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We revisit the mixing mechanism for pseudoscalar mesons and glueball which is introduced by the
axial vector anomaly. We demonstrate that the physical mass of the pseudoscalar glueball does not
favor to be lower than 1.8 GeV if all the parameters are reasonably constrained. This conclusion, on the
one hand, can accommodate the pseudoscalar glueball mass calculated by lattice QCD, and on the other
hand, is consistent with the high-statistics analyses at BESIII that all the available measurements do not
support the presence of two closely overlapping pseudoscalar states in any exclusive channel. Such a
result is in agreement with the recent claim that the slightly shifted peak positions for two possible
states ηð1405Þ and ηð1475Þ observed in different channels are actually originated from one single state
with the triangle singularity interferences. By resolving this long-standing paradox, one should pay
more attention to higher mass region for the purpose of searching for the pseudoscalar glueball
candidate.
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I. INTRODUCTION

The non-Abelian property of quantum chromodynamics
(QCD) predicts the possible existence of glueball states as a
peculiar manifestation of the strong interaction in the non-
perturbative regime. However, until now indisputable exper-
imental evidence for the glueball states is still lacking. In the
pseudoscalar sector, the flux tubemodel supports a low-lying
pseudoscalar glueball with a mass around 1.4 GeV [1]. This
was the mass region accessible by several experiments in the
1980s and 1990s, for instance, Mark-III [2,3], DM-2 [4,5],
OBELIX [6–8], and BES-II [9]. Reviews on the early
experimental observations can be found in Refs. [10,11].
With the strongmotivation of looking for glueball candidates
in experiment, the observation of three possible pseudoscalar
states with isospin 0 around 1.3–1.5 GeV, i.e., ηð1295Þ,
ηð1405Þ, ηð1475Þ, was regarded as the clues for the presence

of a pseudoscalar glueball in association with the isospin
singlets in the qq̄ scenario. Note that there have been well-
established states, i.e., πð1300Þ and Kð1460Þ, in the same
mass region with which the first radial excitation of the
qq̄ pseudoscalar meson nonet with JP ¼ 0− can be formed
[11–13]. For a long time following the rather vague exper-
imental results, there have been tremendous efforts trying to
understand theproperty of these three states amongwhich the
ηð1405Þ has been assigned as the most-likely pseudoscalar
glueball candidate. Other explanations for the outnumbering
of isoscalar pseudoscalar states around 1.3–1.5 GeV include
dynamically generated states [14] and tetraquarks [15].
However, any explanation for the outnumbering problem
should first confirm whether indeed an additional state is
present.
The phenomenological studies of the pseudoscalar glue-

ball candidate ηð1405Þ have been focused on the following
main issues:

(i) Whether there are mixings among the ground state
pseudoscalar mesons η and η0, and the pseudoscalar
glueball? And how to disentangle their internal
structures? What are the consequences from such
state mixings [16–21]?

(ii) What causes the low mass of pseudoscalar glueball
compared with the lattice QCD (LQCD) calculations
[22–27]?
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(iii) What is the role played by the triangle singularity
mechanism arising from the rescattering of KK̄� þ
c:c: to different final states in ηð1405=1475Þ →
KK̄� þ c:c: → KK̄π, ηππ and 3π [28–31]?

Following the questions from item one, most studies
assume certain mixing mechanisms among η, η0, and
ηð1405Þ and investigate the properties of ηð1405Þ in
gluon-rich processes such as J=ψ radiative decays. Also,
the gluon contents inside η and η0 can provide some hints of
glueball states due to the mixing mechanism. As a
consequence of such a mixing, one expects that observable
effects can be measured in experiment which can make the
glueball state different from the qq̄ mesons. However, it is
still difficult to conclude that the pseudoscalar glueball state
has been observed in experiment taking into account the
high precision measurements from the BESIII experiment
and LQCD calculations. This is related to the questions
raised above in items two and three.
During the past decade the progress of LQCD has

brought many novel insights into the light hadron spec-
troscopy via numerical simulations of the nonperturbative
strong interactions. Interesting and surprisingly, it shows
that the lightest pseudoscalar glueball should have a mass
around 2.4–2.6 GeV in a quenched calculation [22–25],
while the later dynamical calculations [26,27] suggest that
the mass of the lightest pseudoscalar glueball does not
change much compared with the quenched result. This is
obviously in contradiction with the data if ηð1405Þ is
assigned as a glueball candidate.
In parallel with the LQCD studies, great efforts have

been made in experiment in order to establish ηð1405Þ as an
additional state apart from ηð1295Þ and ηð1475Þ. A natural
expectation is that since both ηð1405Þ and ηð1475Þ have the
same quantum number and can couple to the same hadronic
final states there should be channels that they both can have
observable couplings, hence, nontrivial structures caused
by two closely overlapping and interfering states should
appear in the mass spectra. However, with the high-
statistics measurements in various channels, e.g., in J=ψ
radiative and hadronic decays at BESIII [32–34], there is no
any evidence indicating that two nearby ηð1405Þ and
ηð1475Þ have been produced together in the same channel.
All the data so far only show one peak structure around
1.42 GeV and no need to introduce interfering states from
two nearby states. These new measurements actually have
brought serious questions on the need for an additional
ηð1405Þ apart from the radial excitation of the qq̄ isoscalars
ηð1295Þ and ηð1475Þ.
The new data also raise new features for the radial

excitation spectrum of the isoscalar states η and η0.
One notices that the single peak positions for
ηð1405=1475Þ are slightly shifted in different channels.
In particular, the observation of the significantly large
isospin breaking effects in J=ψ→γηð1405=1475Þ→γþ3π
can be regarded as an indication of a special mechanism

that causes the mysterious phenomena around 1.4–1.5 GeV
for the isoscalar pseudoscalar meson spectrum [32]. It was
proposed by Refs. [29,30] that the presence of the so-called
“triangle singularity (TS)” mechanism can enhance the
isospin breaking effects and shift the peak positions of a
single state by the interferences in exclusive decay chan-
nels. Similar analysis of Ref. [31] also confirms that the TS
contribution is needed in order to understand the strong
isospin breaking effects.
The TS mechanism was first investigated by Landau in

the 1950s [35] and followed up by many detailed studies
later [36–42]. It states that for an initial state with energies
near an intermediate open threshold, if the rescattering
between these two intermediate states by exchanging
another state (i.e., via a triangle diagram) into three-body
final states would allow such kinematics that all the three
intermediate states can approach their on-shell condition
simultaneously, to be located within the physical region,
then the triangle loop amplitude will be enhanced by the
three-body singularity as the leading contribution. As a
consequence, its interference with the tree-level transition
amplitude of the initial state can shift its peak position
and even change the line shape [29]. In the case of
ηð1405=1475Þ → 3π the mass of the initial state
ηð1405=1475Þ is within the TS kinematic region and has
strong couplings to KK̄� þ c:c. Thus, the intermediate
KK̄� þ c:c: and the exchanged kaon in the triangle loop
can approach the on-shell condition simultaneously and
results in the strong enhancement of the isospin breaking on
top of the a0ð980Þ and f0ð980Þ mixing. The recognition of
the TS mechanism here provides an alternative explanation
for understanding the ηð1405Þ − ηð1475Þ puzzle and can
resolve the contradiction between the LQCD results and
experimental observations for the pseudoscalar glueball.
Recent detailed analyses and discussions on the TS
mechanism can be found in Ref. [43]. More recognitions
of this special kinematic effects in various processes can be
found in the literature [44–58] and recent reviews [28,59].
The above progress suggests that the pseudoscalar

meson and glueball mixing mechanism should be rein-
vestigated. Moreover, given that the pseudoscalar glueball
mass in the quenched approximation is around 2.4–
2.6 GeV, its mixing with the cc̄ð0−þÞ should also be
considered. An earlier study of the mixing mechanism has
implemented the anomalous Ward identities with the
corresponding equations of motion which connect the
transition matrix elements of vacuum to η, η0 and glueball
to the pseudoscalar densities and the U(1) anomaly [60].
There, the physical glueball state was assigned to ηð1405Þ
and then the mixing effects on η, η0, and ηc were studied.
Due to a large number of parameters in the mixing scheme
of Ref. [60], it shows that a reinvestigation of the parameter
space is necessary. In particular, a detailed analysis of the
sensitivity of the glueball mass range to the mixing
parameters is necessary. This will help further clarify the
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puzzling situation around 1.4 GeV in the I ¼ 0 pseudo-
scalar spectrum. One also notices that the recent analysis of
Ref. [61] in a chiral Lagrangian approach with an axial
anomaly coupling also leads to a much heavier glueball
mass than the range of around 1.4 GeV.
As follows, we first introduce the formulation of the

mixing scheme via the axial vector anomaly as studied in
Refs. [62,63] in Sec. II. We then inspect the parameter
space and impose constraints on these parameters in order
to investigate the mass range of the pseudoscalar glueball.
In particular, the sensitivities of the physical glueball mass
to the parameters will be scrutinized. In Sec. III, the
numerical results are presented and discussed. A brief
summary is given in Sec. IV.
This work is organized as follows: In Sec. II we first

introduce the formulation of the mixing scheme via the
axial vector anomaly as studied in Refs. [62,63]. We inspect
the parameter space and try to investigate the sensitivities of
the physical glueball mass to the parameters. In Sec. III, the
numerical results are presented and discussed. A brief
summary is given in Sec. IV.

II. THE MIXING FORMALISM

A. η− η0 −G− ηc mixing scheme

As stated in Refs. [62,63], the well-known axial vector
anomaly is,

∂μJjμ5 ¼ ∂μðj̄γμγ5jÞ ¼ 2mjðj̄iγ5jÞ þ
αs
4π

GG̃ ð1Þ

where j denotes the q, s, c quark respectively, and mj

denotes the quark masses, G and G̃ denote the strength
tensor and the dual of the gluon field. The physical states
are mixture of the pure states via a unitary matrix U as,

0
BBB@

jηi
jη0i
jGi
jηci

1
CCCA ¼ U

0
BBB@

jηqi
jηsi
jgi
jηQi

1
CCCA ð2Þ

where jηqi, jηsi, jgi, jηQi denote jqqi≡ jðuūþ dd̄Þ= ffiffiffi
2

p i,
jss̄i, the unmixed glueball state, and the unmixed heavy
quark state jcc̄i.
Assuming that the decay constants in the flavor basis

follow the same mixing pattern of the particle states [62],
we have

0
BBB@

fqη fsη fcη

fqη0 fsη0 fcη0

fqG fsG fcG
fqηc fsηc fcηc

1
CCCA ¼ U

0
BBB@

fq 0 0

0 fs 0

0 0 0

0 0 fc

1
CCCA ð3Þ

where all the Okubo-Zweig-Iizuka (OZI)-suppressed off-
diagonal elements are neglected.
The pseudscalar meson decay constants are defined as

follows,

h0j∂μJjμ5jPi ¼ M2
Pf

j
P; ð4Þ

whereMP is the diagonal mass matrix of the physical states
that is explicitly written as,

0
BBB@

M2
η 0 0 0

0 M2
η0 0 0

0 0 M2
G 0

0 0 0 M2
ηc

1
CCCA: ð5Þ

Noted that the meson state is with the dimension of mass−1

and the decay constant with the dimension of mass.
Based on the above definitions and assumption, we can

obtain the mass matrix on the flavor basis from two ways.
On the one hand, the mass matrix on the flavor basis is
related to the physical particle mass via a unitary trans-
formation. On the other hand, according to the definition of
the decay constants, the mass matrix is also related to the
axial vector current divergences in a more dynamical and
explicit way. Although some of the matrix elements cannot
be well constrained and determined quantitatively, they are
not going to affect our discussions here due to their small
values that can be qualitatively determined. The mass
matrix in terms of the physical masses can be written as,

Mqsgc ¼ U†M2
PU: ð6Þ

In order to obtain the mass matrix in terms of the
divergences of the axial vector current, we first define the
following abbreviations for pseudoscalar densities and
the U(1) anomaly matrix elements as done in Ref. [60]:

m2
qq;qs;qg;qc ≡

ffiffiffi
2

p

fq
h0jmuūiγ5uþmdd̄iγ5djηq; ηs; g; ηQi;

m2
sq;ss;sg;sc ≡ 2

fs
h0jmss̄iγ5sjηq; ηs; g; ηQi;

m2
cq;cs;cg;cc ≡ 2

fc
h0jmcc̄iγ5cjηq; ηs; g; ηQi;

Gq;s;g;c ≡ αs
4π

h0jGG̃jηq; ηs; g; ηQi: ð7Þ

Note that the definition for qðu; dÞ quark current is different
from other quark flavors by a factor of

ffiffiffi
2

p
due to the

definition of the jqq̄i.
Then, the mass density matrix of the q, s, c dimension

can be written explicitly in a dynamical way as in Ref. [60],
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M̃qsgc ¼

0
BBBBB@

m2
qq þ

ffiffiffi
2

p
Gq=fq m2

sq þ Gq=fs m2
cq þ Gq=fc

m2
qs þ

ffiffiffi
2

p
Gs=fq m2

ss þ Gs=fs m2
cs þ Gs=fc

m2
qg þ

ffiffiffi
2

p
Gg=fq m2

sg þ Gg=fs m2
cg þ Gg=fc

m2
qc þ

ffiffiffi
2

p
Gc=fq m2

sc þ Gc=fs m2
cc þ Gc=fc

1
CCCCCA
: ð8Þ

The mass density matrix obtained from these two ways
should be the same. Thus, the mixing information could be
revealed.
To proceed, we first analyze the parameters involved in

this mixing scheme by looking at the transformation matrix
U. In Ref. [64], a general form for the unitary mixing
matrix is presented with six independent rotation angles. It
would not be realistic to determine all of them based on
what we know about the pseudoscalar meson and glueball
mixing. In order to implement constraints on the mixing
matrix elements, we take a similar strategy of Ref. [60] to
reduce the number of parameters.

First, the mixing between the light favor octet state η8 and
glueball is neglected in the SU(3) flavor symmetry. Second,
the heavy-flavor state mixing with the light-flavor state is
also neglected, since they have a large mass difference and is
OZI suppressed. These will reduce the number of undeter-
mined parameters to only three mixing angles, i.e., the
mixing angleϕQ between the heavy-flavor state and glueball,
the mixing angle ϕG for the glueball and light-flavor singlet
state mixing, and the mixing angle θ between the octet and
singlet light flavor states that mainly determines the structure
ofη and η0. So themixingmatrix between the flavor states and
the physical states can be written as [60],

Uðθ;ϕG;ϕQÞ ¼ U34ðθÞU14ðϕGÞU12ðϕQÞU34ðθiÞ;

¼

0
BBB@

cθcθi − sθcϕGsθi −cθsθi − sθcϕGcθi −sθsϕGcϕQ −sθsϕGsϕQ

sθcθi þ cθcϕGsθi −sθsθi þ cθcϕGcθi cθsϕGcϕQ cθsϕGsϕQ

−sϕGsθi −sϕGcθi cϕGcϕQ cϕGsϕQ

0 0 −sϕQ cϕQ

1
CCCA; ð9Þ

where c and s are the shorthand notations for “cos” and “sin”; θi are the ideal mixing angle between ηq ≡ ðuūþ dd̄Þ= ffiffiffi
2

p
and

ηs ≡ ss̄. The mass density matrix element from the physical state mass through the U matrix can be obtained. The explicit
expressions for eachmatrix element can be found in Ref. [60]. Here, we concentrate on the matrix elements that are relevant in
the extraction of physical quantities of interest.

B. Constrain the parameters

The mixing mechanism discussed in Ref. [60] and summarized above allows us to express the mass matrix as follows:

U†

0
BBBBB@

M2
η 0 0 0

0 M2
η0 0 0

0 0 M2
G 0

0 0 0 M2
ηc

1
CCCCCA
U

0
BBBBB@

1 0 0

0 1 0

0 0 0

0 0 1

1
CCCCCA

¼

0
BBBBB@

m2
qq þ

ffiffiffi
2

p
Gq=fq m2

sq þ Gq=fs m2
cq þ Gq=fc

m2
qs þ

ffiffiffi
2

p
Gs=fq m2

ss þ Gs=fs m2
cs þ Gs=fc

m2
qg þ

ffiffiffi
2

p
Gg=fq m2

sg þ Gg=fs m2
cg þ Gg=fc

m2
qc þ

ffiffiffi
2

p
Gc=fq m2

sc þ Gc=fs m2
cc þ Gc=fc

1
CCCCCA
: ð10Þ

On the left-hand side of the equation, there are four
parameters, i.e., the physical glueball mass MG and three
mixing angles. On the right-hand side, more parameters
emerge which are related to the mixing dynamics. Apart
from fq, fs, fc,mcc,mqq,mss that are more explicit and can
be estimated phenomenologically by observable physical
quantities, there are still nine pseudoscalar densities and
four U(1) anomaly matrix elements to be determined. Note
that parameters mqq and mss are related to the relatively
well defined η and η0 mixing, they can be extracted from
M̃11

qsgc and M̃22
qsgc in Ref. [60]. Besides, mqq is too small

and in some cases the result even flips the sign [16].

Actually, since the masses of η and η0 are rather far away
from the glueball mass, the mixing effects due to the
presence of glueball are expected to be small. In this sense,
the constraint from the glueball contents of η and η0 could
be still marginal.
As discussed in Ref. [16], the OZI-violating light-flavor

pseudoscalar density mqs, msq scales as Oð1=NcÞ in the
limit of the large color number Nc, and mqg is of the order
higher thanmqq which is as small asm2

π . Thus, we can drop
these three parameters in this analysis and this is different
from the treatment of Ref. [60]. We will show later that this
is a reasonable assumption.
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The flavor mixing angle θ for η and η0 are constrained in
a finite range −17° < θ < −11°. Although θ is not pre-
cisely fixed, its influence on the glueball property is rather
small. A relatively small mixing angle θ < −10° is favored
by the unquenched LQCD calculation [65]. Thus, we adopt
θ ¼ −11° which is the same as in Ref. [60].
The glueball component within the physical ηc can be

estimated by an empirical gluon power counting rule [66]
to combine with the experimental data of the branching
ratio of ηc → γγ, as done in Ref. [60]. With the updated
experimental data BRðηc → γγÞ ¼ ð1.59� 0.13Þ × 10−4

[12], ϕQ ¼ −2.7° and 11.6° are obtained with the central
value. As discussed in Ref. [60], a negative ϕQ is not
favored by the radiative decays of J=ψ , ψ 0 → γηc.
Therefore, we adopt the positive value of ϕQ ¼ 11.6°.
The last mixing angle ϕG is directly related to the

physical glueball mass as shown by the third row of the
mass density matrix [Eq. (10)]. Thus, a reliable determi-
nation of this quantity is crucial for estimating the physical
glueball mass range.
The above consideration has significantly reduced

the parameter number but still there are more than 10

parameters to be determined in Eq. (10). In Refs. [16,60], a
different treatment for the parameters was applied to
estimate the glueball mass. By taking the ratio of elements,
e.g., M̃31

qsgc=M̃
32
qsgc in Eq. (10), and assuming the negli-

gibly small values ofm2
qg andm2

sg compared with
ffiffiffi
2

p
Gg=fq

and Gg=fs, the glueball mass will depend on the ratio of
fs=fq, while its dependence on Gg will be canceled. A
caveat of this treatment is that m2

sg actually is not small
enough to be neglected. This point will be discussed later.
On the other hand, if m2

qg andm2
sg are neglected, it will lead

to independence of the glueball mass on parametersGq;s;g;c.
However, since Gq;s;g;c describes the contributions from the
pseudoscalar U(1) anomaly in Eq. (10), one would expect
its direct connection with the physical glueball mass in the
constraint relation. Our revisit to this issue is to examine
how the glueball mass should depend on Gq;s;g;c in an
explicit way.
Still focusing on M̃31

qsgc=M̃
32
qsgc in Eq. (10), we extend

the discussions on the parameters slightly. These two
elements have the following expressions:

M̃31
qsgc ¼ m2

qg þ
ffiffiffi
2

p
Gg=fq

¼ −M2
ηðcθcθi − sθcϕGsθiÞsθsϕGcϕQ þM2

η0 ðsθcθi þ cθcϕGsθiÞcθsϕGcϕQ −M2
GcϕGsϕGsθicϕQ; ð11Þ

and

M̃32
qsgc ¼ m2

sg þ Gg=fs

¼ M2
ηðcθsθi þ sθcϕGcθiÞsθsϕGcϕQ þM2

η0 ð−sθsθi þ cθcϕGcθiÞcθsϕGcϕQ −M2
GcϕGsϕGcθicϕQ: ð12Þ

Note that in Eq. (11) it is safe to neglect m2
qg and only keep

term
ffiffiffi
2

p
Gg=fq since m2

qg ≪ m2
qq with m2

qq about 36 times

smaller than
ffiffiffi
2

p
Gg=fq. However, it is not obvious to neglect

m2
sg in Eq. (12) since so far we only know the relation of

msg ≪ mss [16], but have no information about the values of
msg. A similar situation occurs with m2

cg and m2
cc when

treating the elements M̃41
qsgc and M̃

42
qsgc, i.e. the only known

information ismcg ≪ mcc. Apparently, if the value ofm2
sg is

compatible with Gg=fs, it will result in large uncertainties
when taking the ratio of M̃31

qsgc=M̃
32
qsgc. Meanwhile, the

sensitivities of the glueball mass to Gg will be lost. This
problem can be seen more clearly if one compares the
following two equal ratios extracted from Eq. (10):

R̂31=32 ≡ M̃31
qsgc

M̃32
qsgc

¼ m2
qg þ

ffiffiffi
2

p
Gg=fq

m2
sg þ Gg=fs

; ð13Þ

and

R̂41=42 ≡ M̃41
qsgc

M̃42
qsgc

¼ m2
qc þ

ffiffiffi
2

p
Gc=fq

m2
sc þ Gc=fs

; ð14Þ

where Eq. (13) leads to R̂31=32 ≃
ffiffiffi
2

p
fs=fq after neglecting

m2
qg andm2

sg. However, note that
ffiffiffi
2

p jGc=fqj ≃ 0.039 GeV2

and Gc=fs ≃ 0.023 GeV2 both are much smaller than
jm2

qcj ¼ 1.197 GeV2 and jm2
scj ¼ 0.092 GeV2 in Eq. (14).

The neglect of m2
qg and m2

sg in Eq. (13) and m2
qc and m2

sc in
Eq. (14) cannot be justified. Thus, although the equivalence
R̂31=32 ¼ R̂41=42 can be deduced rigorously from the left-

hand side of Eq. (10), the relation of R̂31=32 ¼ R̂41=42 ≃ffiffiffi
2

p
fs=fq actually does not hold.
To proceed, we take a slightly different strategy to

determine the parameters and extract the pseudoscalar glue-
ball mass. First, it should be noted that an explicit relation
between Gg and the glueball mass should be retained. Note
that the value jGgj ¼ ð0.054� 0.008Þ GeV3, has been cal-
culated by lattice QCD in the quenched approximation [22].
Although the sign ofGg is not determined by LQCD, wewill
show that the positive value can be excluded since it will lead
to negative values for the glueball mass. We also take the
decay constant fq as an input. It is relatively well constrained
to be ð1 ∼ 1.1Þfπ while fs varies within a range of ð1.3 ∼
1.6Þfπ [62,63,67,68]. Another two parameters that we adopt
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are fc ¼ 487.4 MeV [64] and mcc ≈M2
ηc [62]. These are

reasonable approximations taking into account the success of
potential model in the description of low-lying charmonium
states. Note that the decay constant fJ=ψ ¼ 405 MeV [69]
and the quenched mass mηc ¼ 3.024 GeV [70] are provided
by LQCD. As the leading approximation we assume that the
cc̄ bare vector (J=ψ) and bare pseudoscalar (ηc) share the
same wave function at the origin as expected in the heavy
quark spin symmetry (HQSS) limit, although in reality the
HQSS breaking effects cannot be neglected. Following the

same reason, it is reasonable to adopt the physical ηc mass
for mcc in contrast with the LQCD quenched mass mηc ¼
3.024 GeV.
With the above parameters fixed we are left with 12

equations with 13 undetermined parameters, i.e. MG, ϕG,
Gq, Gs, Gc, msg, mqc, msc, mcq, mcs, mcg, mqq, mss. Note
that as mentioned earlier, m2

sq, m2
qs, m2

qg are neglected since
m2

qs;sq ≪ m2
qg ≪ m2

qq with m2
qq about 36 times smaller thanffiffiffi

2
p

Gg=fq. Therefore, we make the approximation to
Eq. (11) which leads to

M2
G ¼ −

1

cosϕG sin θi cosϕQ

� ffiffiffi
2

p
Gg=fq

sinϕG
− ½−M2

ηðcos θ cos θi − sin θ cosϕG sin θiÞ sin θ cosϕQ

þM2
η0 ðsin θ cos θi þ cos θ cosϕG sin θiÞ cos θ cosϕQ�

�
: ð15Þ

One notices that not all the parameters are explicitly correlated in a single relation in this mixing scheme. This allows us to
investigate the relation between two unknown quantities in a single equation while the other parameters can be fixed with
reasonable values. Following this consideration, Eq. (15) can be approximated by

M2
G ≈ −

1

sin θi

� ffiffiffi
2

p
Gg=fq

sinϕG
−M2

η0 sin θi − ðM2
η0 −M2

ηÞ sin θ cosðθ þ θiÞ
�
; ð16Þ

where all the cosine values of the small angles have been
taken as unity, and the glueball mass sensitivity to ϕG can be
investigated. Note that ϕG is not well constrained and its
value varies in a wide range, depending on the parametriza-
tion of the mixing matrix, experimental inputs, and fitting
procedures [16]. For example, ð12� 13Þ° is obtained in the
radiative decay of V → Pγ; P → Vγ independent of fq and
fs [67]. Thevariation range ofϕGwas found to be ð32þ11

−22Þ° in
the strong process J=ψ → VP in Ref. [71]. Similar scenario
was also studied in Refs. [18,72].
In the next Section we provide relations for the other

parameters in terms of ϕG and the ratios fc=fq, fs=fq, and
fs=fc. Although these three ratios are not independent, the
idea is to investigate whether those undetermined param-
eters can have acceptable values located within a common
regime of ϕG and the ratios.
Note that for the determination of the pseudoscalar glue-

ball mass via Eq. (11), the decay constant fs is not explicitly
involved. However, its correlation with other parameters will
affect the result to some extent, in particular, via the ratio of
fs=fq. Note that fq ≃ ð1 ∼ 1.1Þfπ is relatively well deter-
mined while fs ≃ ð1.3 ∼ 1.6Þfπ is well estimated
[62,63,67,68]. In order to determine all the parameters
self-consistently, we will fix the ratio of fs=fq with com-
monly accepted values and solve the 12 equations with 12
parameters. The ratio of fs=fq contains the uncertainties of
SU(3) symmetry breaking effect. We will show later that the
uncertainties arising from the SU(3) symmetry breaking will
not change the magnitude hierarchy of the correlated
parameters. In particular, we will see that the calculated

glueballmass should not be sensitive to the ratiofs=fqwhich
is different from the result of Refs. [16,60] due to different
ways of treating the parameters.

III. RESULTS AND DISCUSSION

A. Pseudoscalar glueball mass and its correlations
with other parameters

We first study the relation between MG and ϕG in
Eq. (15). The mixing angle between the flavor singlet
and octet states is fixed as θ ¼ −11°, and the mixing angle
between the pure glueball and the pure heavy quark state is
fixed as ϕQ ¼ 11.6°. One can check that the physical
glueball massMG keeps stable within the reasonable ranges
of ϕQ and θ. We adopt fq ¼ fπ ¼ 131 MeV as an input.
Parameter Gg is fixed as jGgj ¼ ð0.054� 0.008Þ GeV3

from the quenched LQCD calculation. As mentioned
earlier, the positive Gg is excluded in our model since it
will result in negative values for M2

G. This is consistent
with analyses of Refs. [16,60]. Actually, within the
favored space for all the other parameters the negative
values for Gg are always required. Therefore, we fix Gg ¼
−ð0.054� 0.008Þ GeV3 in this analysis and the ϕG

dependence of MG can be investigated.
As mentioned earlier, the light quark and glueball mixing

angle ϕG has a relatively large variation range, i.e.
ϕG ∈ ð3; 25Þ°, we can then investigate the dependence of
other quantities on the ϕG within the range of ∈ ð3; 25Þ°.
Note that ϕG ¼ 0 corresponds to a vanishing mixing
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between light quarks and glueball. It simply means that as
long as the mixing is introduced, the mixing angle will be
constrained by other quantities (Gg in this case) and deviate
from zero.
In Fig. 1 we present the physical glueball mass in terms of

ϕG withGg ¼ −ð0.054� 0.008Þ GeV3. It shows thatMG is
very sensitive to ϕG. With a small value of ϕG ¼ 3°, a large
glueball mass of about 3.8GeV can be extracted. This is even
much larger than the pure gauge glueball mass and ηc mass.
So a small ϕG like 3° is certainly unphysical. As indicated by
the central value ofϕG ¼ 12° from amodel analysis [67], the
glueball mass is found to be MG ∈ ð2.0; 2.2Þ GeV where
the uncertainties are given by the uncertainties ofGg. This is
the rangewhich is not far away from the pure gauge glueball
mass by LQCD. It is worth quoting the unquenched LQCD
calculations for the pseudoscalar glueball mass in the
literature. For instance, the UKQCD Collaboration reported
MG ≃ 2.5–2.7 GeV atmπ ¼ 280 and 360MeV, respectively
[27], and MG ¼ 2.56–2.60 GeV at mπ ¼ 938 ∼ 650 MeV
were also found by Ref. [26]. Although these results are
extracted at relatively high pion mass region, it is very much
unlikely that the physical state (a P-wave gluonic state)
should have a mass lower than that for the scalar glueball
(aS-wavegluonic state), i.e. around1.5–1.7GeV.Ouranalysis
also supports such a scenario.The results inFig. 1 suggest that
low glueball masses, e.g., lower than 1.8 GeV, cannot be

accommodated by the mixingmechanism via the axial vector
anomaly. As shown by Fig. 1, even for a much larger and
unrealistic value of themixing angle, the glueballmasswill be
still higher than 1.5 GeV. This eventually rules out the
possibility of a light pseudoscalar glueball around 1.4 GeV.
By substituting Eq. (15) into the mass density matrix

Eq. (6), we obtain the explicit expressions for the mass
density matrix elements as follows,

M11
qsgc¼

M2
ηþM2

η0

2
þM2

η0 −M2
η

12
½2cos2θþ

ffiffiffi
2

p
ðcosϕGþ3Þ secϕG sin2θ�−

2ffiffiffi
3

p Gg

fq
secϕQ tanϕG

M12
qsgc¼M21

qsgc¼
M2

η0 −M2
η

6
ð2

ffiffiffi
2

p
cos2θ−cos2ϕG secϕG sin2θÞþ

2ffiffiffi
6

p Gg

fq
secϕQ tanϕG

M13
qsgc¼M31

qsgc¼
ffiffiffi
2

p
Gg

fq

M14
qsgc¼M41

qsgc¼
ffiffiffi
2

p
Gg

fq
tanϕQ

M22
qsgc¼

M2
ηþM2

η0

2
−
M2

η0 −M2
η

24
½4cos2θþ

ffiffiffi
2

p
ð5cos2ϕGþ3Þ secϕG sin2θ�−

Ggffiffiffi
3

p
fq

secϕQ tanϕG

M23
qsgc¼M32

qsgc¼
Gg

fq
−

ffiffiffi
3

2

r
ðM2

η0 −M2
ηÞcosθcosϕQ sinθsinϕG

M24
qsgc¼M42

qsgc¼
Gg

fq
tanϕQ−

ffiffiffi
3

2

r
ðM2

η0 −M2
ηÞcosθsinϕQ sinθsinϕG

M33
qsgc¼

�
M2

ηsin2θþM2
η0cos

2θþM2
η0 −M2

ηffiffiffi
2

p cosϕG sinθcosθ

�
cos2ϕQ−

ffiffiffi
3

p
Gg

fq
cosϕQcotϕGþM2

ηcsin
2ϕQ

M34
qsgc¼M43

qsgc¼
�M2

ηþM2
η0 −2M2

ηc

4
−

ffiffiffi
3

p
Gg

2fq
secϕQcotϕGþ

M2
η0 −M2

η

4
ðcos2θþ

ffiffiffi
2

p
cosθcosϕG sinθÞ

�
sin2ϕQ

M44
qsgc¼M2

ηccos
2ϕQþ

sin2ϕQ

2
½ðM2

ηþM2
η0 ÞþðM2

η0 −M2
ηÞðcos2θþ

ffiffiffi
2

p
cosθsinθcosϕGÞ�−

ffiffiffi
3

p
Gg

fq
tanϕQcotϕG sinϕQ: ð17Þ

FIG. 1. The physical glueball mass MG varies with ϕG ∈
ð3–25Þ°, with θ ¼ −11°, ϕQ ¼ 11.6°, and fq ¼ 131 MeV. The
solid and dashed line denote the lower and upper limit ofGg and the
band in between denotes the uncertainties of theglueballmasses for
a given ϕG. The vertical dotted line locates the central value of the
favored ϕG ¼ 12° from one of the model analyses [67].
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There are apparent features arising from the mixings
described by the above equation array. In the light flavor
sector the mixing between jqq̄i and jss̄i is dominated by
the flavor singlet and octet mixing as expected. The
glueball mixing contributions are at order of Gg=fq but
it enters into the light quark submatrix with a suppres-
sion factor tanϕG. Due to the small value of ϕG, one
would not expect significant contributions from the
glueball mixings in η and η0 as demonstrated by many
studies. The mixing between the heavy and light flavors

can be seen in M14;24
qsgc , which is at order of tanϕQ and

can be neglected. This is anticipated due to the large
mass difference between ηc and ηðη0Þ. The mixing
between glueball and heavy flavor cc̄ can be seen from
M34

qsgc, where cancellations among the terms are present.
Furthermore, this element is proportional to sin 2ϕQ.
Given the small value of ϕQ, this factor also imposes a
suppression to the mixing effects.
In the limit of small values for ϕG and ϕQ, the element

M33
qsgc can be approximated as

M33
qsgc ≈ −

ffiffiffi
3

p
Gg=fq

sinϕG
þM2

η0 − ðM2
η0 −M2

ηÞ
�
sin2θ −

1ffiffiffi
2

p sin θ cos θ

�
þM2

ηcsin
2ϕQ

¼ −
ffiffiffi
3

p
Gg=fq

sinϕG
þM2

η0 þ ðM2
η0 −M2

ηÞ sin θ cosðθ þ θiÞ
1

sin θi
þM2

ηcsin
2ϕQ

≈M2
G þM2

ηcsin
2ϕQ; ð18Þ

where we keep the correction from ηc to show the
suppressed contributions from the heavy flavor part.
The last line is obtained by substituting Eq. (16) into
the equation with sin θi ¼

ffiffiffiffiffiffiffiffi
2=3

p
. It is interesting to

compare the above expression with Eq. (16). It shows
that the mixing effects on the mass of glueball from
the quark states are indeed suppressed. Apart from the
term of M2

ηc sin
2 ϕQ from the heavy flavor mixing,

corrections from the light flavor singlet and octet
mixings will introduce cancellations. The numerical
calculation indeed suggests that such mixing effects

cannot significantly change the pure glueball mass.
Alternatively, it implies that the physical ηc will have
subleading mixing contributions from the glueball.
This feature can be seen by the element M44

qsgc, and
is consistent with the experimental observations. A
detailed investigation of this aspect has been presented
in Ref. [60].
Combining the mass density matrix elements in Eq. (17)

with those defined in Eq. (8), all the unknown parameters
can be written in terms of ϕG and the constrained
parameters as follows,

MG ¼
�
−

1

cosϕG sin θi cosϕQ

� ffiffiffi
2

p
Gg=fq

sinϕG
− ½−M2

ηðcos θ cos θi − sin θ cosϕG sin θiÞ sin θ cosϕQ

þM2
η0 ðsin θ cos θi þ cos θ cosϕG sin θiÞ cos θ cosϕQ�

��1
2

;

Gq ¼
ðM2

η0 −M2
ηÞfs

2
ðsin 2θ cos 2θi cosϕG þ sin 2θcos2θi sinϕG tanϕG þ cos 2θ sin 2θiÞ

−Gg

ffiffiffi
2

p
fs

fq
cos θi tanϕG secϕQ;

Gs ¼ ðM2
η0 −M2

ηÞ
fq
2

ffiffiffi
2

p ðcos 2θi cosϕG sin 2θ þ cos 2θ sin 2θi þ cos2θi sin 2θ sinϕG tanϕGÞ

−Gg cos θi secϕQ tanϕG

Gc ¼ −
ffiffiffi
2

p
fc

fq
Gg csc θi cotϕG sinϕQ tanϕQ þ ðM2

ηccos
2ϕQ −m2

ccÞfc

þ ½ðM2
η0 −M2

ηÞ sin θ cos θ cot θi cosϕG þ ðM2
ηsin2θ þM2

η0cos
2θÞ�fcsin2ϕQ;
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m2
qq ¼ ðM2

η −M2
η0 Þ
�

fsffiffiffi
2

p
fq

ðsin 2θ cos 2θi cosϕG þ sin 2θcos2θi sinϕG tanϕG þ cos 2θ sin 2θiÞ

−
1

8
ð3þ cos 2ϕGÞ sin 2θ sin 2θi secϕG þ 1

2
cos2θ cos 2θi

�
þ cos2θ

M2
η0 þM2

η

2
þ sin2θðM2

ηsin2θi þM2
η0cos

2θiÞ

þ Gg
2

fq
tanϕG secϕQ cos θi

�
fs
fq

− 1

�
;

m2
ss ¼ ðM2

η −M2
η0 Þ
�

fq
2

ffiffiffi
2

p
fs

ðsin 2θ cos 2θi cosϕG þ sin 2θcos2θi sinϕG tanϕG þ cos 2θ sin 2θiÞ

þ sin 2θ sin θi cos θi cosϕG − sin θ cos θcos2θi cot θi sinϕG tanϕG

�

þ sin2θðM2
ηcos2θi þM2

η0sin
2θiÞ þ cos2θðM2

ηsin2θi þM2
η0cos

2θiÞ þ Gg cos θi tanϕG secϕQ

�
1

fs
−

1

fq

�
;

m2
sg ¼ Gg

� ffiffiffi
2

p
cot θi
fq

−
1

fs

�
þ ðM2

η −M2
η0 Þ sin θ cos θ csc θi sinϕG cosϕQ

¼ Gg

�
1

fq
−

1

fs

�
þ ðM2

η −M2
η0 Þ sin θ cos θ csc θi sinϕG cosϕQ;

m2
cg ¼ −Gg

�
1

fc
þ 1

fq

ffiffiffi
2

p
csc θi cotϕG sinϕQ

�
þ ½ðM2

η0 −M2
ηÞðsin 2θ cot θi cosϕG þ cos 2θÞ

þ ðM2
η0 þM2

ηÞ − 2M2
ηc �

sin 2ϕQ

4
;

m2
qc ¼ ðm2

cc −M2
ηccos

2ϕQÞ
ffiffiffi
2

p
fc

fq
þ

ffiffiffi
2

p
fc

fq
sin2ϕQ½ðM2

η −M2
η0 Þ cos θ cosϕG cot θi sin θ

− ðM2
ηsin2θ þM2

η0cos
2θÞ� þ

ffiffiffi
2

p
Gg

fq
tanϕQ

�
1þ

ffiffiffi
2

p
fc

fq
cotϕG csc θi sinϕQ

�
;

m2
sc ¼ ðm2

cc −M2
ηccos

2ϕQÞ
fc
fs

þ ðM2
η −M2

η0 Þ cos θ sin θ sinϕQ

�
csc θi sinϕG þ fc

fs
cosϕG cot θi sinϕQ

�

−
fc
fs

sin2ϕQðM2
ηsin2θ þM2

η0cos
2θÞ þ

ffiffiffi
2

p
Gg

fq
tanϕQ

�
cot θi þ

fc
fs

cotϕG csc θi sinϕQ

�
;

m2
cq ¼ ðM2

η −M2
η0 Þ

fs
2fc

ðsin 2θ cos 2θi cosϕG þ sin 2θcos2θi sinϕG tanϕG þ cos 2θ sin 2θiÞ

þ Gg

ffiffiffi
2

p

fq

�
fs
fc

cos θi tanϕG secϕQ þ tanϕQ

�
;

m2
cs ¼ ðM2

η −M2
η0 Þ

fq
2

ffiffiffi
2

p
fc

ðsin 2θ cos 2θi cosϕG þ sin 2θcos2θi sinϕG tanϕG þ cos 2θ sin 2θi

þ sin θ cos θ csc θi sinϕG sinϕQÞ þ Gg

�
1

fc
cos θi tanϕG secϕQ þ 1

fq
tanϕQ

�
: ð19Þ

One notices that the elements between the light and heavy flavor mixings are suppressed explicitly either by the
mixing angle or a term of ðM2

ηc cos
2 ϕQ −m2

ccÞ. This is understandable due to the large mass differences between ηc
and ηðη0Þ.
To see more clearly the dependence of the mixing matrix elements on the mixing angles and decay constants, we

substitute the values of those fixed parameters, i.e.,Mη,Mη0 ,Mηc , θi, andGg, into the above equations. The mixing elements
will be explicit functions of θ, ϕG, ϕQ and the decay constants. We can then investigate their relations by numerical

calculations.
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MG¼
��

−
1.8Gg

fq
cscϕG−0.082

�
secϕGþ0.90

�
1=2

;

Gq ¼ fs

�
0.29cos2θ−

0.83Gg

fq
tanϕG−0.10sin2θcosϕGð1− tan2ϕGÞ

�
;

Gs¼ fq½0.21cos2θ−0.072sin2θcosϕGþ0.073sin2θ sinϕG tanϕG�−0.59Gg tanϕG

Gc ¼
�
ð8.9cos2ϕQ−m2

ccÞþ sin2ϕQð0.90−0.08cosϕGÞ− sinϕQ tanϕQ cotϕG

ffiffiffi
3

p
Gg

fq

�
fc;

m2
qq ¼

�
0.71cos2θþ0.51sin2θþ sin2θ secϕGð0.22þ0.073cos2ϕGÞ−

1.2Gg

fq
tanϕG secϕQ

�
1−

fs
fq

��

−
fs
fq

ð0.41cos2θ−0.14sin2θcosϕGð1− tan2ϕGÞÞ;

m2
ss ¼ 0.51cos2θ− sinθcosθcosϕGð0.58−0.15tan2ϕGÞþ0.71sin2θ

−
0.59Gg tanϕG

fs

�
fs
fq

−1

�
þfq
fs

½0.072sin2θcosϕGð1− tan2ϕGÞ−0.21cos2θ�;

m2
sg ¼

Gg

fs

�
fs
fq

−1

�
−0.74sinθcosθ sinϕG;

m2
cg ¼−

Gg

fc

�
1þ

ffiffiffi
3

p fc
fq

cotϕG sinϕQ

�
− ð0.082cosϕGþ8.0ÞsinϕQ cosϕQ;

m2
qc ¼

� ffiffiffi
2

p
ðm2

cc−8.9cos2ϕQÞþ sin2ϕQ

�
0.12cosϕG−1.27þ2.45Gg

fq
cotϕG secϕQ

��
fc
fq

þ
ffiffiffi
2

p
Gg tanϕQ

fq
;

m2
sc ¼

�
m2

cc−8.9cos2ϕQþ
ffiffiffi
3

p
Gg

fq
cotϕG sinϕQ tanϕQ− sin2ϕQð0.90−0.082cosϕGÞ

�
fc
fs

þGg
tanϕQ

fq
þ0.14sinϕG sinϕQ;

m2
cq ¼−

fs
fc

�
0.29cos2θ−

0.82Gg

fq
tanϕG secϕQ−

ffiffiffi
2

p
Gg

fq

fc
fs

tanϕQ−0.10sin2θcosϕGð1− tan2ϕGÞ
�
;

m2
cs ¼−

fq
fc

½0.19þ0.027cosϕGð1− tan2ϕGÞ�þ
secϕQ

fc

�
0.58Gg tanϕGþGg

fc
fq

sinϕQ

�
þ0.14sinϕG sinϕQ: ð20Þ

In the above equation array MG shows explicit dependence
onGg and ϕG.Gq,Gs, andGc are proportional to fs, fq, and
fc, respectively. One notices that Gc,m2

qc, andm2
sc contains

the large cancellation term (M2
ηccos

2ϕQ −m2
cc). Thus, Gc

turns out to be sensitive tom2
cc and ϕQ. These quantities are

also dependent onϕG due to the factor cotϕG there. There are
also large cancellations in m2

qq which is sensitive to both
fs=fq and θ. In contrast, the cancellation inm2

ss is relatively
small, and it shows small dependence on fs=fq. m2

sg shows
sensitivities to fs=fq since it contains an SU(3) flavor
symmetry breaking factor (fs=fq − 1). A cancellation also
occurs in m2

cg, and m2
cg increases with the decreasing ϕG. In

contrast, it decreases when the ϕQ gets smaller. In Eq. (20),
wehave also listedm2

cq andm2
cs in termsofϕQ;m2

cc andϕG in
comparison with m2

qc and m2
sc. However, they show little

dependence on all these mixing angles.
By adopting Gg ¼ −0.054 GeV3, ϕQ ¼ 11.6°, ϕG ¼

12°, fc ¼ 487.4 MeV, fq ¼ 131 MeV, and taking the ratio

fs=fq ¼ 1.2 and 1.3 in order to examine the sensitivity of
the SU(3) flavor symmetry breaking, we can determine all
the other quantities and they are listed in Table I for the two
ratios of fs=fq, respectively. One notices that some of these
parameters do not explicitly depend on fs as discussed
above. Thus, they do not change values when taking
different ratios for fs=fq.
The correlations among the parameters should be

further discussed. In Table I it shows that m2
qq is quite

sensitive to the SU(3) flavor symmetry breaking ratio fs=fq.
Namely, m2

qq changes order with the ratio fs=fq varying
from 1.2 to 1.3. In contrast,m2

sg changes by about a factor of
1.5. Such a dependence can be seen fromEq. (19). Taking the
small angle limit for ϕG and θ,m2

qq can be approximated by

m2
qq≃0.71cos2θ−ð0.41−0.14sin2θÞfs

fq
þ0.29sin2θ; ð21Þ

where significant cancellations occur with the increasing
ratio of fs=fq. With the dominance of the constant term the
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value ofm2
qqwill decrease due to a cancellation caused by the

increasing ratio of fs=fq. A similar phenomenon happens to
m2

sg. It is reasonable that fq and fs would affect the light
quark mass term that are related to the light flavor states ηq
and ηs. Since the other parameters keep stable with the
varying ratio of fs=fq in a reasonable range, wewill focus on
the results with fs=fq ¼ 1.2 in the following discussions.

B. Extracting topological susceptibilities for
pseudoscalar mesons

It is noticeable that the anomaly matrix elements Gq, Gs,
and Gc are of the same order of Gg. Gq and Gs are quite
large which is an indication of the important role played by
the anomaly term in the U(1) Goldstone boson [73,74].
As also discussed in Ref. [16], the anomaly terms
h0jαsGG̃=ð4πÞjηi and h0jαsGG̃=ð4πÞjη0i could be related
to the topological susceptibility. In our scheme we obtain,

h0jαsGG̃=ð4πÞjηi ¼ 0.016 GeV3;

h0jαsGG̃=ð4πÞjη0i ¼ 0.051 GeV3;

h0jαsGG̃=ð4πÞjGi ¼ −0.084 GeV3;

h0jαsGG̃=ð4πÞjηci ¼ −0.079 GeV3; ð22Þ

where the central values of ϕG ¼ 12° and m2
cc ¼ M2

ηc
are adopted. These results are consistent with the LQCD
calculations, namely, h0jαsGG̃=ð4πÞjηi ≈ 0.021 GeV3

[75], h0jαsGG̃=ð4πÞjη0i ≈ 0.035 GeV3 [76], which have
been determined in the chiral limit on LQCD, and

Gg ¼ −ð0.054� 0.008Þ GeV3 calculated in the quenched
approximation [22].
In order to estimate the uncertainties arising from the

parameter ranges, we plot the topological susceptibility
GP ≡ h0jαsGG̃=ð4πÞjPi, with P stands for the physical
states η, η0, G and ηc, in terms of m2

cc;ϕQ and ϕG in
Fig. 2. We consider the dependence of GP on these three
quantities in three cases, i.e., (a)GP dependence onmcc (with
ϕG ¼ 12°, ϕQ ¼ 11.6° fixed); (b) GP dependence on ϕG

(withm2
cc ¼ M2

ηc ,ϕQ ¼ 11.6° fixed); and (c)GP dependence
on ϕQ (with ϕG ¼ 12°, m2

cc ¼ M2
ηc fixed). It shows that Gη

andGη0 are not sensitive tomcc, ϕG, and ϕQ mainly because
the mixing between ηq;s and ηQ are small. More significant
sensitivities ofGG andGηc indicate the non-negligible effects
arising from the mixing between jηQi and jgi.
To be specific, in Fig. 2(a)Gηc is the only one sensitive to

the value of m2
cc due to the presence of the dominant

cancellation term (8.9cos2ϕQ −m2
cc) as shown in Eq. (20).

By adoptingGc ¼ h0jαsGG̃=ð4πÞjηci ¼ −0.079 GeV3, the
corresponding value of m2

cc) becomes close to M2
ηc as

expected. In contrast, in Fig. 2(b) when fixing m2
cc ¼ M2

ηc
and ϕQ ¼ 11.6° the ϕG dependence of both Gηc and GG are
sensitive in the small value range of ϕG ≲ 10°. This
suggests that ϕG can be well constrained by the mixing
angle in our scenario. In Fig. 2(c), by fixing ϕG ¼ 12° and
m2

cc ¼ M2
ηc , all the quantities appear to be stable in terms of

ϕQ in a relatively broad range. The favored value ϕQ ¼
11.6° corresponds to an overall reasonably good description
of all the other quantities.

TABLE I. The numerical values of all the parameters with Gg ¼ −0.054 GeV3 and ϕG ¼ 12° fixed. The two quantities, m2�
qc and m2�

sc

involve more complicated issues and are sensitive to m2
cc and ϕG. Further detailed discussions can be found in the context.

fs=fq MG (GeV) m2
qq ðGeVÞ2 m2

ss m2
sg m2

cg m2�
qc m2�

sc m2
cq m2

cs Gq ðGeVÞ3 Gs Gc

1.2 2.1 0.055 0.45 −0.041 −0.81 0.87 0.50 −0.24 −0.15 0.060 0.035 −0.092
1.3 2.1 0.0012 0.47 −0.067 −0.81 0.87 0.46 −0.25 −0.15 0.065 0.035 −0.092

FIG. 2. The dependence of GP on m2
cc, ϕG, and ϕQ. The results shown from left to right panels are extracted with (left) ϕG ¼ 12° and

ϕQ ¼ 11.6°, (middle) m2
cc ¼ M2

ηc , and ϕQ ¼ 11.6°, and (right) ϕG ¼ 12° and m2
cc ¼ M2

ηc , respectively.
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C. Constraints on the charmonium state

In Table I m2
qq and m2

ss are of the typical values as those
extracted in Refs. [16,60]. But other mass terms are rather
different. As emphasized earlier, our strategy of fixing these
parameters is to retain the mass hierarchy jm2

ccj ≫ jm2
cgj ≫

jm2
cq;csj, and m2

ss ≫ m2
sg. However, m2

qc and m2
sc, labeled

with “�” in Table I, seem to be abnormally large. Sincem2
qc

and m2
sc are determined by M41

qsgc and M42
qsgc, it is

necessary to examine the influence of the approximation
that we have implemented in the determination of the
unitary transformation matrix U as defined in Eq. (9). By
taking ϕG ¼ 12° as an input, theU matrix can be written as,

U ¼

0
BBB@

0.720 −0.693 0.039 0.008

0.673 0.710 0.200 0.041

−0.170 −0.120 0.960 0.197

0 0 −0.201 0.980

1
CCCA; ð23Þ

where elements U41 and U42 are directly dropped as they
are treated as small quantities. We now bring back these
two elements by defining U41 ¼ x and U42 ¼ y, and
investigate the effects on M41

qsgc and M42
qsgc due to the

nonvanishing x and y. The mass matrix Mqsgc with x and
y as explicit parameters has the following expression,

0
BBBBB@

0.699 0.379 −0.583 −0.120
0.379 0.671 −0.383 −0.0787

−1.648xþ 0.076y − 0.583 0.076x − 1.654y − 0.383 −0.117x − 0.077yþ 4.434 −0.024x − 0.016y − 0.916

8.035x − 0.371y − 0.120 −0.371xþ 8.062y − 0.079 0.571xþ 0.376y − 0.916 0.117xþ 0.077yþ 8.713

1
CCCCCA
:

ð24Þ

If we assumed that x, y have the same order of magnitude
but an opposite sign to the corresponding symmetry matrix
elements in the U matrix in Eq. (23), then both x, y should
be order of −0.01. This is truly very small compared to the
other elements. Meanwhile, the two elements M41

qsgc and
M42

qsgc can be expressed as,

M41
qsgc ¼ m2

qc þ
ffiffiffi
2

p
Gc=fq ¼ 8.035x − 0.371y − 0.120;

ð25Þ
and

M42
qsgc¼m2

scþGc=fs¼−0.371xþ8.062y−0.079: ð26Þ

The above two equations suggest that to keep both M41
qsgc

and M42
qsgc small it requires intrinsic dynamic constraints

on bothm2
qc andm2

sc of which the effects will then show up
via x and y in theU matrix. The dependence ofm2

qc andm2
sc

on m2
cc, ϕG and ϕQ are encoded via Eq. (19). It means that

more stringent constraints on m2
cc, ϕG, and ϕQ should be

applied in order to keep both m2
qc and m2

sc small. Interest-
ingly, by requiring jmqc;mscj ≤ 0.25 GeV2, we find that
m2

cc should be restricted within ð8.7–8.8Þ GeV2 as shown
by Fig. 3. It corresponds to ðMηc −mccÞ ¼ 13.5–30.4 MeV
which means that the glueball-cc̄ mixing has resulted in a
mass gap between the physical and pure states. Meanwhile,
it shows that the glueball-cc̄ mixing does not change the
main character of ηc as the ground state pseudoscalar
charmonium. However, due to the mixing, some of the
observables may have indicated effects arising from a small
glueball component in the wave function of ηc. This is
consistent with the conclusion of Ref. [60].

FIG. 3. The dependence ofm2
qc,m2

sc andGc=fq onm2
cc, ϕG and ϕQ. The results shown from left to right panels are extracted with (left)

ϕG ¼ 12° and ϕQ ¼ 11.6°, (middle) m2
cc ¼ M2

ηc , and ϕQ ¼ 11.6°, and (right) ϕG ¼ 12° and m2
cc ¼ M2

ηc , respectively.
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To show the sensitivities of m2
qc, m2

sc and Gc=fq to mcc,
we set the value of m2

cc to be 100 MeV2 below the mass of
ηc squared, i.e., m2

cc ¼ M2
ηc − 100 MeV2. As shown by

Fig. 4, ϕG will be restricted within (7, 12)° and ϕQ cannot
be larger than 11.6°.

D. Pseudoscalar glueball production
in J=ψ radiative decay

In Fig. 5 the glueball mass in term of the favored range
for ϕG is plotted. The band indicates the boundary of Gg

with ð−0.054� 0.008Þ GeV3. It should be noted that, if
MG ¼ 2.56 GeV from the LQCD calculation [26] is taken,
ϕG would be fixed as 7°, and the corresponding U matrix is
given as,

U ¼

0
BBB@

0.72 −0.69 0.023 0.0047

0.68 0.72 0.12 0.024

−0.099 −0.070 0.97 0.20

0 0 −0.20 0.98

1
CCCA: ð27Þ

The production rate of P in J=ψ → γP scales as
ðGP=M̄2Þ2 [16], where M̄ is a typical energy scale
for h0jαsðM̄ÞGG̃=ð4πÞjðqq̄Þ0−þi. This energy scale also

determines the strong coupling αsðM̄Þ. It is natural to
expect that this energy scale is the same for the light
pseudoscalar meson productions, i.e. η and η0, in the light
flavor sector. However, it should be different for ηc due to
the much shorter range for the color force between c and c̄
and larger momentum transfers to the gluons in the
cc̄ → gg transition. We can examine the fitted values in
Eq. (22) for η and η0, and then estimate the production rate
for the pseudoscalar glueball.
The branching ratio fraction for the production of two

pseudoscalar mesons P1 and P2 in the J=ψ radiative decays
can be expressed as

BRðJ=ψ → γP1Þ
BRðJ=ψ → γP2Þ

¼
�
GP1

GP2

�
2
�
M̄2

M̄1

�
4
�
q1
q2

�
3

; ð28Þ

where q1 and q2 are the three-vector momentum of the
pseudoscalar meson P1 and P2 in the rest frame of J=ψ ,
respectively, while M̄1 and M̄2 are the energy scales for the
strong quark-gluon couplings for P1 and P2, respectively, in
the qq̄ → gg transition. As mentioned earlier, it is a reason-
able approximation to adopt the same M̄ value for η and η0.
With the data for BRðJ=ψ → γη0Þ and BRðJ=ψ → γηÞ

from experiment [77] it allows us to extract Gη0=Gη ¼
2.39þ0.08

−0.15 , where the central values of the data give the ratio,
and the boundaries are given by the upper and lower limit of
the data uncertainties [77]. The theoretical value from
Eq. (22) gives Gη0=Gη ¼ 3.19 which is close to the data
constraint taking into account the uncertainties arising
from the parameters. The branching ratio fraction can be
related to the η − η0 mixing either with or without the
glueball mixing which indicates the small glueball com-
ponent in the η and η0 wave function as found in the
literature [18,62,63,67,68].
For the glueball production in J=ψ radiative decays, one

can calibrate its production to the rate for J=ψ → γη via

BRðJ=ψ → γGÞ
q3G

¼
�
GG=M̄2

g

Gη=M̄2
η

�
2 BRðJ=ψ → γηÞ

q3η
; ð29Þ

FIG. 4. The dependence of m2
qc, m2

sc and Gc=fq on ϕG and ϕQ. The results on the left panel are extracted with m2
cc ¼

ðM2
ηc − 100 MeV2Þ and ϕQ ¼ 11.6°, while the results on the right are with ϕG ¼ 12°, m2

cc ¼ ðM2
ηc − 100 MeV2Þ.

FIG. 5. The behavior of MG within the range of ϕG ∈ ð7; 12Þ°.
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where M̄g and M̄η are the energy scales for the glueball and
η. Note that in case there is a large mass difference between
the physical glueball mass and η it is unnecessary for
M̄g ¼ M̄η. Early studies of the scale relation can be found
in Ref. [78]. As an approximation we assume M̄g ¼ M̄η to
extract BRðJ=ψ → γGÞ with a mass of MG ¼ 2.1 GeV,
i.e., BRðJ=ψ → γGÞ ≃ 3.8 × 10−3. Taking into account
that M̄g is supposed to be larger than M̄η, this rate sets
up an upper limit to the branching ratio for the produc-
tion of an MG ¼ 2.1 GeV pseudoscalar glueball in the
J=ψ radiative decays. This result is consistent with the
analysis of Ref. [79] which pointed out the difficulty of
reconciling the LQCD result with the experimental hint
for the possible existence of the additional ηð1405Þ.
One notices that in this mass region BESII reported

pseudoscalar states Xð2120Þ and Xð2370Þ in the invariant
mass spectrum of η0ππ in J=ψ → γX → γη0ππ [80,81],
which was confirmed by BESIII later with high statistics
[82]. The PDG also list ηð2225Þ as an established state in
J=ψ → γKK̄π with BRðJ=ψ → γηð2225Þ ¼ ð3.14þ0.50

−0.19Þ ×
10−4 [77]. Whether these states are radial excitations of η
and η0 [13] or whether one of these states is the pseudo-
scalar glueball candidate should be further investigated in
both experiment and theory.

IV. SUMMARY

In this work, we revisit the mechanism proposed and
studied in Refs. [16,60] for the pseudoscalar meson and
glueball mixings. On the one hand, we confirm many
results from Refs. [16,60] on the correlations among the
introduced parameters. On the other hand, we scrutinize
the dynamical constraints on the glueball mass and
clarify that the physically favored parameter space would
lead to much higher glueball mass than that obtained
before. In particular, we show that the approximation of
neglecting both m2

qg and m2
sg in the extraction of the

glueball mass was inappropriate. Although m2
qg is indeed

a negligible quantity in comparison with
ffiffiffi
2

p
Gg=fq, the

value of m2
sq is actually comparable with Gg=fs and

cannot be neglected. After properly treat these parameters

and identify Gg and ϕG as the parameters that play a
dominant role in the determination of the mixing pattern,
we find that the glueball mass MG cannot be lower
than 1.8 GeV which is much higher than 1.4 GeV
determined by the approximation in Refs. [16,60]. We
find that the mixing angle ϕG ∈ ð7; 12Þ° for the
glueball and light flavor states is favored in our model.
It allows the estimate of an upper limit branching ratio
of the production of pseudoscalar glueball in J=ψ
radiative decay.
This result is encouraging in such a sense that it resolves

not only the apparent paradox between the LQCD results
and some old experimental data for the pseudoscalar
glueball mass, but also explains the single peak structure
around 1.4–1.5 GeV observed by the recent high-statistics
measurements at BESIII in exclusive decay channels
[34,81,83], although in some channels the peak positions
are slightly shifted. The peak position shift is due to
interferences from the triangle singularity mechanism
[29,30,43] instead of by two-pole structures. Namely,
we can conclude that there is no need for two light
pseudoscalars ηð1405Þ and ηð1475Þ to be present as two
individual states and with the ηð1405Þ as the pseudoscalar
glueball candidate. Consequently, as pointed out in
Refs. [29,30,43], in order to search for the pseudoscalar
glueball candidate one should look at the higher mass
region at least above 1.8 GeV where some of the recently
observed pseudoscalar states by BESIII [83] should be
carefully examined.
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