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Vacuum magnetic birefringence is one of the most interesting nonlinear phenomena in quantum
electrodynamics because it is a pure photon-photon result of the theory and it directly signalizes the
violation of the classical superposition principle of electromagnetic fields in the full quantum theory. We
perform analytical and numerical calculations when an electromagnetic wave interacts with an oscillating
external magnetic field. We find that in an ideal cavity, when the external field frequency is around the
electromagnetic wave frequency, the normal and parallel components of the wave suffer parametric
resonance at different rates, producing a vacuum birefringence effect growing in time. We also study the
case where there is no cavity and the oscillating magnetic field is spatially localized in a region of length L.
In both cases we find also a rotation of the elliptical axis.
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I. INTRODUCTION

Nonlinear effects in the vacuum of quantum electro-
dynamics (QED) were studied soon after the formulation
of QED theory [1], thereby confirming the seminal results
obtained even earlier [2,3]. At leading order in a weak
field expansion, these nonlinear effects arise from micro-
scopic photon-photon scattering processes mediated by
an electron-positron loop featuring four couplings to the
photon field [4–8], also impacting light propagation in
external electromagnetic fields [4–7], and remaining one
of the predictions of QED that has not yet been exper-
imentally corroborated. The verification of this QED
induced effective photon-photon interaction is the major
goal of the PVLAS [9–11], BMV [12,13], and OVAL [14]
experiments. Alternative approaches envision the combi-
nation of x-ray free electron and high-power optical lasers
[15–17]. Apart from the QED effect, these experiments
can also test other effects and new physics, such as axion-
like particles [18–20], millicharged Dirac fermions [21,22],
and scalar particles [23].
In the context of QED, it was shown a long time ago

[7,24,25] that the vacuum speed of light in the presence of
strong magnetic or electric fields differs from its value c at
zero field. Its value—or equivalently the corresponding
refractive index—depends on the polarization of the light
and is different for light polarized parallel and perpendicular

to the external field, giving rise to a birefringence phenome-
non [7,24–29] known as vacuum birefringence (VB). Under
this context, in order to increase the signals produced by
vacuum birefringence effects, large external static magnetic
fields and Fabry-Perot cavities have been implemented in
optical experiments such as BFRT and PVLAS [30].
In this article, we study QED vacuum birefringence in an

oscillating external magnetic field. We analyze the case of a
spatially homogeneous, temporally oscillating magnetic
field confined to a conducting cavity, and also the case
of a spatially localized, temporally oscillating magnetic
field. This article is organized as follows: in the second
section we introduce the effective fourth-order Euler-
Heisenberg-Weisskopf (EHW) Lagrangian of the theory
and the constitutive relations between the fields. In the third
section we consider an oscillating magnetic field in a
conducting cavity, showing the appearance of the phe-
nomenon of parametric resonance. In the fourth section
we study the effects of a temporally oscillating, spatially
localized field without cavity. In the last section we
summarize and discuss the results.

II. EULER-HEISENBERG-WEISSKOPF
EFFECTIVE LAGRANGIAN
AND FIELD EQUATIONS

As was pointed out by Schwinger [1], nonlinear effects
in QED predominate for fields above the critical values for
the electric E ¼ jEj and magnetic B ¼ jBj fields given by
Ecr¼m2

ec3=qeℏ≃1.3×1018V=m and Bcr ≃ Ecr=c, where
me, qe, ℏ stand for the electron mass, the electron charge,
and the reduced Planck constant. For fields well under
these values, Maxwell equations are enough to describe
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electromagnetic phenomena. Maxwell equations can be
derived from the classical Lagrangian L0¼ 1

2μ0
ðE2=c2−B2Þ,

in S.I. units, where μ0 is the magnetic permeability of
the vacuum. For fields below the critical values but big
enough to present nonlinear effects and varying in distances
larger than the Compton wavelength λC ¼ 2πℏ=mec (and,
equivalently, in times bigger than λC=c) [31] it should be
considered the fourth-order effective Lagrangian derived by
Euler, Heisenberg, and Weisskopf [2,3,8]

LEHW ¼ L0 þ
Ae

μ0

��
E2

c2
− B2

�
2

þ 7

c2
ðE · BÞ2

�
; ð1Þ

where the parameter Ae is defined as

Ae ¼
2

45μ0

α2ƛ3

mec2
≃ 1.32 × 10−24 T−2;

where ƛ ¼ λC=2π is the reduced Compton wavelength and
α is the fine structure constant. The displacement vector D
and the magnetizing field H are calculated from the total
effective Lagrangian equation (1) using the constitutive
relations:

D ¼ ∂L
∂E H ¼ −

∂L
∂B ;

giving

D ¼ ϵ0Eþ ϵ0Ae

�
4

�
E2

c2
− B2

�
Eþ 14ðE · BÞB

�

H ¼ B
μ0

þ Ae

μ0

�
4

�
E2

c2
− B2

�
B − 14

�
E
c
· B

��
; ð2Þ

where ϵ0 is the vacuum permittivity.
We consider weak perturbations E, B around some

known configurations of the fields E0, B0 that are restricted
to the case E0, B0 ≪ Ecr, Bcr. More specifically, to simplify
the notation, we use the following identifications: E →
E0 þ E and B → B0 þ B. In this limit we can linearize
Eq. (2) around E0 and B0. In order to reproduce the most
typical conditions [9] we will consider the case where the
external field E0 vanishes, obtaining for Eq. (2):

D¼ ϵ0Eþ ϵ0Ae½−4B2
0Eþ 14ðE ·B0ÞB0�

H ¼ 1

μ0
ðB0 þBÞ− 4Ae

μ0
½B2

0B0 þ 2ðB0 ·BÞB0 þB2
0B�: ð3Þ

These fields fulfill Maxwell equations in vacuum ∂tD ¼
∇ ×H and ∇·D ¼ 0 and the equations can be solved when
knowing the external fields and the boundary conditions.
We consider an electromagnetic wave propagating in

vacuum along the x axis and in presence of an external
magnetic field in z varying in time as B0ðtÞ ¼ B0ðtÞẑ.

In terms of the potentials ϕ and A, the magnetic and electric
fields are defined as E ¼ −∇ϕ − ∂tA and B ¼ ∇ × A,
respectively. In the transversal or Coulomb gauge
(∇ · A ¼ 0) the electric potential is zero in vacuum because
the electrical density charge vanishes [32]. We will not
consider variations of the fields along the y − z plane and
all the dynamics we are interested in are along the
longitudinal axis. Under these assumptions the equation∇ ·
D ¼ 0 becomes B0∂z∂tAz ¼ B0∂t∂zAz ¼ 0 which is iden-
tically satisfied because of the arguments previously
mentioned. We have also ∇2A ¼ ∂xxA. The propagation
along the x axis together with the transversal gauge give the
condition Ax ¼ 0 and the Maxwell equation relating D and
H becomes two decoupled equations for Ay, Az:

∂ttAi þ αiðtÞ∂tAi − βiðtÞ∂xxAi ¼ 0; ð4Þ

for i ¼ y, z and where we have chosen c ¼ 1, and

the definitions αyðtÞ≡ − 8AeB0
_B0

1−4AeB2
0

≈ −8AeB0
_B0, βyðtÞ≡

1−12AeB2
0

1−4AeB2
0

≈ 1–8AeB2
0, αzðtÞ≡ 20AeB0

_B0

1þ10AeB2
0

≈ 20AeB0
_B0, βzðtÞ≡

1−4AeB2
0

1þ10AeB2
0

≈ 1–14AeB2
0, where we kept only terms up to linear

order in AeB2
0. For a time-dependent external magnetic field

of the form B0ðtÞ ¼ b0 cos γt, where γ ¼ 2π=T, both
equations are of the form

∂ttAi− li;1γ sinð2γtÞ∂tAi− ½1− li;2ð1þcosð2γtÞÞ�∂xxAi¼0;

ð5Þ

where i ¼ y, z (no sum over repeated indices). The indices
li;k are given by ly;1¼−ly;2¼−4δ, lz;1 ¼ 10δ and lz;2 ¼ 7δ,
where we have defined the parameter δ≡ Aeb20, which is
small for any realistic magnetic field reachable on earth
allowing us to perform all calculations only to first order in
δ throughout this article.
In the time-independent magnetic field case (γ ¼ 0),

Eq. (5) shows that the speed of light is smaller than c and
differs for light polarized parallel and perpendicular to the
magnetic field. For the perpendicular and parallel polarized
modes of the fields these give us the refractive indices
n⊥ ¼ ffiffiffiffiffiffiffiffiffiffi

1=βy
p

and nk ¼
ffiffiffiffiffiffiffiffiffi
1=βz

p
, respectively,

n⊥ ≈ 1þ 4Aeb20

and

nk ≈ 1þ 7Aeb20:

This is the known magnetic birefringence Δn ¼ nk − n⊥ ¼
3Aeb20 [6,24,25].
In order to explore the effect of an oscillating magnetic

field let us consider the case where the field is confined to a
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conducting cavity and there is an initially linearly polarized
electromagnetic wave coming into the cavity.

III. OSCILLATING MAGNETIC FIELD
IN A CAVITY

In this section, we will consider a modulation of period T
of the external field. In this way, the coefficients of Eq. (4)
become periodic functions as αiðtþ TÞ ¼ αiðtÞ and
βiðtþTÞ¼βiðtÞ, where αiðtÞ ≪ 1 and βiðtÞ ≈ 1þ βi;sðtÞ,
with βi;sðtÞ ≪ 1. When considering the field in a con-
ducting cavity of length L and imposing that fields vanish
at the boundary of it we are able to decouple the spatial
from the temporal part. The field equations are those of
standing waves of the parametrical oscillators type. By
doing the factorization Aiðx; tÞ ¼

P∞
n¼1 gi;nðtÞ sinωnx,

with ωn ¼ nπ
L , n ∈ N, we impose the condition for standing

waves. This give us the resonance frequencies of the cavity.
With one of such frequencies the external light wave
(usually a laser field) should be tuned [11]. The temporal
part for both components of A becomes

d2gi;n
dt2

þ αiðtÞ
dgi;n
dt

þ ω2
i;nðtÞgi;n ¼ 0; ð6Þ

where we have defined αiðtÞ ¼ −li;1γ sin 2γt and ω2
i;nðtÞ ¼

ω2
n½1 − li;2ð1þ cos 2γtÞ�. This equation can be transformed

using the change of variables qiðtÞ ¼ expðDiðtÞÞgi;nðtÞ
with DiðtÞ ¼ 1

2

R
t αiðτÞdτ, giving

d2qi
dt2

þ Ω2
i;nðtÞqi ¼ 0; ð7Þ

whereΩ2
i;nðtÞ¼ω2

i;nðtÞ−1
2
ðα2i
2
þdαi

dt Þ.Consideringδ≪1wehave

Ω2
i;nðtÞ≈ω2

i;nðtÞ−1
2
dαi
dt ¼ω2

nð1−li;2Þ−ðli;2ω2
n−li;1γ2Þcos2γt.

The factor 2 in the argument of the cosine indicates to us that
the resonancemust be in a neighborhood ofωn and not around
twice the natural frequency of the oscillator as in the usual
parametric resonance. This fact comes from the squares of
magnetic fields in Eq. (4). Following Landau [33], we define
γ ¼ ωn þ ϵ=2. In thisway, the relationbetweendetuning ϵ, the
period T, and the length L of the cavity is given by
ϵ ¼ 2πð2=T − n=LÞ. With this definition, we can explicitly
write

d2qi
dt2

þ ω̄n½1þ hi cosð2ω̄i;ntþ ϵ̄itÞ�qi ¼ 0; ð8Þ

where ω̄i;n¼ωnð1−li;2=2Þ, ϵ̄i¼ϵþωnli;2 andhi¼ðli;1−li;2Þ.
Equation (8) is known to have parametric resonance when

− jhijω̄i;n

2
< ϵ̄i <

jhijω̄i;n

2
. Theωn dependence of ϵ̄i is responsible

for the fact that the resonance is not exactly around ωn but
asymmetrical, which is a particularity of the equations.
The resonance region of the detuning ϵ around the original
frequency ωn becomes

−
�
li;2þ

jli;1−li;2j
2

�
ωn <ϵ<−

�
li;2−

jli;1− li;2j
2

�
ωn: ð9Þ

Explicitly, the resonance regions for each component of A are

−8 <
ϵ

δωn
< 0; for Ay; ð10Þ

−8.5 <
ϵ

δωn
< −5.5; for Az; ð11Þ

where ϵ=ωn ¼ 2ð2L=nT − 1Þ. For ϵ inside the resonance
region the exponential growth of the fields is given by

si ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhiω̄i;n=2Þ2 − ϵ̄2

q
. The resonance conditions

and the exponential growth of the envelope can be tested
numerically measuring the behavior of the fields in time. The
predicted regions and exponential growths are in good accord
with the numerical simulations of the original field equations in
time, Eq. (6), where we can estimate the exponential growth

parameter as si ¼ limt→∞
lnEiðtÞ

t ; see Fig. 1. As we can see in
Fig. 1 there is a region where both components resonate
although at different rates, being the resonance bigger for Ay,
which is the component of the potential vector perpendicular to
the external field. There is also a tiny regionwhere there is only
resonance in Az and a bigger one where the resonance is only
along the Ay. In any case, the resonance is more remarkable
around y.
From now on we will consider the complex notation for

fields, in which the actual fields have be understood as the
real part of the complex ones [32]. In the present case, the
fields are separable and the temporal part of the electric
field is EðtÞ ¼ − ∂AðtÞ

∂t . Its components at t ¼ 0 can be
written as Eið0Þ ¼ E0;i where E0;i ¼ jE0;ijeiφi is the com-
plex amplitude, φi is the initial phase of each component of

FIG. 1. We plot the analytical [black continuous line, see
formula after Eq. (11)] and numerical exponent (green for Ay

and red for Az) si ¼ limt→∞
lnEiðtÞ

t versus ϵ in units of δωn [see
Eqs. (10) and (11)].
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the electric field and i is the imaginary unit. These phases
turn out to be the same for both components of the
electric field when the initial electromagnetic wave is
linearly polarized, which is the case in the present work.
So, φi ¼ φ.
The analytical solution for each component of A in the

resonance region can be found using a multiscale ansatz
supposing that the solution has two different scales of
temporal variation: the fast scale is an oscillator of
frequency γ with an envelope aðtÞ variating at a bigger
temporal scale [33]; in other words, j _aðtÞj ≪ γjaðtÞj.
Explicitly, AiðtÞ ¼ aiðtÞeiγt, where γ is defined as it was
done previous to Eq. (8). Inserting this ansatz in Eq. (8),
we find that the solution for the complex amplitude is
aiðtÞ ¼ ci coshðsitÞ þ 1

2isi
ðϵci − ωnhi

2
c�i Þ sinhðsitÞ, where ci

is a complex constant related with the initial conditions as
ci ¼ iE0;i=γ. In this way, the explicit form of the envelope is

aiðtÞ¼
E0;i

γ

�
icoshðsitÞþ

1

2si

�
ϵþωnhi

2
sinhðsitÞ

��
: ð12Þ

This turns out to be the main result of this article: the
parametric resonance effect with growing at different rate
for each component of the field. This effect can be seen
when the quantity sit is bigger than one.
An important point to take into account in the case of a

nonperfect cavity is the damping in the walls. This damping
can be parametrized by a dissipative operator 2λQ∂t in the
equations of motion, where λQ is related with the quality
factor Q of the cavity by λQ ¼ ωn=ð2QÞ [33]. This
modifies the resonant solution of the electromagnetic field
by a factor e−λQt [33], meaning that we have a competition
between dissipation and resonance. The resonance in the
components i ¼ y or i ¼ z can be seen if

Q >
2

hi
:

A. Linear approximation

Let us consider now the limit in which sit < 1. We
approximate until the first order in sit, explicitly finding the
electric field in each direction i as

Eiðx; tÞ ¼ E0;i

�
1 −

i
2

�
ϵþ hiωn

2
e−2iφ

�
t

�
eiωnt sinðωnxÞ:

ð13Þ

From the Stokes parameters S0 ¼ jEyj2 þ jEzj2, S1 ¼
jEyj2 − jEzj2, S2 ¼ 2ReðE�

yEzÞ and S3 ¼ 2ImðE�
yEzÞ, the

angle of polarization ζ, the ellipticity angle ψ and the
ellipticity e are given by tan 2ζ ¼ S2=S1, sin 2ψ ¼ S3=S0
and e ¼ arctanψ , respectively. For small changes in
amplitude and phase, using the relation Δh ¼ hz − hy ¼
11Δn=3, from Eq. (13) these geometrical factors are

ζ ¼ 11

24
sin 2θ0 sin 2φΔnωt ð14Þ

e ¼ 11

24
sin 2θ0 cos 2φΔnωt; ð15Þ

where θ0 is the initial angle with the z axis. As we can see,
the rotation of the principal axes of the ellipse is growing in
time, which is a particularity of the resonance effect and it is
commonly attributed to dichroism. In the context of the
biquadratic Lagrangian theory we are using here, dichroism
was predicted also for electromagnetic waves in the
presence of a strong electric field [34,35]. In this special
case, dichroism could be attributed to the parametric
resonance due to the oscillation of the external field instead
of the threshold of pair creation.
Putting the linear approximations, Eqs. (14) and (15), in

the function of the long wave λ ¼ 2πc=ωn and ct ≈ NL,
where N is the number of reflections of the wave in the
cavity, we found for the maximum value of ellipticity and
rotation (θ0 ¼ π=4, φ ¼ 0, π=4):

emax ¼ ζmax ¼
11π

12

LΔn
λ

N; ð16Þ

where the ellipticity turns to be very close to the value
expected in the PVLAS experiment [10,11]. This confirms
that in this regime, where the parametric resonance effect is
small, we recover the behavior of the static case.

IV. SPATIALLY LOCALIZED OSCILLATING
MAGNETIC FIELD

We now consider the situation in which there is an
oscillating magnetic field of frequency γ, localized in a
spatial region ranging from x ¼ 0 to x ¼ L and no cavity
limiting the propagation of the electromagnetic wave. In
order to take into account the range of validity of the theory,
mentioned in the Introduction, following Ref. [36], we
consider a spatial magnetic field profile given by a smooth
step function where the width of variation is a ≫ λC as

b0ðxÞ ¼
1ffiffiffi
2

p
�
erf

�
x
a

�
− e

�
x − L
a

��1
2

:

This dimensionless magnetic field has the interesting
property that

R
∞
−∞ b20ðxÞdx ¼ L, that is to say, the energy

density remains independent of a. In this way, the external
magnetic field is B0ðx; tÞ ¼ B0b0ðxÞ cosðγtÞẑ. The way to
proceed is expanding each component of the potential

vector as Aiðx; tÞ ¼ Að0Þ
i þ Að1Þ

i þ � � � order by order in the
parameter δ and then solving the partial differential
equation order by order. Considering the different orders
in δ, the linear equation (4) can be written as

Lðx; tÞAiðx; tÞ ¼ Biðx; tÞAiðx; tÞ; ð17Þ
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where Lðx; tÞ ¼ ð∂tt − ∂xxÞ is the one-dimensional wave
equation operator and the right-hand side is first order in δ
with the operator Biðx; tÞ defined as

Biðx; tÞ ¼ b20ðxÞ½li;1γ sinð2γtÞ∂t − li;2ð1þ cosð2γtÞÞ∂xx�:
ð18Þ

The solution of the zeroth order is a free wave

Að0Þ
i ðx; tÞ ¼ aieiωðx−tÞ that we interpret as the incident

electromagnetic wave traveling from left to right. At first
order, the rhs of Eq. (17) becomes

Biðx; tÞAð0Þ
i ðx; tÞ ¼ b20ðxÞ½ηi;0eiðωx−Ω0tÞ þ ηi;þeiðωx−ΩþtÞ

þ ηi;−eiðωx−Ω−tÞ þ c:c�; ð19Þ

where we define ηi;0 ¼ aili;2ω2, ηi;� ¼ ai
2
ωðωli;2 � γli;1Þ,

Ω0 ¼ ω, Ω� ¼ ω� 2γ. As was done in previous work
studying localized magnetic fields [37–39], we use the
Green function of the one-dimensional wave function
operator Gðx − x0; t − t0Þ ¼ 1

2
θðt − t0 − jx − x0jÞ and the

first order of Aiðx; tÞ becomes

Að1Þ
i ðx; tÞ ¼

Z
dx0

Z
dt0Gðx− x0; t− t0ÞBiðx0; t0ÞAð0Þ

i ðx0; t0Þ:

ð20Þ

The solution is threefold according to the three regions of
propagation. The complete solutions in the external regions
where there is no external magnetic field are shown in the
Appendix. In the static external magnetic field case, the
solution for x < 0 has not relevant contribution compared
to the x > 0 region, which is the usual scenario in magnetic
birefringence tests. These results can be found by perform-
ing the limit γ → 0 in Eqs. (A6) and (A7). The ellipticity in
the static case is

e> ¼ 3

4
sin 2θ0δωL: ð21Þ

On the other hand, in the dynamical case, we found in the
region x < 0, Eq. (A6), a back wave (reflected wave)
propagating in the opposite sense of the incident light. The
first order correction of this wave has resonance in a
neighborhood of ω and its amplitude grows according to
the size of L. From Eq. (A6), for γ ¼ ωþ ϵ=2, with ϵ ≪ ω,
the relevant term is the one with ηi;− and it is

Að1Þ
i;<ðx; tÞ ≈ −

ω2hiaie−
a2ϵ2
4

4

�
e−iϵL − 1

ϵðωþ ϵÞ
�
eiðωþϵÞðxþtÞ:

The value of hi is different for each component of A and
it produces the birefringence effect. This leads to an
ellipticity given by

e< ¼ 11

4
sin 2θ0δ

�
ωL
2

�
2 sinΔ
ΔðΔþ ωL=2Þ cos ξðx; tÞ: ð22Þ

Since ϵ ≪ ω and Δ ≪ 1, Eq. (22) is e< ≈ 11
8
sin 2θ0δωL,

which shows that the reflected ellipticity in the time-
dependent magnetic field case is as important as the
transmitted one in the static case, Eq. (21). This is not
found in the constant magnetic field case. On the other
hand, we also find a rotation of the ellipse:

ζ< ¼ 11

4
sin 2θ0δ

�
ωL
2

�
2 sinΔ
ΔðΔþ ωL=2Þ sin ξðx; tÞ; ð23Þ

where ξðx;tÞ¼ð2ωþϵÞxþϵt−ϵL=2þ2φ and Δ ¼ ϵL=2.
The amplitude of these observables has a maximum when
ϵ ¼ −12=ðωL2Þ. It is interesting to note that the geomet-
rical factors’ ellipticity and rotation do not depend on a
because its definitions consider the ratio of S0, S1, S2 which
are all quadratic in fields and share the factors depending on
a, [see the formulas after Eq. (13)].
The transmitted wave has the regular birefringence effect

as in the static magnetic field equation (21) but reduced by
a factor 2.

V. SUMMARY AND DISCUSSION

In this paper we have calculated the leading order
vacuum birefringence effect predicted by quantum electro-
dynamics when the external magnetic field is an harmonic
time-dependent field. In one spatial dimension and working
in the Coulomb gauge, the fields equations for the vector
potential become decoupled and can be solved in a spatially
localized external magnetic field either confined to a cavity
or restricted to an interval of finite length.
In the cavity case, we found that the equations are those

of a parametric oscillator, that is to say, the fields perform
exponential growth but a different rate in each component.
The region of resonance is asymmetrical in the detuning
and around ωn and not around 2ωn as in the usual
parametric resonance. We compute the ellipticity in the
linear case (sit < 1), finding that it is proportional to the
reflexions N as in the static case. In the same limit, we also
find a rotation of the elliptical axis, which is a new effect.
When considering the no-cavity and space-localized

harmonic magnetic field we found a resonant reflected
wave for both components of the vector potential. We have
found an ellipticity and rotation of the polarization that is
proportional to L, where rotation is a particular effect of the
dynamical case. For the transmitted wave we found that the
ellipticity is reduced by a factor 2 with respect to the static
case and no rotation has been found.
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APPENDIX: EXPLICIT SOLUTIONS
OSCILLATING LOCALIZED

MAGNETIC FIELD

At first order Aiðx; tÞ ≈ Að0Þ
i þ Að1Þ

i . The integration in
the time of Eq. (20) gives a solution with three terms, which
have the form

Að1Þ
i;j ðx;tÞ¼

ηi;j
2

Z
∞

−∞
dx0eiωx0b20ðxÞ

Z
t−jx−x0j

−∞
dt0e−iΩjt0 ; ðA1Þ

where j can be þ;−; 0 as it was defined below Eq. (19).

With these definitions Að1Þ
i ¼ Að1Þ

i;0 þAð1Þ
i;þ þAð1Þ

i;−. Each
one of these terms can be simplified as

Að1Þ
i;j ¼ iηi;j

2Ωj
½eiΩjðx−tÞIT;jðxÞ þ e−iΩjðxþtÞIR;jðxÞ�; ðA2Þ

where ITðxÞ and IRðxÞ represent weight functions for the
transmitted and the reflected wave and are defined as

IT;jðxÞ ¼
Z

x

−∞
dx0eiðω−ΩjÞx0b20ðx0Þ;

and

IR;jðxÞ ¼
Z

∞

x
dx0eiðωþΩjÞx0b20ðx0Þ:

Indeed, excluding the inner region 0 < x < L, the values of
IT;jðxÞ and IR;jðxÞ are different from zero only when x > L
and x < 0, respectively.
In order to capture the important facts of Eq. (A2) we

consider the indefinite integral

IαðxÞ ¼
Z

dxeiαxb20ðxÞ

¼ 1

2α

�
ieiLα−

a2α2
4 erf

�
2Lþ ia2α − 2x

2a

�

− ieiαxerf
�
L − x
a

�
− ieiαxe

�
x
a

�

− ie−
a2α2
4 e

�
iαa
2

−
x
a

��
; ðA3Þ

for any α ∈ ℜ. This function drops rapidly to a constant
value with respect to x outside the magnetic field region, as
expected from the localization of the function b0ðxÞ. The
numerical evaluation of the functions IT;j and IR;j show that
the important contributions come from the region around
α ¼ 0 and their maximum values are proportional to L, as
is shown in Fig. 2 for different L.
The analytical behavior of Eq. (A3) for its asymptotic

values is found using the relation limx→�∞eðxþ icÞ ¼ �1,
for any c ∈ ℜ which implies

IR;jjx→−∞ ¼ IT;jjx→∞ ¼ ie−a
2α2=4

�
1 − eiαL

α

�
; ðA4Þ

and

IR;jjx→∞ ¼ IT;jjx→−∞ ¼ 0; ðA5Þ

which is in accord with the results in Ref. [36]. The
asymptotic value of IαðxÞ is reached just at a distance
of order a outside the magnetic field localization. For
small a we can analytically calculate all the components of

the Að1Þ
i;j ðx; tÞ. Replacing the asymptotic values of Iα in

Eq. (A2), we can explicitly find the reflected and trans-
mitted field. We are mainly interested in the fields out of the
magnetic field region. For x ≤ 0 the correction becomes

Að1Þ
i;< ¼ ηi;0e−ðaωÞ

2

4ω2
½e2iωL − 1�e−iωðxþtÞ

þ ηi;þe−a
2ðωþγÞ2

4ðωþ 2γÞðωþ γÞ ½e
2iðωþγÞL − 1�e−iðωþ2γÞðxþtÞ

þ ηi;−e−a
2ðω−γÞ2

4ðω − 2γÞðω − γÞ ½e
2iðω−γÞL − 1�e−iðω−2γÞðxþtÞ;

ðA6Þ

while in the x > L region it yields

Að1Þ
i;> ¼ ηi;0

iL
2ω

eiωðx−tÞ −
ηi;þe−ðaγÞ

2

4γðωþ 2γÞ ½e
−2iγL − 1�eiðωþ2γÞðx−tÞ

þ ηi;−e−ðaγÞ
2

4γðω − 2γÞ ½e
2iγL − 1�eiðω−2γÞðx−tÞ: ðA7Þ

These equations can be worked out to find the maximum
values of the transmitted and reflected wave (see main text)

FIG. 2. Behavior of IT and IR as function of α in their
asymptotic region (x → ∞ for IT and x → −∞ for IR for different
values of L ¼ 5, 10, 15. The maximum values of the functions are
reached for α ¼ 0 and are equal to L.
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and they are valid for any external frequencies except in the
singular case γ ¼ ω=2where the source has a term with no-
temporal dependence.
In the limit a → 0, the function b0ðxÞ → ΘðxÞΘðL − xÞ;

in that case Eq. (A4) becomes

I0T;jjx→∞ ¼ I0R;jjx→−∞ ¼ i

�
1 − eiαL

α

�
: ðA8Þ

In order to determine the relevance of the parameter a, we
can define the coefficient R ¼ ðI0 − IÞ=I0, which says how

close the reflected intensities are in the discontinuous and
continuous magnetic field cases. From Eq. (A8) and the
definition of R, we find

R ¼ 1 − e−a
2α2=4 ≈

a2α2

4
: ðA9Þ

For instance, for the reflected wave, the important contribu-
tion isA−, and thereforeα ¼ −ϵ. ImposingR ≪ 1 inEq. (A9)
we find that the discontinuous case is a good approximation
when the detuning fulfils the relation ϵ ≪ 1=a.
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