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The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the
nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the
CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero
momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-
momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check
if there exists perturbative higher-order corrections to the current-current correlation. In this paper,
we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a
Chern-Simons term, which ensures a consistent μ5. The result shows the two-loop corrections to the CME
conductivity are zero, which confirms the nonrenomalization of CME conductivity.
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I. INTRODUCTION

The electric current induced by strong magnetic field and
chirality imbalance in heavy ion collisions, which is called
the chiral magnetic effect (CME) [1–6], has seen rising
interest in recent years. It states that in off-central heavy ion
collisions a strong magnetic field perpendicular to the
collision plane has been generated to induce an electric
current due to the nontrivial QCD vacuum configuration
[4,7], which is described by

nw ¼ −
Nfg2

32π2

Z
d4xϵμνρλFl

μνFl
ρλ; ð1Þ

where a nonzero winding number nw indicates the imbal-
ance of left-handed and right-handed quarks. Since the spin
magnetic moment always tends to be parallel to the external
magnetic field by the lowest Landau level, the positive
(negative) helicity quark carries current parallel (antipar-
allel) to its magnetic moment. Hence, the direction of
induced current depends on quarks with positive or
negative helicity in the majority. As a result, an electric
current is induced by the separation of quarks carried
opposite electrical charge due to the nonzero axial charge
density with P and CP violation. The experiments in the
Relativistic Heavy Ion Collider [8–11] and LHC [12] have

reported the some observations of charge seperation which
might be relevant to CME current.
The CME classical result, i.e., the linear relationship

between the induced current and the magnetic field, is often
written as

J ¼ η
e2

2π2
μ5B; ð2Þ

where η ¼ Nc
P

fq
2
f, qf is the charge number of flavor f,

and μ5 is the axial chemical potential. This result can be
achieved in various methods, such as balancing the energy,
solving the Dirac equation, and from the thermal potential
or the effective action [5]. It is also related to the AVV
triangle diagram that contains an axial vertex and two
vector vertices. The relation of triangle diagram to the CME
is also analyzed in the longitudinal and transverse parts of
the anomalies [13]. Moreover, the CME can also be studied
in the holographic model [14–17], anomalous hydrody-
namics [18], and lattice simulation [19,20].
The nonrenormalization of the CME is a rather subtle

issue in current publications. In the framework of quantum
field theory, the induced electric current can be related to
the magnetic field through linear response theory.
Therefore, the CME conductivity is proportional to the
current-current correlation that contains the parameter μ5
that describes the imbalance of chirality. Expanding the
correlation to the first order of μ5 is equivalent to trans-
forming the two-point loop diagram to the VVA triangle
diagram (see Fig. 1 and also Sec. II), which is protected
from higher-order corrections through the well-known
Adler-Bardeen theorem [21]. In addition, even introducing
the Chern-Simons term into the effective action for a
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consistent μ5 [22], which guarantees the conservative axial
charge, one could also prove that all corrections to the
topological mass term vanish identically [23]. Such a
nonrenomalization property agrees with the hydrodynamic
calculations [18,24] that make people believe the CME
receives no higher-order perturbative corrections. However,
this is not the whole story. From the lattice point of view,
the lattice simulation for the CME disagrees with the
classical CME result at the quantitative level [19,20], even
though the systematic effects have been considered [25].
Kinetic theory points out that those differences may come
from the attractive axial-vector interaction [26]. The inter-
acting lattice model indicates that the CME may receive
correction from interfermion interactions that are not
relevant in practice [27]. From the quantum field theory
point of view, there is an axial vertex with zero momentum
on the triangle diagram with respect to the classical CME,
which is not equivalent to the general AVV triangle when
taking the zero-momentum limit on the axial vertex
because of the IR subtlety. As we know, only at the limit
order limq→0 limq0→0, with ðq0;qÞ the 4-momentum of the
axial vertex, the general AVV triangle can reproduce
the classical CME result [28]. What is more, if introducing
the Chern-Simons term, one could prove that the current-
current correlation with respect to the CME, which is
represented by the AVV triangle with zero incoming
momentum at the axial vertex, vanishes at one-loop level
[28] so that Eq. (2) is completely contributed by the
Chern-Simons term. As far as we know, there is no general
argument that suggests the current-current correlation
vanishing for all higher-order corrections. The full picture
of the higher-order correction of chiral magnetic effect is
still ambiguous. In this paper, we aim to calculate the
current-current correlation that contributes to the CME
current at two-loop level within the NJL model to examine
whether the two-loop corrections exist or not.
In Sec. II, we will start from the framework of the chiral

magnetic conductivity through the thermal field theory. In
Sec. III, we will calculate the two-loop diagrams from the
NJL model with Pauli-Villars regularization. Section IV is
the conclusion. In this paper, we will adopt the Euclidean
metric diag(1,1,1,1) and the Minkowski 4-momentum
P ¼ ðp; p0Þ ¼ ðp; ip4Þ for p4 real. All gamma matrices
are Hermitian.

II. FRAMEWORK OF CHIRAL MAGNETIC
CONDUCTIVITY

Consider the effective Lagrangian density of a massless
quark matter with nonzero axial charge,

L ¼ −
1

4
Fl
μνFl

μν −
1

4
FμνFμν − ψ̄ðγμ∂μ − igTlγμAl

μ

− _{eq̂γμAμÞψ þ μ5ðψ̄γ4γ5ψ þ iΩ4Þ; ð3Þ

where q̂ is the diagonal matrix of electric charge in flavor
space and μ5 is the axial chemical potential.Ω4 is the fourth
component of the Chern-Simons term, which is given by

Ωμ ¼ i
Nfg2

8π2
ϵμνρλAl

ν

�∂Al
λ

∂xρ −
1

3
flabAa

ρAb
λ

�

þ iη
e2

4π2
ϵμνρλAν

∂Aλ

∂xρ ; ð4Þ

whereNf is the number of the flavor and l is the color index
for the SUðNcÞ field (Nc ¼ 3).
In the thermal field theory, the generating functional of

Green’s function corresponds to the partition function.
Following the general procedure of thermal field theory
[28], the electric current can be written as

JiðxÞ ¼
δΓ½A�
δAiðxÞ

þ η
e2

2π2
μ5Bi; ð5Þ

where Ai and Bi are the thermal average of gauge field Ai
and magnetic field Bi. The second term of Eq. (5) is
generated by the Chern-Simons term. Expanding the action
Γ½A� according to A, one will obtain the current-current
correlation as the leading-order coefficient,

Γ½A� ¼
Z

d4Q
ð2πÞ4

�
−
1

2
A�

μðQÞΠμνðQÞAνðQÞ þOðA3Þ
�
:

ð6Þ

Therefore, the induced current is given by

JiðQÞ ¼ KijAjðQÞ; ð7Þ

where

Kij ¼ −ΠijðQÞ − iη
e2

2π2
μ5ϵijkqk þOðA2Þ: ð8Þ

Regarding to the chiral magnetic conductivity, we need to
isolate the coefficient of μ5ϵijkqk in Πij.
Obviously, the second term of Eq. (8) originates from the

Chern-Simons term, which is protected from higher-order
corrections, while the first term is a two-point correlation
function that may receive decorations from QCD. These

FIG. 1. The sketch of expansion of current-current correlation
with respect to the CME. The double line denotes the propagator
with μ5, while the single line denotes the regular fermion
propagator. The cross-vertex denotes the axial vertex with
zero-momentum incoming.
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decorations run rather complicated at two-loop or higher
levels; thus, we introduce the NJL model to simulate the
QCD interactions in which the four-fermion interactions
instead of the non-Abelian gauge field will greatly reduce
the complications in calculation. The interacting part of
NJL Lagrangian is given by

LNJL
int ¼ −GVμðxÞVμðxÞ ¼ −Gðψ̄γμψÞ2; ð9Þ

with G the coupling constant. Notice that a momentum
space cutoff Λ is provided in g2 ¼ GΛ2. Notice that the
interaction in Eq. (9) contains both direct and exchange
terms, which corresponds to two types of contractions that
are shown in Fig. 2. By introducing the Fierz trans-
formation, one obtains the Lagrangian

LNJL
int ¼G½ðψ̄ψÞ2 − ðψ̄γ5ψÞ2�−

3G
2
ðψ̄γμψÞ2 −

G
2
ðψ̄γμγ5ψÞ2;

ð10Þ

where only direct interactions are involved. It is easy to
verify that only the last two terms of Eq. (10) have a
nonzero contribution owing to the traces of the gamma
matrix. Therefore, all we need to compute are the six
diagrams in Fig. 3, in which the single- or double-dashed
lines correspond to the vector and axial-vector direct
coupling, not propagators.

III. TWO-LOOP CORRECTIONS

Following the effective Lagrangian, Eq. (3), one can
read out the free quark propagator with a 4-momentum
P ¼ ðp; p0Þ ¼ ðp; ip4Þ,

SFðPjmÞ ¼ i
=Pþ μ5γ4γ5 −m

; ð11Þ

where m is the quark mass and =P ¼ γ4p4 − iγ · p. In our
calculation, we consider light quarks; i.e., the quark mass
will be set to zero. But since we involve Pauli-Villars
regularization to guarantee the charge conservation, we
keep the mass in the format of the propagator. In the
following calculation and statement in Fig. 3, the color-
flavor factor η is suppressed, and the main figure number is

omitted so that part (a) refers to Fig. 3(a) and so on and so
forth. To compare to the classical CME conductivity, we
focus on the static limit ω ¼ 0 and concern ourselves with
the term that contains the structure like μ5qkϵijk in Πij. In
the following calculations, the terms that are irrelevant with
such structure are neglected.

A. Figures 3(a) and 3(b)

Let us begin with Figs. 3(a) and 3(b). Notice that the
small loops with momentum K in these two diagrams are
the same; one can extract it out and denote it by ΛA

ρ , where
the superscript A means axial-vertex coupling, and explain
Figs. 3(a) and 3(b) as

Πaþb
μν ≡ ΛA

ρ × ðΞA;a
ρμν þ ΞA;b

ρμνÞ; ð12Þ

where ΞA;a
ρμν and ΞA;b

ρμν represent the big loop in Figs. 3(a) and
3(b), respectively. The explicit expressions for ΛA

ρ , ΞA;a
ρμν,

and ΞA;b
ρμν are

FIG. 2. The four-fermion interaction in which the first diagram
on the right-hand side refers to the direct term and the second
diagram refers to the exchange term.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Feynman diagrams of the two-loop current-current
correlation. The solid fermion line represents the propa-
gator with μ5. The dashed line and double dashed lines represent
the coupling of vector vertex and axial-vector vertex,
respectively.
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ΛA
ρ ¼ G

2
iT
X
k4

Z
d3k
ð2πÞ3 tr

�
i

=K þ μ5γ4γ5
γργ5 þ

X
s0¼1

Cs0
i

=K þ μ5γ4γ5 −Ms0
γργ5

�
ð13Þ

and

ΞA;a
ρμνðQÞ ¼ ie2T

X
p4

Z
d3p
ð2πÞ3 tr

�
i

=P0 þ μ5γ4γ5
γργ5

i
=P0 þ μ5γ4γ5

γμ
i

=Pþ μ5γ4γ5
γν

þ
X
s¼1

Cs
i

=P0 þ μ5γ4γ5 −Ms
γργ5

i
=P0 þ μ5γ4γ5 −Ms

γμ
i

=Pþ μ5γ4γ5 −Ms
γν

�
ð14Þ

ΞA;b
ρμνðQÞ ¼ ie2T

X
p4

Z
d3p
ð2πÞ3 tr

�
i

=P0 þ μ5γ4γ5
γμ

i
=Pþ μ5γ4γ5

γργ5
i

=Pþ μ5γ4γ5
γν

þ
X
s¼1

Cs
i

=P0 þ μ5γ4γ5 −Ms
γμ

i
=Pþ μ5γ4γ5 −Ms

γργ5
i

=Pþ μ5γ4γ5 −Ms
γν

�
; ð15Þ

where P0 ¼ PþQ. Pauli-Villars regulators are involved,
the coefficients of which are restricted by the condition

X
s¼1

Cs ¼ −1 or
X
s¼0

Cs ¼ 0: ð16Þ

First, we expand the spatial component of Eq. (13) to the
linear order of μ5 and complete the trace and obtain

ΛA
i ¼ 4GTμ5

X
s0¼0

Cs0
X
k4

Z
d3k
ð2πÞ3

k4ki
ð−k24 − k2 −M2

s0 Þ2

þOðμ25Þ; ð17Þ
where we applied a more compact resummation form with
M0 ¼ 0 and C0 ¼ 1. Notice that the sum over Matsubara
frequencies k4 is applied on an odd function of k4; we
conclude that the linear μ5 term of ΛA

i becomes zero.
Then, we consider the temporal component ΛA

4 , which is
contracted with Ξ4μν. Since the leading order of ΛA

ρ is linear
to μ5, it is sufficient to consider the zeroth order of μ5 in
Ξ4μν. In the following calculation, we will suppress the
index 4 for convenience. The contribution of Fig. 3(a) is
given by

ΞA;a
μν ðQÞ¼ ie2

X
s¼0

Cs×T
X
p4

Z
d3p
ð2πÞ3

×tr

�
i

=P0−Ms
γργ5

i
=P0−Ms

γμ
i

=P−Ms
γν

�
: ð18Þ

The introduction of series of Pauli-Villars regulator cancels
out all UV divergences, and there has applied a more
compact resummation form with M0 ¼ 0. After straight-
forward evaluation on the trace, we expand the expression
in terms of q and single out its linear terms, which yields

ΞA;a
ij ð0; qÞ ¼ −4ie2ϵijkqk

X
s¼0

Cs × T
X
p4

Z
d3p
ð2πÞ3

×
2p2

4 − 2
3
p2 þ 2M2

s

½−p2
4 − ðp2 þM2

sÞ�3
; ð19Þ

where μ ¼ i, ν ¼ j, and
R
d3pplpk →

R
d3p 1

3
p2δlk are

applied.
Following the same steps, we can handle Ξb

ij and finally
obtain

ΞA;a
ij þ ΞA;b

ij ¼ 4ie2ϵijkqk
X
s¼0

Cs × T
X
p4

Z
d3p
ð2πÞ3

×
−3p2

4 þ p2 − 3M2
s

½−p2
4 − ðp2 þM2

sÞ�3
: ð20Þ

After performing the summation on Matsubara frequencies
(see Appendix A), we obtain that

ΞA;a
ij þ ΞA;b

ij ¼ 4ie2ϵijkqk

Z
d3p
ð2πÞ3

�
1

2p
β2eβpðeβp − 1Þ
ðeβp þ 1Þ3

þ
X
s¼1

Cs
3M2

s

4

1

ðp2 þM2
sÞ5=2

�
: ð21Þ

After performing the 3-momentum integration, we obtain
Z

d3p
1

2p
β2eβpðeβp − 1Þ
ðeβp þ 1Þ3 ¼ π ð22Þ

Z
d3p

1

ðp2 þM2
sÞ5=2

¼ 4π

3M2
s
: ð23Þ

Then, the first terms in Eq. (23) cancel each other by
considering Eq. (16), which yields
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ΞA;a
ij þ ΞA;b

ij ¼ 0: ð24Þ

Therefore, we end up with

Πaþb
ij ¼ 0: ð25Þ

B. Figure 3(c)

Figure 3(c) contains two similar loops, each of which is
denoted by ΘA. We write it as

Πc
μν ≡ −

G
2
ΘA

μρ × ΘA
ρν; ð26Þ

where

ΘA
μρ ¼ −eT

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3

× tr

�
i

=P0 þ μ5γ4γ5 −Ms
γμ

i
=Pþ μ5γ4γ5 −Ms

γργ5

�
:

ð27Þ

Since we are aiming at the spatial components of current-
current correlation, we set μ ¼ i and expand it in terms of
μ5 to the linear order as

ΘA
iρð0;qÞ¼−eT

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3

�
−4p4ϵiρkqk

½−p2
4−ðp2þM2

sÞ�2

þ4ið8
3
p2p4−2P2p4−2M2

sp4Þδiρ
½−p2

4−ðp2þM2
sÞ�3

μ5

�
þOðμ25Þ:

Now, let us look at the summation of Matsubara frequen-
cies in the zeroth order of μ5, which reads

T
X
p4

p4

½−p2
4 − ðp2 þM2

sÞ�2
: ð28Þ

This summation yields zero because it is an odd function of
p4, which leads the linear order of μ5 of Eq. (28) to be zero.
Notice the two loops of Fig. 3(c) have the same structure;

thus, its linear order of μ5 vanishes, i.e.,

Πc
ij ¼ −

G
2
ΘA

iρ × ΘA
ρj ∼Oðμ25Þ: ð29Þ

Therefore, we end up with

Πc
ij ¼ 0: ð30Þ

C. Figures 3(d) and 3(e)

Like we did in Sec. III A, we extract the small loops
in Figs. 3(d) and 3(e) and denote them by ΛV

ρ , where V

means the vector vertex coupling, and explain Figs. 3(d)
and 3(e) as

Πdþe
μν ≡ ΛV

ρ × ðΞV;d
ρμν þ ΞV;e

ρμνÞ; ð31Þ

where ΞV;d
ρμν and ΞV;e

ρμν represent the big loop in Figs. 3(d)
and 3(e), respectively. The explicit expression for ΛV

ρ , ΞV;d
ρμν,

and ΞV;e
ρμν are

ΛV
ρ ¼ 3G

2
iT
X
s0¼0

Cs0
X
k4

Z
d3k
ð2πÞ3 tr

�
i

=K þ μ5γ4γ5 −Ms0
γρ

�

ð32Þ

and

ΞV;d
ρμνðQÞ ¼ ie2T

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3

�
i

=P0 þ μ5γ4γ5 −Ms
γρ

×
i

=P0 þ μ5γ4γ5 −Ms
γμ

i
=Pþ μ5γ4γ5 −Ms

γν

�

ð33Þ

ΞV;e
ρμνðQÞ ¼ ie2T

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3 tr

�
i

=P0 þ μ5γ4γ5 −Ms
γμ

×
i

=Pþ μ5γ4γ5 −Ms
γρ

i
=Pþ μ5γ4γ5 −Ms

γν

�
:

ð34Þ

It is easy to check that the term of linear μ5 vanishes after
the trace, and only the zeroth order of μ5 survives in
Eq. (32). However, even in the zeroth order, the spatial
components of ΛV

ρ are zero due to the integration on an odd
function; thus, the only nonzero component is

ΛV
4 ¼ 3

2
iGT

X
s0¼0

Cs0
X
k4

Z
d3k
ð2πÞ3

4k4
−k24 − k2 −M2

s0
þOðμ25Þ:

ð35Þ

After accomplishing the summation on Matsubara frequen-
cies, one ends up with

ΛV
4 ¼ −3G

X
s0¼0

Cs0

Z
d3k
ð2πÞ3 : ð36Þ

Considering the regularization condition, Eq. (16), one can
conclude that

Πdþe
ij ¼ 0 ð37Þ

even without doing the tedious calculation on the big loop
of ΞV

ρμν.
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D. Figure 3(f)

Figure 3(f) contains two similar loops, each of which is
denoted by ΘV. Then, the diagram is interpreted as

Πf
μν ≡ −

3G
2

ΘV
μρ × ΘV

ρν; ð38Þ

where

ΘV
μρðQÞ ¼ −eT

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3

× tr

�
i

=P0 þ μ5γ4γ5 −Ms
γμ

i
=Pþ μ5γ4γ5 −Ms

γρ

�
:

ð39Þ
Expanding Eq. (39) with respect to μ5, one finds

ΘV
iρ ¼ −eT

X
s¼0

Cs

X
p4

Z
d3p
ð2πÞ3

�
4ð2

3
p2 − P2 −M2

sÞδiρ
½−p2

4 − ðp2 þM2
sÞ�2

þ 4ið−3p2
4 þ p2 − 3M2

sÞϵiρkqk
½−p2

4 − ðp2 þM2
sÞ�3

μ5

�
þOðμ25Þ; ð40Þ

where we set μ ¼ i. Notice that the integrand of the second
term of Eq. (40) is zero, which has been proven in Eq. (20).
Since the linear order of μ5 vanishes in one of the two
loops, the product of two similar loops does not contain the
linear μ5 and thus has zero contribution to the CME
conductivity, namely,

Πf
ij ¼ 0: ð41Þ

Combining Eqs. (25), (29), (37), and (41), we find that

Πaþbþcþdþeþf
ij ð0; qÞ ¼ 0; ð42Þ

which means the contribution from two-loop corrections
of current-current correlation is zero so that the classical
CME coefficient is completely determined by the Chern-
Simons term.

IV. DISCUSSION

In this paper, we calculated the current-current correla-
tion with respect to the CME at two-loop level within the
NJL model to check if there are higher-order corrections
to the CME current. Some may argue that the CME
coefficient is protected by an anomaly so that it is non-
renormalized. This argument may come from the fact when
one connects the general VVA triangle diagram, which is
protected by the Adler-Bardeen theorem, with the CME
current by expanding the current-current correlation in
terms of μ5. However, we should emphasize that the
triangle of the CME is not exactly the general triangle
but requires a vanishing momentum on the axial vertex.
Since the VVA triangle is not IR safe on the axial vertex,
the current-current correlation might have the chance to get

higher-order corrections. Although in Ref. [28] the authors
proved that the one-loop current-current correlation van-
ished by the cancellation of the bare loop with its Pauli-
Villars regularization, one may still doubt whether is a
general case or just a coincidence. Actually, the answer to
this question has been partly addressed in Sec. 4 of
Ref. [28]. Since we cannot place confidence in the general
relation between the triangle anomaly and current-current
correlation, an explicit calculation of higher-order correc-
tions is desired. That is the reason why we do this two-loop
calculation of the CME current. Fortunately, our result
seems to favor that the CME current is free from higher-
order corrections because the two-loop correction is
still zero.
The problem of higher-order corrections to the CME

current is still far from solved since we only addressed the
two-loop level within NJL model. A real QCD calculation
is desired, although it is rather complicated. Nevertheless,
our calculation, as a toy model of QCD, can give us
confidence that one may finally find a way to prove that all
higher-order corrections vanish for some reason.
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APPENDIX A: THE MATSUBARA SUMMATION

In this Appendix, the sum over the Matsubara energy p4

or k4 in Sec. III will be illustrated by an alternative method,
and an example is provided.
The summation of Matsubara energy iωn ¼

ð2nþ 1ÞπiT corresponding to the fermion can be replaced
by a contour integral along the imaginary plane

M ¼ T
X
p0

Dðp0 → iωnÞ ¼
I

dz
2πi

DðzÞfðzÞ ðA1Þ

with the Fermi distribution function

fðzÞ ¼ 1

eβz þ 1
; ðA2Þ

where the contour integral takes all poles produced by the
Fermi distribution function that are equivalent to the
summation. Deforming the contour to enclose singularities
of DðzÞ, the summation can be completed by summing up
residues of DðzÞfðzÞ over singularities of DðzÞ that

M ¼
X
zi

ResDðziÞfðziÞ: ðA3Þ

For an example, let us consider an expression including
singularities that reads
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IμνðPÞ ¼
Hμνðp0Þ
p2
0 − p2

; ðA4Þ

where Hμν is an arbitrary function. The sum over
Matsubara energy iωn ¼ ð2nþ 1ÞπiT for the fermion is
provided by

T
X
p0

Iμνðp0;pÞ ¼ T
X
p0

Hμνðp0Þ
ðp0 þ pÞðp0 − pÞ

¼
I
C

dz
2πi

HμνðzÞ
ðzþ pÞðz − pÞ

1

eβz þ 1

¼ fð−pÞHμνð−pÞ
−2p

þ fðpÞHμνðpÞ
2p

: ðA5Þ

APPENDIX B: PAULI-VILLARS
REGULARIZATION

The Pauli-Villars (PV) regularization is to replace the
normal propagator by a regularized one by adding sub-
traction terms that contain large mass, i.e.,

SFðPj0Þ − SFðPjMÞ ¼ i
=P
−
X
s¼1

Cs
i

=P −Ms
; ðB1Þ

with Ms the large mass that is going to be infinity after the
integration. The series of PV regularization terms with large
masses are introduced to ensure that all UV divergence can
be removed so that the coefficients Cs in front of each PV
regularization term can be chosen as

X
s¼1

Cs ¼ 1: ðB2Þ

If we define C0 ¼ 1, M0 ¼ 0, the regularized propagator
may be rewritten in a more compact form as

SFðPÞ ¼
X
s¼0

Cs
i

=P −Ms
; ðB3Þ

and the coefficient condition is thus

X
s¼0

Cs ¼ 0: ðB4Þ
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