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We study electron-positron pair creation by a strong and constant electric field superimposed with a
weaker transversal plane wave which is incident perpendicularly (or under some angle). Comparing the
fully nonperturbative approach based on the world-line instanton method with a perturbative expansion into
powers of the strength of the weaker plane wave, we find good agreement—provided that the latter is
carried out to sufficiently high orders. As usual for the dynamically assisted Sauter-Schwinger effect, the
additional plane wave induces an exponential enhancement of the pair-creation probability if the combined
Keldysh parameter exceeds a certain threshold.
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I. INTRODUCTION

As one of the most striking consequences of quantum
field theory, extreme external conditions can tear apart
quantum vacuum fluctuations and thereby create real
particles. Already in 1939, Schrödinger predicted that
the rapid expansion of the Universe could induce such a
process [1]. As another example, the strong gravitational
field around a black hole can tear apart quantum vacuum
fluctuations leading to Hawking radiation, i.e., black hole
evaporation [2,3]. In analogy to the gravitational force, a
strong electric field can have a similar effect and create
electron-positron pairs out of the quantum vacuum—the
Sauter-Schwinger effect [4–7]. For a constant electric field
E, the pair creation probability (per unit time and volume)
scales as (ℏ ¼ c ¼ 1)

Peþe− ∼ exp

�
−π

m2

qE

�
; ð1Þ

where q and m are the elementary charge and the mass of
the positron/electron, respectively.
Unfortunately, this fundamental prediction of quantum

field theory has not been directly verified experimentally yet
because the required field strength is very large. This
motivates the quest for ways to enhance the pair-creation
probability or, equivalently, to lower the required field
strength. One option is the dynamically assisted Sauter-
Schwinger effect [8–14], where the pair-creation probability

is strongly enhanced by adding a weaker time-dependent
field to the strong field E. So far, most studies of this
enhancement mechanism have been devoted to purely
time-dependent fields [15].
As a step towards a more realistic field configuration, we

consider a propagating plane wave superimposed to the
constant field E in the following. Plane waves propagating
parallel to the constant electric field were already considered
in [17–20], for example. It was found that such transversal
planewavesdonot enhance the pair creationprobability [18].
Further, for longitudinal parallel waves, Ezðtþ zÞ, the pair
creation probability is given by the locally constant field
approximation [21–23], which implies that the enhancement
is comparably small. Both results can be understood by
considering a Lorentz boost along the direction of the strong
field which leaves the strong field invariant but reduces the
frequency of the plane wave, see also [24]. In the transversal
case, the field strength of the plane wave is reduced as well
while the longitudinal wave retains its field strength.
In contrast to the parallel scenarios discussed in [18–23],

we consider the case of a transversal plane wave propa-
gating perpendicular to the strong field E

Eðt; xÞ ¼ Eez þ εE cosðΩ½t − x�Þez; ð2Þ
corresponding to the vector potential (in temporal
gauge) Azðt; xÞ ¼ Etþ εE sinðΩ½t − x�Þ=Ω.
This scenario has several advantages: since such a

transversal wave cannot create electron-positron pairs on
its own (due to a similar Lorentz boost argument as above),
pair creation can only occur in cooperation with the strong
field E, which retains the nonperturbative character of this
effect. Furthermore, the above profile (2) represents a
vacuum solution to the Maxwell equations and could be
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a reasonable approximation for an experimental setup
where E represents the focus of an optical laser while the
plane wave is generated by an x-ray free-electron laser
(XFEL). Finally, we found that this scenario (2) yields the
maximum enhancement of the pair creation probability.
Other profiles, polarizations and propagation directions will
be discussed below in Sec. III andAppendixA.Note that this
profile (2) was already considered in [25] using first-order
perturbation theory in ε, whereas we are going to consider
higher orders as well as a fully nonperturbative approach.

II. PERTURBATIVE APPROACH

At first, we employ a perturbative expansion of the total
pair creation probability Peþe− in powers of the relative
strength ε of the plane wave, which is supposed to be small
ε ≪ 1

Peþe− ¼
X∞
N¼0

εNPN; ð3Þ

where the contributionsPN can be derived via theworld-line
formalism, for an introduction see [26,27] and references
therein. The zeroth order N ¼ 0 reproduces the original
Sauter-Schwinger effect in Eq. (1), and odd orders vanish in
this situation (but not always [28]).
The lowest-order term N ¼ 2 corresponding to the one-

photon contribution has already been calculated in [25].
Deriving the exponential dependence for the higher-order
terms, it turns out that the exponent for two photons
(N ¼ 4) with frequency Ω is the same as that for a single
photon (N ¼ 2) with twice the frequency 2Ω, and so on for
more photons (see Appendix A).
Consequently, we find

PN ∼ exp

�
−
2m2⊥
qE

ðarccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð4Þ

where the function of Σ in the exponent is already known
from [14]. The effective mass m⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðNΩ=4Þ2

p
reflects momentum conservation in x-direction, where
the momentum NΩ=2 of the N=2 photons has to be
transferred to the electron-positron pair. As a result, the
effective mass m⊥ is higher than the original mass m, and
hence the pair creation probability is lower than in the case
of a purely time-dependent field. Finally, Σ describes the
relative contribution of the energy of the N=2 photons in
comparison to the effective mass gap 2m⊥

Σ ¼ NΩ=2
2m⊥

¼ NΩ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðNΩ=4Þ2

p : ð5Þ

In the limit of Ω↓0, i.e., Σ↓0, where m⊥↓m, we recover
Eq. (1), as expected.

A. Dominant order

Inspecting the terms in the sum (3) we find that the
prefactors εN decrease as N increases (due to ε ≪ 1) while

the exponentials in PN grow according to Eq. (4). As a
result, there could be a dominant order N� which yields the
maximum contribution to the sum (3). In order to study this
question, we approximately treatN as a continuous variable
and apply the saddle point method to the term εNPN , i.e.,

d
dN

�
−Nj lnεj−2m2⊥

qE
ðarccosΣ−Σ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−Σ2

p
Þ
�
¼ 0: ð6Þ

This yields the dominant order N� as solution of the
transcendental equation

1 −
N�Ω
4m

arctan
4m
N�Ω

¼ qE
mΩ

jln εj ¼ γcrit
γ

; ð7Þ

where we have introduced the (combined) Keldysh param-
eter γ ¼ mΩ=ðqEÞ and its threshold γcrit ¼ j ln εj. We only
obtain real solutions N� if the right-hand side is less than
unity, i.e., if γ exceeds the threshold γcrit. At the threshold,
γ ¼ γcrit, we find N� ¼ 0 which implies the original
Schwinger result (1). For γ>γcrit and Ω ≪ m, however, the
dominant order N� can be quite large (which justifies
the continuum approximation). For example, for γ ¼ 3γcrit,
the dominant order N� scales as N� ∼m2=ðqEj ln εjÞ which
can be a large number for electric fields E well below the
Schwinger limit ES ¼ m2=q.
In the limit γ=γcrit ≫ 1, we may approximate the solution

of the transcendental equation (7) via

N�ðγ ≫ γcritÞ ≈
4m
Ω

ffiffiffiffiffiffiffiffiffiffi
γ

3γcrit

r
; ð8Þ

which will also be a large number unless the frequency Ω
far exceeds the electron mass m. Inserting this approximate
solution for the dominant order N� back into the exponent
(4), we find

Peþe− ∼ exp

�
−8

m2

qE

ffiffiffiffiffiffiffi
γcrit
3γ

r �
: ð9Þ

In contrast to the dynamically assisted Sauter-Schwinger
effect with a purely time-dependent field, we see that the
exponent still crucially depends on the strong field E,
which demonstrates the nonperturbative character of
this effect even for γ=γcrit ≫ 1. As mentioned in the
Introduction, this is a consequence of the fact that a plane
wave alone cannot create electron-positron pairs out of the
vacuum.

B. Improved approximation

In the following, we try to improve the accuracy of the
approximation outlined in the previous section. The above
estimate of the leading order N� was based on the
competition between the factor εN and the exponent (4).
However, the prefactor in front of this exponent will also
depend on N and thereby slightly modify the scaling
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with N. Thus, in order to improve our approximation, we
make an educated guess for the scaling of that prefactor with
N. Obviously, each additional power of ε must be accom-
panied by a factor of qE since this governs the coupling to
the fermionic field. Recalling the structure of the QED
interaction (vertex) term ψ̄qAμγ

μψ , it seems quite reason-
able to suppose a scaling with εqE=Ω since Aμ ∝ E=Ω.
Finally, in view of dimensionality arguments, we arrive at
the following rough estimate for the scaling of the prefactor:

εNPN ∼
�
ε
qE
mΩ

× const
�

N

× exp

�
−
2m2⊥
qE

ðarccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð10Þ

where const is a (so far undetermined) constant—or, more
precisely, a factor which should only weakly depend on the
involved parameters.
The saddle point of the above expression gives a slightly

shifted dominant order N� as a solution of the transcen-
dental equation with a modified right-hand side

1 −
N�Ω
4m

arctan
4m
N�Ω

¼ qE
mΩ

���� ln
�
ε
qE
mΩ

× const

�����: ð11Þ

Comparison with fully nonperturbative results obtained
with the world-line instanton method as described in
Sec. IV shows that this modification is indeed an improve-
ment of our approximation and leads to good agreement,
see Figs. 1 and 2.

III. OTHER DIRECTIONS

So far, we have considered the case of perpendicular
incidence and a plane wave with the electric field compo-
nent parallel to the strong field (2), which yields the
maximum enhancement. Now let us briefly discuss more
general angles

20 40 60 80 100

1.5

2.0

2.5

3.0

f( )

20 40 60 80 100

1.5

2.0

2.5

3.0

f( )

FIG. 1. Plot of the exponent of the pair-creation probabilityPeþe−

as a function of γ for perpendicular incidence and parallel polari-
zation (2)with ε ¼ 10−2 (top) and ε ¼ 10−3 (bottom). The exponent
has been multiplied by qE=m2, i.e., the plot shows fðγÞ such that
Peþe− ∼ expf−fðγÞm2=½qE�g. The circles represent the numerical
world-line instanton results from Sec. IV, and the dashed curve
corresponds to the large-γ approximation in (9). The solid curve
shows the result of our improved analytical approximation obtained
by inserting the dominant order N� from Eq. (11) into Eq. (4). The
constant factor in Eq. (11) has been chosen in order to match the
world-line instanton results, which gives a factor of 8 for ε ¼ 10−2

(top) anda factor of9.5 forε ¼ 10−3 (bottom).With thesevalues,we
observe good agreement between our improved analytical approxi-
mation and the numerical world-line instanton results.

f( )

FIG. 2. Same as Fig. 1, but for perpendicular polarization e⊥P as
discussed in Sec. III. Again, the constant factor in Eq. (11) is
obtained by fitting and gives 1.9 for ε ¼ 10−2 (top) and 2 for
ε ¼ 10−3 (bottom). We observe that perpendicular polarization
yields a lower pair-creation probability Peþe−.
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Eðt; rÞ ¼ Eez þ εE cosðΩt − K · rÞeP; ð12Þ

where the corresponding vector potential reads A0 ¼ 0 and
Aðt; rÞ ¼ Etez þ εEeP sinðΩt − K · rÞ=Ω. Without loss of
generality, we may set K ¼ Kkez þ K⊥ex where K⊥ ≥ 0.
The polarization vector eP obeys K · eP ¼ 0, for example
e⊥P ¼ ey.
Inserting this more general field profile (12), we obtain

formally the same results as in the previous section with Ω
being replaced by K⊥. Since the enhancement of the pair-
creation probability is monotonic in Ω (i.e., now K⊥), we
see that the perpendicular case with Kk ¼ 0 and K⊥ ¼ Ω is
indeed optimal, see also [25].
Note that, while the exponents do not depend on the

polarization vector eP, the prefactors do depend on eP,
cf. [25], which can also generate a slight polarization
dependence of the dominant order N� via the constant
factor in (11). This is consistent with the results of the next
section, which show that the world-line instantons, and
their actions do also depend on the polarization vector eP.

IV. WORLD-LINE INSTANTONS

We can express the probability for pair creation using the
vacuum persistence amplitude h0outj0ini and thus the
effective action Γ with h0outj0ini ¼ eiΓ

Peþe− ¼ 1 − jh0outj0inij2 ¼ 1 − e−2ℑΓ ≈ 2ℑΓ: ð13Þ
The world-line instanton method is a semiclassical evalu-
ation of the world-line path integral for the Euclidean
effective action [29–31] (Euclidean because we replace
time by imaginary time x4 ¼ it, it is related to the
Minkowskian quantity by Γ ¼ iΓE [31]),

ΓE ¼
Z

∞

0

dT
T

e−
m2

2
T

Z
DxðτÞΦ½x�

× exp

�
−
Z

T

0

dτ

�
_x2

2
þ iqAE · _x

�	
; ð14Þ

where the paths xðτÞ are (in general four-dimensional)
closed trajectories parametrized by the proper time τ with a
period T, AE

μðxðτÞÞ is the Euclidean four-potential evaluated
on the trajectory and

Φ½x� ¼ 1

2
trΓPe

1
4

R
T

0
dτσμνiqFE

μνðxðτÞÞ ð15Þ

is the spin factor with σμν ¼ 1
2
½γμ; γν�, trΓ denoting the trace

over spinor indices and Pe… the path ordered exponential.
In this section we will only work with Euclidean quantities,
so we omit the superscript E for brevity.
A saddle point evaluation for both the T- and the path

integral consists of finding periodic solutions that satisfy the
Euler-Lagrange equations corresponding to the exponent in
(14), that is,

mẍμðτÞ ¼ aqiFμνðxðτÞÞ_xνðτÞ; a2 ¼ _x2 ¼ const; ð16Þ

and evaluate their action which gives the exponential
dependence of the pair production rate. The subleading
prefactor is given by quadratic fluctuations around such
solutions. For simple fields, iFμν is real (the Euclidean
potential is purely imaginary) and (16) can often be restricted
to a 2D-plane, sometimes even solved analytically [30,31].
In slightly more complicated fields, solutions can be
found using a shooting method, numerically integrating (16)
using initial conditions that are varied until the periodicity
condition is met [32]. This is not feasible here, as the
instantons are genuinely three-dimensional in the parallel
polarization case and four-dimensional for other polariza-
tions. Furthermore, they are not even purely real: we choose
the Euclidean four potential (for parallel polarization)

iA4 ¼ Ex3; iA3 ¼ i
εE
Ω

sin ðΩðx1 − ix4ÞÞ: ð17Þ

Without the x1-dependence, this would give real instanton
equations (as considered in [12,33]), but in this case real and
imaginary parts mix, see Fig. 3.
To robustly find instantons and evaluate both the

exponent and the prefactor in such fields, we employ a
method that will be discussed in detail elsewhere [34] and
only provide the basic ideas here. Instead of a numerical
integration of (16) (arising in a saddle point approximation

–0.5
0.0

0.5Im(x1)
–1.0

–0.5

0.0

0.5

1.0

x3–1.0

–0.5

0.0

0.5

1.0

x4

FIG. 3. Worldline instantons (in units of m=qE) for the case of
parallel polarization with ε ¼ 10−2 and γ ¼ mΩ=qE ranging
from 0 to 15. The purple circle in the x1 ¼ 0-plane is the circular
instanton in the limit γ → 0. For increasing values of γ the
instantons shrink (predominantly in the x3-direction) and rotate in
the ℑðx1Þ − x4-plane.
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of the continuous path integral), we discretize the paths in
(14) into N points from the beginning and perform the
saddle point method on the resulting N × d-dimensional
integral, where d is the number of space-time dimensions.
The equations of motion (16) are then replaced by a system

of N × d nonlinear equations in N × d unknowns, which
can be solved efficiently using a Newton-Raphson scheme,
provided we choose a sufficiently close initial guess. In our
case, the γ → 0 limit corresponds to a static, homogeneous
field so we can start with the known circular instanton, solve
for the instanton at a small, finite γ and use that as initial guess
for the next value. This process is called natural parameter
continuation [35] and is essentially what was used in [36].We
can improve on this using a more sophisticated predictor-
corrector algorithm, also detailed in [34].
Note that the question of whether instanton solutions

exist for a given (and possibly complicated) field configu-
ration can be nontrivial. Here, we address this issue by
starting with a known instanton solution and then changing
the parameters gradually. Then, via analyticity arguments,
one would expect continuously modified instanton solu-
tions to exist—unless one hits a critical point in parameter
space where the instanton develops a singularity. (For
example, if the electrostatic potential difference drops
below the mass gap, the instanton grows infinitely large
and pair creation stops.) In the present case, one does not
encounter such difficulties, and we have found instanton
solutions for all considered parameters.
Having found instantons for different values of the

Keldysh parameter γ we can evaluate the instanton action
to obtain the leading exponential contribution to the effective
action.We can also evaluate the prefactor, which is just given
by the inverse square root of the Hessian matrix H. We do
need to regularize zero modes arising in the integral, due to
reparametrization and translational invariance. We deal with
them using the Faddeev-Popov method [37,38], exponenti-
ating the Dirac delta function, which modifies the Hessian to
remove zero eigenvalues (details, again, in [34]). The final
semiclassical result is then

Γ
VN0

mN0
≈
�
E
ES

�N0
2

ffiffiffiffiffiffi
2π

acl

r �
N
acl

�Nd
2 Φ½xcl�e−ES

E A½xcl�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH½xcl�

p ; ð18Þ

where N0 is the number of invariant directions, VN0
the

corresponding volume factor, xcl the discrete instanton
(the collection of points) and acl its velocity. The trajectory
and a are made dimensionless by rescaling with m=qE.
The expression (18) has the advantage that it is appli-

cable for every electromagnetic background field, yielding
the correct prefactor including spin effects without having
to compare limiting cases to determine normalization
factors. Also the instantons are independent of the field
strength, so as soon as they are computed, we can evaluate
(18) for many different values of E=ES.
Figure 4 shows evaluations of (18) for both parallel and

perpendicular polarization, in the perpendicular case with

and without including the spin factor. While there is no
spin dependence in the parallel case, the spin factor
further enhances pair production for perpendicular polari-
zation. The nonmonotonic behavior for small γ in the
perpendicular case is probably a sign that the saddle point
approximation breaks down, as the instanton is not con-
fined strongly enough in the x4-direction. This has already
been verified in the purely time dependent case in [33],
where a comparison with the (numerical) solution of the
Riccati equation could be made. For the volume factor we
have assumed that the strong field ranges over a four-
volume of 1 μm4, which is completely covered by the plane
wave. It does not matter how much further the plane wave
actually extends, as it cannot produce any pairs without the
strong field. We thus hold e.g. x1ð0Þ, x2ð0Þ and x3ð0Þ or
their center of mass fixed, giving the three-volume V3 in
(18) and sum over the instantons located at each maximum
of the wave giving a factor of Ninst ¼ TΩ=2π.

V. CONCLUSIONS

As an example for the dynamically assisted Sauter-
Schwinger effect, we studied electron-positron pair creation
due to a strong and constant electric field E superimposed

Parallel

Perp. Spinor

Perp. Scalar

10 20 30 40

10–15

10–10

10–5

Im( )

FIG. 4. Pair production probabilities for different values of the
combined Keldysh parameter γ, strong field strength E ¼ ES=30
(corresponding to a laser intensity of I ≈ 5 × 1026 W=cm2) and
weak field ε ¼ 10−2. We have assumed a spacetime volume of
1 μm4. As shown before, the case of parallel polarization yields
stronger enhancement. Further, the spin factor does not contribute
in the parallel case, while it enhances pair production in the
perpendicular case. The values Ω¼ 500 keV or Ω¼ 1 MeV
considered in [25], for example, would correspond to γ ¼ 30 or
γ ¼ 60, respectively, and hence result in a drastic enhancement.
Unfortunately, however, these values are probably outside the
range of near future XFELs. Lower values such as 25 keV [39]
correspond to γ ¼ 3=2 (when E ¼ ES=30) and are thus not
sufficient for an exponential enhancement. On the other hand, for
lower field strengths such as E ¼ ES=100, the same frequency of
25 keV would correspond to γ ¼ 5 where we start to see
exponential enhancement. However, the total probabilities for
E ¼ ES=100 are much lower and thus very hard to detect.
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by a weaker transversal plane wave with a frequency Ω and
field strength εE. In analogy to other examples, we found
an exponential enhancement of the pair-creation probability
if the combined Keldysh parameter γ ¼ mΩ=ðqEÞ exceeds
a threshold value γcrit which scales in the same way γcrit ∼
j ln εj as for a purely time-dependent sinusoidal field.
However, the exponential enhancement above the threshold
γ > γcrit is reduced in comparison to a purely time-
dependent sinusoidal field due to the effective massm⊥≥m
stemming from momentum conservation.
In order to treat this genuinely space-time dependent

field, we employed an analytical approach based on a
perturbative expansion (3) into powers εN of the weaker
plane wave (while taking into account the strong field E
nonperturbatively). The exponential dependence (4) of the
Nth order allows us to infer via (7) a dominant order N�,
which yields the strongest contribution and can be quite
large N� ≫ 1, see also Appendix B. For large γ, we obtain
the asymptotic expressions (8) and (9). Finally, we compare
these analytical results to a fully nonperturbative numerical
method based on the world-line instanton technique and
find good agreement, e.g., regarding the dominant order N�
(see Appendix B) and the pair-creation exponent in Figs. 1
and 2, especially after inserting an improved approximation
(10) based on an ansatz for the subleading scaling of the
prefactor (including one fitting parameter, fixed by the
numerical results).
Note that the world-line instanton action Ainst, which

yields the exponent in the pair-creation probability
Peþe− ∼ expf−Ainstg, depends on the polarization and
propagation direction. We find that perpendicular incidence
with parallel polarization (2) yields maximum enhance-
ment, see Fig. 4 and [25]. Furthermore, the prefactor in
front of the exponential contains the volume scaling. Since
the plane wave is supposed to be filling the whole volume,
this prefactor scales with L4 instead of L as for a single
photon, cf. [25].
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APPENDIX A: WORLD-LINE FORMALISM

Here in the Appendix, we use for convenience units with
m ¼ 1 and absorb the charge into the definition of the field
strength, i.e. qE → E.
Our starting point is again the worldline representation of

the effective action. The spin factor can either be expressed
in terms of a path-ordered exponential as in Sec. IVor as a
path integral over an anticommuting Grassmann variable,
ψμðτÞ, with antisymmetric boundary conditions, ψð1Þ ¼
−ψð0Þ,

Γ¼ 2

Z
∞

0

dT
T
e−i

T
2

I
Dx

Z
Dψ

4

×exp

�
−i

Z
1

0

dτ
_x2

2T
þA_x−

i
2
ψ _ψ −

i
2
ψTFψ

�
; ðA1Þ

where Fμν ¼ ∂μAν − ∂νAμ. In this appendix we consider
the superposition of a strong, constant field, E, and a plane
wave with an arbitrary field shape, given by the potential
A0 ¼ 0 and Aðt; rÞ ¼ Etez þ εEePηðnxÞ, where the wave
and polarization vectors satisfy nμ ¼ ð1; nÞ, n2 ¼ 1,
e2P ¼ 1, n · eP ¼ 0, nx ¼ tþ n · r, and where fðnxÞ ¼
η0ðnxÞ is, at this point, an arbitrary function; ηðnxÞ ¼
sinðΩnxÞ=Ω gives the field considered in the main text.
With ε ≪ 1, we expand Γ ¼ P∞

N¼0 ε
NΓN and express the

weak field in terms of its Fourier transform f̃ðωÞ. The
center of mass part of the worldline path integral gives an
“energy conserving” delta function

Z
d4xcm exp

�
−i

XN
i¼1

kixcm

�
¼ V32πδ

�XN
i¼1

ωi

�
; ðA2Þ

where ki;μ ¼ ωinμ and ωi are the Fourier frequencies
corresponding to the N factors of f̃. The rest of the path
integral is Gaussian and can be performed as in [26,27,40]
for N-photon amplitudes in constant fields. This involves
the worldline Green’s functions GB and GF for the x and ψ
path integrals, respectively. For the exponential part of the
probability we only need GB, which is given by

GB
μνðτÞ¼−

i
2E

s

�
2½jτj− τ2�−1

3

�
g⊥μν

−
i
2E

�
cos½sð1−2jτjÞ�

sins
−
1

s

�
gkμν

þ ϵðτÞ
2E

�
sin½sð1−2jτjÞ�

sins
− ð1−2jτjÞ

�
F̂μν; ðA3Þ

where s ¼ iET=2 and where the vector structure is deter-

mined by the direction of the strong field, i.e. gkμν ¼
δ0μδ

0
ν − δ3μδ

3
ν, g⊥μν ¼ −δ1μδ1ν − δ2μδ

2
ν, and F̂μν ¼ δ0μδ

3
ν − δ3μδ

0
ν.

This Green’s function is the Minkowski version of the
corresponding Euclidean Green’s function, which can be
found in [26,40]. In terms of this Green’s function, we find
that the dominant contribution to the Nth order is given by

εNPN ¼ Im
Z YN

i¼1

dωif̃ðωiÞδ
�XN
i¼1

ωi

	 Z
∞

0

ds
Z

1

0

YN
i¼1

dτi

… exp

�
−
s
E
−
i
2

XN
i;j¼1

ki½GBðτi − τjÞ − GBð0Þ�kj
�
;

ðA4Þ
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where the ellipses stand for subleading prefactor terms. The
last term in (A3) does not contribute, because all ki are
parallel and kiF̂kj ¼ 0. The two terms proportional
to g⊥ and gk both lead to terms proportional to n2⊥ωiωj ¼
−kig⊥kj, so, n⊥ωi gives an effective Fourier frequency.
Since jn⊥ωij ≤ jωij, the exponential is therefore maxi-
mized by plane waves traveling perpendicular to the strong
field, i.e. for nz ¼ 0. It follows from the delta function (A2)
that we necessarily have both positive and negative
frequencies. We label the frequencies such that ωi > 0
for i ¼ 1;…; J and ωi < 0 for i ¼ J þ 1;…; N. Consider
each term in the sum in the exponent of (A4) separately.
The term proportional to ωiωj is maximized by
jτi − τjj ¼ 0, 1 for ωiωj > 0 and by jτi − τjj ¼ 1=2 for
ωiωj < 0. Similar to the saddle point method, we obtain the
dominant exponential contribution by substituting these
“maximizing” values of τi into (A4). This gives the
following exponential for the s-integral:

exp

�
−
2m2⊥
E

�
s
2
− Σ2 tan

s
2

��
; ðA5Þ

where we have defined

Σ≔
p⊥
m⊥

p⊥≔
1

2

XJ
i¼1

ki⊥ m⊥≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp2⊥

q
: ðA6Þ

With the saddle point given by s ¼ 2 arccosΣ, we find the
general result

εNPN ∼
Z YN

i¼1

dωif̃ðωiÞδ
�XN

i¼1

ωi

�
� � �

× exp

�
−
2m2⊥
E

ðarccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�

¼
Z YN

i¼1

dωif̃ðωiÞδ
�XN

i¼1

ωi

�
� � �

× exp

�
−
2

E

�
−p⊥ þm2⊥ arctan

1

p⊥

��
: ðA7Þ

With only one photon,N ¼ 2, we have p⊥ ¼ k⊥=2, and the
exponential in (A7) reduces to that in Eq. (5) in [25], as
expected. Note that the exponential in (A7) has the same
functional dependence of Σ as for the longitudinal, purely
time-dependent fields we considered in [14], see Eq. (3.4)
in [14]. Comparing Σ in (A6) with the corresponding
quantity in Eq. (3.3) in [14], we see that the main difference
in going from the purely time-dependent fields in [14] to
the plane waves considered here is the appearance of a
heavy effective mass, i.e. m → m⊥ > m (c.f. [41]), due to
the spatial components of the wave vector. This means that
plane waves will in general lead to less exponential
enhancement than a purely time-dependent weak field.

APPENDIX B: DOMINANT ORDER

In this appendixwewill present twomethods for obtaining
estimates of the dominant order, N�, in the instanton
formalism. These methods allow us to confirm the dominant
order found using the approach in Appendix A.
Our starting point is the worldline representation of the

effective action (A1). In the first method we focus on the
scalar part of (A1), i.e. the part without Grassmann
variables or Dirac matrices; we will show below using
the second method that the spin factor does not signifi-
cantly affect N�. Let aμ ∝ ε be the weak field. For the fields
we focus on in this paper, aμ is a plane wave, but the
methods we present here work also for more general field
shapes. We expand the exponent in the weak field,

exp

�
−i

Z
1

0

a_x

�
¼

X∞
N¼0

1

N!

�
−i

Z
1

0

a_x

�
N
; ðB1Þ

FIG. 5. These plots show our three estimates of the dominant
order for perpendicular polarization. The dashed lines are
obtained from Eq. (11), the solid lines show (B2), and the circles
show (B4), in which Peþe− is the total probability for spinor QED,
including the prefactor. The third approach gives negative N�
below the threshold, but that is just another sign (c.f. Fig. 4) that
the instanton prediction of the prefactor breaks down in that
regime [42].
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and obtain an estimate of the dominant order from the
“saddle point” of the sum over N. Assuming that the
dominant order is “large”, we use Stirling’s approximation
lnN! ≈ NðlnN − 1Þ and find

N� ¼ −i
Z

1

0

a_x: ðB2Þ

At this order we recover the original exponent, i.e.

1

N�!

�
−i

Z
1

0

a_x

�
N�

≈ exp

�
−i

Z
1

0

a_x

�
: ðB3Þ

The instantons and the resulting exponential part of the
probability will therefore be exactly the same as before, i.e.
as without the additional steps (B1) to (B3). The point is
that substituting the instantons into (B2) gives us a simple
estimate of the dominant order in the instanton formalism.
Note that, while we assume that aμ is weak, the integral of
aμ in (B2) gives N�, which is supposed to be large. So, in
(B1) we expand the exponent in a parameter which is
actually large. That is of course not a problem as it only
means that we have to sum up many terms (the Taylor series
for the exponential has an infinite radius of convergence).
In fact, we want this expansion parameter to be large
because in regimes where it is small, the dominant con-
tribution comes from N ¼ 0 and then there is no significant
enhancement of the probability. As shown in Fig. 5, the
instanton estimate (B2) agrees with the previous estimate
based on (11). So, (B2) seems to give a good estimate of the
dominant order in dynamical assistance.

A more direct way of estimating the dominant order is to
calculate the logarithmic derivative of the probability with
respect to ε, i.e.,

N� ¼
d logPeþe−

d log ε
: ðB4Þ

This expression is motivated by the fact that in a regime
where Peþe− ∼ εN0 , (B4) gives N� ¼ N0. In Fig. 5 we
evaluate (B4) within the instanton formalism and show that
(B4) agrees quite well with the simpler estimate of (B2).
One advantage of (B4) is that it is general and does not
depend on how we calculate Peþe− . For example, for purely
time dependent fields, like the ones we studied in [14], one
can obtain the exact probability by solving the Riccati
equation numerically, and then (B4) gives an exact
description of how the probability depends on ε.
All the plots in Fig. 5 show qualitatively the same

behavior as a function of γ: below the threshold N� ≈ 0 (for
ε sufficiently small compared to E) [42], where the
probability is given by Schwinger’s constant field result.
After the threshold, N� quickly reaches a maximum and
then slowly decreases as γ → ∞. So, pair creation actually
becomes less “multiphoton” as γ increases beyond the
maximum. As Fig. 5 shows, the maximum dominant order
can be quite large. However, it is not large for all relevant
parameters. For e.g. E ¼ 1=30 and ε ¼ 1=100, the maxi-
mum dominant order is only N� ∼ 4, which suggests that it
might be feasible in this case to actually calculate also the
preexponential contributions to all important orders.
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