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We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction
among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for
the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3þ 1)
dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2þ 1) dimensions,
whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a
mechanism for dimensional reduction, which yields an effective model in (2þ 1) dimensions. In particular,
for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We
refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge
cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of
perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a
generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a
Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in
mixed dimensions, using cold atoms, are briefly discussed.

DOI: 10.1103/PhysRevD.97.096003

I. INTRODUCTION

In the last decades, the interest of studying planar
theories has increased in theoretical physics, mainly
because of the discovery of new quantum effects, such
as high-Tc superconductivity, quantum Hall effect, and
topological phase transitions [1]. Furthermore, the emer-
gence of both massless and massive Dirac excitations in
two-dimensional materials, such as graphene [2] and
silicene [3], has built a bridge between high-energy and
condensed matter physics. For instance, well-known effects
have been experimentally verified, or proposed in reachable
energy scales, see [4] for an experimental realization of

Klein paradox in graphene. On the other hand, for quantum
chromodynamics the interest relies on the possibility of
studying confinement in simpler models [5]. More recently,
ultracold atomic gases offered a clean and highly control-
lable platform for the quantum simulation of bosonic and
fermionic systems [6]. Within such systems, static as well
as dynamical properties of models in trapped geometries
with short or long-range interactions [7] can be probed, for
example via their collective dynamics, or via density or
momentum correlations [8]. Importantly, prototypical high
energy physics models can be mapped into the low-energy,
nonrelativistic, many-body dynamics of ultracold atoms
[9]. Recently the experimental demonstration of a digital
quantum simulation of the paradigmatic Schwinger model,
a Uð1Þ-Wilson lattice gauge theory [10] was shown.
Among two-dimensional models, pseudo quantum

electrodynamics (PQED) [11,12] (or reduced quantum
electrodynamics [13]) has attracted some attention. This
model describes the electromagnetic interaction in a system
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where electrons are confined to the plane, but photons (or
the intermediating particle) may propagate out of the plane.
Despite its apparent nonlocal nature, PQED is still unitary
and local [14]. Indeed, its main striking feature is that the
effective action, for the matter field, remains the very same
as the one provided by quantum electrodynamics in 3þ 1
dimensions, hence, unitarity is respected. In the static limit,
it yields a Coulomb potential, which renormalizes the
Fermi velocity in graphene [15], as it has been verified
by experimental findings [16]. In the dynamical descrip-
tion, it is expected to generate a set of quantized-energy
levels in graphene as well as an interaction driven quantum
valley Hall effect [17] at low enough temperatures.
Furthermore, chiral-symmetry breaking has been shown
to take place for both zero and finite temperatures [18,19].
It also occurs in the presence of a Gross-Neveu interaction,
whose main effect is to decrease the critical coupling
constant, yielding a better scenario for dynamical mass
generation [20]. Lower dimensional versions of PQED
have been investigated in Ref. [21], aiming for applications
in cold atoms and in Ref. [22] for applications in the realm
of topological insulators. All of these works rely on the fact
that PQED generates a long-range interaction in the static
limit, namely, the Coulomb potential VCðrÞ ∝ 1=r.
In the meson theory of Yukawa, the so-called Yukawa

potential VðrÞ ∝ e−mr=r is a static solution of the Green
function equation ð−∇2 þm2ÞVðrÞ ¼ δðrÞ, where δðrÞ is
the Dirac delta function [23]. Within the quantum-field-
theory interpretation, we may claim that the mediating field
has a mass term. Motivated by this well-known result, we
shall use the paradigm of including a mass term, for the
intermediate particle, in order to generate a short-range
interaction, i.e., the Yukawa potential in the plane. This
potential has been applied to describe bound states [24,25],
electron-ion interactions in a crystal [26], and interactions
between dark energy and dark matter [27] among others.
Nevertheless, a planar quantum-field theory accounting for
this interaction, for both static and dynamical regime, has
not been derived yet.
In this paper, we show how one may include an

interaction length in PQED, yielding a short-range and
nonlocal theory. The simplest mechanism is to consider that
the mediating particle, i.e., the boson field, is massive. This
parameter has to be a consequence either of the coupling
with a Higgs field in the broken phase or some sort of
intrinsic parameter in the system. The latter case can indeed
be realized experimentally in ultracold Bose-Fermi mix-
tures in mixed dimensions. The typical setup consists of a
Bose-Einstein condensate trapped in a three-dimensional
harmonic potential weakly interacting with a fermionic gas
confined in a two-dimensional periodic potential (optical
lattice). The bosonic field mass corresponds to the atomic
mass of the atoms in a Bose-Fermi mixture. Here, we
consider both the massive Klein-Gordon field as well as the
massive Stueckelberg model. For both cases, we have a

Yukawa potential between static charges. This is exactly the
kind of interaction that has been studied in Ref. [28–30]
in the context of ultracold atomic gases. Thereafter, we
calculate the mass renormalization at one loop in the small-
coupling limit.
The outline of this paper is the following: in Sec. II, we

consider a Dirac field coupled to a scalar field, whose
dynamics is given by the massive Klein Gordon model. In
Sec. III, we introduce the gauge field model. Since a naive
addition of a mass for the gauge field would break gauge
invariance, we consider the well known Stueckelberg
action. This model is a generalized version of Proca
quantum electrodynamics, on which we perform the dimen-
sional reduction. In Sec. IV, we compute the asymptotic
behavior of the boson propagator at both small and large
distances. In Sec. V, we show that, by tuning the mass of the
intermediate field, one may control the sign of the quantum
correction, generated by the electron-self energy. We also
include one Appendix, where we present the details about
the electron-self energy as well as the corrected gauge-field
propagator at one loop in perturbation theory.

II. THE SCALAR CASE

In this section, we perform a dimensional reduction of
the Yukawa action in 3þ 1 dimensions. To generate an
interaction length, we assume that the mediating particle is
a massive real scalar field. Let us start with the Euclidean
action in (3þ 1) dimensions, given by

L4D¼
1

2
∂μφ∂μφþ1

2
m2φ2þgφψ̄ψþ ψ̄ði=∂−M0Þψ ; ð1Þ

where g is a dimensionless coupling constant, φ is a real
and massive Klein-Gordon field, and ψ is the Dirac field.
First, we calculate the effective action for the matter

field Leff ½ψ �. In order to do so, we define the vacuum
functional Z

Z ¼
Z

DφDψ̄Dψ expf−S½ψ ;φ�g

¼
Z

Dψ̄DψDφe
R

d4x½−φð−□þm2Þφ=2−gφψ̄ψþO½ψ ��

¼
Z

Dψ̄Dψ expf−Seffg: ð2Þ

Integrating out φ in Eq. (2) yields

Leff ½ψ � ¼ −
g2

2

Z
d4xd4yðψ̄ψÞðxÞΔφðx − yÞðψ̄ψÞðyÞ; ð3Þ

where

ð−□þm2Þ−1 ≡ Δφðx − yÞ ¼
Z

d4k
ð2πÞ4

e−ikðx−yÞ

k2 þm2
ð4Þ
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is the free scalar-field propagator, which yields the inter-
action between the matter field. The static interaction VðrÞ
is provided by the Fourier transform of Eq. (4) at k0 ¼ 0
(no time dependence), namely,

VðrÞ ¼
Z

d3k
ð2πÞ3

e−ik:r

k2 þm2
¼ e−mr

4πr
: ð5Þ

Equation (5) is the well-known Yukawa potential, where
the inverse of m is the interaction length of the model. This
is just the consequence of the coupling gφψ̄ψ in ð3þ 1ÞD.
Next, we show how to apply the procedure of dimen-

sional reduction of PQED to Eqs. (3) and (5). In other
words, we consider the case where the fermionic field
is confined to the plane, but the bosonic field is not. This is
an approximation of the derivation of PQED [11]. In order
to do so, we assume that matter field is confined to the
plane, i.e.,

ψ̄ψðxÞ ¼ ψ̄ψðx0; x1; x2Þδðx3Þ: ð6Þ

Using Eq. (6) in Eq. (3), we obtain

Leff ¼ −
g2

2

Z
d3xd3yðψ̄ψÞðxÞGφðx − yÞðψ̄ψÞðyÞ; ð7Þ

where Gφðx − yÞ ¼ Δφðx − y; x3 ¼ 0; y3 ¼ 0Þ is the effec-
tive scalar-field propagator in (2þ 1) dimensions, given by

Gφðx− yÞ ¼
Z

d3k
ð2πÞ3 e

−ikðx−yÞ
Z

dkz
ð2πÞ

1

k2 þ k2z þm2
: ð8Þ

Integrating over kz above, we find

Gφðx − yÞ ¼
Z

d3k
ð2πÞ3

e−ikðx−yÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p : ð9Þ

In the static limit, Eq. (9) yields the Yukawa potential.
Indeed,

VðrÞ ¼
Z

d2k
ð2πÞ2

e−ik:r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ¼ e−mr

4πr
; ð10Þ

as expected from our dimensional reduction.
We may go beyond the static approximation by consid-

ering a nonlocal model with a propagator equal to Eq. (9).
This is given by

L3D ¼ 1

2
∂μφK½□�∂μφþ 1

2
m2φ2 þ gφψ̄ψ þ ψ̄ði=∂ −M0Þψ ;

ð11Þ

with

K½□�≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−□þm2

p

−□
≡

Z
d3k
ð2πÞ3 e

ikx 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

k2
: ð12Þ

From Eq. (11), it is straightforward that the scalar-field
propagator isGφ and the effective action for the matter field
are the very same as in Eqs. (9) and (7), respectively.

III. THE GAUGE-FIELD CASE

In this section, we consider that the matter field is
coupled to a gauge field Aμ, through a minimal coupling
Aμjμ. The main steps are the same as in the previous
calculation. Nevertheless, a massive term asm2AμAμ breaks
gauge invariance. Hence, we must be careful about how to
introduce the mass, i.e., the length scale for interactions.
For the sake of simplicity, we consider an Abelian field Aμ,
for which we may use the Stueckelberg mechanism. This is
a mechanism for generating mass for Aμ without breaking
gauge invariance [31]. Before we perform the dimensional
reduction, let us summarize this method.
First, we introduce a mass term into (3þ 1) QED,

yielding the so-called Proca quantum electrodynamics,
whose action is given by

L4D ¼ 1

4
FμνFμν þm2

2
AμAμ þ eAμjμ

−
λ

2
ð∂μAμÞ2 þ ψ̄ði=∂ −M0Þψ ; ð13Þ

where e is the electric charge, jμ ¼ ψ̄γμψ is the matter
current,m2 is a massive parameter for the gauge field, and λ
is a gauge-fixing parameter. As expected,

m2

2
AμAμ →

m2

2
AμAμ þmAμ∂μBþ 1

2
ð∂μBÞ2 ð14Þ

under Aμ → Aμ þ ∂μB=m. Indeed, gauge invariance is
explicitly broken.
Next, we introduce a scalar-field BðxÞ (the Stueckelberg

field) in Eq. (13), hence,

L4D ¼ 1

4
FμνFμν þm2

2

�
Aμ −

∂μB

m

�
2

þ eAμjμ

−
λ

2
ð∂μAμÞ2 þ ψ̄ði=∂ −M0Þψ : ð15Þ

Equation (15) is known as Stueckelberg action. Despite
the mass for the gauge field, it is invariant under gauge
transformation, namely, Aμ → Aμ þ ∂μΛ, B → B −mΛ,
and ψ → expð−ieΛÞψ [31]. Furthermore, it still produces
the Yukawa interaction between static charges.
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From Eq. (15), we may find

L4D ¼ 1

4
FμνFμν þm2

2
AμAμ þ ð∂μBÞ2

2
þmAμ∂μB

þ eAμjμ −
λ

2
ð∂μAμÞ2 þ ψ̄ði=∂ −M0Þψ : ð16Þ

We shall use Eq. (16) to compute the effective action for the
matter associated to the matter current jμ. The vacuum
functional is

Z ¼
Z

Dψ̄DψDAμDB expf−S½ψ ; Aμ; B�g: ð17Þ

Integration over B yields

Leff
4D ¼ 1

4
FμνFμν þm2

2
AμAμ þ λ□

2
ð∂μAμÞ2

þ eAμjμ þ ψ̄ði=∂ −M0Þψ ; ð18Þ

where

λ□ ¼ −λþm2□−1: ð19Þ

Now, for the sake of simplicity, we isolate the quadratic
term in Aμ, hence,

Leff
4D ¼ 1

2
Aμ½ð−□þm2Þδμν þ λ□∂μ∂ν�Aν

þ eAμjμ þ ψ̄ði=∂ −M0Þψ : ð20Þ

Integrating out Aμ, we get our desired effective action

Leff
4D½j� ¼ −

e2

2
jμðxÞΔμνjνðyÞ þ ψ̄ði=∂ −M0Þψ ; ð21Þ

where

Δμν ¼
1

−□þm2

�
δμν −

λ□
−□þm2 − λ□

∂μ∂ν

�
: ð22Þ

Using Eq. (22) in Eq. (21) with charge conservation
∂μjμ ¼ 0, we may conclude that, for a correct description,
the gauge-field propagator is

Δμνðx − yÞ ¼
Z

d4k
ð2πÞ4 e

−ikðx−yÞ δμν
k2 þm2

: ð23Þ

In this way, all the gauge-dependence vanishes in the
effective action.
In order to obtain the projected theory in (2þ 1)

dimensions, we consider that the current matter only
propagates in the plane, therefore,

jμðxÞ ¼
�
jμðx0; x1; x2Þδðx3Þ; μ ¼ 0; 1; 2;

0; μ ¼ 3.
ð24Þ

Similarly to the previous case, this shall lead to

G0;μν ¼
Z

d3k
ð2πÞ3 e

−ikðx−yÞ δμν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ; ð25Þ

which is the effective propagator in (2þ 1) dimensions.
Our main goal is to find the corresponding theory in

(2þ 1) dimensions with the same effective action in
Eq. (21). This model reads

L3D ¼ 1

2
FμνK½□�Fμν þ λAμ∂μK½□�∂νAν þ eAμjμ

þ ψ̄ði=∂ −M0Þψ ; ð26Þ

where λ is a gauge-fixing parameter. It is straightforward to
show that, after integrating out Aμ in Eq. (26), we obtain the
same effective action as in Eq. (21) with the constraint in
Eq. (24). For an arbitrary λ, the free gauge-field propagator
reads

G0;μνðkÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
�
δμν þ

ð1 − λÞ
λ

kμkν
k2

�
: ð27Þ

There are two main features of Eq. (26): (a) The massive
parameter m is no longer a pole of the gauge-field
propagator, hence, it can not be thought as a mass and
(b) Gauge-invariance is explicitly respected, i.e., there is no
need to deal with Stueckelberg fields. Indeed, we could set
B ¼ 0 from the very beginning, which means starting with
Proca quantum electrodynamics and, therefore, breaking of
gauge invariance. Then, after dimensional reduction, the
corresponding 3D theory is still the same as in Eq. (26) and
that it is gauge invariant.

IV. ASYMPTOTIC BEHAVIOR OF BOTH SCALAR
AND GAUGE-FIELD PROPAGATORS

In this section, we calculate the asymptotic expressions
of Gφðx − y;mÞ and δμνG0μνðx − y;mÞ, i.e., propagators in
the space-time coordinates. We use the integral version in
Eq. (8), which has an extra kz-integral. Hence,

Gφðx− y;mÞ ¼
Z

d3k
ð2πÞ3 e

−ikðx−yÞ
Z þ∞

−∞

dμ
ð2πÞ

1

k2 þ μ2 þm2
:

ð28Þ

Note that we have replaced kz by μ, since μ is just a
parametric variable. Thereafter, we use Eq. (5) for solving
the k-sphere integral, therefore,
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Gφðx−y;mÞ¼
Z þ∞

−∞

dμ
ð2πÞ

1

4πjx−yje
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2þm2Þ

p
jx−yj: ð29Þ

Next, after solving the μ-integral (see Ref. [32]), we have

Gφðx − y;mÞ ¼ m
4π2jx − yjK1ðmjx − yjÞ; ð30Þ

where K1 is a modified Bessel function of the second kind.
In the short-range limit mjx − yj ≪ 1, it yields

Gφðx − y;mÞ ≈ 1

4π2jx − yj2 ; ð31Þ

whereas in the long-range limit mjx − yj ≫ 1, we find

Gφðx − y;mÞ ≈
ffiffiffiffiffiffiffi
mπ

2

r
e−mjx−yj

4π2jx − yj3=2 : ð32Þ

The gauge-field propagator may be calculated by following
the very same steps.
We have described some general features of NPQED, in

particular, its derivation, two-point functions, and inter-
actions. Next, we shall explore quantum corrections by
using perturbation theory.

V. PERTURBATION THEORY RESULTS

In this section, we calculate the renormalized electron
mass MR of the model in Eq. (26) at one-loop approxi-
mation. The details about the calculation are shown in
Appendix A. In particular, we would like to obtain its
dependence on m, the mass term of the gauge field. Note
that in our 3D model, this parameter must to be understood
as the inverse of the interaction length. This, nevertheless,
is the mass of the intermediate field that propagates in 4D.
Thereafter a standard calculation, we obtain

ZR ¼ 1þ α

2π
fðzÞ; ð33Þ

where ZR ≡MR=M0, z≡m=M0, and

fðzÞ ¼
Z

1

0

dx
2þ xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞðz2 − xÞ þ x

q �
: ð34Þ

From Eq. (34), it is clear that fðzÞ ¼ fð−zÞ, therefore,
the corrections are only dependent on the modulus of m.
From now on, we assume α ¼ 1=137. Next, we would
like to address the effects of the m parameter on ZR.
Surprisingly, for jzj ≤ zc ≈ 1.2, the quantum correction
αfðzÞ=2π is negative, while for jzj ≥ zc, they become
positive and cross the free-energy level M0, see Fig. 1.
Let us calculate the energy gap of the renormalized

state δRE ¼ Eþ
R − E−

R ¼ M0 þM0αfxðzÞ=2π − ð−M0−
M0αfðzÞ=2πÞ ¼ 2M0 þM0αfðzÞ=π, where Eþ

R > 0 and

E−
R < 0 are the positive and negative energies, see

Appendix A. Since fðzÞ may be negative for
jzj ≤ zc ≈ 1.2, we have that δRE lies inside the energy
gap 2M0. The case z ≤ zc resembles the quantized energy
levels calculated in Ref. [17] or Ref. [20], because that
renormalized states are closer to the zero-energy level.
Nevertheless, because we are in the small coupling limit,
hence, we do not generate dynamical symmetry breaking,
since ZR → 0 when M0 → 0.

VI. DISCUSSION

PQED has been applied to describe the interactions of
two-dimensional electrons, in particular, graphene in the
strong-coupling regime. The main results rely on the fact
that electrons do interact trough the Coulomb potential,
which has an infinite range. Here, nevertheless, we consider
a scenario where interactions have a finite range. We have
applied the very same procedure for deriving PQED [11],
but considering a massive photon in (3þ 1) dimensions.
Our main result is that, after performing the dimensional
reduction, one obtains that the matter field interacts through
a Yukawa potential in the static limit. Similar to PQED, it
yields a nonlocal theory in both space and time. Since the
matter field is not relevant for the dimensional reduction,
this model may be generalized to describe the Yukawa
interaction between other kind of particles. Although our
derivation follows standard steps of QED literature, we
believe that they shall be relevant, in particular, for
applications in condensed matter physics and cold-atom
systems.

FIG. 1. Quantum correction for the electron mass. We plot the
quantity αfðzÞ=2π in Eq. (33), where z is the ratio between the
inverse of interaction lengthm and the bare electron massM0. For
jzj ≤ zc ≈ 1.2, we have fðzÞ < 0, therefore, the renormalized
energy gap δRE is less than the bare energy gap 2M0. On the other
hand, jzj ≥ zc yields fðzÞ > 0 (shaded area), i.e., the renormal-
ized energy gap is larger than the bare energy gap. Finally, for
jzj ¼ zc, we find fðzcÞ ¼ 0 and the renormalized energy gap is
equal to 2M0.
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In Ref. [28–30], the authors proposed a scheme appli-
cable to a cold-atom mixture of bosons interacting with
polarized fermions to study possible p−wave pairing in the
fermionic component induced by the bosons. An essential
ingredient of these proposals is the mixed dimensionality,
namely the two-dimensional confinement of the fermionic
species and the three-dimensional one for the bosons,
reducing considerably trap losses from three-body effects.
Interestingly, the static interaction between the fermionic
particles results into a Yukawa potential allowing a notable
increase in the critical temperature for the appearance of
fermionic superfluidity. In this context, our study based on
the NPQED may certainly be useful for the investigation of
novel quantum phases starting from a fully relativistic field-
theory approach that can be simulated in condensed matter
platforms. Similarly, more recently it has been shown that a
full dynamical description provides new results for PQED
with applications to the exciton spectrum in transition-
metal dichalcogenides [33].
We finally discuss the importance of the order in which

the following two operations are implemented, namely:
(a) the inclusion of a mass for the gauge field; (b) the
dimensional reduction. Interestingly, the result is sensitive
to the order in which the inclusion of a mass and the
dimensional reduction are performed. As a matter of fact,
by doing “a” before “b,” we have shown that the Yukawa
potential VðrÞ ¼ e−mr=4πr is obtained from the static limit
of the gauge-field propagator, given by Eq. (27). This is
proportional to 1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
Þ.

Conversely, starting with a massless gauge field, hence,
by applying the dimensional reduction, we arrive at the
PQED model [11], whose propagator is proportional to
1=ð2

ffiffiffiffiffi
p2

p
Þ. If we now couple the PQED model, to a Higgs

field in the broken phase, such that a massive term is
generated to the gauge field, this changes the propagator
from 1=ð2

ffiffiffiffiffi
p2

p
Þ to 1=ð2

ffiffiffiffiffi
p2

p
þmÞ, which clearly shows

that we shall obtain a different model from the one
associated to Eq. (26). The potential is now given by a
combination of Coulomb and Keldysh [34] potentials,
namely,

VðrÞ ¼ e2

4πr

�
1 −

πr
2r0

�
H0

�
r
r0

�
− Y0

�
r
r0

���
; ð35Þ

where r0 ≡ 2=m, H0ðmrÞ, and Y0ðmrÞ are Struve and
Bessel functions, respectively. The potential in Eq. (35)
does not decay exponentially at large distances as the
Yukawa potential, rather, it has a power-law decay. We
conclude, therefore, that we must be careful about how one
wishes to use quantum electrodynamics in applications for
lower-dimensional systems, because of this sensitive rela-
tion between the dimensional reduction and phenomeno-
logical parameters, such as a mass for the gauge field.
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APPENDIX: PERTURBATIVE RESULTS
FOR GAUGE THEORY

1. Electron-self energy

In this Appendix, we show some details about the
electron-self energy. First, let us write the Feynman rules
of Eq. (26) in Euclidean space. The free electron-
propagator reads

S0F ¼ 1

=p −M0

¼ −ð=pþM0Þ
p2 þM2

0

; ðA1Þ

the gauge-field propagator (in the Feynman gauge λ ¼ 1) is

G0;μνðpÞ ¼
δμν

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; ðA2Þ

and the vertex interaction is Γμ ¼ γμe. The Euclidean
matrices satisfy fγμ; γνg ¼ −2δμν. From Eq. (A1), we have
that the pole of the free Dirac electron is p2

E ¼ −M2
0, where

p2
E is the Euclidean momentum. For calculating the

physical mass, one must return to the Minkowski space,
using p2

E → −p2
M, such that p2

M ¼ M2
0 are the physical

poles.
The corrected electron propagator SF is

SF ¼ S0F þ S0FðΣÞS0F þ � � � ðA3Þ

therefore,

S−1F ¼ S−10F − ΣðpÞ: ðA4Þ

The electron-self energy reads

ΣðpÞ ¼ e2
Z

d3k
ð2πÞ3 Γ

μS0FðkÞΓνG0;μνðp − kÞ: ðA5Þ

Equation (A5) has a linear divergence, therefore, we
need to use a regularization scheme. We choose to use the
usual dimensional regularization ϵ ¼ 3 −D, where D is an
arbitrary dimension, which we shall consider D → 3 in the
very end of the calculation. After application of standard
methods, we find

VAN SÉRGIO ALVES et al. PHYS. REV. D 97, 096003 (2018)

096003-6



ΣðpÞ ¼ 2CI þ 2C

�
ln

μ

M0

þ 1

ϵ

��
2p
3

− 6M0

�
; ðA6Þ

where μ is an arbitrary massive parameter, generated by
the prescription e → eμϵ=2, with ϵ ¼ D − 3, where D is the
dimension of the space-time, as usually done in the
dimensional regularization. The constant C is given by

C ¼ e2

16π2
ðA7Þ

and the parametric integral reads

I ¼
Z

1

0

dx
pðx − 1Þ þ 3M0ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p ln

Δ
M0

; ðA8Þ

with

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2xð1 − xÞ þM2

0xþm2ð1 − xÞ
q

: ðA9Þ

Equation (A6) has both finite and a regulator-dependent
terms, which must be eliminated by some renormalization
scheme. For simplicity, we choose the minimal subtraction
procedure, which avoids the poles by introducing counter-
terms in the original action. Hence,

ΣRðpÞ¼ lim
μ;ϵ→0

ðΣðp;μ;ϵÞ−CTÞ¼AðpÞ=pþBðpÞ; ðA10Þ

where CT stands for counterterms,

AðpÞ ¼ 2C
Z

1

0

dx
ðx − 1Þffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ln
Δ
M0

; ðA11Þ

and

BðpÞ ¼ 2C
Z

1

0

dx
3M0ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ln
Δ
M0

: ðA12Þ

Using Eq. (A10) in Eq. (A4), we find

S−1F ðpÞ ¼ ½ð1 − AðpÞÞp − ðM0 þ BðpÞÞ�: ðA13Þ

Multiplying Eq. (A13) by ð1þ AðpÞÞ, we have

ð1þ AðpÞÞS−1F ðpÞ ¼ −i½p − ðM0 þ BðpÞÞð1þ AðpÞÞ�:
ðA14Þ

Next, we define the renormalized matter field ψR, namely,

ψR ¼ Z1=2
ψ ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðpÞ

p
ψ : ðA15Þ

Therefore, the physical propagator reads

S−1RF ¼ 1

p −MðpÞ ¼
−½pþMðpÞ�
p2 þM2ðpÞ ; ðA16Þ

with

MðpÞ ¼ M0 þ BðpÞ þM0AðpÞ: ðA17Þ

Using Eqs. (A7), (A12), and (A11) in Eq. (A17), we find

MðpÞ ¼ M0 þ
α

2π
M0

Z
1

0

dx
ð2þ xÞffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ln
Δ
M0

: ðA18Þ

Equation (A17) yields the so-called mass function MðpÞ,
which is, essentially, the momentum-dependent part of the
electron-self energy that renormalizes the electron mass
[35]. In Fig. 2, we show that by using different values of
m=M0, we may generate quantum corrections that either
increase or decrease the renormalized mass in comparison
with the bare value M0. To clarify this result, we shall
calculate the renormalized mass MR.
The pole of Eq. (A16) is given by the solution of

p2
E ¼ −M2ðp2

EÞ, which, in the Minkowski space, yields
m2

R ¼ M2ð−M2
RÞ, where M2

R is the renormalized mass by
applying the substitution p2

E → −M2
R for calculating the

pole. Furthermore, since we are at one-loop approximation,
we may use Mð−M2

RÞ ¼ Mð−M2
0Þ. Therefore, the renor-

malized masses are MR ¼ �Mð−MRÞ ¼ E�
R , where E

þ
R ¼

þjMð−MRÞj and E−
R ¼ −jMð−MRÞj are positive and

negative solutions, respectively. Using Eq. (A17) with
M2

R ¼ Mð−M2
0Þ and e2 ¼ 4πα, we find

jMRj
M0

¼ 1þ α

2π

Z
1

0

dx
2þ xffiffiffiffiffiffiffiffiffiffi
1− x

p ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− xÞ

�
m2

M2
0

− x

�
þ x

s #
:

ðA19Þ

FIG. 2. Mass function MðpÞ in Eq. (A17). For this plot we set
M0 ¼ 1 and α ¼ 1=137. Dashed line: m=M0 ¼ 1.5, full line:
m=M0 ¼ 0.5. Note that Mðp ¼ 0Þ > M0 for the dashed line, but
Mðp ¼ 0Þ < M0 for the full line.
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Considering ZR ≡MR=M0 and z≡m=M0, we obtain
Eq. (33) and Eq. (34). In the scalar-field case, given by
Eq. (11), the critical point zc is the same. This is not
surprising because of the similarities of the electron-self
energy and the bosonic propagators.
Equation (A19) shows that the renormalized electron

mass is dependent onm. It is reasonable to calculate whether
m itself is renormalized in one loop. For consistency, the
renormalization of the boson mass m in the Stueckelberg
theory, in Eq. (16), would imply a renormalized mass
parameter in the reduced model, given by Eq. (26).
Within the Landau gauge λ ¼ ∞, the corrected gauge-field
propagator with the insertion of polarization tensor reads

GμνðpÞ ¼
δμν

p2 þm2 þ e2ΠðpÞ ;

¼ δμν
p2 þm2

R
; ðA20Þ

where mR is the renormalized mass given by

m2
R ¼ m2 þ e2Πðp ¼ mRÞ; ðA21Þ

where ΠðpÞ is given by [36]

ΠðpÞ ¼ p2

2π2

Z
1

0

dxxð1 − xÞ
�
2

ϵ
− ln

Q2

4πμ2
− γ −

1

2

�
; ðA22Þ

with Q2 ¼ M2
0 þ xð1 − xÞp2. Thus, the bare mass of the

gauge field is renormalized in one-loop approximation.
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