ

Note that after a full integration over s one indeed gets (up
to a sign) the resonance propagator:

Z
∞

−∞

AVðsÞds
q2 − sþ iϵ

¼ −
1

q2 −M2
V þ iMVΓV

: ð44Þ

Finally, let us mention that a one-narrow-resonance VMD
model for the form factor can be written in terms of Eq. (41)
with AðsÞ ¼ AVðsÞ.
The isospin-one part is governed by the broad ρ meson.

In order to include the important effect of ππ scattering, we
use the dispersive approach of Refs. [4,5]. There the
spectral function has the form

A1ðsÞ ¼ −
κ

96π2F2
π

�
1 −

4m2
π

s

�
3=2

PðsÞRðsÞjΩðsÞj2; ð45Þ

where Fπ ¼ 92.2 MeV is the pion decay constant, ΩðsÞ is
the Omnès function (a dispersive tool incorporating pion
rescattering), and PðsÞ and RðsÞ ¼ ð1þ αVsÞ are poly-
nomials related to the η → ππγ reaction amplitude and the
pion vector form factor FVðsÞ ¼ RðsÞΩðsÞ, respectively. In
the case of η0, we use Pη0 ðsÞ ¼ ð1þ αη0sþ βη0s2Þ with
αη0 ¼ 0.99ð4Þ GeV−2 and βη0 ¼ −0.55ð4Þ GeV−4 [5].
For the η spectral function, we take (based on Ref. [4])

PηðsÞ ¼ ð1þ αηsÞRðsÞ with αη ¼ 1.32ð13Þ GeV−2. Note
that in view of Eq. (45) and taking into account only terms
linear in s, PηðsÞ ¼ 1þ ðαη þ αVÞs. The rest of the
parameters from Eqs. (42) and (45) are given in Table I.
For numerical reasons, the spectral function for the broad

ρ resonance may be fitted, since it is much faster to
numerically integrate the analytical expression compared
to the dispersive data interpolation. To this extent, it is
necessary to model the resonance peak behavior. The
following function copies the dispersive shape of A1

satisfactorily:

A1ðsÞ ≃ ½a0 þ a1sþ ða2sÞ2 þ ða3sÞ3�Aðs;Mρ;ΓρðsÞÞ:
ð46Þ

The energy dependence of the width of the ρ meson—
assuming the main contribution comes from the 2π
decay—can be expressed as

ΓρðsÞ≡ Γρ
Mρffiffiffi
s

p
�
s − 4m2

π

M2
ρ − 4m2

π

�
3=2

≃ Γρ
Mρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
ρ − 4m2

π

q �
1 −

4m2
π

2s

��
s − 4m2

π

M2
ρ − 4m2

π

�
: ð47Þ

The advantage of the latter approximation is that, when we
insert it into Eq. (46) and subsequently into Eq. (41), the
form factor F ðq2Þ can be evaluated analytically. This
speeds up the numerics even further. The values of the
fit are shown in Table II. For the η0 case, the formula (45) is
compared to the fit in the upper panel of Fig. 3. The
dispersive integral IðsÞ of the final spectral function AðsÞ
is then shown in the second panel of Fig. 3.
Let us now show what the matrix element squared looks

like in the spectral representation. For the sake of writing
down its structure, we recast Eq. (34) as

TABLE I. Values for w are taken from Ref. [4] and values for κ
were calculated using the following prescription therein:

κηð0Þ ¼ eAηð0Þ
ππγF2

π=A
ηð0Þ
γγ . The numerical value of αηV was estimated

from the fit in the upper panel of Fig. 1 in Ref. [4] and the value of

αη
0
V is based on values tabulated in Ref. [5].

P κ αV [GeV−2] wω wϕ

η 0.56 0.115 0.78ð4Þ × 1
8

0.75ð3Þ × ð− 2
8
Þ

η0 0.415 0.09 1.27ð7Þ × 1
14

0.54ð2Þ × 4
14

TABLE II. The fitted values of the ansatz (46) for the spectral
function A1.

P a0 a1 [GeV−2] a2 [GeV−2] a3 [GeV−2]

η 3.336 −6.364 2.622 −1.342
η0 2.333 −4.969 2.261 −1.240
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iMBS ¼
F ðEÞ
E

IE þ
F ðFÞ
F

IF; ð48Þ

wherewe haveused the shorthand notationE¼ðlþpþqÞ2þ
iϵ and F ¼ ðkþ pþ qÞ2 þ iϵ and defined IE ≡ Iðk; lÞ and
IF ≡ Iðl; kÞ. After inserting the representation of the form
factor Eq. (41), we get

iMBS

F ð0Þ ¼
�
1

E
þ
Z

Λ2

4m2
π

dsAðsÞ 1

E − sþ iϵ

�
IE þ ðE ↔ FÞ:

ð49Þ

An attentive reader might have noticed that in the previous
formula the explicit iϵ is not necessary. At the same time, it
might be sensible to explicitly write the infinitesimal
imaginary part of the propagator in the following expres-
sions. To avoid any potential confusion further on, let us
define e≡ ReE and, similarly, f ≡ ReF. After the operator

J is applied to the matrix element squared and summed

over all of the spins and polarizations, jMBSj2 ≡P
sp;poljMBSj2, we can actually use the symmetry k ↔ l ⇔

E ↔ F term by term, which results in

J

�jMBSj2
F 2ð0Þ

	
¼ 2ReJ

��
1

jEj2 þ 2
1

E�

Z
AðsÞds

e − sþ iϵ

þ
ZZ

AðsÞds
e − sþ iϵ

Aðs0Þds0
e − s0 − iϵ0

�
jIEj2

þ
�

1

EF� þ 2
1

F�

Z
AðsÞds

e − sþ iϵ

þ
ZZ

AðsÞds
e − sþ iϵ

Aðs0Þds0
f − s0 − iϵ0

�
IEI�F

	
: ð50Þ

In order to perform the integrations of the J operator on the
respective terms, we need to do a few fraction product
decompositions; the procedure is described in detail in
Appendix D. Taking also into account that

Re
ZZ

dsds0
AðsÞAðs0Þ

s − s0 − iðϵþ ϵ0Þ ¼ −πIm
Z

dsA2ðsÞ ¼ 0;

ð51Þ

we can rewrite Eq. (50) as

J

�jMBSj2
F 2ð0Þ

	

¼ 4ReJ

��
1

2

1

jEj2

þ
Z

dsAðsÞ
�
1

s
þ I�ðsÞ

��
1

e − sþ iϵ
−

1

E�

��
jIEj2

þ
�
1

V0

1

E
þ I�ðV0Þ

1

E
þ
Z

ds
AðsÞ

V0 − sþ iϵ
1

e − sþ iϵ

þ
Z

dsAðsÞRefIðV0 − sÞg 1

e − sþ iϵ

�
IEI�F

	
: ð52Þ

Following the definition (41), we made use of the fact that

IðsÞ ¼ p:v:
Z

Λ2

4m2
π

ds0
Aðs0Þ
s − s0

− iπAðsÞ: ð53Þ

With the previous simplifications (43), (46), and (47), the
above integral can be evaluated analyticallywhich speeds up
the time-demanding numerics.
For the sake of integrating out the bremsstrahlung

photon, it is convenient to define the following three
rescaled parts of the matrix element squared:

e8

4
TrE2 ≡ jIEj2

jEj2 ; ð54Þ

FIG. 3. The fit and the dispersive integral of the spectral
function for the η0 case. In the first panel we display the fit of
the spectral function A1ðsÞ. The curve based on Eq. (45) (shown
as a dashed line) is compared to the fit based on the ansatz (46)
(shown as a solid line). In the second panel we show the
dispersive integral IðsÞ as it is defined in Eq. (41): ReIðsÞ is
shown as a solid line and ImIðsÞ as a dashed line.
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e8

4
TrEðsÞ≡ jIEj2

e − sþ iϵ
; ð55Þ

e8

4
TrEFðsÞ≡ IEI�F

e − sþ iϵ
: ð56Þ

One gets the remaining building blocks of Eq. (52) by
performing the limit s → 0, i.e., taking TrEð0Þ and TrEFð0Þ.
Note that it does not matter if one uses 1=E� or simply 1=E
for the Feynman propagators in the definitions of TrEð0Þ
and TrEFð0Þ since these give real contributions. The term
“Tr” is chosen to be in agreement with Ref. [3]. Note that
the original work of M&S—which in some sense corre-
sponds to AðsÞ ¼ 0 since the form factor could have been
factorized out—is connected with the previous definitions
through

jMM&S
BS j2 ¼ e8

4
jF ðM2

PxÞj2TrM&S; ð57Þ

where

JfTrM&Sg ¼ 4J

�
1

2
TrE2 þ TrEFð0Þ

M2
Pð1þ x − xγÞ

	
: ð58Þ

For numerical reasons, the integration of the resulting
expression is performed term by term. We can name these
terms for further convenience. Consequently, we write

J

�jMBSj2
F 2ð0Þ

	
≡ e8

4
ReJfTrg; Tr ¼ 4

X
i

ti; ð59Þ

where

t1a ¼
1

2
TrE2 ; t1b ¼

1

V0

TrEFð0Þ; ð60Þ

t2 ¼
Z

dsAðsÞ
�
1

s
þ I�ðsÞ

�
½TrEðsÞ − TrEð0Þ�; ð61Þ

t3a ¼ I�ðV0ÞTrEFð0Þ; t3b ¼
Z

ds
AðsÞ

V0 − sþ iϵ
TrEFðsÞ;

ð62Þ

t4 ¼
Z

dsAðsÞRefIðV0 − sÞgTrEFðsÞ: ð63Þ

The terms t1a and t1b are the only ones present in the M&S
case. The terms t1a and t2 are dominant. By construction
[cf. Eq. (D6)], the terms t3a and t3b belong together since
separately they develop peaks which are exactly compen-
sated only in the sum. Let us mention that for the purpose of
Eq. (59), in t3a it is sufficient to take only the real part of
IðV0Þ since TrEFð0Þ gives only a real-part contribution.

For the correction δBSðx; yÞ, we have

δBSðx; yÞ ∼
Z

J

�jMBSðx; y; k; lÞj2
F 2ð0Þ

	
dxγ: ð64Þ

Together with Eq. (D6), this suggests that we need to
perform five subsequent integrations: two nontrivial ana-
lytical ones are implicitly hidden in the J operator, and at
least two need to be inevitably performed numerically. Let
us briefly look at the explicit integral structure—for
instance, in the case of t4—and how it contributes to the
bremsstrahlung correction. In terms of the definitions (53)
and (56), we have

δBSt4 ðx; yÞ ∼ Re
ZZ

AðsÞRefIðV0 − sÞgJfTrEFðsÞgdxγds:

ð65Þ

The term RefIðV0 − sÞg can be evaluated analytically by
taking the fit (46) of the spectral function instead of its
numerical form (45) given by the term containing the
Omnès function. This procedure significantly speeds up the
numerics. The evaluation of JfTrEFðsÞg is performed
analytically and the strategy is similar to the one used in
Ref. [1]. Our goal is to rewrite the expressions under
consideration as basic integrals, which are listed in
Appendix D of Ref. [1] and Appendix C of the present
work. For this purpose, the symmetries and properties of
the operator J are used together with the reduction
procedure described in detail in Sec. V of Ref. [1] and
summarized in Appendix B therein. Due to the presence of
the effective mass s in the denominators, this procedure
needs to be slightly modified since now also E − s appears
instead of simple E. As a trivial example, we choose the
following reduction:

J

�
1

ABðE − sÞ
	

¼ 1

M2
Px − sþ iϵ

�
J

�
1

AB

	

− 2J

�
1

AðE − sÞ
	
− 2J

�
1

BðE − sÞ
	�

:

ð66Þ

Note also that the IR-divergent terms (those which diverge
after integrating over xγ) need to be treated separately. The
current case is discussed in Appendix B. For further details
and an introduction, we refer the interested reader
to Ref. [1].
To conclude, let us finally write the bremsstrahlung con-

tribution to the radiative corrections [cf. (37) in Ref. [1]]:

δBSðx; yÞ ¼ 1

64

α

π

4x
ð1 − xÞ2

���� F ð0Þ
F ðM2

PxÞ
����2 4

R P
iJftigdxγ

½1þ y2 þ ν2l
x �

;

ð67Þ
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where index i runs over all the subscripts appearing in
Eqs. (60)–(63): 1a, 1b (the form-factor-independent parts)
and 2, 3a, 3b and 4 (the form-factor-dependent parts).

VI. RESULTS

In the previous sections, we discussed the three main
parts of the radiative corrections as we referred to them
in Eq. (10), i.e., the virtual corrections in Sec. III, the 1γIR
correction in Sec. IV, and the bremsstrahlung in Sec. V. In
order to get the final result, one then simply sums over the
partial results: Eqs. (18), (33), and (67). Let us now com-
ment once again on these contributions in detail. The
model-independent expression for the virtual corrections

(18) includes the photon self-energy contribution (12),
consisting of the exact (at NLO) leptonic [Eq. (17)] and
experimental-data-based hadronic [Eq. (15)] parts, and the
vertex correction expressed in terms of the F1 and F2 form
factors. The expressions for these form factors can be found
in Ref. [1]; in particular, see Eqs. (22) and (23) therein. The
form factor F1 then contains the IR-divergent piece which
cancels with the corresponding term stemming from the
bremsstrahlung contribution, as shown at the end of
Appendix B. The bremsstrahlung contribution (67) itself
consists of the fully model-independent ingredients (60)
(already present in the M&S case) and the pieces (61)–(63)
that still contain some model dependence, though mitigated
by our dispersive, data-driven input. All of the necessary

(a) (b)

(c) (d)

FIG. 4. The overall NLO correction δðx; 0Þ (solid line) in comparison to its constituents for the decays ηð0Þ → lþl−γ. The sum
δvirtjΠ¼ΠL

þ δBSD þ δBSt1a þ δBSt1b is depicted as a dashed line. It would directly correspond to the M&S correction [6] if muon loops were
included in the vacuum polarization and higher orders in lepton masses (Oðν4lÞ) were not neglected in Ref. [6]. This contribution also
includes the IR-divergent part of the bremsstrahlung. The hadronic contribution δvirtH ≡ δvirt − δvirtjΠ¼ΠL

¼ δvirtΠ − δvirtΠL
to the virtual

radiative corrections is shown as a small-spaced dotted line. The part of the bremsstrahlung correction that is dependent on the model of
the form factor and is nonzero for any nonvanishing spectral function, and which corresponds to the sum δBSt2 þ δBSt3a þ δBSt3b þ δBSt4 , is
shown as a large-spaced dotted line. The one-photon-irreducible contribution δ1γIR is then shown as a dash-dotted line. The divergent
behavior of δðxÞ near x ¼ ν2l has its origin in the electromagnetic form factor F1ðxÞ and is connected to the Coulomb self-interaction of
the dilepton at threshold.
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definitions are then presented in Appendices B and C.
Finally, for the model-dependent 1γIR contribution (33) we
used the VMD-inspired model discussed in Appendix E.
Let us again stress at this point that we used a rather general
approach that is applicable for a wide family of rational
models. The final result within a particular model can then
be found as an appropriate linear combination of the
building blocks (30), with the form factors A and T defined
in Appendix A. As another example of a suitable model, we
mention the one based on the resonance chiral theory
framework [20]. There are other (data-driven) models
[21,22], which are thus not directly applicable using the
current approach. However, we expect that different models
would lead to compatible values in the numerical results.
The overall NLO radiative corrections to the twofold

differential decay widths and their comparison to the main
constituents are shown, for the case y ¼ 0, in Fig. 4. In light
of a direct comparison of our results for the η → eþe−γ
process to the previous work [6], we can mention a

significant difference between both approaches. Taking into
account all of the discussed contributions, a table of values of
corrections δðx; yÞ to the process η → eþe−γ similar to the
one provided in the original work [6] can be produced at the
very same points; see Table III. The difference can then be
seen even more explicitly when directly comparing the
corresponding values in Table III with Table I in Ref. [6]. In
the same manner, values for the decay η → μþμ−γ are
presented in Table IV. From the plots in the bottom panels
in Fig. 4 we can see that for the case of an η0 meson, such a
table would need to be much denser to cover the wiggle
behavior. For this reason, the table-like plots were created,
which show the overall NLO radiative corrections for
various values of y; see Fig. 5. To fully complement these
figures, the standard tables of values (where the wiggle
region is left out) are also provided; see Tables V and VI.
In Fig. 4 we can see that the 1γIR correction has an

intriguing character. For the decays ηð0Þ → eþe−γ it is
negative for the whole range of values of x and thus

TABLE III. The overall NLO correction δðx; yÞ given in percent for a range of values of x and y (i.e., the Dalitz-plot corrections) for
the process η → eþe−γ. It is sufficient to show the results only for positive values of y since the corrections are symmetric under y → −y.
The larger values at the edge of the kinematical region (as x → 1) are naturally present due to the fact that the correction itself is defined
as a ratio of the NLO and LO decay widths which both vanish for x → 1. The LO differential decay width, however, approaches zero
much faster than the interference term of the LO graph with the 1γIR one. Let us also note that these larger values are beyond any
practical significance in the final spectrum (see Fig. 6).

y

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

0.01 4.00 3.92 3.72 3.47 3.17 2.82 2.39 1.82 0.96 −0.63 −6.83
0.02 4.02 3.95 3.79 3.54 3.24 2.88 2.42 1.80 0.88 −0.81 −7.36
0.03 3.90 3.84 3.69 3.46 3.16 2.79 2.32 1.69 0.74 −1.02 −7.77
0.04 3.75 3.70 3.55 3.33 3.04 2.67 2.19 1.55 0.57 −1.22 −8.11
0.05 3.59 3.54 3.41 3.19 2.91 2.54 2.05 1.40 0.41 −1.42 −8.42
0.06 3.43 3.39 3.26 3.05 2.77 2.40 1.91 1.25 0.25 −1.60 −8.70
0.07 3.28 3.23 3.11 2.91 2.63 2.26 1.77 1.10 0.09 −1.78 −8.96
0.08 3.13 3.09 2.97 2.77 2.49 2.12 1.64 0.96 −0.06 −1.95 −9.21
0.09 2.98 2.94 2.83 2.63 2.36 1.99 1.50 0.82 −0.21 −2.12 −9.44
0.10 2.84 2.80 2.68 2.49 2.22 1.85 1.36 0.68 −0.36 −2.29 −9.66
0.15 1.87 1.83 1.72 1.54 1.27 0.91 0.41 −0.29 −1.36 −3.34 −10.9
0.20 1.34 1.30 1.19 1.01 0.74 0.38 −0.13 −0.84 −1.93 −3.96 −11.7
0.25 0.71 0.68 0.57 0.39 0.12 −0.25 −0.76 −1.48 −2.58 −4.65 −12.6
0.30 0.03 −0.00 −0.11 −0.29 −0.55 −0.92 −1.43 −2.16 −3.28 −5.38 −13.4
0.35 −0.71 −0.74 −0.85 −1.03 −1.29 −1.66 −2.17 −2.91 −4.04 −6.16 −14.3
0.40 −1.52 −1.55 −1.65 −1.83 −2.09 −2.46 −2.98 −3.71 −4.85 −7.00 −15.2
0.45 −2.39 −2.42 −2.52 −2.70 −2.96 −3.32 −3.84 −4.58 −5.73 −7.89 −16.2
0.50 −3.34 −3.37 −3.47 −3.64 −3.90 −4.26 −4.77 −5.51 −6.67 −8.84 −17.2
0.55 −4.37 −4.40 −4.50 −4.67 −4.92 −5.28 −5.79 −6.53 −7.68 −9.87 −18.3
0.60 −5.51 −5.54 −5.63 −5.80 −6.04 −6.40 −6.90 −7.64 −8.80 −11.0 −19.5
0.65 −6.78 −6.81 −6.90 −7.05 −7.29 −7.64 −8.14 −8.87 −10.0 −12.2 −20.8
0.70 −8.22 −8.24 −8.33 −8.48 −8.71 −9.04 −9.53 −10.3 −11.4 −13.6 −22.2
0.75 −9.88 −9.90 −9.98 −10.1 −10.3 −10.7 −11.1 −11.9 −13.0 −15.2 −23.8
0.80 −11.9 −11.9 −12.0 −12.1 −12.3 −12.6 −13.1 −13.8 −14.9 −17.2 −25.8
0.85 −14.4 −14.4 −14.5 −14.6 −14.8 −15.1 −15.5 −16.2 −17.3 −19.6 −28.3
0.90 −17.9 −17.9 −18.0 −18.1 −18.2 −18.5 −18.9 −19.6 −20.7 −22.9 −31.7
0.95 −24.3 −24.3 −24.3 −24.3 −24.4 −24.6 −24.9 −25.5 −26.6 −28.7 −37.6
0.99 −45.5 −45.4 −45.1 −44.7 −44.3 −43.9 −43.6 −43.6 −44.1 −45.8 −54.5
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enhances the effect of the M&S-like corrections, which are
also negative in a wide range of x. On the other hand, for
the process ηð0Þ → μþμ−γ the situation is different due to the
higher masses involved. In this case, δ1γIR is very close to

zero (usually slightly negative), but then it starts to be
significantly positive. Its dominant behavior for large x
contributes to the fact that δðx; yÞ is positive over nearly the
whole range of x.

(a) (b)

FIG. 5. The NLO radiative corrections δðx; yÞ given in percent for η0 → lþl−γ processes. Different lines correspond to different
values of y. These start at y ¼ 0 and are equidistantly separated by 0.1. The last value is y ¼ 0.99 for the electrons and y ¼ 0.95 for the
muons due to kinematical restrictions. The corrections (integrably) diverge at x → ν2l which happens only for y ¼ 0, since for y > 0,
x ¼ ν2l is not kinematically allowed: indeed, for a given x, jyj < βðxÞ and βðν2lÞ ¼ 0. These plots are complementary to Tables Vand VI,
in which the wiggle structure could not be precisely covered.

TABLE IV. The overall NLO correction δðx; yÞ given in percent for the process η → μþμ−γ. The dot-filled entries correspond to
kinematically forbidden combinations of x and y. See also the caption of Table III for more details.

y

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.15 12.9 � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.16 4.69 4.67 4.65 � � � � � � � � � � � � � � � � � � � � �
0.17 3.68 3.67 3.65 3.60 � � � � � � � � � � � � � � � � � �
0.18 3.23 3.22 3.21 3.18 3.01 � � � � � � � � � � � � � � �
0.19 2.97 2.96 2.96 2.93 2.85 � � � � � � � � � � � � � � �
0.20 2.78 2.78 2.78 2.76 2.71 2.26 � � � � � � � � � � � �
0.21 2.65 2.65 2.65 2.64 2.59 2.41 � � � � � � � � � � � �
0.22 2.54 2.54 2.54 2.53 2.50 2.37 � � � � � � � � � � � �
0.23 2.45 2.45 2.45 2.45 2.42 2.32 � � � � � � � � � � � �
0.24 2.37 2.37 2.38 2.37 2.35 2.26 1.81 � � � � � � � � �
0.25 2.30 2.30 2.30 2.30 2.28 2.21 1.90 � � � � � � � � �
0.30 2.04 2.04 2.05 2.05 2.04 2.00 1.86 1.01 � � � � � �
0.35 1.82 1.82 1.83 1.84 1.84 1.80 1.70 1.36 � � � � � �
0.40 1.61 1.61 1.62 1.63 1.63 1.61 1.52 1.28 � � � � � �
0.45 1.39 1.39 1.40 1.42 1.42 1.40 1.33 1.14 0.20 � � �
0.50 1.16 1.16 1.18 1.19 1.20 1.19 1.13 0.961 0.35 � � �
0.55 0.92 0.92 0.94 0.95 0.96 0.96 0.91 0.76 0.28 � � �
0.60 0.66 0.67 0.68 0.70 0.72 0.71 0.67 0.55 0.15 � � �
0.65 0.39 0.40 0.42 0.44 0.46 0.46 0.43 0.32 −0.02 � � �
0.70 0.11 0.12 0.13 0.16 0.18 0.19 0.17 0.07 −0.21 � � �
0.75 −0.18 −0.18 −0.16 −0.13 −0.11 −0.09 −0.11 −0.18 −0.41 � � �
0.80 −0.48 −0.47 −0.45 −0.43 −0.40 −0.38 −0.38 −0.44 −0.61 −3.20
0.85 −0.75 −0.74 −0.72 −0.70 −0.67 −0.65 −0.64 −0.66 −0.77 −2.07
0.90 −0.91 −0.90 −0.89 −0.87 −0.84 −0.81 −0.79 −0.76 −0.74 −1.28
0.95 −0.53 −0.53 −0.52 −0.50 −0.47 −0.41 −0.32 −0.14 0.24 1.07
0.99 5.54 5.56 5.62 5.75 5.99 6.43 7.23 8.76 12.1 22.4
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The form-factor effects are significant and shown in
Fig. 4 as large-spaced dotted lines. Out of these contribu-
tions, δBSt2 is the most prominent and responsible—together
with the hadronic part of the vacuum polarization—for the
wiggles in the case of η0 decays. On the other hand, the
terms δBSt3a þ δBSt3b and δBSt4 —although being the most

complicated and time consuming to calculate—are rather
suppressed. Together with another numerically small con-
tribution to the bremsstrahlung correction, δBSt1b , they can be
even considered negligible in the case of ηð0Þ → μþμ−γ. In
the case of the decays into electrons, the considered
correction is of order 0.1% for small jyj, otherwise (for

TABLE V. The overall NLO correction δðx; yÞ given in percent for the process η0 → eþe−γ. See also the caption of Table III for more
details.

y

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

0.01 4.66 4.56 4.33 4.02 3.67 3.26 2.77 2.11 1.13 −0.64 −7.44
0.05 4.51 4.45 4.28 4.02 3.68 3.23 2.67 1.89 0.72 −1.31 −9.04
0.10 4.95 4.90 4.74 4.49 4.15 3.68 3.13 2.14 0.87 −1.29 −9.51
0.15 5.22 5.17 5.01 4.75 4.37 3.86 3.17 2.09 0.75 −1.50 −10.1
0.20 5.49 5.43 5.26 4.95 4.48 4.06 3.03 1.91 0.51 −1.83 −10.7
0.25 5.79 5.72 5.49 5.08 4.82 3.87 2.78 1.63 0.18 −2.26 −11.3
0.30 6.07 5.96 5.62 5.30 4.68 3.55 2.43 1.24 −0.26 −2.79 −12.1
0.35 6.12 5.97 5.75 5.37 4.21 3.07 1.94 0.71 −0.86 −3.49 −13.0
0.40 5.64 5.84 5.66 4.59 3.46 2.35 1.21 −0.06 −1.69 −4.42 −14.1
0.45 6.02 4.96 4.11 3.20 2.23 1.20 0.10 −1.19 −2.88 −5.69 −15.4
0.50 3.60 3.49 2.00 1.00 0.22 −0.62 −1.61 −2.85 −4.53 −7.35 −17.1
0.55 0.05 0.07 0.11 −0.09 −1.92 −2.93 −3.80 −4.89 −6.45 −9.18 −18.7
0.60 −1.17 −1.13 −1.02 −0.88 −0.79 −0.97 −3.17 −5.37 −7.09 −9.78 −19.2
0.70 −11.1 −11.1 −11.1 −11.0 −11.0 −11.1 −11.2 −11.5 −12.2 −13.7 −21.1
0.75 −10.9 −10.9 −10.9 −10.9 −10.9 −11.0 −11.2 −11.6 −12.4 −14.2 −22.0
0.80 −12.2 −12.2 −12.1 −12.1 −12.2 −12.3 −12.5 −13.0 −13.8 −15.7 −23.6
0.85 −13.9 −13.9 −13.9 −13.9 −14.0 −14.1 −14.4 −14.8 −15.7 −17.6 −25.5
0.90 −16.5 −16.5 −16.5 −16.5 −16.6 −16.8 −17.0 −17.5 −18.4 −20.3 −28.1
0.95 −22.2 −22.2 −22.2 −22.2 −22.2 −22.3 −22.6 −23.0 −23.9 −25.7 −33.4
0.99 −55.8 −55.6 −55.0 −54.0 −52.9 −51.8 −50.7 −49.9 −49.5 −50.2 −56.6

TABLE VI. The overall NLO correction δðx; yÞ given in percent for the process η0 → μþμ−γ. The dot-filled entries correspond to
kinematically forbidden combinations of x and y. See also the caption of Table III for more details.

y

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95

0.05 7.47 7.35 � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.10 2.63 2.63 2.61 2.57 2.51 2.39 2.17 1.36 � � � � � � � � �
0.15 2.56 2.56 2.54 2.51 2.45 2.33 2.14 1.79 0.65 � � � � � �
0.20 2.54 2.54 2.52 2.47 2.40 2.26 2.06 1.72 0.99 � � � � � �
0.25 2.51 2.50 2.47 2.41 2.31 2.16 1.95 1.60 0.92 � � � � � �
0.30 2.44 2.43 2.39 2.31 2.18 2.01 1.78 1.42 0.75 −1.48 � � �
0.35 2.30 2.28 2.24 2.12 1.98 1.81 1.56 1.18 0.52 −1.33 � � �
0.40 2.04 2.03 1.94 1.82 1.69 1.51 1.25 0.87 0.21 −1.47 � � �
0.45 1.65 1.56 1.46 1.36 1.24 1.07 0.83 0.45 −0.19 −1.73 � � �
0.50 0.91 0.92 0.88 0.77 0.65 0.51 0.29 −0.06 −0.65 −2.05 −10.3
0.55 0.26 0.28 0.32 0.36 0.24 0.05 −0.16 −0.46 −0.99 −2.22 −5.37
0.60 0.58 0.59 0.64 0.70 0.76 0.79 0.54 0.07 −0.51 −1.68 −4.11
0.70 2.76 2.76 2.78 2.80 2.83 2.86 2.87 2.86 2.79 2.52 1.68
0.75 2.61 2.62 2.63 2.66 2.69 2.72 2.73 2.73 2.68 2.51 2.06
0.80 2.54 2.55 2.56 2.58 2.60 2.63 2.65 2.66 2.67 2.77 2.96
0.85 2.77 2.77 2.77 2.78 2.79 2.80 2.83 2.88 3.02 3.61 4.95
0.90 3.82 3.82 3.80 3.77 3.75 3.75 3.80 3.95 4.42 6.18 10.1
0.95 8.11 8.08 8.01 7.91 7.83 7.83 8.02 8.62 10.3 16.1 28.7
0.99 38.4 38.4 38.3 38.4 38.7 39.7 42.1 47.2 59.1 98.2 179.
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higher values of y) it is negligible too. Except for the
already mentioned form-factor-dependent term δBSt2 , there is
then only one significant contribution to the bremsstrah-
lung correction δBSt1a , which comes with its separately treated
IR-divergent counterpart δBSD .
In order to fully understand the effect of the amusing

looking wiggles showed in Figs. 4 and 5 and eventually
appreciate the size of the calculated radiative corrections,
we present the differential decay widths in Fig. 6. In these
plots, we can see a direct comparison of the LO and NLO
decay widths, together with their sum. In general, the total
radiative corrections look rather negligible, with the
exception of the process η0 → eþe−γ. In this case, the
corrections are significant and the NLO differential decay
width is sizable compared to the LO width. The wiggles,
which appear only in the η0 case, then contribute in such a
way that they change the shape of the resonance peaks and
make them smaller. In particular, Fig. 6(c) shows that
the height of the ω peak is considerably influenced by the
radiative corrections. This might be interesting for the

extraction of ω properties or of the ω − η0 interplay. One
might deduce such information from η0 → ωγ → eþe−γ or
from η0 → ωγ → πþπ−π0γ. It can be expected that the
radiative corrections are different for these two decay
branches. Ignoring such radiative corrections in the analy-
ses of these decays might lead to contradictory conclusions.
Finally, let us briefly mention that, contrary to the η case,

the hadronic part of the vacuum polarization has a signifi-
cant impact on the corrections for the η0 decays, with an up
to a ∼5% effect in the M2

η0x ≃M2
ω region.
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(a) (b)

(c) (d)

FIG. 6. The twofold differential decay widths dΓðx; 0Þ at NLO (solid line) and its constituents for the ηð0Þ → lþl−γ decays. The LO
differential decay width for y ¼ 0 is shown as a dotted line. The corresponding NLO contribution to the differential decay width is
represented by a dashed line.
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APPENDIX A: MATRIX ELEMENT OF THE ONE-PHOTON-IRREDUCIBLE CONTRIBUTION

The building-block matrix element for the one-photon-irreducible contribution can be expressed in terms of scalar form
factors in the following (manifestly gauge-invariant) way [cf. (24) in Ref. [1]]:

iMh
1γIR½gðM2

1;M
2
2Þ�ðp; q; kÞ ¼ −

ie5

2
F π0γ�γ� ð0; 0Þϵ�ρðkÞ

× fP½gðM2
1;M

2
2Þ�ðx; yÞ½ðk · pÞqρ − ðk · qÞpρ�½ūðp;mÞγ5vðq;mÞ�

þ A½gðM2
1;M

2
2Þ�ðx; yÞ½ūðp;mÞ½γρðk · pÞ − pρ=k�γ5vðq;mÞ�

− A½gðM2
1;M

2
2Þ�ðx;−yÞ½ūðp;mÞ½γρðk · qÞ − qρ=k�γ5vðq;mÞ�

þ T½gðM2
1;M

2
2Þ�ðx; yÞ½ūðp;mÞγρ=kγ5vðq;mÞ�g: ðA1Þ

The form factor P does not contribute to δ1γIR, so we do not include it in this appendix. Note also that only the box diagram
[see Fig. 2(d)] contributes to Aðx; yÞ. Let us also define the two-point (bubble) scalar one-loop integral as a reference point
for the notation we use:

iπ2B0ð0; m2; m2Þ≡ ð2πμÞ4−d
Z

ddl
½l2 −m2 þ iϵ�2 ¼ iπ2

�
1

ε
− γE þ log 4π þ log

μ2

m2

�
: ðA2Þ

Above, we have introduced ε ¼ 2 − d=2. Before providing the final expressions, let us define

σþ� ≡ 2 − ð1þ xÞð1� yÞ; ðA3Þ

σ−� ≡ 2 − ð1 − xÞð1� yÞ: ðA4Þ

Using dimensional regularization, the dimensional reduction scheme [23,24], and Passarino-Veltman reduction [25], the
explicit results for the two contributing form factors A and T in terms of scalar one-loop integrals read (we use again for
simplicity m≡ml, ν≡ νl, and M≡MP)

M
2ν

f−16iπ2T½gðM2
1;M

2
2Þ�ðx; yÞg

¼ −B0ð0;M2
1; m

2Þ ðM2
1 −m2Þ

m2ð1 − xÞð1 − y2Þ

þ B0ð0;M2
2; m

2Þ
�

1

2ð1 − xÞð1 − y2Þ −
1

2ð2 − σ−þÞ þ ν2

�
1þM2

2

M2

2

2 − σ−þ

��
þ ðy → −y; σ−þ → σ−−Þ

þ B0ðM2;M2
1;M

2
2Þ
�
M2

2 −M2
1

M2

4

σ2−þ − 4ν2

�
þ ðy → −y; σ−þ → σ−−Þ

þ B0ðm2;M2
1; m

2ÞM
2
1 −M2

2

M2

�
σ−þ

σ2−þ − 4ν2
þ 1

ð1 − xÞð1 − y2Þ
�
þ ðy → −y; σ−þ → σ−−Þ

þ B0ðm2;M2
1; m

2Þ
�

σ−þ
σ2−þ − 4ν2

þ
�
3 − yþM2

1

m2

�
1

ð1 − xÞð1 − y2Þ
�

− B0ðm2;M2
2; m

2Þ
�

σ−þ
σ2−þ − 4ν2

−
1

2 − σ−−

�

þ
�
B0

�
M2

2
ð1 − xÞð1þ yÞ þm2;M2

2; m
2

�
− B0

�
M2

2
ð1 − xÞð1þ yÞ þm2;M2

1; m
2

���
4 − σ−þ
σ2−þ − 4ν2

þ 1

2 − σ−þ

�

þ B0

�
M2

2
ð1 − xÞð1þ yÞ þm2;M2

2; m
2

�

×

�
M2

1 −M2
2

M2

�
4 − σ−þ
σ2−þ − 4ν2

−
1

2 − σ−þ

�
þ
�
1þM2

2

M2

2

2 − σ−þ

�
1

2ð2 − σ−þÞ þ ν2

�
þ ðy → −y; σ−þ → σ−−Þ
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− C0

�
m2; 0;

M2

2
ð1 − xÞð1þ yÞ þm2;M2

1; m
2; m2

�

×
ð1þ yÞ

2½xð1 − y2Þ − ν2� ½yðM
2
2 −M2

1Þ þ ð2xþ ð1 − xÞy2 − 2ν2ÞM2� þ ðy → −y;M1 ↔ M2Þ

þ C0

�
m2;M2;

M2

2
ð1 − xÞð1þ yÞ þm2; m2;M2

1;M
2
2

��
λðM2;M2

1;M
2
2Þ

M2

�
2 − σ−þ
σ2−þ − 4ν2

−
1

2 − σ−þ

�

þ 4M2
1

2 − σ−þ
σ2−þ − 4ν2

−
1

M2
½M4

2 −M4
1 −M2ð2M2

2 −M2Þ� 2

σ2−þ − 4ν2

	

þ C0

�
m2;M2;

M2

2
ð1 − xÞð1þ yÞ þm2; m2;M2

2;M
2
1

��
M2

�
σ−þ

σ2−þ − 4ν2
−

y
1 − x

�
2 −

yð1þ xÞσþþ
2½xð1 − y2Þ − ν2�

��

þðM2
2 −M2

1Þ
�

σ−þ
σ2−þ − 4ν2

−
1

1 − x

�
1 −

yσþþ
2½xð1 − y2Þ − ν2�

��
−M2

2

4

σ2−þ − 4ν2

	

þ C0

�
m2;M2;

M2

2
ð1 − xÞð1 − yÞ þm2; m2;M2

1;M
2
2

�

×

�ðM2
2 −M2

1Þ2
M2

�
2 − σ−−
σ2−− − 4ν2

−
1

2 − σ−−

�
−
M4

2 −M4
1

M2

�
2

σ2−− − 4ν2

�
þ 4M2

2 −M2

2 − σ−−

þ ðM2
2 −M2

1Þ
�

σ−−
σ2−− − 4ν2

−
1þ y
2 − σ−−

þ yσþ−

2ð1 − xÞ½xð1 − y2Þ − ν2�
�
þ M2y
1 − x

�
2þ yð1þ xÞσþ−

2½xð1 − y2Þ − ν2�
�	

þD0

�
m2;M2; m2; 0;

M2

2
ð1 − xÞð1 − yÞ þm2;

M2

2
ð1 − xÞð1þ yÞ þm2; m2;M2

1;M
2
2; m

2

�

×
1

4

�
y

2ðxð1 − y2Þ − ν2Þ fyð1 − y2Þð1þ xÞ2M4 þ 2M2
1½2ð1 − yÞM2

1 þ 2yM2
2 − ð1þ xÞð1 − yÞð1þ 3yÞM2�g

−M2f2M2
1ð2 − 3yÞ −M2ð1 − 2y2Þg

�
þ ðy → −y;M1 ↔ M2Þ; ðA5Þ

−
M2

4
ð1 − xÞf−16iπ2A½gðM2

1;M
2
2Þ�ðx; yÞg ¼ 1

1 − y

þ B0ð0;M2
2; m

2Þ 4ðM
2
2 −m2Þ
M2

1

ð1 − yÞ½2ð2 − σ−−Þ þ ν2�

þ B0ðM2;M2
1;M

2
2Þ
2ðM2

2 −M2
1Þ

M2

�
σ−þð4 − σ−þÞ
σþþðσ2−þ − 4ν2Þ −

σ2−−
σþ−ðσ2−− − 4ν2Þ −

4xyð1þ yÞ
σþ−σþþðxð1 − y2Þ − ν2Þ

�

þ B0ðm2;M2
1; m

2Þ 2ν
2ðM2

2 −M2
1Þ

M2ð1 − xÞ
xσ−− − ð1þ xÞν2

ðσ2−− − 4ν2Þ½xð1 − y2Þ − ν2�

þ B0ðm2;M2
2; m

2Þ
�

1

ð1 − xÞð1 − yÞ2
�
2M2

2

M2
− ν2

�

−
M2

2 −M2
1

M2ð1 − xÞ
�
1þ x
2

−
2

1 − y
−
ð1 − xÞ2
2ð1þ xÞ

�
1 −

4

ð1 − xÞσþþ

��
1þ 4ν2

σ2−þ − 4ν2

�
−

2yx2ð1þ yÞ2
σþþ½xð1 − y2Þ − ν2�

�	

þ B0

�
M2

2
ð1 − xÞð1þ yÞ þm2;M2

1; m
2

�

×

�
M2

2 −M2
1

2M2

�
1þ x
1 − x

−
1

σþþ

�
σ−þð4 − σ−þÞ2
σ2−þ − 4ν2

−
4xyð1þ yÞð2 − xð1þ yÞÞ
ð1 − xÞ½xð1 − y2Þ − ν2�

��	

þ B0

�
M2

2
ð1 − xÞð1 − yÞ þm2;M2

2; m
2

�
ν2

2ð1 − xÞð1 − yÞ2
�
3 −

ν2

2ð2 − σ−−Þ þ ν2
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þ 4ðM2
2 −M2

1Þ
M2

ð1 − yÞ
σþ−

�ð2 − σ−−Þð4 − σ−−Þ
σ2−− − 4ν2

þ y½2 − xð1 − yÞ�
xð1 − y2Þ − ν2

�
−
2M2

2

m2

�
1 −

ν2

4ð2 − σ−−Þ þ 2ν2

�	

þ C0

�
m2; 0;

M2

2
ð1 − xÞð1 − yÞ þm2;M2

2; m
2; m2

�
M2ð1 − yÞ

2ðxð1 − y2Þ − ν2Þ2
�
2yν2

ðM2
2 −M2

1Þ2
M4

−
2M2

2ðM2
2 −M2

1Þ
M4

½xð1þ yÞ2 − ν2� þ ν2ðM2
2 −M2

1Þ
M2

½ð1þ yÞðxþ yÞ − ν2�

− ½xð1 − y2Þ − ν2�
�
2 − σ−þ

2

�
2 − σ−− −

4M2
2

M2

�
þ ν2

�
1 −

2x
1 − y

�
þ ν4

ð1 − yÞ2
�	

þ C0

�
m2; 0;

M2

2
ð1 − xÞð1þ yÞ þm2;M2

1; m
2; m2

�
M2ð1þ yÞ

2ðxð1 − y2Þ − ν2Þ2
�
2yν2

ðM2
2 −M2

1Þ2
M4

−
2M2

2ðM2
2 −M2

1Þ
M4

½xð1þ yÞ2 − ν2� þ ν2ðM2
2 −M2

1Þ
M2

½ð1þ yÞðxþ yÞ − ν2�

− ½xð1 − y2Þ − ν2�
�
2 − σ−þ

2

�
2 − σ−− −

4M2
2

M2
þ 2ν2

1þ y

��	

þ C0

�
m2;M2;

M2

2
ð1 − xÞð1 − yÞ þm2; m2;M2

1;M
2
2

�
M2

2

�ð1þ yÞð1 − ðxþ y − xyÞ2Þ þ 4yν2

2½xð1 − y2Þ − ν2�

þ ðM2
2 −M2

1Þ2
M4

�
1þ 2

1 − x

�
−
2M2

1

M2

�
2þ ð1þ yÞσþ−

xð1 − y2Þ − ν2

�

−
M2

2 −M2
1

M2

σ2−−
σþ−ðσ2−− − 4ν2Þ

�
ð2 − σ−−Þ

ðM2
2 −M2

1 −M2Þ
M2

−
2ðM2

1 þM2
2 −M2Þ

M2

�

−
M2

2 −M2
1

M2ð1 − xÞ
�
2 − 3y − xð4þ yÞ þ xyð1þ yÞσþ−

ðxð1 − y2Þ − ν2Þ2
�
ð1þ xÞð1 − y2Þ − 2

�
ð1 − yÞM

2
1

M2
þ ð1þ yÞM

2
2

M2

��

þ ð1þ yÞ ð2 − xÞð1 − xÞ2 þ ð3þ x2Þy − xð1þ xÞð1 − 3xÞy2 − ð1þ xÞ½1þ xð5þ 2xÞ�y3
σþ−½xð1 − y2Þ − ν2�

�

þ 2ðM2
2 −M2

1Þ
M2σþ−ð1 − xÞ½xð1 − y2Þ − ν2�

×

��
ð1þ yÞM

2
2

M2
− y

M2
1

M2

�
½x2ð1 − yÞ2 − 4xð1 − y2Þ þ ð1þ yÞ2� þ 2xð1þ yÞ2M

2
2

M2

�	

þ C0

�
m2;M2;

M2

2
ð1 − xÞð1þ yÞ þm2; m2;M2

2;M
2
1

�
M2

2

�ð1 − yÞð1 − ðx − yþ xyÞ2Þ − 4yν2

2½xð1 − y2Þ − ν2�

−
ðM2

2 −M2
1Þ2

M4

�
1þ 2

1 − x

�
þ 2M2

2

M2

�
2 −

ð1þ yÞσþþ
xð1 − y2Þ − ν2

�

−
M2

2 −M2
1

M2

σ−þð4 − σ−þÞ
σþþðσ2−þ − 4ν2Þ

�
ð2 − σ−þÞ

ðM2
2 −M2

1 þM2Þ
M2

þ 2ðM2
1 þM2

2 −M2Þ
M2

�

−
M2

2 −M2
1

M2ð1 − xÞ
�
2þ 3yþ xyþ xyð1þ yÞσþþ

ðxð1 − y2Þ − ν2Þ2
�
ð1þ xÞð1 − y2Þ − 2

�
ð1 − yÞM

2
1

M2
þ ð1þ yÞM

2
2

M2

��

þ ð1þ yÞ xð1 − xÞ2 − ð1 − 5x2Þyþ ð2þ 5x − 3x3Þy2 − ð1þ xÞ½1þ xð5þ 2xÞ�y3
σþþ½xð1 − y2Þ − ν2�

�

þ 2ðM2
2 −M2

1Þ
M2σþþð1 − xÞ½xð1 − y2Þ − ν2�

×

��
ð1þ yÞM

2
2

M2
− y

M2
1

M2

�
½x2ð1þ yÞ2 − 4xð1 − y2Þ þ ð1 − yÞ2� þ 2xð1þ yÞ2M

2
2

M2

�	
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þD0

�
m2;M2; m2; 0;

M2

2
ð1 − xÞð1 − yÞ þm2;

M2

2
ð1 − xÞð1þ yÞ þm2; m2;M2

1;M
2
2; m

2

�

×
M4

4½xð1 − y2Þ − ν2�
�
1

2
ð1 − xÞð1 − y2Þ½4ν2 þ ð2 − σ−−Þð2 − σ−þÞ� þ

8M4
2

M4
ð2 − σ−þÞ

−
2M2

1

M2
ð1 − xÞð2þ yÞ½ð1 − xÞð1 − y2Þ þ 2ν2� − 2ðM2

2 −M2
1Þ2

M4

�
ν2ð1 − y2Þ½xð1 − yÞ þ 2y� − ν4ð1 − 3yÞ

xð1 − y2Þ − ν2

�

−
2M2

2ðM2
2 −M2

1Þ
M4

�
xð1 − 3yÞð1þ yÞ2ð2 − σ−−Þ − ν2ð1þ 3xÞð1þ yÞ2 þ 4ν4

xð1 − y2Þ − ν2

�

−
4ðM2

2 −M2
1Þ

M2

�ðM2
1ð1 − yÞ þM2

2ð1þ yÞÞ2
M4

�
1þ xyð1þ yÞ

xð1 − y2Þ − ν2

�
−
M2

1

M4
½M2

1ð1 − yÞ þM2
2ð1þ yÞ�

�

− ð1þ yÞM
2
2 −M2

1

M2

�
3xð1 − xÞ2ð1 − y2Þ2 − ν2ð1 − y2Þð3 − 13xþ 8x2 − ð1 − xÞyÞ þ ν4½5xþ yð3þ xÞ − 7�

xð1 − y2Þ − ν2

�	
: ðA6Þ

APPENDIX B: BREMSSTRAHLUNG MATRIX
ELEMENT SQUARED

In this appendix we provide explicit formulas for the
building blocks of the bremsstrahlung invariant matrix
element squared, as described in Eqs. (52)–(63). If we
generalize Eq. (54) to

e8

4
TrE2ðsÞ≡ jIEj2

ðE − sÞ2 ; ðB1Þ

we only need to provide its explicit form in order to cover
TrE2 and TrEðsÞ defined in Eq. (54) and (55). Indeed, one
can obtain TrEðsÞ by means of multiplying TrE2ðsÞ by the
appropriate propagator: TrEðsÞ ¼ ðE − sÞTrE2ðsÞ. For com-
pleteness, TrE2 ¼ TrE2ð0Þ.

In the following expressions, as denoted below, the
symmetries of the J operator are already taken into account
and the reduction procedure (in the sense of Appendix B of
Ref. [1]) in the basic integrals was performed as well.
Before we get to the desired expressions, we need to define
a complete set of Feynman denominators (while sup-
pressing the “þiϵ” part):

A ¼ l · q; B ¼ l · p; C ¼ k · q; D ¼ k · p;

E ¼ ðpþ qþ lÞ2; F ¼ ðpþ qþ kÞ2: ðB2Þ

For simplicity, in what follows we usem≡ml, ν≡ νl, and
M≡MP. The term that includes squares of the brems-
strahlung diagrams reads

JfTrE2ðsÞg ¼ J

�
G2ðsÞTrD þ 4M2

�
2s
M2

þ xγ − ð1 − xÞð1 − yÞ − ν2

2

�
1

A
þ 8

B
A
− 2ν2M2

B
A2

− 16s
1

E − s

− 8ðs2 þM4Þ 1

ðE − sÞ2 þM4G2ðsÞ
��

1þ ν2

2x

�
x2γ
AB

− ½xγ þ 2yð1 − xÞ� ν
2

2x

xγ
A2

�

−
ν2

2x
½6s2 − 4M2sgþ þM4½1þ ð1 − gþÞ2� þ 2ν2M2ðs −M2Þ�

�
M2x

A2ðE − sÞ − GðsÞ 1

A2

�

−
ν2

2x2

�
2s3

M2
− 2s2gþ þM2s½1þ ð1 − gþÞ2� þ ν2ðs −M2Þ2

��
M4x2

A2ðE − sÞ2 −G2ðsÞ 1

A2

�

þ 4M4

�
3s2

M4
−

2s
M2

ðgþ − xÞ þ h0 − hþG2ðsÞ þ ν2
�
ð1þ xγÞ − h−

G2ðsÞ
2x

�

−
ν4

2

�
1 − ð1 − xÞ2G

2ðsÞ
x2

�	
1

AðE − sÞ

þ 4M6

�
s3

M6
−

s2

M4
ðgþ − xÞ þ s

M2
h0 − xf1 − hþ½1 − GðsÞ�g þ ν2

�
s
M2

ð1þ xγÞ þ
h−
2
½1 −GðsÞ� − 1

�

−
ν4

2

�
s
M2

þ ð1 − xÞ2
x

½1 −GðsÞ� − 1

x

�	
1

AðE − sÞ2 þ ðy → −yÞ
	
; ðB3Þ
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the IR-divergent part of which, up to G2ðsÞ and the y → −y part, is given as

TrD ¼ M4ð1 − xÞ2
�
1þ y2 þ ν2

x

���
1 −

ν2

2x

�
1

AB
−
ν2

2x
1

A2

�
: ðB4Þ

This is in agreement with Appendix A of Ref. [1] up to an additional factor of 1=2 visible in the matching (58). Above, we
have used the following definitions:

GðsÞ≡ M2x
M2x − sþ iϵ

; ðB5Þ

v0 ≡ 1

2
ð1þ x − xγÞ; V0 ¼ 2M2v0; ðB6Þ

gþ ≡ 2 − xγ − ð1 − xÞð1þ yÞ ¼ 2v0 − yð1 − xÞ; ðB7Þ

h0 ≡ 1 − ð1 − xÞðx − yÞ − xγð1 − xγÞ þ y2ð1 − xÞ2; ðB8Þ

h� ≡ x2γ þ ð1 − xÞ2ð1� y2Þ: ðB9Þ

The second building block which arises from the interference of the bremsstrahlung diagrams under consideration can be
expressed as

JfTrEFðsÞg ¼ J

�
4ðV0 − 2sÞ − 8ðs2 − V0sþM4Þ 1

ðE − sÞ

þM2ðV0 − 2sÞ
�
xγ − ð1 − xÞð1þ yÞ þ 2ν2½1þ yð1 − xÞ�

xγ − ð1 − xÞð1þ yÞ
�
1

A

þ 1

M2gþ − 2s
M8

2

�
4v20ðv20 − xÞ − ð1 − xÞ2y2ð2v20 − xÞ þ 1

4
ð1 − xÞ4y4

þ ν2

2
fxγ½12v20 − 2ð1þ xÞ þ 2ð1 − xÞ2 þ 4xγ − 3ð1 − xÞ2y2� − xh−g

�
1

BC

þ TrXðE−sÞðs;A; x; 1Þ þ TrXðE−sÞðs;D; 1 − xγ;−1Þ þ ðy → −yÞ
	
; ðB10Þ

where we have defined the function

TrXðE−sÞðs;X; x̃; ξÞ

≡ 2

�
ξðs −M2x̃Þ

�
s2 − V0sþ

M4

2
½1þ ðx − xγÞ2�

	
−M6xxγð1þ xþ xγÞ þM4yð1 − xÞ½s −M2x̃ − ξM2xxγ�

þ 1

2
ξðs −M2x̃ÞM4y2ð1 − xÞ2 þ 2M6xxγðx2 þ x2γÞ

xγ − ð1 − xÞð1þ ξyÞ þ ξ
2sðs − V0Þðs2 − V0sþM4xÞ

M2gþ − 2s

þM2ν2
�
½s2 − V0sþM4ðxþ xγÞ�

�
1 −

xþ xγ
xγ − ð1 − xÞð1þ ξyÞ þ ξ

M2ðx − 3xγÞ
M2gþ − 2s

�
þ ξ

4M6x2γ
M2gþ − 2s

�	
1

XðE − sÞ :

ðB11Þ

Needless to say, whenever ðy → −yÞ appears above it applies for entire expressions. Let us note that after inserting the
expressions (B3) and (B10) into Eq. (58), one indeed recovers the expressions presented in Appendix A of Ref. [1].
In Eq. (59), which we can reformulate into

J

�jMBSj2
F 2ð0Þ

	
¼ e8

4
ReJfTrg; Tr ¼ 4

X
ti; ðB12Þ
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only t1a and t2 contribute to the overall IR-divergent part, which can be rewritten as

Trdiv ¼ 4ðtdiv1a þ tdiv2 Þ ¼ 4

�
1

2
TrdivE2 þ

Z
dsAðsÞ

�
1

s
þ I�ðsÞ

�
½TrdivE ðsÞ − TrdivE ð0Þ�

	
: ðB13Þ

We already know that JfTrdiv
E2 g ¼ JfTrDg þ ðy → −yÞ; note thatGð0Þ ¼ 1. In addition, by definition, the IR-divergent part

of TrEðsÞ is given by the divergent part of ðE − sÞTrE2ðsÞ. Only Trdiv
E2 can contribute to this. Moreover, we realize that

E − s ¼ M2x − sþ 2Aþ 2B and that only its M2x − sþ iϵ part does not suppress the essentially divergent terms
1=A2; 1=B2, and 1=AB appearing in Trdiv

E2 . Consequently, JfTrdivE ðsÞg ¼ ðM2x − sþ iϵÞG2ðsÞJfTrdiv
E2 g. We thus find

JfTrdivg ¼ 2JfTrdiv
E2 g

�
1þ 2

Z
dsAðsÞ

�
1

s
þ I�ðsÞ

�
½ðM2x − sþ iϵÞG2ðsÞ −M2x�

	
; ðB14Þ

which, using Eq. (B5) and (41), translates into

JfTrdivg ¼ 2JfTrdiv
E2 g

�
1þ 2M2x

Z
ds

AðsÞ
M2x − sþ iϵ

þ
Z

ds
Z

ds0
AðsÞAðs0Þ
s − s0 − iϵ

�
2sM2x

M2x − sþ iϵ

�	
: ðB15Þ

Due to the symmetries of the double integral and the fact that in the end we are nevertheless interested only in the real part,
the term in the square brackets can be further recast into

2sM2x
M2x − sþ iϵ

¼eff − 2M2xþ ðM2xÞ2
M2x − sþ iϵ

−
ðM2xÞ2

M2x − s0 − iϵ
¼eff ðM2xÞ2ðs − s0 − iϵÞ
ðM2x − sþ iϵÞðM2x − s0 − iϵÞ : ðB16Þ

Taking the real part of the previous result, we finally get [cf. the definition (41)]

JfjMdiv
BS j2g ¼ e8

4
F 2ð0ÞReJfTrdivg ¼ 2jF ðM2xÞj2½JfTrDg þ ðy → −yÞ�: ðB17Þ

The form factor squared cancels after normalizing on the
LO differential decay width and, subsequently, we get
the same δBSD ðx; yÞ as in Appendix A of Ref. [1]. This is the
desired result, since δBSD ðx; yÞ contains the terms which
exactly cancel the IR divergences stemming from the
virtual corrections: δBSD ðx; yÞ þ 2RefF1ðxÞg is then IR-
safe. Let us recall that the integration of JfTrDg over xγ
needs to be performed analytically. Note that it was only
kept as a part of JfTrE2ðsÞg since it also contributes to the
IR-convergent part of JfTrEðsÞg.

APPENDIX C: BASIC J TERMS

In this appendix we provide a list of integrals generated
by using the operator J, which are not covered by
Appendix D in Ref. [1]. These appear as a consequence
of the generalization of the bremsstrahlung matrix
element, which was necessary in our current approach.
This is connected to the fact that we took the effect
of vector-meson resonances into account. First, let us
recall that

Aþ C ¼ M2

4
½ð1 − xÞð1þ yÞ − xγ�; ðC1Þ

BþD ¼ M2

4
½ð1 − xÞð1 − yÞ − xγ�; ðC2Þ

and define

W0 ≡ ðAþ CÞ þ ðBþDÞ ¼ M2

2
ð1 − x − xγÞ: ðC3Þ

Next, we define the functions K, P, and Q in the following
manner:

Kða; bÞ≡ 1

2b
½logðaþ bÞ − logða − bÞ�; ðC4Þ

P½gðsÞ�≡ 2

w2ðα1 − α2Þ
½logð1 − α1Þ − logð1 − α2Þ

− logð−α1Þ þ logð−α2Þ�; ðC5Þ

where α1;2 ¼ 1
2w2

ð−w1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 − 4w0w2

p
Þ with

w2 ¼ 2ðBþDÞgðsÞ þ g2ðsÞ þm2M2xγ; ðC6Þ

w1 ¼ 2ðAþ CÞgðsÞ þM2xγðM2x − 2m2Þ; ðC7Þ
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w0 ¼ m2M2xγ; ðC8Þ

and finally

Qðu0; u1; u2; gðsÞÞ

¼ −
4

w2
1 − 4w0w2

×

�
u0 þ u1 − u2 þ

ðu0 þ u1 þ u2Þðw2 − w0Þ
w0 þ w1 þ w2

−
u0w1

w0

þ 1

2
ð2u2w0 − u1w1 þ 2u0w2ÞP½gðsÞ�

	
: ðC9Þ

Furthermore, with the definitions

gðsÞ≡M2x − sþ iϵ; ðC10Þ

g̃ðsÞ≡M2ð1 − xγÞ − sþ iϵ ðC11Þ

at hand, we can express the missing basic J integrals as

J

�
1

E − s

�
¼ K



W0 þ gðsÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0 −M4xxγ
q �

; ðC12Þ

J

�
1

AðE − sÞ
�
¼ P½gðsÞ�; ðC13Þ

J

�
1

CðE − sÞ
�
¼ −P½−g̃ðsÞ�; ðC14Þ

J

�
1

DðE − sÞ
�
¼ J

�
1

CðE − sÞ
�
y→−y

; ðC15Þ

J

�
1

A2ðE − sÞ
�
¼ 2Qðv1; v2 − v1;−v2; gðsÞÞ; ðC16Þ

where we have used v1¼ðAþCÞ and v2¼ðBþDÞþgðsÞ.
Note, that even though it might seem like that after
inspecting definition Eq. (B3) of JfTrE2ðsÞg, it is not
necessary to define other integrals, e.g.,

J

�
1

AðE − sÞ2
�
¼ Qð0; v1; v2; gðsÞÞ;

since only TrE2ð0Þ and ðE − sÞTrE2ðsÞ appear in
the final expression for δBSðx; yÞ. For completeness,
let us take advantage of our notation and add that
J½1=ðCðE − sÞ2Þ� ¼ Qð0; v1; v2;−g̃ðsÞÞ. All of the other
terms can be found in Appendix D of Ref. [1]. At this point,
let us mention that in Ref. [1], the terms (D20) and (D21)
were not listed properly in light of the definition (D1). It
was not stated explicitly that the second version of Eq. (D1)
was used for evaluating all of the terms. This (second)
version, however, is equal to the original definition

Lða; bÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p log

���� aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p

a −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b

p
���� ðC18Þ

only for a > 0, as mentioned in Eq. (D1). When a < 0, an
additional overall minus sign appears. This was not
emphasized and shall at least be clarified at this point.
Thus, taking into account Eq. (C18), which is universal for
any a, we find

J

�
1

CE

�
¼ −

2

M4
Lðρ0; ν2xxγÞ; ðC19Þ

J

�
1

BC

�
¼ −

8

M4
Lðω; ν2xγωÞ: ðC20Þ

Other expressions in Appendix D of Ref. [1] require no
changes. Let us also mention that now one should indeed
get Eq. (C19) by putting s → 0 in Eq. (C14).

APPENDIX D: PARTIAL FRACTION
DECOMPOSITIONS FOR THE
BREMSSTRAHLUNG MATRIX

ELEMENT SQUARED

In this appendix we show how to rewrite the brems-
strahlung matrix element squared (50) in a form that will
allow us to perform the integrations of the J operator on the
respective terms. To achieve this we need to use a few
fraction-product decompositions. First, we take the sim-
plest case:

1

e − sþ iϵ
1

E� ¼
1

s

�
1

e − sþ iϵ
−

1

E�

�
: ðD1Þ

Note that E represents a Feynman denominator correspond-
ing to the virtual photon, and in this and following
applications the difference between E and E� plays no
role. We also write s instead of s − iðϵþ ϵ0Þ since s ≠ 0 due
to the positive limits of the integration. Similarly,

1

e − sþ iϵ
1

e − s0 − iϵ0

¼ 1

s − s0 − iðϵþ ϵ0Þ
�

1

e − sþ iϵ
−

1

e − s0 − iϵ0

�
: ðD2Þ

In the denominators, ϵ and ϵ0 represent positive and
infinitesimally small independent numbers and the numeri-
cal result remains the same even when we assume for
simplicity that ϵ0 → ϵ. Now, we can use the fact that this
term is multiplied by two spectral functionsAðsÞ andAðs0Þ
and integrated symmetrically over s and s0. After we
rename s ↔ s0 in the second term on the right-hand side
of Eq. (D2), we realize that due to the symmetric integra-
tion we obtain the complex conjugate of the first term.
Since we are anyway interested in the real part only, we just
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get the factor of 2. In the following we use the fact that
eþ f ¼ M2

Pð1þ x − xγÞ≡ V0 is a significant J-invariant
combination of kinematical variables:

1

e − sþ iϵ
1

F� ¼
1

V0 − sþ iðϵ − ϵ0Þ
�

1

e − sþ iϵ
þ 1

F�

�
:

ðD3Þ

Note that due to the presence of the J operator, we can
substitute 1=F� by 1=E� on the right-hand side of the
previous equation. Above, ϵ0 is actually artificial and can be
safely sent to zero. This can also be seen in other ways.
First, on the left-hand side we could have already written f
instead of F�. Another, more general reasoning is similar to
the following case. The last term that needs to be treated
can be decomposed as

1

e − sþ iϵ
1

f − s0 − iϵ0
¼ 1

V0 − s − s0 þ iðϵ − ϵ0Þ

×
�

1

e − sþ iϵ
þ 1

f − s0 − iϵ0

�
:

ðD4Þ

Again, ϵ and ϵ0 are infinitesimally small and independent.
For a moment we can assume that these are finite but small.
The left-hand side obviously does not depend numerically
on whether ϵ is greater or smaller than ϵ0, so the apparent
dependence of this type needs to be canceled on the right-
hand side. For this purpose both of the terms in the brackets
are necessary. Without loss of generality we can assume
that ϵ > ϵ0 and put ϵ ¼ ϵ0 þ δ, where δ > 0 is small. Since ϵ
and ϵ0 can be arbitrary for Eq. (D4) to be valid, we can set
ϵ ≃ ϵ0. In the corresponding limit δ → 0 we can apply
Sochocki’s formula to find

1

e − sþ iϵ
1

f − s0 − iϵ0

≃
�

1

e − sþ iϵ
þ 1

f − s0 − iϵ

�

×

�
p:v:

1

V0 − s − s0
− iπsgnðϵ − ϵ0ÞδðV0 − s − s0Þ

�
;

ðD5Þ

where p:v: stands for the principal value. The part con-
taining the delta function then trivially vanishes (due to the
first bracket) together with the dependence on the sign of
the difference ϵ − ϵ0. Again, using the fact that the
integration is symmetric in s and s0 and that on the right
we can change F� → E�, we obtain the sum of a term and
its complex conjugate, which results in a factor of 2 under
the real-part operator; note that IEI�F has no (nonvanishing)
imaginary part since it is related to the tree diagram.

Taking into account the previous decompositions (51)
and (53), we can rewrite Eq. (50) as

J

�jMBSj2
F 2ð0Þ

	

¼ 4ReJ

��
1

2

1

jEj2 þ
Z

dsAðsÞ

×

�
1

s
þ
Z

Aðs0Þds0
s − s0 − iϵ

��
1

e − sþ iϵ
−

1

E�

��
jIEj2

þ
�
1

V0

1

E
þ
Z

ds
AðsÞ

V0 − sþ iϵ

�
1

F� þ
1

e − sþ iϵ

�

þ
ZZ

dsds0p:v:
AðsÞAðs0Þ
V0 − s − s0

1

e − sþ iϵ

�
IEI�F

	
: ðD6Þ

and consequently arrive at Eq. (52).

APPENDIX E: VMD-INSPIRED MODEL FOR
THE ηð0Þ ELECTROMAGNETIC TRANSITION

FORM FACTORS

1. Introduction

In a phenomenological model of the transition between
the ηð0Þ meson and virtual photons we need to take into
account the strange-quark content of ηð0Þ. It is more
convenient to work in the quark-flavor basis than in the
octet-singlet one [18,19]. In such a basis, the vector
currents related to physical states of ω, ρ0, and ϕ mesons
are identical to the basis currents. Having a standard
definition of vector currents and pseudoscalar densities
in the octet-singlet basis1 (note that a ¼ 0; 1;…; 8),

jaμðxÞ≡ q̄ðxÞγμTaqðxÞ; jaðxÞ≡ q̄ðxÞiγ5TaqðxÞ; ðE1Þ
we can write for the currents of our interest

jωμ ¼ 1

2
½ūγμuþ d̄γμd� ¼

ffiffiffi
2

3

r
j0μ þ

1ffiffiffi
3

p j8μ ≡ jl0μ ; ðE2Þ

jρ
0

μ ¼ 1

2
½ūγμu − d̄γμd� ¼ j3μ ≡ jl1μ ; ðE3Þ

jϕμ ¼ 1ffiffiffi
2

p ½s̄γμs� ¼ 1ffiffiffi
3

p j0μ −
ffiffiffi
2

3

r
j8μ ≡ jsμ: ðE4Þ

Note that for simplicity we have left out the spacetime
coordinates x of the currents and quark fields. Above, we
see the relations between neutral-meson-related vector
currents, appropriate combinations of quark-flavor-
diagonal vector currents, their octet-singlet basis decom-
position, and finally the quark-flavor basis definition. The
electromagnetic current reads

1Our convention is γ5 ¼ iγ0γ1γ2γ3.
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1

e
jemμ ¼ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμs

¼ 1

3
jl0μ þ jl1μ −

ffiffiffi
2

p

3
jsμ: ðE5Þ

In the chiral limit, the PVV correlator Πðr2;p2; q2Þ is
defined in the octet-singlet basis by

dabcϵμναβpαqβΠðr2;p2; q2Þ

≡
Z

d4xd4yeip·xþiq·yh0jT½jað0ÞjbμðxÞjcνðyÞ�j0i ðE6Þ

with r ¼ pþ q. In the above formulas we have used

Tr½Ta; Tb� ¼ 1

2
δab; dabc ≡ 2Tr½fTa; TbgTc�: ðE7Þ

As is common, Ta ≡ λa=2, where λa denote the Gell-
Mann matrices in the flavor space and dabc are the U(3)-
symmetric symbols.
If, for simplicity, we rewrite Eq. (E6) schematically as

corrðja; jbμ; jcνÞ ¼ dabcΠ; ðE8Þ

then—using linearity and the definitions (E2), (E3), and
(E4)—we get only three nontrivial combinations of cur-
rents in the quark-flavor basis:

corrðjl; jl0μ ; jl0ν Þ ¼ Πl; ðE9Þ

corrðjl; jl1μ ; jl1ν Þ ¼ Πl; ðE10Þ

corrðjs; jsμ; jsνÞ ¼
ffiffiffi
2

p
Πs: ðE11Þ

In this way we have found the normalization relation
among bases (there is an additional factor of

ffiffiffi
2

p
in the

case of the strange correlator). Note that jl ≡ i
2
½ūγ5uþ

d̄γ5d� and js ≡ iffiffi
2

p ½s̄γ5s�. In Eqs. (E9)–(E11) we have gone
beyond the chiral limit: from now on we will distinguish
between the light and strange correlators.
Since the quark content of the ηð0Þ physical states is not

equal to the U(3) isoscalar states, there is a mixing between
η and η0 mesons. In the quark-flavor basis, this mixing
occurs (for A ∈ fl; sg) among the states jηAi defined as
h0jjAjηBi ¼ δABZηA together with the orthonormality rela-
tion hηAjηBi ¼ δAB. The resulting mixing (in the quark-
flavor basis) can be written as

jηi ¼ cosϕjηli − sinϕjηsi; ðE12Þ

jη0i ¼ sinϕjηli þ cosϕjηsi: ðE13Þ

Next we define the correlator ηAVV for each basis state
(again, A ∈ fl; sg):

ΠηAVVðp2; q2Þ≡ 1

ZηA
lim

r2→M2
η

ðr2 −M2
ηÞΠAðr2;p2; q2Þ:

ðE14Þ

The factors ZηA ¼ h0jjAjηAi are related to the pion case
Zπ ¼ B0Fπ by ZηA ¼ ZπfA: we have introduced the ratio
of the decay constants fA ≡ FA=Fπ . For the ηVV correlator
we can then finally write

ΠηVVðp2; q2Þ ¼ cosϕΠηlVV −
ffiffiffi
2

p
sinϕΠηsVV: ðE15Þ

The
ffiffiffi
2

p
factor comes from Eq. (E11) and the mixing factors

come from Eq. (E12). To avoid difficulties connected with
the calculation of the decay constant values and defining
the final ηVV correlator all the way through Eq. (E14), we
will use the VMD ansatz

ΠVMD
ηAVV

ðp2; q2Þ ¼ −
Nc

8π2FA

M4
A

ðp2 −M2
AÞðq2 −M2

AÞ
; ðE16Þ

where the light and strange channels are saturated by
associated resonances: Ml ¼ Mρ0=ω and Ms ¼ Mϕ.
Numerical values for the mixing angle ϕ and decay

constants fl and fs are obtained from various experimental
data (for details, see the next part of this appendix) in terms
of a global fit, with the result

ϕ ¼ 41ð2Þ∘; fl ¼ 1.07ð6Þ; fs ¼ 1.74ð3Þ: ðE17Þ

These values are used throughout the paper.

2. Model relevancy check

Now we have to check if such a VMD-inspired model
is phenomenologically successful and if it is suitable for
calculating the 1γIR contribution to the NLO virtual
radiative corrections.

a. Decays including vector mesons

We may start with processes containing vector mesons.
To investigate this we need to take into account a few more
quantities. We now introduce the overlap between a V
meson (V ∈ fω; ρ0;ϕg) and the vector current jVμ , i.e.,

ZVϵμðp⃗; λVÞ≡ h0jjVμ jϕðp⃗; λVÞi: ðE18Þ

Here we assume that ρ0 and ω mesons contain only the
light quarks (no hidden strangeness) and the ϕ meson
contains only the strange quarks. This is a fairly good
approximation to the real world [14]. For later convenience
we also define the γ-V coupling strength FV ≡ ZV=MV .
With this at hand we can obtain FV from the V → eþe−
decay processes. The direct calculation from the Lorentz-
invariant matrix element
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iMV→eþe− ¼ iκVZV ūðq⃗1Þð−ieγμÞvðq⃗2Þ
ð−iÞ
M2

V
ϵμðp⃗; λωÞ

ðE19Þ

in the limit m2
e ≪ M2

V , after averaging and summing over
polarizations, yields

FV ≃
1

ejκV j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πMVΓðV → eþe−Þ

p
: ðE20Þ

Above, κV is the overlap of the electromagnetic current jemμ
with the meson-related current jVμ . For more details con-
cerning the ω case, see Ref. [17]. Necessary numerical
inputs and results are shown in Table VII.
For the following, it is convenient to introduce the ηð0ÞVV

correlator

Πηð0ÞVVðq2Þ ¼
1

ZV
lim

p2→M2
A

ðp2 −M2
AÞΠηð0ÞVVðp2; q2Þ: ðE21Þ

Consequently, the ηð0ÞVγ� form factor within the VMD
model can be written as

eFVMD
ηð0ÞVγ�

ðq2Þ ¼ −
Nc

8π2Fπ

M2
A

ZV
κVκηð0ÞV

M2
A

q2 −M2
A
: ðE22Þ

The additional factors κηð0ÞV , which come from the η-η0

mixing, can be found in Tables VIII–IX. Using these form
factors, we can calculate the two-body decay widths
containing one pseudoscalar meson (ηð0Þ), one vector meson
(ω, ρ0, or ϕ), and one photon. Depending on the masses of
the particles involved, we use one of the following two
prescriptions:

ΓV→ηð0Þγ ¼
αM3

V

24
jF ηð0ÞVγ� ð0Þj2

�
1 −

M2
ηð0Þ

M2
V

�
3

; ðE23Þ

Γη0→Vγ ¼
αM3

η0

8
jF η0Vγ� ð0Þj2

�
1 −

M2
V

M2
η0

�
3

: ðE24Þ

The results together with a comparison with the exper-
imental data can be found for the η case, in Table VIII, and
for the η0 case in Table IX. We see that the VMDmodel and
the experimental data are in agreement.
The last class of the processes containing vector mesons

that we will investigate is a counterpart of the previous
decays, when the photon in the final state is virtual and
turns into the lepton pair. The decay width can then be
expressed as a form-factor-dependent integral over the
dilepton invariant mass,

ΓðV → ηlþl−Þ ¼ α2

72πM3
V

Z ðMV−MηÞ2

4m2
l

jF ηVγ�ðq2Þj2
q2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s �
1þ 2m2

l

q2

�

× λ
3
2ðM2

V ;M
2
η; q2Þdq2; ðE25Þ

where λ denotes the Källén triangle function defined as

λða; b; cÞ≡ a2 þ b2 þ c2 − 2ab − 2ac − 2bc: ðE26Þ

After inserting numerical values, we get

ΓVMD
ϕ→ηeþe− ¼ ð0.42� 0.05Þ keV; ðE27Þ

which should be compared with Γexp
ϕ→ηeþe− ¼ ð0.49�

0.05Þ keV. For the above evaluation we have used
Bðϕ → ηeþe−Þ ¼ ð1.15� 0.10Þ × 10−4 [14].

TABLE VII. Photon-to-meson coupling strength FV together
with the used experimental values [14]. In the upper part of this
table we see masses, decay widths, and branching ratios of the
V → eþe− processes for the vector mesons under consideration.
In the lower part we then see the overlaps κV [coefficients in
Eq. (E5)], decay widths of V → eþe− calculated from values
provided in the upper part, and finally the resulting coupling
strengths FV evaluated according to Eq. (E20).

V ω ρ0 ϕ

MV [MeV] 782.65(12) 775.26(25) 1019.46(2)
ΓðVÞ [MeV] 8.49(8) 147.8(9) 4.266(31)
BðV → eþe−Þ [10−5] 7.28(14) 4.72(5) 29.54(30)
κV e=3 e −e

ffiffiffi
2

p
=3

ΓðV → eþe−Þ [keV] 0.62(2) 7.0(1) 1.26(2)
FV [MeV] 140(2) 156(2) 161(1)

TABLE VIII. Comparison of the VMD model with the exper-
imental data [14] for the decays V → ηγ. The

ffiffiffi
2

p
factor in κηϕ

comes from Eq. (E11).

V ω ρ0 ϕ

BðV → ηγÞ [10−4] 6.6(1.7) 3.0(2) 130.9(2.4)
κηV cosðϕÞ=fl cosðϕÞ=fl −

ffiffiffi
2

p
sinðϕÞ=fs

Γexp
V→ηγ [keV] 5.6(1.4) 44(3) 56(1)

ΓVMD
V→ηγ [keV] 5.7(7) 37(5) 50(5)

TABLE IX. Comparison of the VMD model with the exper-
imental data [14] for the η0Vγ decays.

V ω ρ0 ϕ

Bðη0VγÞ [%] 2.75(23) 29.1(5) 6.25ð21Þ × 10−3

κη0V sinðϕÞ=fl sinðϕÞ=fl
ffiffiffi
2

p
cosðϕÞ=fs

Γexp
η0Vγ [keV] 5.4(5) 58(3) 0.27(1)

ΓVMD
η0Vγ [keV] 6.5(9) 52(7) 0.30(2)
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Data for ω=ρ0 → ηlþl− and η0 → ω=ρ0eþe− decays as
well as for ϕ → ημþμ− and ϕ → η0eþe− decays are not
available.

b. Electromagnetic transition form factor

Using previously defined meson-specific factors, we can
finally define the doubly virtual electromagnetic transition
form factor of an eta meson in the quark-flavor basis:

F ηγ�γ� ðp2; q2Þ ¼
X
V

κ2VðκηVfAðVÞÞΠηAðVÞVVðp2; q2Þ: ðE28Þ

For AðVÞ above we simply substitute Aðρ0Þ ¼ AðωÞ ¼ l
and AðϕÞ ¼ s. In the VMD case [inserting the ansatz
(E16)], the form factor becomes

e2FVMD
ηγ�γ� ðp2; q2Þ

¼ −
Nc

8π2Fπ

2e2

3

�
5

3

cosϕ
fl

M4
ρ0=ω

ðp2 −M2
ρ0=ωÞðq2 −M2

ρ0=ωÞ

−
ffiffiffi
2

p

3

sinϕ
fs

M4
ϕ

ðp2 −M2
ϕÞðq2 −M2

ϕÞ
�
: ðE29Þ

To get the η0 form factor, it is only necessary to perform the
following substitution:

FVMD
η0γ�γ� ðp2; q2Þ ¼ FVMD

ηγ�γ� ðp2; q2Þ
���

cosϕ→sinϕ
sinϕ→− cosϕ

: ðE30Þ

As a simple application, we can look at the two-photon
decay of a pseudoscalar P ∈ fπ0; ηð0Þg. The decay width of
such a process can be expressed as follows:

ΓVMD
P→γγ ¼

1

2

1

16πMP

�
α

πFπ

�
2M4

P

2
κ2P: ðE31Þ

Of course, for a neutral pion we would have κπ0 ¼ 1. In
the ηð0Þ case we can write

κηð0Þ ¼
3

2e2
X
V

κ2Vκηð0ÞV ; ðE32Þ

which becomes [cf. Eq. (E29) for p2 ¼ q2 ¼ 0]

κη ¼
5

3

cosϕ
fl

−
ffiffiffi
2

p

3

sinϕ
fs

¼ 1.0ð1Þ; ðE33Þ

κη0 ¼
5

3

sinϕ
fl

þ
ffiffiffi
2

p

3

cosϕ
fs

≃ 1.23ð10Þ: ðE34Þ

Note that, e.g., κη ≃ 1 is consistent with experimental data,
although it differs significantly from a naive WZW-based
calculation [26] for which κη ¼ 1=

ffiffiffi
3

p
. The results are

shown in Table X. We see that there is a very good
agreement between the prediction of the VMD model and
the experimental results.
Next, we should investigate the singly virtual transition

form factor. One possibility is to compare the decay widths
of the ηð0Þ Dalitz decays. These can be written as the
following integral:

TABLE X. The two-photon decay of ηð0Þ within the VMD
model and its comparison with the data. As usual, in the upper
part of the table we state the experimental inputs [14] and in the
lower part we can see the derived quantities.

P η η0

MP [MeV] 547.862(17) 957.78(6)
ΓP [keV] 1.31(5) 198(9)
BðP → γγÞ [%] 39.41(20) 2.20(8)
Γexp
P→γγ [keV] 0.52(2) 4.4(2)

ΓVMD
P→γγ [keV] 0.52(8) 4.2(5)

TABLE XI. Dalitz decays within the VMD model and the
comparison with the data [14].

process η → eþe−γ η → μþμ−γ

B [10−4] 69(4) 3.1(4)
Γexp [eV] 9.0(6) 0.41(6)
ΓVMD [keV] 8.6(2.0) 0.41(8)

FIG. 7. The normalized singly virtual η electromagnetic tran-
sition form factor squared within the VMD-inspired model
compared to data: time-like region. The shaded area corresponds
to the uncertainty of our fit for the VMD model. Data are taken
from Refs. [27,28].
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ΓLO
P→lþl−γ ¼

�
α

π

�
ΓLO
P→γγ

Z
1

ν2
dx

����F ηγ�γ� ð0; xM2
PÞ

F ηγ�γ�ð0; 0Þ
����2

×
8βðxÞ
3

ð1 − xÞ3
4x

�
1þ ν2

2x

�
: ðE35Þ

However, the simple model we discuss here (in the singly
virtual mode) is not suitable for the Dalitz decays of η0 due

to the unregulated pole which needs to be integrated over.
We thus present results only for the η case. These are shown
in Table XI.
The other way is to directly plot the transition form

factor over the respective data. The measurements of the η
transition form factor in the time-like region are shown in
Fig. 7. The results in the space-like region can be found
in Fig. 8.
Finally, we can test the transition form factor in the

doubly virtual mode. Using the VMD model (E29), we can
calculate the decay width of one of the rare processes
η → μþμ−. Note that data for the rare processes η → eþe−
and η0 → lþl− are not available yet; for predictions for
these decays within the model under discussion, see
Table XII in Appendix F. Experimentally, the branching
ratio was found to be Bðη → μþμ−Þ ¼ ð5.8� 0.8Þ × 10−6,
which translates into Γexp

η→μþμ− ¼ ð7.6� 1.1Þ × 10−6 keV.

Within the VMD model we find ΓVMD
η→μþμ− ¼ ð6.0� 1.4Þ×

10−6 keV, which is in agreement with the experimental
value. Note that we have calculated this value using the
convenience of the approach shown in the following
appendix. It is similar to the one we have used to calculate
the 1γIR contribution to the radiative corrections in Sec. IV.
Finally, let us also mention that for the decays under
consideration, more advanced models have been developed
[32], which could also mimic ππ rescattering effects.

APPENDIX F: FORM FACTORS
IN P → l+l− DECAYS

In this appendix we apply the approach explained in
Sec. IV to the P → lþl− decays. We would like to show
what the building block for the matrix element looks like in
this case and calculate the coefficients for the specific
transition form-factor models.
On account of the Lorentz symmetry and parity con-

servation, the on-shell matrix element of the P → lþl−

process can be written in terms of just one pseudoscalar
form factor in the following form:

iMP→lþl− ¼ PP→lþl− ½ūðq⃗1Þγ5vðq⃗2Þ�: ðF1Þ
Subsequently, the decay width reads

ΓðP → lþl−Þ ¼ 2M2
PjPP→lþl− j2
16πMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

M2
P

s
: ðF2Þ

Taking into account only the LO contribution in the QED
expansion, we find for the pseudoscalar form factor

FIG. 8. The singly virtual electromagnetic transition form
factors within the VMD-inspired model compared with data:
space-like region. In the first panel we see the η form factor, while
in the second panel there is a plot for the η0 case. Data are taken
from Refs. [29–31].

TABLE XII. Branching ratios for the ηð0Þ→lþl− decays within
the VMD-inspired model. For instance, the value for the η0→
μþμ− process is in good agreement with the value Bðη0→
μþμ−Þ¼1.4ð2Þ×10−7 calculated in Ref. [7].

η→eþe− η→μþμ− η0→eþe− η0→μþμ−

B 5.4ð1.2Þ×10−9 4.6ð1.0Þ×10−6 1.8ð3Þ×10−10 1.3ð2Þ×10−7
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PLO
P→lþl− ¼ ie4ml

M2
P

Z
d4l
ð2πÞ4

FPγ�γ�ðp2; q2ÞλðM2
P; p

2; q2Þ
p2q2ðl2 −m2

lÞ
:

ðF3Þ
Here, p ¼ l − q1 and q ¼ lþ q2, where q1 and q2 are
the lepton momenta and λ is the triangle Källén function.
For the rational resonance-saturation models, we will use
[in agreement with the substitution (20)] the following
definition:

Ph
P→lþl− ½hðc1; c2;M2

V1
;M2

V2
Þ�

¼ ie4ml

M2
P

�
−

Nc

12π2Fπ

�

×
Z

d4l
ð2πÞ4

hðc1; c2;M2
V1
;M2

V2
ÞλðM2

P; p
2; q2Þ

ðl2 −m2
lÞ

: ðF4Þ

In the case of the process η → μþμ− within the VMDmodel
discussed in Appendix E, we can write [cf. Eq. (E29)]

PVMD
η→μþμ− ¼

�
5

3

cosϕ
fl

Ph
η→μþμ− ½hð1; 1;M2

ρ=ω;M
2
ρ=ωÞ�

−
ffiffiffi
2

p

3

sinϕ
fs

Ph
η→μþμ− ½hð1; 1;M2

ϕ;M
2
ϕÞ�

	
: ðF5Þ

Note that in the pion case we would simply have

PVMD
π0→eþe− ¼ Ph

π0→eþe− ½hð1; 1;M2
ρ=ω;M

2
ρ=ωÞ�: ðF6Þ

After recalling Eq. (29), we know that the previous
expressions might be obtained in terms of linear combi-
nations of the building blocks Ph

P→lþl− ½gðM2
V1
;M2

V2
Þ�.

Using the dimensional regularization, the dimensional
reduction scheme [23,24], and Passarino-Veltman reduc-
tion [25], the explicit result of the necessary loop integra-
tion in terms of scalar one-loop integrals reads

Ph
P→lþl− ½gðM2

V1
;M2

V2
Þ� ¼ −

e4ml

16π2

�
−

Nc

12π2Fπ

�

×

�
M2

V1

2m2
l
½B0ð0;M2

V1
;M2

V1
Þ − B0ðm2

l; m
2
l;M

2
V1
Þ þ 1�

þM2
V1

M2
P
½B0ðm2

l; m
2
l;M

2
V2
Þ − B0ðm2

l; m
2
l;M

2
V1
Þ�

− B0ðm2
l; m

2
l;M

2
V1
Þ − 1

2
½1þ B0ð0; m2

l; m
2
lÞ

− C̃0ðm2
l; m

2
l;M

2
P;M

2
V1
; m2

l;M
2
V2
Þ�
	
þ fM2

V1
↔ M2

V2
g:

ðF7Þ

Above, it was convenient to introduce the following
combination of the three-point scalar one-loop function
C0 and the Källén triangle function λ:

C̃0ðm2; m2;M2
1;M

2
2; m

2;M2
3Þ

≡ 1

M2
1

λðM2
1;M

2
2;M

2
3ÞC0ðm2; m2;M2

1;M
2
2; m

2;M2
3Þ:

ðF8Þ
For completeness, we list the predictions for the branching
ratios of the ηð0Þ → lþl− decays in Table XII.
In what follows, we would like to provide some

basic examples of the decomposition of the loop integrals
containing various models for transition form factors
in the case of the rare decay of a neutral pion. Let us start
with some definitions. The VMD ansatz for the electromag-
netic transition form factor of a neutral pion takes the simple
form

FVMD
π0γ�γ�ðp2; q2Þ ¼ −

Nc

12π2Fπ

M4
V

ðp2 −M2
VÞðq2 −M2

VÞ
: ðF9Þ

The lowest-meson dominance (LMD)model [33], where the
lowest-lying pseudoscalar multiplet is also taken into
account, gives the following result:

FLMD
π0γ�γ�ðp2; q2Þ ¼ FVMD

π0γ�γ�ðp2; q2Þ
�
1 −

4π2F2
π

NcM4
V
ðp2 þ q2Þ

�
:

ðF10Þ
As a last example, we introduce the two-hadron saturation
(THS) model proposed in Ref. [17], which for the PVV
correlator takes into account twomesonmultiplets in both the
vector and pseudoscalar channels:

FTHS
π0γ�γ�ðp2; q2Þ

¼ −
Nc

12π2Fπ

�
1þ κ

2Nc

p2q2

ð4πFπÞ4
−
4π2F2

πðp2 þ q2Þ
NcM2

V1
M2

V2

×

�
6þ p2q2

M2
V1
M2

V2

�	

×
M4

V1
M4

V2

ðp2 −M2
V1
Þðp2 −M2

V2
Þðq2 −M2

V1
Þðq2 −M2

V2
Þ :

ðF11Þ
In terms of the decomposition (20), we can write the
amplitudes as

MVMD
1γIR ¼ Mh

1γIR½hð1; 1;M2
V;M

2
VÞ�; ðF12Þ

MLMD
1γIR ¼ Mh

1γIR½hðcLMD
1 ; 2cLMD

1 − 1;M2
V;M

2
VÞ�; ðF13Þ

MTHS
1γIR ¼ 1

4
Mh

1γIR½hð4cTHS1;1 ; 4cTHS2;1 ;M2
V1
;M2

V2
Þ�

þ 1

4
Mh

1γIR½hð0; 4cTHS2;2 ;M2
V1
;M2

V1
Þ�

þ ðM2
V1

↔ M2
V2
Þ; ðF14Þ
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where the coefficients cmodel
1;i and cmodel

2;i have the following
forms:

cLMD
1 ¼ 1 −

4π2F2
π

NcM2
V
; ðF15Þ

cTHS1;1 ¼ M2
V2

M2
V2

−M2
V1

�
1 −

24π2F2
π

NcM2
V2

�
; ðF16Þ

cTHS2;1 ¼ −
M2

V1
M2

V2

ðM2
V2

−M2
V1
Þ2

×

�
1þ κM2

V1
M2

V2

2Ncð4πFπÞ4
−
7ð2πFπÞ2
NcM2

V1

�
1þM2

V1

M2
V2

��
;

ðF17Þ

cTHS2;2 ¼ M4
V2

ðM2
V2

−M2
V1
Þ2
�
1þ κM4

V1

2Ncð4πFπÞ4

−
ð4πFπÞ2
2NcM2

V2

�
6þM2

V1

M2
V2

��
: ðF18Þ

We can find the above-listed constants by projecting on the
product of the normalized form factor and the photon
propagators; for instance, we have

cTHS2;2 ¼ lim
p2;q2→M2

V1

FTHS
π0γ�γ� ðp2; q2Þ
F π0γ�γ�ð0; 0Þ

ðp2 −M2
V1
Þðq2 −M2

V1
Þ

p2q2
:

ðF19Þ
Taking into account the decomposition (25) in the building
blocks (F7), one recovers Eqs. (A.5)–(A.7) from Ref. [17].
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