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We calculate in the nonrelativistic QCD (NRQCD) factorization framework all leading relativistic
corrections to the exclusive production of χcJ þ γ in eþe− annihilation. In particular, we compute for the
first time contributions induced by octet operators with a chromoelectric field. The matching coefficients
multiplying production long distance matrix elements (LDMEs) are determined through perturbative
matching between QCD and NRQCD at the amplitude level. Technical challenges encountered in the
nonrelativistic expansion of the QCD amplitudes are discussed in detail. The main source of uncertainty
comes from the not so well known LDMEs. Accounting for it, we provide the following estimates for the
production cross sections at

ffiffiffi
s

p ¼10.6GeV: σðeþe− → χc0þ γÞ ¼ ð1.4� 0.3Þ fb, σðeþe− → χc1 þ γÞ ¼
ð15.0� 3.3Þ fb, and σðeþe− → χc2 þ γÞ ¼ ð4.5� 1.4Þ fb.
DOI: 10.1103/PhysRevD.97.096001

I. INTRODUCTION

More than four decades have passed since the exper-
imental groups of Samuel Ting and Burton Richter [1,2]
discovered the J=ψ , the first observed bound state formed
by a heavy (charm) quark and a heavy antiquark. This event
was of crucial importance for the establishment of quantum
chromodynamics (QCD) as the theory of the strong
interactions. Even though heavy quarkonia are sometimes
regarded as the “hydrogen atoms” of QCD, our present
understanding of these hadronic systems is not as success-
ful as that of the hydrogen atom in quantum electrody-
namics. The nonperturbative nature of QCD at low energy
makes the theoretical description of heavy quarkonium on

the one hand more challenging and on the other hand also
more interesting [3–5].
In particular, the theoretical description of the production

mechanism for charmonia and bottomonia is complicated.
While the creation of a heavy quark pair in a high energy
collision can be described in perturbative QCD, this is
not the case for the evolution of the pair into a heavy
quarkonium, which is governed by nonperturbative long-
distance effects.
Effective field theories (EFTs) provide an elegant way to

treat this problem by exploiting the nonrelativistic nature of
the system and the separation of the relevant scales [6]. The
EFT resulting from integrating out modes associated with
the energy scale of the heavy-quark mass or larger is known
as nonrelativistic QCD (NRQCD) [7]. It conjectures a
factorization theorem allowing one to write the quarkonium
production cross section as an expansion where each term
is the product of a short-distance coefficient and a long-
distance matrix element (LDME). The former is computed
from matching to perturbative QCD, it is a series in the
strong coupling αs, and it incorporates effects from the hard
scale m (heavy quark mass) and above. The latter is of
nonperturbative nature and can be obtained from fits to
experimental data. The LDMEs are assumed to be universal
and to obey power-counting rules in the relative heavy
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quark velocity v, which in a nonrelativistic system is much
smaller than one. Hence, the importance of each term in the
NRQCD-factorized cross section can be estimated by
powers of αs and v. This counting gives NRQCD predictive
power and allows for a systematic inclusion of radiative and
relativistic corrections.
NRQCD also predicts that quarkonium formation is not

limited to heavy quark pairs in a color singlet configuration,
as it was assumed by the color singlet model [8–10].
Instead, the Fock state of a heavy quarkonium can be
schematically understood as a sum over different contri-
butions. For example, for the P-wave charmonium χcJ we
have

jχcJð3PJÞi ∼Oð1Þjcc̄ð3PJÞi þOðvÞjcc̄ð3S1Þgi
þOðv2Þ; ð1Þ

where higher Fock states that involve gluons are suppressed
by powers of v. Nevertheless, in higher order calculations
such contributions become relevant and must be included to
obtain a consistent result.
Electromagnetic quarkonium production can be regarded

as a relatively simple and clean process that makes it a
perfect testing ground for verifying predictions made by
NRQCD. Electromagnetic quarkonium production is an
important subject of study at the BES-III experiment at the
tau-charm factory BEPC-II in China, and at the Belle
experiment at the KEKB asymmetric B-factory in Japan.
For the latter, one particularly interesting electromagnetic
quarkonium production process is the exclusive production
of a heavy quarkonium and a hard (jkj≳m) photon in
electron-positron annihilations.
The scope of this work is to improve on the NRQCD

calculation of the process eþe− → γ� → χcJ þ γ by includ-
ing higher Fock state contributions of Oðα0sv2Þ. The
leading cross section of Oðα0sv0Þ was obtained in [11].
Subsequently, corrections of Oðαsv0Þ [12,13], partial cor-
rections of Oðα0sv2Þ [14,15], and finally partial corrections
ofOðαsv2Þ [16] were computed as well. One of the reasons
why this process has attracted so much interest from the
theory side in the past years is the anticipated connection
between C-even quarkonia and some exotic XYZ particles
[4,17–19], although such identifications are still contro-
versial [20,21]. In any case, there is clear experimental
evidence [22] that the C-even state Xð3872Þ can be
measured in the same channel [eþe− → Xð3872Þ þ γ] as
our process of interest. Therefore, irrespective of the true
nature of Xð3872Þ, in order to study this state in more
detail, it is very useful to have precise and unambiguous
predictions for eþe− → γ� → χcJ þ γ. This is all the more
important in view of the fact that no experimental mea-
surements for the electromagnetic production of χcJ and a
hard photon are yet available, while good perspectives for
this measurement exist at Belle II.

We emphasize that the above-mentioned NRQCD stud-
ies considered only operators that contribute through the
dominant Fock state jQQ̄i. However, operators that project
on the subleading Fock state jQQ̄gi already show up at
Oðα0sv2Þ. The importance of this kind of operators was
already noticed in the past. In particular, they were
explicitly incorporated in studies of the decay χcJ → γγ
[23,24], which is a process very similar to γ� → χcJ þ γ. In
the present work, we will investigate these missing con-
tributions to the production cross section by determining at
Oðα0sv2Þ in NRQCD the matching coefficients of octet
operators containing chromoelectric fields.
The paper is organized in the following way. In Sec. II

we discuss the relevant operators and LDMEs, and write
the NRQCD-factorized cross sections for eþe− → χcJ þ γ
at the desired precision. Different strategies for the deter-
mination of the NRQCD matching coefficients are dis-
cussed in Sec. III. In Sec. IV we outline the calculation of
the NRQCD amplitudes, while in Sec. V we describe the
QCD side of the matching and present the short-distance
coefficients obtained with two independent methods.
A long-standing discrepancy between the results of
[23] and [24] regarding some matching coefficients that
enter the NRQCD-factorized decay rates for χcJ → γγ at
Oðα0sv2Þ is resolved in Sec. VI. Sections VII and VIII
contain the final cross sections and numerical predictions.
Finally, a summary of the obtained results and their impact
is presented in Sec. IX. In Appendix A we present addi-
tional short-distance coefficients that arise from the match-
ing. They are not relevant for our calculation but they are
new and appear atOðv4Þ contributing to the dominant Fock
state. Appendix B contains the details of the calculation
made with the threshold expansion method of Braaten
and Chen [25]. Appendix C contains useful formulas
about polarization sums of hadrons. Appendix D provides
a derivation of the generalized Gremm-Kapustin relations
for 3PJ quarkonia.

II. NRQCD FACTORIZATION FOR THE
e+ e − → χ cJ + γ CROSS SECTION

A. Definition of NRQCD operators for exclusive
quarkonium production

A generic NRQCD operator of naive scaling dimension
dn (which is given by the dimension of the gluonic and
fermionic fields only) that describes the production of a
heavy quarkonium H can be written as [7]

Õn ¼ χ†Knψ

�X
X

X
mJ

jH þ XihH þ Xj
�
ψ†K0

nχ; ð2Þ

where Kð0Þ
n consists of a spin matrix (1 or σ), a color matrix

(1 or Ta), and a polynomial in Bi ≡ ϵijkGkj=2, Ei ≡Gi0,
and D ¼ ∇ − igA with Aμ being the gluon field, Gμν the
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field-strength tensor of QCD, and g the gauge coupling.1

Here and throughout the paper, bold fonts specify Cartesian
3-vectors. Furthermore, ψ (χ) denotes a Pauli field that
annihilates (creates) a heavy quark (antiquark), while
jH þ Xi is a Fock state that contains a quarkonium H
and all other particles X that appear in the final state, and
have energy and momenta that are typically much smaller
than the hard scalem. The summations run over all allowed
X states and the magnetic quantum numbermJ ¼ −J;…; J,
where J denotes the spin of the quarkonium state. The
operators Õn enter the NRQCD factorization formula as
vacuum expectation values

h0jÕnj0i¼h0jχ†Knψ

�X
X

X
mJ

jHþXihHþXj
�
ψ†K0

n χj0i;

ð3Þ

where j0i denotes the QCD vacuum and the quarkonium
states have nonrelativistic normalization, i.e.,

hHðPÞjHðP0Þi ¼ ð2πÞ3δ3ðP − P0Þ; ð4Þ

with Pð0Þ being the total 3-momentum of the heavy
quarkonium.
The sum over X in Eq. (3) is one of the reasons why

production matrix elements h0jÕnj0i cannot easily be
calculated in lattice simulations [26]. However, in exclusive
electromagnetic production this sum is absent, such that the
corresponding LDME reads

h0jOnj0i ¼ h0jχ†Knψ

�X
mJ

jHihHj
�
ψ†K0

n χj0i: ð5Þ

Equation (5) can be further simplified using the rotational
invariance of the matrix elements [7,25]. Since all matrix
elements that differ only in the quantum number mJ are
identical, the sum over mJ trivially reduces to (2J þ 1) and
the LDME factorizes into a product of two quarkonium-to-
vacuum matrix elements

h0jOnj0i ¼ ð2J þ 1Þh0jχ†Knψ jHihHjψ†K0
n χj0i: ð6Þ

The matrix elements h0jχ†Knψ jHi and hHjψ†K0
n χj0i

are the same that enter NRQCD factorization formulas for
exclusive electromagnetic decays [27]. Hence, up to the
prefactor (2J þ 1), the LDME for exclusive electromag-
netic production h0jOnj0i is identical to the corresponding
LDME for electromagnetic decay hHjOn emjHi with
On em ¼ ψ†K0

n χj0ih0jχ†Knψ ,

h0jOnj0i ¼ ð2J þ 1ÞhHjOn emjHi: ð7Þ

For this reason from now on we will absorb the factor
(2J þ 1) into the matching coefficients Fn,

Fn → ð2J þ 1ÞFn; h0jOnj0i →
1

2J þ 1
h0jOnj0i: ð8Þ

B. Color singlet and color octet
production operators

In NRQCD it is customary to classify production
operators according to the color configuration of the QQ̄
pair in the leading Fock state through which these operators
contribute to the process. In the dominant Fock state jQQ̄i
the heavy quark pair is in a color singlet configuration;
hence operators that contribute dominantly through this
state are denoted as singlet operators. An octet operator is
an operator that gives a nonvanishing contribution only
when the QQ̄ pair is in a color octet configuration, such as
in the subleading Fock state jQQ̄gi. An example for a color
octet operator is

χ†σTaψ

�X
X

X
mJ

jH þ XihH þ Xj
�
ψ†σTaχ; ð9Þ

which contributes to the inclusive production of a spin-
triplet P-wave quarkonium at leading order in v. In
exclusive electromagnetic production there are no color
octet operators similar to Eq. (9). This is because a matrix
element like h0jχ†σTaψ jHi vanishes due to color con-
servation. However, if we replace Ta with the chromo-
electric field multiplied by the gauge coupling, we obtain

h0jχ†ðgE · σÞψ jHi; ð10Þ

which gives a nonvanishing contribution to the exclusive
electromagnetic production of a P-wave quarkonium at
subleading order in v. The corresponding operator reads

1

3

�
χ†
�
−
i
2
D
↔
· σ

�
ψ jHihHjψ†ðgE · σÞχ þ H:c:

�
; ð11Þ

with ψ†D
↔
χ ≡ ψ†ðDχÞ − ðDψÞ†χ, where H.c. stands for

Hermitian conjugate. According to the usual NRQCD
classification, the operator in Eq. (11) is a color octet
operator in the sense that this operator necessarily projects
on the subleading Fock state jQQ̄gi.2

1In the case of polarized production, Kð0Þ
n may also depend on

polarization vectors [7]. Explicit NRQCD calculations of such
processes can be found, e.g., in [25]. In this work, we will restrict
ourselves to only unpolarized production.

2Many NRQCD practitioners prefer to use the words “color
octet” to denote only operators similar to the one in Eq. (9). To
avoid misinterpretations we will speak in the following of
operators that contribute through the leading or subleading
quarkonium Fock state jQQ̄i or jQQ̄gi, respectively.
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To our knowledge, the number of studies that considered
contributions from operators with chromoelectric or chro-
momagnetic fields to NRQCD-factorized cross sections
and decay rates is very small. One of such studies was
concerned with the electromagnetic and hadronic decays of
the S-wave heavy quarkonia [28], where LDMEs contain-
ing one chromoelectric field were of relative order v4 as
compared to the leading order LDMEs. The authors,
however, managed to eliminate such LDMEs from their
basis by using the Gremm-Kapustin relations [29]. An
explicit determination of the matching coefficients multi-
plying E-field dependent LDMEs was carried out in [23],
where the authors considered electromagnetic decays of the
P-wave spin triplet quarkonia. There, the relevant LDMEs
contributed already at relative order v2. Matching coeffi-
cients of various decay LDMEs with chromoelectric and
chromomagnetic fields were determined in [24,30], where
the authors systematically studied relativistic corrections to
electromagnetic and hadronic decays of heavy quarkonia
up to relative order v7.
As far as the production of heavy quarkonia is con-

cerned, one should mention the study [31] of higher order
relativistic corrections to the gluon fragmentation into a
spin-triplet S-wave quarkonium. One of the LDMEs
contributing at relative order v4 involves a combination

of a covariant derivative and a chromoelectric field. Also in
this case the authors could eliminate it from their basis via a
field redefinition. We believe that the present work is the
first study, in which matching coefficients multiplying
LDMEs with chromoelectric fields are explicitly computed
for a heavy quarkonium production process and cannot be
traded with other operators.3

C. Production cross section and
power-counting rules

After having clarified the NRQCD framework and the
terminology of this work, let us proceed with applying
NRQCD factorization to the exclusive process eþe− →
γ� → χcJ þ γ. To assess the relative importance of the
NRQCD matrix elements we adopt the power-counting
rules from [7]. To have a homogeneous counting, we count
αsðmÞ ∼ v2, which will be important when combining our
results with the existing radiative corrections. Each of our
formulas depends on three LDMEs, where two of them are
v2 suppressed as compared to the leading LDME.When we
refer to relative Oðv2Þ corrections, we always do so with
respect to the absolute size of the leading order matrix
element. Hence, at relative Oðv2Þ the NRQCD-factorized
cross sections for eþe− → γ� → χcJ þ γ can be written as

σðeþe− → χc0 þ γÞ ¼ F1ð3P0Þ
3m4

h0jχ†
�
−
i
2
D
↔
· σ

�
ψ jχc0ihχc0jψ†

�
−
i
2
D
↔
· σ

�
χj0i

þ G1ð3P0Þ
6m6

�
h0jχ†

�
−
i
2
D
↔
· σ

�
ψ jχc0ihχc0jψ†

�
−
i
2
D
↔
· σ

��
−
i
2
D
↔
�

2

χj0i þ H:c:

�

þ iT8ð3P0Þ
3m5

�
h0jχ†

�
−
i
2
D
↔
· σ

�
ψ jχc0ihχc0jψ†ðgE · σÞχj0i þ H:c:

�

≡ F1ð3P0Þ
m4

h0jO1ð3P0Þj0i þ
G1ð3P0Þ

m6
h0jP1ð3P0Þj0i þ

T8ð3P0Þ
m5

h0jT 8ð3P0Þj0i; ð12aÞ

σðeþe− → χc1 þ γÞ ¼ F1ð3P1Þ
2m4

h0jχ†
�
−
i
2
D
↔
× σ

�
ψ jχc1i · hχc1jψ†

�
−
i
2
D
↔
× σ

�
χj0i

þ G1ð3P1Þ
4m6

�
h0jχ†

�
−
i
2
D
↔
× σ

�
ψ jχc1i · hχc1jψ†

�
−
i
2
D
↔
× σ

��
−
i
2
D
↔
�

2

χj0i þ H:c:

�

þ iT8ð3P1Þ
2m5

�
h0jχ†

�
−
i
2
D
↔
× σ

�
ψ jχc1i · hχc1jψ†ðgE × σÞχj0i þ H:c:

�

≡ F1ð3P1Þ
m4

h0jO1ð3P1Þj0i þ
G1ð3P1Þ

m6
h0jP1ð3P1Þj0i þ

T8ð3P1Þ
m5

h0jT 8ð3P1Þj0i; ð12bÞ

3As shown in [24], using field redefinitions the relevant LDMEs with chromoelectric fields could, in principle, be traded
for LDMEs that involve a time derivative acting on fermion and gluon fields. We have chosen not to include such operators in
our basis.
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σðeþe− → χc2 þ γÞ ¼ F1ð3P2Þ
m4

h0jχ†
�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2ihχc2jψ†

�
−
i
2
D
↔ðiσjÞ

�
χj0i

þG1ð3P2Þ
2m6

�
h0jχ†

�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2ihχc2jψ†

�
−
i
2
D
↔ðiσjÞ

��
−
i
2
D
↔
�

2

χj0i þ H:c:

�

þ iT8ð3P2Þ
m5

�
h0jχ†

�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2ih χc2jψ†ðgEðiσjÞÞχj0i þ H:c:

�

≡ F1ð3P2Þ
m4

h0jO1ð3P2Þj0i þ
G1ð3P2Þ

m6
h0jP1ð3P2Þj0i þ

T8ð3P2Þ
m5

h0jT 8ð3P2Þj0i; ð12cÞ

with aðibjÞ ≡ aibjþajbi

2
− δij

3
a · b. The subscript 1 labels

operators contributing through the dominant Fock state
jQQ̄i, while the subscript 8 labels operators that project on
the subleading Fock state jQQ̄gi only.
According to the NRQCD power-counting rules, the

scaling of h0jO1ð3PJÞj0i is v5, while h0jP1ð3PJÞj0i scales
as v7 due to the presence of two additional covariant
derivatives. In comparison to h0jO1ð3PJÞj0i the matrix
element h0jT 8ð3PJÞj0i contains one covariant derivative
less, but involves a chromoelectric field, which scales as v3

so that the absolute size of this LDME is also v7 [7].
It is worth noting that, in general, expectation values of

operators such as Eq. (9), which contribute through the
subleading Fock state jQQ̄gi, contain an additional sup-
pression in v, if theQQ̄ pair in the color octet configuration
is produced with a different angular momentum than the
QQ̄ pair in the dominant Fock state. The reason for this is
that in the corresponding short-distance process we create a
color octet QQ̄ pair that emits a soft gluon during its
nonperturbative evolution into a heavy quarkonium. The
emission of the gluon that changes the orbital angular
momentum of the pair by one unit and converts it into a
color singlet corresponds to an electric dipole (E1) tran-
sition, which accounts for the extra suppression. However,
according to the power-counting rules from [7], for LDMEs
that contain chromoelectric fields, the additional OðvÞ
suppression is already accounted for in the power-counting
rule of E.4 This is why h0jT 8ð3PJÞj0i is only Oðv2Þ
suppressed as compared to h0jO1ð3PJÞj0i and hence para-
metrically as important as h0jP1ð3PJÞj0i.
It is well known that the power counting of [7] is not the

most conservative choice in the framework of NRQCD. In
particular, the underlying assumption that the typical
hadronic scale ΛQCD is of order mv2 may not be satisfied
in all quarkonium production and decay processes. A more
cautious choice would be to assume that ΛQCD ∼mv as was
done, e.g., in [24] (cf. also [6] and references therein for a

detailed discussion of different countings in NRQCD).
In the resulting conservative power counting, each chromo-
electric field scales only as v2 (not as v3) but there is also an
additional power of v coming from the subleading Fock
state jQQ̄gi. It is therefore interesting to observe that
h0jT 8ð3PJÞj0i scales as v7 both in the perturbative counting
of [7] and in the conservative counting of [24].
Equations (12) depend on nine matching coefficients.

The matching coefficients F1ð3PJÞ and G1ð3PJÞ at Oðα0s Þ
were computed in [11] and [15,32], respectively. In [15,32]
(as well as in the order αs analysis of [16]) the authors,
although working at Oðv2Þ, did not include the matrix
element h0jT 8ð3PJÞj0i in their cross section formula.
Therefore the corresponding matching coefficients
T8ð3PJÞ remained unknown. In this work, we compute
for the first time the matching coefficients T8ð3PJÞ at
Oðα0s Þ. This is the last missing piece to have the complete
Oðv2Þ corrections for exclusive electromagnetic production
of χcJ and a hard photon. The calculation is essentially a
tree-level calculation, but nontrivial, as we need to work
with a quarkonium composed of two heavy quarks and a
gluon. How to determine T8ð3PJÞ from matching QCD to
NRQCD will be discussed in the next section.

III. MATCHING NRQCD
PRODUCTION COEFFICIENTS

A. Matching conditions

There exist different approaches to calculate the NRQCD
matching coefficients in a quarkonium production process.
In all of them the matching is done between perturbative
QCD and perturbative NRQCD, relying on the same behav-
ior of both theories at low energies. The NRQCD matrix
elements are evaluated in such a way that the quarkonium
Fock states are replaced by the perturbative Fock states
containing on-shell quarkonium constituents, e.g.,

h0jχ†Knψ jHihHjψ†K0
nχj0i

→ h0jχ†Knψ jQQ̄ihQQ̄jψ†K0
nχj0i: ð13Þ

The explicit calculation of matrix elements on the right-
hand side of Eq. (13) in perturbative NRQCD will be

4We thank G. Bodwin for communications on this point; cf.
also [28] where the authors explicitly apply this prescription
when estimating the importance of LDMEs with chromoelectric
fields.
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explained in Sec. IV. To derive the values of the coefficients
multiplying such matrix elements, we need to impose a
relation between suitable quantities (e.g., Green’s func-
tions, cross sections, on-shell amplitudes) in QCD and
NRQCD. In EFTs such relations are called matching
conditions.
In [7] the matching condition for quarkonium production

was given as

σðQQ̄Þjpert QCD ¼
X
n

Fn

mdn−4
h0jOQQ̄

n j0i
���
pert NRQCD

; ð14Þ

which imposes an equality between the partonic cross
section to produce an on-shell heavy quark pair in pertur-
bative QCD and the sum of suitable LDMEs multiplied by
matching coefficients Fn and inverse powers of the heavy
quark mass in perturbative NRQCD. Assuming that the
relative momentum of the heavy quarks in the rest frame, q,
is small, one can expand both sides of Eq. (14) in jqj=m.
Within this nonrelativistic expansion one can read off the
values of the matching coefficients Fn and then substitute
them into the NRQCD-factorized production cross section.
A more technical explanation of this approach can be found
in [33].
One of the difficulties related to practical applications of

Eq. (14) is the necessity to perform a nonrelativistic
expansion of the phase-space measure on the QCD side
of the matching. In processes, where heavy quarkonium is
produced together with other particles, such an expansion
tends to become complicated and requires great care.
In case of exclusive reactions (such as our process of

interest) it is also possible to employ the NRQCD factori-
zation at the amplitude level [34,35],

Apert QCD ¼
X
n

ci1���ikn hQQ̄jψ†Ki1���ik
n χj0i

≡Apert NRQCD; ð15Þ

where ci1���ikn is a short-distance coefficient. Equation (15) is
an equality between the on-shell amplitude to produce a
heavy quark pair in perturbative QCD and a sum of
quarkonium-to-vacuum matrix elements multiplied or con-
tracted with short-distance coefficients in perturbative
NRQCD. Once the short-distance coefficients cn are
known, they can be substituted into the NRQCD-factorized
production amplitude

ANRQCD ¼
X
n

ci1���ikn hHjψ†Ki1���ik
n χj0i: ð16Þ

Squaring Eq. (16) and integrating over the phase space of
the physical quarkonium we obtain the NRQCD production
cross sections as in Eq. (12). Notice that in general not all
matrix elements in Apert NRQCD give a nonvanishing con-
tribution to ANRQCD. Since QCD amplitudes do not have

definite angular momentum (cf. Sec. V), in the matching
we will determine more short-distance coefficients than
required in Eq. (12). The advantage of this method is
that the matching can be done in a much simpler way, since
it does not require one to compute the QCD matrix element
squared and expand the phase space measure in jqj=m. In
this work we calculate our matching coefficients by
employing the NRQCD factorization at the amplitude
level.

B. Kinematics

We now make explicit the kinematics that we will use
throughout the matching calculation. We distinguish
between two frames of reference. The laboratory frame
is the center of mass (CM) frame of the colliding leptons,
where the heavy quarkonium and the photon fly apart
from the interaction point in opposite directions. The
rest frame is the frame in which the heavy quarkonium
is at rest.
We denote the 4-momenta of the heavy quarks and the

gluon in the laboratory frame with p1, p2, and pg,
respectively; k stands for the 4-momentum of the photon,
while the momenta of the colliding leptons are labeled by l1
and l2. We will also make use of the polarization vectors
for the photon εγ , for the gluon εg, and for the dilepton
system Lμ ≡ ev̄ðl2Þγμuðl1Þ. The direction of the photon
3-momentum is referred to as k̂≡ k=jkj. In the matching
all the external momenta are put on-shell and the masses of
the leptons are neglected as compared to the CM energyffiffiffi
s

p
. Hence,

p2
1 ¼ p2

2 ¼ m2; ð17Þ

l21 ¼ l22 ¼ k2 ¼ p2
g ¼ 0; ð18Þ

εγ · k ¼ εg · pg ¼ ðl1 þ l2Þ · L ¼ 0: ð19Þ

Finally, the 4-momentum of the heavy quarkonium is
denoted by P. In the perturbative matching P is expressed
as a sum of the heavy quark and gluon momenta, i.e., P ¼
p1 þ p2 for a QQ̄ system and P ¼ p1 þ p2 þ pg for a
QQ̄g system. In the physical process, however, P is the
4-momentum of the quarkonium with P2 ¼ M2

χcJ , where
MχcJ denotes the mass of χcJ measured in experiments. We
will explicitly state the meaning that we assign to P at the
different stages of this work.
To distinguish a laboratory frame vector from a rest

frame vector, the latter will be assigned an additional
subscript R. For example, when considering the QQ̄
system, it is convenient to introduce the relative momentum
of the heavy quarks in the rest frame, defined as
q≡ ðp1;R − p2;RÞ=2. In the case of the QQ̄g system, two
relative momenta are needed, given by
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q1¼
1

2
ðp1;R−p2;RÞ; q2¼

1

6
ð2pg;R−p1;R−p2;RÞ: ð20Þ

More details regarding the kinematics of the QQ̄ and QQ̄g
systems can be found in Appendix B.

C. Automatized expansions

As all matching prescriptions involve nonrelativistic
expansions of the perturbative QCD amplitudes, let us
also briefly discuss different strategies to realize this task.
In [7],matching calculations for decayswere done in such

a way that the expanded QCD amplitudes were explicitly
rewritten in terms of energies, Cartesian 3-vectors, Pauli
matrices, and Pauli spinors. Since such objects naturally
arise on the NRQCD side of the matching, having both sides
of the matching equation expressed as products of 3-vectors
and Pauli structures facilitates the extraction of thematching
coefficients. This approach to NRQCD matching calcula-
tions was developed further and generalized to be applicable
both to production and decays in [25,36]. Following [36] we
will denote it as the threshold expansion method. Applying
the technique developed by Braaten and Chen is concep-
tually simple, yet the calculations tend to become rather
cumbersome when one goes beyond tree level or leading
order in v. In particular, the necessity to work with non-
covariant objects on the QCD side of the matching makes
such calculations quite tedious not only when done by hand
but also when automatized with FORM [37] or similar
symbolic manipulation systems.
The manifest Lorentz covariance of the QCD amplitudes

can be preserved if one uses the covariant projector technique
[28]. This property is especially useful when the evaluation is
automatized using existing software for symbolic calcula-
tions in relativistic Quantum Field Theory (QFTs) (e.g.,
FEYNCALC [38,39], REDBERRY [40], or FDC [41] to name
those that are often used inNRQCDcalculations). This is one
of the main reasons why almost all modern NRQCD
matching calculations are done using projectors.
For the present calculation, however, we will not use

this approach. The reason is that there is no literature on
how to apply the projector technique to extract matching
coefficients multiplying matrix elements of the type
h0jT 8ð3PJÞj0i. On the other hand, the calculation of the
matching coefficients T8ð3PJÞ using the threshold expan-
sion method and matching at the amplitude level is
straightforward, albeit tedious. Similar calculations have
already been done in the investigation of the electromag-
netic decay χcJ → γγ [23,24], such that one can benefit
from the existing knowledge on the subject. To automatize
our matching calculations we employ FEYNARTS [42],
FEYNCALC, FORM, and FEYNCALCFORMLINK [43]
as well as self-written Mathematica codes. The software
framework for automatizing nonrelativistic EFT calcula-
tions using FEYNCALC will be presented elsewhere [44].

IV. NRQCD AMPLITUDES

A. NRQCD-factorized production amplitudes
and cross sections

In order to apply the threshold expansion method at the
amplitude level, we introduce NRQCD production ampli-
tudes at Oðv2Þ relative to the scaling of the leading order
quarkonium-to-vacuum matrix element

AJ¼0
NRQCD ¼ cJ¼0

1

m2
hχc0jψ†

�
−
i
2
D
↔
· σ

�
χj0i

þ cJ¼0
3

m4
hχc0jψ†

�
−
i
2
D
↔
· σ

��
−
i
2
D
↔
�

2

χj0i

þ dJ¼0
1

m3
hχc0jψ†ðgE · σÞχj0i; ð21aÞ

AJ¼1
NRQCD ¼ ðcJ¼1

1 Þi
m2

hχc1jψ†
�
−
i
2
D
↔
× σ

�
i
χj0i

þ ðcJ¼1
3 Þi
m4

hχc1jψ†
�
−
i
2
D
↔
× σ

�
i
�
−
i
2
D
↔
�

2

χj0i

þ ðdJ¼1
1 Þi
m3

hχc1jψ†ðgE × σÞiχj0i; ð21bÞ

AJ¼2
NRQCD ¼ ðcJ¼2

1 Þij
m2

hχc2jψ†
�
−
i
2
Dði
↔

σjÞ
�
χj0i

þ ðcJ¼2
3 Þij
m4

hχc2jψ†
�
−
i
2
Dði
↔

σjÞ
��

−
i
2
D
↔
�

2

χj0i

þ ðdJ¼2
1 Þij
m3

hχc2jψ†gEðiσjÞχj0i: ð21cÞ

The scaling of these matrix elements in v is estimated
according to the power-counting rules discussed in Sec. II C.

For example, thematrix element hχc0jψ†ð− i
2
D
↔
·σÞχj0i scales

as v5=2, while the scaling of hχc0jψ†ðgE ·σÞχj0i is v9=2.
As explained in Sec. III, to arrive at production cross

sections in the laboratory frame, we need to square
the amplitudes in Eq. (21), average over the polarizations
of the leptons, sum over the polarizations of the photon
and the heavy quarkonium, and integrate over the
phase space for producing a heavy quarkonium and a
photon,

σðeþe−→χcJþγÞ¼2MχcJð2Jþ1Þ
Z

dΦJ
1

4

X
pols

jAJ
NRQCDj2;

ð22Þ

where pols refers to the photon polarizations and the
summation over the polarizations of the heavy quarkonium
is implicit in the amplitude squared. The prefactor (2J þ 1)
appears because of our redefinition of the matching
coefficients in Eq. (8) and will be precisely canceled by
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1=ð2J þ 1Þ in the formula for the sum over the heavy
quarkonium polarizations (cf. Appendix C). The prefactor
2MχcJ accounts for the fact that our matrix elements have
nonrelativistic normalization.5 Finally, the phase space
measure is given by

dΦJ ¼
s −M2

χcJ

64π2s2
dΩk; ð23Þ

with the integration done over the solid angle of the photon
3-momentum k. This yields

σðeþe− → χc0 þ γÞ ¼ 2Mχc0

Z
dΦ0

1

4

X
pols

�
3
jcJ¼0

1 j2
m4

h0jO1ð3P0Þj0i

þ 6
cJ¼0
1 ðc�J¼0

3 Þ
m6

h0jP1ð3P0Þj0i − 3i
cJ¼0
1 ðd�J¼0

1 Þ
m5

h0jT 8ð3P0Þj0i
�
; ð24aÞ

σðeþe− → χc1 þ γÞ ¼ 2Mχc1

Z
dΦ1

1

4

X
pols

�
2
ðcJ¼1

1 Þiðc�J¼1
1 Þi

m4
h0jO1ð3P1Þj0i

þ 4
ðcJ¼1

1 Þiðc�J¼1
3 Þi

m6
h0jP1ð3P1Þj0i − 2i

ðcJ¼1
1 Þiðd�J¼1

1 Þi
m5

h0jT 8ð3P1Þj0i
�
; ð24bÞ

σðeþe− → χc2 þ γÞ ¼ 2Mχc2

Z
dΦ2

1

4

X
pols

�
1

m4

�
ðcJ¼2

1 Þijðc�J¼2
1 Þij − 1

3
ðcJ¼2

1 Þiiðc�J¼2
1 Þjj

�
h0jO1ð3P2Þj0i

þ 2

m6

�
ðcJ¼2

1 Þijðc�J¼2
3 Þij − 1

3
ðcJ¼2

1 Þiiðc�J¼2
3 Þjj

�
h0jP1ð3P2Þj0i

−
i
m5

�
ðcJ¼2

1 Þijðd�J¼2
1 Þij − 1

3
ðcJ¼2

1 Þiiðd�J¼2
1 Þjj

�
h0jT 8ð3P2Þj0i

�
; ð24cÞ

where we used that c1c�3 ¼ c3c�1 and c�1d1 ¼ −c1d�1.
6

Comparing Eq. (24) with Eq. (12) we can express the
matching coefficients F1ð3PJÞ, G1ð3PJÞ, and T8ð3PJÞ
through the short-distance coefficients c1, c3, and d1,

F1ð3P0Þ ¼ 2Mχc0

Z
dΦ0

1

4

X
pols

3jcJ¼0
1 j2; ð25aÞ

G1ð3P0Þ ¼ 2Mχc0

Z
dΦ0

1

4

X
pols

6cJ¼0
1 ðc�J¼0

3 Þ; ð25bÞ

T8ð3P0Þ ¼ −2iMχc0

Z
dΦ0

1

4

X
pols

3cJ¼0
1 ðd�J¼0

1 Þ; ð25cÞ

F1ð3P1Þ ¼ 2Mχc1

Z
dΦ1

1

4

X
pols

2ðcJ¼1
1 Þiðc�J¼1

1 Þi; ð25dÞ

G1ð3P1Þ ¼ 2Mχc1

Z
dΦ1

1

4

X
pols

4ðcJ¼1
1 Þiðc�J¼1

3 Þi; ð25eÞ

T8ð3P1Þ ¼ −2iMχc1

Z
dΦ1

1

4

X
pols

2ðcJ¼1
1 Þiðd�J¼1

1 Þi; ð25fÞ

F1ð3P2Þ ¼ 2Mχc2

Z
dΦ2

1

4

X
pols

�
ðcJ¼2

1 Þijðc�J¼2
1 Þij

−
1

3
ðcJ¼2

1 Þiiðc�J¼2
1 Þjj

�
; ð25gÞ

G1ð3P2Þ ¼ 2Mχc2

Z
dΦ2

1

4

X
pols

2

�
ðcJ¼2

1 Þijðc�J¼2
3 Þij

−
1

3
ðcJ¼2

1 Þiiðc�J¼2
3 Þjj

�
; ð25hÞ

T8ð3P2Þ ¼ −2iMχc2

Z
dΦ2

1

4

X
pols

�
ðcJ¼2

1 Þijðd�J¼2
1 Þij

−
1

3
ðcJ¼2

1 Þiiðd�J¼2
1 Þjj

�
: ð25iÞ

Our task is to calculate all matching coefficients and in
particular T8ð3PJÞ atOðα0s Þ, which can be inferred from the

5An easy way to understand where 2MχcJ comes from is to
compute the cross section from an NRQCD amplitude with
relativistic normalization of the matrix elements and then convert
to the nonrelativistic normalization via the well-known relation
[34] hHjψ†Kχj0irel norm ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2MχcJ

p hHjψ†Kχj0i.
6These relations between products of the short distance

coefficients are given in anticipation of our explicit results listed
in Sec. V.
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knowledge of c1 and d1. To determine the short-distance
coefficients cJ1, cJ3, and dJ1 we need to carry out the
matching between perturbative QCD and perturbative
NRQCD at the amplitude level.

B. Computation of the NRQCD amplitudes

The perturbative NRQCD matrix elements are most
conveniently evaluated in the operator formalism by
rewriting heavy quark fields in terms of Pauli spinors
and single fermion creation and annihilation operators, as
explained in [45]. The evaluation of matrix elements that
enter perturbative NRQCD amplitudes is straightforward.
For example, replacing jHi with jQðp1;RÞQ̄ðp2;RÞi and
jQðp1;RÞQ̄ðp2;RÞgðpg;RÞi in AJ¼0

NRQCD from Eq. (21a) we
find

hQðp1;RÞQ̄ðp2;RÞjψ†
�
−
i
2
D
↔
· σ

�
χj0i ¼ ξ†ðσ · qÞη; ð26Þ

hQðp1;RÞQ̄ðp2;RÞjψ†
�
−
i
2
D
↔
· σ

��
−
i
2
D
↔
�

2

χj0i

¼ q2ξ†ðσ · qÞη; ð27Þ
hQðp1;RÞQ̄ðp2;RÞjψ†ðgE · σÞχj0i ¼ 0; ð28Þ

hQðp1;RÞQ̄ðp2;RÞgðpg;RÞjψ†
�
−
i
2
D
↔
· σ

�
χj0i

¼ −gξ†ðσ · ε�g;RÞη; ð29Þ

hQðp1;RÞQ̄ðp2;RÞgðpg;RÞjψ†
�
−
i
2
D
↔
· σ
��

−
i
2
D
↔
�

2

χj0i

¼ −gξ†σiη½2qiðq · ε�g;RÞ þ ε�ig;Rq
2�; ð30Þ

hQðp1;RÞQ̄ðp2;RÞgðpg;RÞjψ†ðgE · σÞχj0i
¼ −igjpgjξ†ðσ · ε�g;RÞη: ð31Þ

Notice that, although matrix elements made only of
covariant derivatives contribute through the leading Fock
state jQQ̄i, because of the gluon field in the covariant
derivative they also give a nonvanishing contribution to the
subleading Fock state jQQ̄gi.
As explained in Sec. III, to match the QCD amplitudes we

need, however, more operators andmatching coefficients on
the NRQCD sides than needed to compute production cross
sections alone. For example, apart from P-wave spin triplet
quarkonium (χcJ) we may also produce S-wave spin singlet
quarkonium (ηc). Even thoughwe are actually not interested
in the latter, we still have to determine the short-distance
coefficients of the corresponding operators. In fact, this
property of the threshold expansion method provides an
important consistency check of the whole matching calcu-
lation: if the short-distance coefficients were determined
correctly, the difference Apert QCD −Apert NRQCD would nec-
essarily vanish order by order in the expansion parameters.
Notice that the perturbative matching between QCD and
NRQCD does not rely on any specific power counting.
Instead, we compareApert QCD toApert NRQCD order by order
in q1 and q2. This follows the approach adopted in [24],
where the matching for electromagnetic decays was done
order by order in 1=m.
The NRQCD amplitudes relevant for the perturbative

matching (including additional matrix elements and
Lagrangian insertions allowed by the symmetries) read

AJ¼0
pert NRQCD ¼ cJ¼0

0

m
hHjψ†χj0i þ cJ¼0

1

m2
hHjψ†

�
−
i
2
D
↔
· σ

�
χj0i þ cJ¼0

2

m3
hHjψ†

�
−
i
2
D
↔
�

2

χj0i

þ cJ¼0
3

m4
hHjψ†

�
−
i
2
D
↔
· σ

��
−
i
2
D
↔
�

2

χj0i þ dJ¼0
0

m3
hHjψ†ðgB · σÞχj0i þ dJ¼0

1

m3
hHjψ†ðgE · σÞχj0i

þ cJ¼0
0

m
hHjψ†χj0iL2−f

þ cJ¼0
1

m2
hHjψ†

�
−
i
2
D
↔
· σ

�
χj0iL2−f

þ cJ¼0
2

m3
hHjψ†

�
−
i
2
D
↔
�

2

χj0iL2−f
; ð32aÞ

AJ¼1
pertNRQCD ¼ ðcJ¼1

1 Þi
m2

hHjψ†
�
−
i
2
D
↔
× σ

�
i
χj0i þ ðcJ¼1

3 Þi
m4

hHjψ†
�
−
i
2
D
↔
× σ

�
i
�
−
i
2
D
↔
�

2

χj0i þ ðdJ¼1
0 Þi
m3

hHjψ†ðgB× σÞiχj0i

þ ðdJ¼1
1 Þi
m3

hHjψ†ðgE× σÞiχj0i þ ðcJ¼1
1 Þi
m2

hHjψ†
�
−
i
2
D
↔
× σ

�
i
χj0iL2−f

; ð32bÞ

AJ¼2
pert NRQCD ¼ ðcJ¼2

1 Þij
m2

hHjψ†
�
−
i
2
D
↔ðiσjÞ

�
χj0i þ ðcJ¼2

2 Þij
m3

hHjψ†
�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0i

þ ðcJ¼2
3 Þij
m4

hHjψ†
�
−
i
2
D
↔ðiσjÞ

��
−
i
2
D
↔
�

2

χj0i þ ðdJ¼2
0 Þij
m3

hHjψ†gBðiσjÞχj0i þ ðdJ¼2
1 Þij
m3

hHjψ†gEðiσjÞχj0i

þ ðcJ¼2
1 Þij
m2

hHjψ†
�
−
i
2
D
↔ðiσjÞ

�
χj0iL2−f

þ ðcJ¼2
2 Þij
m3

hHjψ†
�
−
i
2

�
2

D
↔ðiD

↔
jÞχj0iL2−f

: ð32cÞ
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Some explanations are in order. The matrix elements
with the subscript L2−f contain Lagrangian insertions,
where the relevant part of the NRQCD Lagrangian (2-
fermion sector only) is

L2−f ¼ ψ†
�
D2

2m
þ gB · σ

2m
þ ½D·; gE�

8m2
þ iσ · ½D×; gE�

8m2

þ D4

8m3
þ fD2; gB · σg

8m3

�
ψ

þ χ†
�
−
D2

2m
−
gB · σ
2m

þ ½D·; gE�
8m2

þ iσ · ½D×; gE�
8m2

−
D4

8m3
þ fD2; gB · σg

8m3

�
χ: ð33Þ

In the diagrammatic representation of the NRQCD quar-
konium-to-vacuum matrix elements, Lagrangian insertions
correspond to the emission of a gluon from one of the
external heavy quark lines. For example, for hHjψ†χj0i and
hHjψ†χj0iL2−f

we have

ð34aÞ

ð34bÞ

where the quark-gluon vertex on the heavy quark
(antiquark) line is understood as a sum of all six vertices
from quark-gluon (antiquark-gluon) interaction terms in
Eq. (33). Hence, to calculate the diagrams on the left-hand
side of Eq. (34b) we need to apply Feynman rules for the
ψ†χ operator and for the interaction terms in Eq. (33).
The derivation of such Feynman rules in the operator

approach is a simple QFT exercise: we sandwich the
operator between the vacuum and a Fock state that contains
our fields (so that all momenta are ingoing), calculate the
matrix element, amputate external states (Pauli spinors and

polarization vectors), and multiply the result by i. For
example, for the operator ψ†fD2; σ · gBg=ð8m3Þψ we
obtain

ð35Þ

Once we have the full expressions for the amplitudes in
Eq. (32) with jHi replaced by the perturbative jQQ̄i and
jQQ̄gi Fock states, we can expand them in the relative
momenta of the quarkonium constituents. For the QQ̄ case
we need to expand up to the third order in jqj=m, which
allows us to determine the values of c0, c1, c2, and c3. For
the QQ̄g case it is sufficient to expand the amplitude up to
the first order in jq1j=m and jq2j=m, so that we can extract
d0 and d1.

V. QCD AMPLITUDES AND MATCHING

In this section, we compute the nonrelativistic expan-
sions for the relevant QCD amplitudes that describe
exclusive electromagnetic production of QQ̄, i.e.,

e−ðl1Þeþðl2Þ → Qðp1ÞQ̄ðp2Þ þ γðkÞ; ð36Þ

and QQ̄g,

e−ðl1Þeþðl2Þ → Qðp1ÞQ̄ðp2ÞgðpgÞ þ γðkÞ: ð37Þ

The process in Eq. (36) is described by two QCD Feynman
diagrams (cf. left panel of Fig. 1) so that

AQQ̄
pert QCD ¼ −

ie2e2Qg

s
Lμ

�
ūðp1Þ=ε�γð=p1 þ =kþmÞγμvðp2Þ

ðp1 þ kÞ2 −m2

þ ūðp1Þγμð−=p2 − =kþmÞ=ε�γvðp2Þ
ðp2 þ kÞ2 −m2

�
; ð38Þ

while the reaction in Eq. (37) involves six diagrams (cf.
right panel of Fig. 1) and the corresponding ampli-
tude reads

AQQ̄g
pert QCD ¼ −

ie2e2Qg

s
TaLμ

�
ūðp1Þ=ε�gð=p1 þ =pg þmÞ=ε�γð=p1 þ =pg þ =kþmÞγμvðp2Þ

ððp1 þ pgÞ2 −m2Þððp1 þ pg þ kÞ2 −m2Þ

þ ūðp1Þ=ε�γð=p1 þ =kþmÞ=ε�gð=p1 þ =pg þ =kþmÞγμvðp2Þ
ððp1 þ kÞ2 −m2Þððp1 þ pg þ kÞ2 −m2Þ þ ūðp1Þ=ε�gð=p1 þ =pg þmÞγμð−=p2 − =kþmÞ=ε�γvðp2Þ

ððp1 þ pgÞ2 −m2Þððp2 þ kÞ2 −m2Þ

þ ūðp1Þ=ε�γð=p1 þ =kþmÞγμð−=p2 − =pg þmÞ=ε�gvðp2Þ
ððp1 þ kÞ2 −m2Þððp2 þ pgÞ2 −m2Þ þ ūðp1Þγμð−=p2 − =pg − =kþmÞ=ε�γð−=p2 − =pg þmÞ=ε�gvðp2Þ

ððp2 þ pg þ kÞ2 −m2Þððp2 þ pgÞ2 −m2Þ

þ ūðp1Þγμð−=p2 − =pg − =kþmÞ=ε�gð−=k − =p2 þmÞ=ε�γvðp2Þ
ððp2 þ pg þ kÞ2 −m2Þððp2 þ kÞ2 −m2Þ

�
; ð39Þ
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where Lμ has been defined in Sec. III B and eQ denotes the
heavy quark electric charge in units of e. The amplitudes

AQQ̄
pert QCD and AQQ̄g

pert QCD can be evaluated in the laboratory
frame or in the rest frame. Both frames have their
advantages and disadvantages. In the course of this study
we carry out the calculations in both frames and verify that
we arrive at the same results for the final matching
coefficients.
It is convenient to decompose all Dirac structures

involving heavy quarks into scalar, pseudoscalar, vector,
axial-vector, and tensor components. Since this is a tree-
level calculation in four dimensions, such decomposition
can be done in an unambiguous way. Then the amplitudes
can be written as

AQQ̄
pertQCD¼−

ie2e2Qg

s
½jμ1ūðp1Þγμvðp2Þþjμ2ūðp1Þγμγ5vðp2Þ�;

ð40Þ

AQQ̄g
pert QCD ¼ −

ie2e2Qg

s
Ta½jμ3ūðp1Þγμvðp2Þ

þ jμ4ūðp1Þγμγ5vðp2Þ�; ð41Þ

where the coefficients jμi do not depend on the heavy
quark spinors. The vector and axial-vector structures
ūðp1Þγμvðp2Þ and ūðp1Þγμγ5vðp2Þ can be rewritten in
terms of Pauli matrices and spinors using formulas given
in Appendix B. Furthermore, all the propagators and scalar
products in jμi have to be expressed in terms of q (for QQ̄)
or of q1 and q2 (for QQ̄g). As in Sec. IV, we expand up to
the third order in jqj=m and up to the first order in jq1j=m
and jq2j=m.
The NRQCD amplitudes in Eq. (32) are given for

specific values of the total angular momentum J, but

AQQ̄
pert QCD and AQQ̄g

pert QCD should be understood as sums of
contributions from different values of J. Therefore, on the
QCD side one has to identify Cartesian tensors that
correspond to the matrix elements on the NRQCD side
and decompose them into irreducible spherical tensors

along the lines of [46]. For example, a term that contains
the rank 2 tensor σiqj and no further occurrences of q
contributes to

cJ¼0
1

m2
hQQ̄jψ†

�
−
i
2
D
↔
· σ
�
χj0i; ð42Þ

from AJ¼0
pert NRQCD but also to

ðcJ¼1
1 Þi
m2

hQQ̄jψ†
�
−
i
2
D
↔
× σ

�
i
χj0i; ð43Þ

from AJ¼1
pert NRQCD and

ðcJ¼0
1 Þij
m2

hQQ̄jψ†
�
−
i
2
Dði
↔

σjÞ
�
χj0i; ð44Þ

from AJ¼2
pert NRQCD. We can disentangle these contributions

by explicitly projecting out the J ¼ 0, 1, 2 components of
the tensor, i.e.,

σiqj →

8>><
>>:

1
3
δijðσ · qÞ for J ¼ 0

σiqj−σjqi
2

for J ¼ 1

σiqjþσjqi

2
− 1

3
δijðσ · qÞ for J ¼ 2

: ð45Þ

Applying such projections to the whole QCD amplitudes
allows us to do the matching between QCD and NRQCD
for each J-value separately and successfully extract the
short-distance coefficients order by order in the relative
momenta.
Before presenting our results for the short-distance

coefficients, we would like to mention that on the QCD
side of the matching we encounter terms that are singular in
the limit jpgj → 0, i.e., proportional to 1=jpgj. Such
singularities arise when the gluon is emitted from one of
the external heavy quark lines and should cancel in the
matching. Indeed, matrix elements with the Lagrangian
insertions given by Eq. (33) on the NRQCD side of the
matching generate terms that precisely reproduce the
singularities of the QCD amplitude. The identical infrared
behavior of the full QCD and NRQCD amplitudes follows
from general principles underlaying the construction of
low-energy effective field theories. The cancellation of the
1=jpgj singularities on both sides of the matching has been
explicitly checked in both the laboratory frame and the rest
frame. A more detailed discussion on this subject can be
found in [24,30].

A. Matching in the rest frame

Rest frame short-distance coefficients carry an additional
subscript R to distinguish them from the coefficients
obtained in the laboratory frame. They read

FIG. 1. Representative QCD diagrams for the processes
eþe− → QQ̄þ γ and eþe− → QQ̄gþ γ that are relevant for
the matching to NRQCD. For the production of QQ̄ there are
only two diagrams in total: the one displayed here and a second
one where the photon is emitted from the heavy antiquark line.
The production of QQ̄g is described by six diagrams that differ in
the quark (antiquark) line that emits the photon and/or the gluon.
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cJ¼0
0;R ¼ −λðLR · ðk̂R × ε�γ;RÞÞ; ð46aÞ

cJ¼0
1;R ¼ i

3
ð1 − 3rÞr−λðLR · ε�γ;RÞ; ð46bÞ

cJ¼0
2;R ¼ 2

3
λðLR · ðk̂R × ε�γ;RÞÞ; ð46cÞ

cJ¼0
3;R ¼ −

i
30

ð9 − 24rþ 35r2ÞλðLR · ε�γ;RÞ; ð46dÞ

dJ¼0
0;R ¼ −λr−ðLR · ðk̂R × ε�γ;RÞÞ; ð46eÞ

dJ¼0
1;R ¼ 1

6
ð1þ 3rÞr−λðLR · ε�γ;RÞ; ð46fÞ

ðcJ¼1
1;R Þi ¼ iλðr−ðLR × ε�γ;RÞi − rþðLR · k̂RÞðk̂R × ε�γ;RÞiÞ;

ð46gÞ

ðcJ¼1
3;R Þi ¼ −

i
5
λðð4 − 9rÞr2−ðLR × ε�γ;RÞi

− ð4þ 9rÞr2þðLR · k̂RÞðk̂R × ε�γ;RÞiÞ; ð46hÞ

ðdJ¼1
0;R Þi ¼ λr−ð−ðLR · ε�γ;RÞk̂i

R þ 2rrþðLR · k̂RÞε�iR Þ; ð46iÞ

ðdJ¼1
1;R Þi ¼ λðð1þ r2Þr2−ðLR × ε�γ;RÞi

− r−r2þð1 − rþ 3r − r3ÞðLR · k̂RÞðk̂R × ε�γ;RÞiÞ;
ð46jÞ

ðcJ¼2
1;R Þij ¼ −λðrr−ðLi

Rε
�j
R þ i ↔ jÞ

þ rrþðLR · k̂RÞðk̂i
Rε

�j
R þ i ↔ jÞ

− ðLR · ε�γ;RÞk̂i
Rk̂

j
RÞ; ð46kÞ

ðcJ¼2
2;R Þij ¼ −λðLR · ðk̂R × ε�γ;RÞÞk̂i

Rk̂
j
R; ð46lÞ

ðcJ¼2
3;R Þij ¼ i

5
λð5r2r2−ðLi

Rε
�j
R þ i ↔ jÞ

− 5r2r2þðLR · k̂RÞðk̂i
Rε

�j
R þ i ↔ jÞ

þ 3ðLR · ε�γ;RÞk̂i
Rk̂

j
RÞ; ð46mÞ

ðdJ¼2
0;R Þij ¼ 0; ð46nÞ

ðdJ¼2
1;R Þij ¼ λð2r2r−r2þðLR · k̂RÞðk̂i

Rε
�j
R þ i ↔ jÞ

− r−ðLR · k̂RÞk̂i
Rk̂

j
RÞ; ð46oÞ

with λ≡ e2e2Q=s and r� ≡ ð1� rÞ−1, where r≡ 4m2=s is
the kinematic suppression factor. LR is the spatial part of
the leptonic current in the rest frame defined in Sec. III B.
The connection to the laboratory frame can be estab-

lished by means of the following Lorentz boost trans-
formations:

kR ¼
ffiffiffi
s

p
MχcJ

k; ε�R ¼ ε�;

LR ¼ Lþ ðMχcJ −
ffiffiffi
s

p Þ2
2MχcJ

ffiffiffi
s

p ðL · k̂Þk̂; ð47Þ

where the appearance of the physical quarkonium mass
stems from the fact that we have employed the kinematics
of the physical quarkonium, i.e., used P2 ¼ M2

χcJ . In
Sec. V C we will show how the dependence on MχcJ can
be eliminated up to the desired order in v.
Matching in the rest frame of the heavy quarkonium is

very similar to the calculation of theOðα0sv2Þ corrections to
the decay process χcJ → γγ. The production of χcJ at rest
can be regarded as the decay of a heavy vector boson γ� into
a photon and a quarkonium. As has already been observed
in [11], in the limit s → 0, the production short-distance
coefficients from Eq. (46) should reduce into the short
distance coefficients for the decay of χcJ into two photons.
In our calculation this is indeed the case.

B. Matching in the laboratory frame

In the laboratory frame it is straightforward to carry out
the phase space integrations in Eq. (25) and thus arrive at
the final matching coefficients. The more complicated part
of the calculation is the manipulation of the QCD ampli-
tudes. Obviously, potentially large laboratory frame
momenta of the heavy quarks and gluon are not suitable
parameters for doing a nonrelativistic expansion. The
correct expansion can be done only after these momenta
have been rewritten in terms of small rest frame momenta,
which greatly increases the number of intermediate terms.
Lorentz boost transformations that relate potentially

large laboratory frame momenta of a QQ̄ system to the
small rest frame momenta in a way that is useful for
NRQCD matching calculations were introduced in [25]. In
this work we generalize those formulas for a QQ̄g system
and summarize them in Appendix B.
The matching procedure yields the following values for

the short-distance coefficients:

cJ¼0
0 ¼ −λðL · ðk̂ × ε�γÞÞ; ð48aÞ

cJ¼0
1 ¼ i

3
ð1 − 3rÞr−λðL · ε�γÞ; ð48bÞ

cJ¼0
2 ¼ 2

3
λðL · ðk̂ × ε�γÞÞ; ð48cÞ

cJ¼0
3 ¼ −

i
30

ð9 − 24rþ 35r2Þr2−λðL · ε�γÞ; ð48dÞ

dJ¼0
0 ¼ −r−λðL · ðk̂ × ε�γÞÞ; ð48eÞ

dJ¼0
1 ¼ 1

6
ð1þ 3rÞr−λðL · ε�γÞ; ð48fÞ
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ðcJ¼1
1 Þi ¼ −iλr−ðð1 −

ffiffiffi
r

p ÞðL · k̂Þðk̂ × ε�γÞi − ðL × ε�γÞiÞ;
ð48gÞ

ðcJ¼1
3 Þi ¼ i

10
λr2−ðð1 −

ffiffiffi
r

p Þ2ð8þ 13
ffiffiffi
r

p ÞðL · k̂Þðk̂ × ε�γÞi

− 2ð4 − 9rÞðL × ε�γÞiÞ; ð48hÞ

ðdJ¼1
0 Þi ¼ −λr−ð

ffiffiffi
r

p
ε�iγ ðL · k̂Þ − k̂iðL · ε�γÞÞ; ð48iÞ

ðdJ¼1
1 Þi ¼ 1

2
λr−ðð2 −

ffiffiffi
r

p ÞðL · k̂Þðk̂ × ε�γÞi − 2ðL × ε�γÞiÞ;
ð48jÞ

ðcJ¼2
1 Þij ¼ −iλr−ðð1 −

ffiffiffi
r

p Þ ffiffiffi
r

p ðL · k̂Þðk̂iε�jγ þ i ↔ jÞ
þ rðLiε�jγ þ i ↔ jÞ − ð1 − rÞðL · ε�γÞk̂ik̂jÞ;

ð48kÞ

ðcJ¼2
2 Þij ¼ −λðL · ðk̂ × ε�γÞÞk̂ik̂j; ð48lÞ

ðcJ¼2
3 Þij ¼ i

10
λr2−ð5

ffiffiffi
r

p ð1þ 2
ffiffiffi
r

p Þð1− ffiffiffi
r

p Þ2

× ðL · k̂Þðk̂iε�jγ þ i ↔ jÞ
− 10r2ðLiε�jγ þ i ↔ jÞ− 6ð1− rÞ2ðL · ε�γÞk̂ik̂jÞ;

ð48mÞ

ðdJ¼2
0 Þij ¼ 0; ð48nÞ

ðdJ¼2
1 Þij ¼ 1

2
λr−ð

ffiffiffi
r

p ðL · k̂Þðk̂iε�jγ þ i↔ jÞ− 2k̂ik̂jðL · ε�γÞÞ:
ð48oÞ

C. Relations between matrix elements and heavy
quarkonium masses

From the NRQCD point of view, the LDMEs should be
regarded as independent nonperturbative parameters.
Nevertheless, symmetries and approximations can be used
to establish relations between different LDMEs that are
valid up to a certain order in v.

Particularly useful relations can be derived from the
equations of motion of NRQCD and are known as Gremm-
Kapustin relations [29]. Since our LDMEs are identical to
those that appear in the electromagnetic decay χcJ → γγ, we
can use the Gremm-Kapustin relations that were first
obtained in [23],

h0jP1ð3PJÞj0i ¼ mEχcJh0jO1ð3PJÞj0i þmh0jT 8ð3PJÞj0i;
ð49Þ

where EχcJ ¼ MχcJ − 2m is the binding energy of χcJ.
Equation (49) is valid up to corrections of Oðv4Þ, and it
is useful for two reasons. First, we can solve it for MχcJ ,

MχcJ ¼ 2mþ 1

m
h0jP1ð3PJÞj0i
h0jO1ð3PJÞj0i

−
h0jT 8ð3PJÞj0i
h0jO1ð3PJÞj0i

; ð50Þ

and use Eq. (50) to eliminate the dependence of the
matching coefficients on the heavy quarkonium mass in
Eq. (25). This is a crucial ingredient to check that the
matching coefficients that we will list explicitly in Sec. VII
are the same if obtained from the expansion of the QCD
amplitudes in the laboratory frame or in the rest frame.
Second, Eq. (49) allows us to reduce the number of
unknown matrix elements in the final NRQCD-factorized
production cross sections at the cost of making the
numerical predictions depend on the heavy quarkonium
binding energy. We will see this in the following Sec. VIII.

VI. ELECTROMAGNETIC DECAYS
OF χ cJ INTO TWO PHOTONS

In this section, we show that our matching calculations in
the rest frame also contribute to the resolution of the known
discrepancy between the results of [23] and [24] on the
values of some matching coefficients entering the NRQCD-
factorized decay rates for χcJ → γγ at Oðα0sv2Þ. The
formulas for these decay rates read (using a remark made
in Sec. II A we express eventually the widths in terms of
production LDMEs)

Γðχc0 → γγÞ ¼ 2Imfemð3P0Þ
3m4

hχc0jψ†
�
−
i
2
D
↔
· σ

�
χj0ih0jχ†

�
−
i
2
D
↔
· σ

�
ψ jχc0i

þ 2Imgemð3P0Þ
6m6

�
hχc0jψ†

�
−
i
2
D
↔
· σ

��
−
i
2
D
↔
�

2

χj0ih0jχ†
�
−
i
2
D
↔
· σ

�
ψ jχc0i þ H:c:

�

þ i
2Imt8 emð3P0Þ

3m5

�
hχc0jψ†ðgE · σÞχj0ih0jχ†

�
−
i
2
D
↔
· σ

�
ψ jχc0i þ H:c:

�

≡ 2Imfemð3P0Þ
m4

h0jO1ð3P0Þj0i þ
2Imgemð3P0Þ

m6
h0jP1ð3P0Þj0i þ

2Imt8 emð3P0Þ
m5

h0jT 8 emð3P0Þj0i; ð51aÞ
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Γðχc2 → γγÞ ¼ 2Imfemð3P2Þ
m4

hχc2jψ†
�
−
i
2
D
↔ðiσjÞ

�
χj0ih0jχ†

�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2i

þ 2Imgemð3P2Þ
2m6

�
hχc2jψ†

�
−
i
2
D
↔ðiσjÞ

��
−
i
2
D
↔
�

2

χj0ih0jχ†
�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2i þ H:c:

�

þ 2Imt8 emð3P2Þ
m3

�
hχc2jψ†gEðiσjÞχj0ih0jχ†

�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2i þ H:c:

�

≡ 2Imfemð3P2Þ
m4

h0jO1ð3P2Þj0i þ
2Imgemð3P2Þ

m6
h0jP1ð3P2Þj0i þ

2Imt8 emð3P2Þ
m5

h0jT 8 emð3P2Þj0i: ð51bÞ

While both collaborations obtained the same expressions
for

Imfemð3P0Þ ¼ 3α2e4Qπ; ð52aÞ

Imfemð3P2Þ ¼
4

5
α2e4Qπ; ð52bÞ

Imgemð3P0Þ ¼ −7α2e4Qπ; ð52cÞ

they disagree on the values of the other coefficients; cf.
Table I. In 2013, it was reported [47,48] that an independent
investigation of the χcJ → γγ decays confirmed the results
of [24]. In the course of this study we could repeat the
calculation of the Oðα0sv2Þ corrections to these decay
processes. Matching at the amplitude level and at the level
of the total decay rates we also found agreement with the
values of the matching coefficients obtained in [24]. These
are

Imgemð3P2Þ ¼ −
8

5
α2e4Qπ; ð53aÞ

Imt8 emð3P0Þ ¼ −
3

2
α2e4Qπ; ð53bÞ

Imt8 emð3P2Þ ¼ 0: ð53cÞ

Note that in [23] the decay rate of χc2 contains the
additional matrix element

hχc2jψ†
�
−
i
2

�
2

D
↔ðiD

↔
jÞ
�
−
i
2
D
↔
· σ

�
χj0ih0j

× χ†
�
−
i
2
D
↔ðiσjÞ

�
ψ jχc2i þ H:c: ð54Þ

Since in [24] it was shown that the contribution of this
operator to the total decay rate is already accounted for by
the inclusion of h0jP1ð3P2Þj0i, we do not include it in the
expression for the decay width.

VII. PRODUCTION CROSS SECTIONS AT Oðv2Þ
Plugging the laboratory frame short-distance coefficients

from Eq. (48) into Eq. (25) we obtain the values of the
matching coefficients that enter the factorized cross sec-
tions given in Eq. (12). If we define

F1ð3PJÞ≡MχcJðs −M2
χcJÞ
Z

1

−1
d cos θF̃1ð3PJÞ; ð55Þ

G1ð3PJÞ≡MχcJðs −M2
χcJÞ
Z

1

−1
d cos θG̃1ð3PJÞ; ð56Þ

T8ð3PJÞ≡MχcJðs −M2
χcJÞ
Z

1

−1
d cos θT̃8ð3PJÞ; ð57Þ

where θ denotes the angle between the beam line and the
outgoing photon in the laboratory frame, the results read

F̃1ð3P0Þ ¼
πα3e4Qð1 − 3rÞ2ð1þ cos2θÞ

3s3ð1 − rÞ2 ; ð58aÞ

G̃1ð3P0Þ ¼ −
πα3e4Qð1 − 3rÞð9 − 24rþ 35r2Þð1þ cos2θÞ

15s3ð1 − rÞ3 ;

ð58bÞ

T̃8ð3P0Þ ¼
πα3e4Qð1 − 9r2Þð1þ cos2θÞ

6s3ð1 − rÞ2 ; ð58cÞ

F̃1ð3P1Þ ¼
2πα3e4Q½ð1þ cos2θÞ þ 2rð1 − cos2θÞ�

s3ð1 − rÞ2 ; ð58dÞ

TABLE I. Discrepancies in the results of [23,24].

Matching coefficient Value from [23] Value from [24]

Imgemð3P2Þ − 86
105

α2e4Qπ − 8
5
α2e4Qπ

Imt8 emð3P0Þ −2α2e4Qπ − 3
2
α2e4Qπ

Imt8 emð3P2Þ −α2e4Qπ 0

BRAMBILLA, CHEN, JIA, SHTABOVENKO, and VAIRO PHYS. REV. D 97, 096001 (2018)

096001-14



G̃1ð3P1Þ ¼ −
4πα3e4Q½ð4 − 9rÞð1þ cos2θÞ þ ð3r − 13r2Þð1 − cos2θÞ�

5s3ð1 − rÞ3 ; ð58eÞ

T̃8ð3P1Þ ¼ −
2πα3e4Q½ð1þ cos2θÞ þ rð1 − cos2θÞ�

s3ð1 − rÞ2 ; ð58fÞ

F̃1ð3P2Þ ¼
2πα3e4Q½ð1þ 6r2Þð1þ cos2θÞ þ 6rð1 − cos2θÞ�

3s3ð1 − rÞ2 ; ð58gÞ

G̃1ð3P2Þ ¼ −
4πα3e4Q½ð3 − 6r − 2r2 − 30r3Þð1þ cos2θÞ þ 15rð1 − 3rÞð1 − cos2θÞ�

15s3ð1 − rÞ3 ; ð58hÞ

T̃8ð3P2Þ ¼ −
2πα3e4Q½ð1þ cos2θÞ þ 3rð1 − cos2θÞ�

3s3ð1 − rÞ2 ; ð58iÞ

and

F1ð3P0Þ ¼
16π2α3e4Qð1 − 3rÞ2Mχc0ðs −M2

χc0Þ
9s3ð1 − rÞ2 ; ð59aÞ

G1ð3P0Þ ¼ −
16π2α3e4Qð1 − 3rÞð9 − 24rþ 35r2ÞMχc0ðs −M2

χc0Þ
45s3ð1 − rÞ3 ; ð59bÞ

T8ð3P0Þ ¼
8π2α3e4Qð1 − 9r2ÞMχc0ðs −M2

χc0Þ
9s3ð1 − rÞ2 ; ð59cÞ

F1ð3P1Þ ¼
32π2α3e4Qð1þ rÞMχc1ðs −M2

χc1Þ
3s3ð1 − rÞ2 ; ð59dÞ

G1ð3P1Þ ¼ −
32π2α3e4Qð8 − 15r − 13r2ÞMχc1ðs −M2

χc1Þ
15s3ð1 − rÞ3 ; ð59eÞ

T8ð3P1Þ ¼ −
16π2α3e4Qð2þ rÞMχc1ðs −M2

χc1Þ
3s3ð1 − rÞ2 ; ð59fÞ

F1ð3P2Þ¼
32π2α3e4Qð1þ3rþ6r2ÞMχc2ðs−M2

χc2Þ
9s3ð1−rÞ2 ; ð59gÞ

G1ð3P2Þ ¼ −
32π2α3e4Qð2þ 3rÞð3 − 3r − 20r2ÞMχc2ðs −M2

χc2Þ
45s3ð1 − rÞ3 ; ð59hÞ

T8ð3P2Þ ¼ −
16π2α3e4Qð2þ 3rÞMχc2ðs −M2

χc2Þ
9s3ð1 − rÞ2 : ð59iÞ

In order to write the production cross sections, for
consistency we combine our findings with the known
Oðαsv0Þ corrections to F1ð3PJÞ computed in [12,17].
The explicit values of the coefficients Ci

jðrÞ can be found
in Appendix B of [12]. The Oðαsv2Þ corrections from [16]
are, however, not included. The first reason is that the

corrections reported in [16] are incomplete, as they do not
include contributions from h0jT 8ð3PJÞj0i. The second one
is that, to be consistent with the NRQCD power-counting
rules at that order in αs and v, one would also need to
include Oðα0sv4Þ and Oðα2sv0Þ corrections, which are not
available yet. The differential and total cross sections read
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d
d cos θ

σðeþe− → χc0 þ γÞ ¼ ð4παÞ3e4Qð1 − 3rÞ2ð1þ cos2θÞMχc0ðs −M2
χc0Þ

192π2m4s3ð1 − rÞ2

×

��
1þ αs

π
C0
0ðrÞ

�
h0jO1ð3P0Þj0i −

ð9 − 24rþ 35r2Þ
5m2ð1 − 3rÞð1 − rÞ h0jP1ð3P0Þj0i

þ ð1þ 3rÞ
2mð1 − 3rÞ h0jT 8ð3P0Þj0i

	
; ð60aÞ

d
d cos θ

σðeþe− → χc1 þ γÞ ¼ ð4παÞ3e4QMχc1ðs −M2
χc1Þ

32π2m4s3ð1 − rÞ2

×

��
ð1þ cos2θÞ

�
1þ αs

π
C0
1ðrÞ

�
þ 2rð1 − cos2θÞ

�
1þ αs

π
C�1
1 ðrÞ

��
h0jO1ð3P1Þj0i

−
2ð4 − 9rÞð1þ cos2θÞ þ 2rð3 − 13rÞð1 − cos2θÞ

5m2ð1 − rÞ h0jP1ð3P1Þj0i

−
ð1þ cos2θÞ þ rð1 − cos2θÞ

m
h0jT 8ð3P1Þj0i

	
; ð60bÞ

d
d cos θ

σðeþe− → χc2 þ γÞ ¼ ð4παÞ3e4QMχc2ðs −M2
χc2Þ

96π2m4s3ð1 − rÞ2

×

��
ð1þ cos2θÞ

�
1þ αs

π
C0
2ðrÞ

�
þ 6rð1 − cos2θÞ

�
1þ αs

π
C�1
2 ðrÞ

�

þ 6r2ð1þ cos2θÞ
�
1þ αs

π
C�2
2 ðrÞ

��
h0jO1ð3P2Þj0i

−
2ð3 − 6r − 2r2 − 30r3Þð1þ cos2θÞ þ 30rð1 − 3rÞð1 − cos2θÞ

5m2ð1 − rÞ h0jP1ð3P2Þj0i

−
ð1þ cos2θÞ þ 3rð1 − cos2θÞ

m
h0jT 8ð3P2Þj0i

	
; ð60cÞ

and

σðeþe− → χc0þ γÞ ¼ ð4παÞ3e4Qð1− 3rÞ2Mχc0ðs−M2
χc0Þ

36πm4s2ð1− rÞ2

×

��
1þαs

π
C0
0ðrÞ

�
h0jO1ð3P0Þj0i−

ð9− 24rþ 35r2Þ
5m2ð1− 3rÞð1− rÞ h0jP1ð3P0Þj0iþ

ð1þ 3rÞ
2mð1− 3rÞ h0jT 8ð3P0Þj0i

	
;

ð61aÞ

σðeþe− → χc1 þ γÞ ¼ ð4παÞ3e4Qð1þ rÞMχc1ðs −M2
χc1Þ

6πm4s3ð1 − rÞ2

×

��
1þ αs

π

C0
1ðrÞ þ rC1

1ðrÞ
1þ r

�
h0jO1ð3P1Þj0i −

ð8 − 15r − 13r2Þ
5m2ð1 − r2Þ h0jP1ð3P1Þj0i

−
ð2þ rÞ

2mð1þ rÞ h0jT 8ð3P1Þj0i
	
; ð61bÞ

σðeþe− → χc2 þ γÞ ¼ ð4παÞ3e4Qð1þ 3rþ 6r2ÞMχc2ðs −M2
χc2Þ

18πm4s3ð1 − rÞ2

×

��
1þ αs

π

C0
2ðrÞ þ 3rC1

2ðrÞ þ 6r2C2
2ðrÞ

1þ 3rþ 6r2

�
h0jO1ð3P2Þj0i

−
ð2þ 3rÞð3 − 3r − 20r2Þ
5m2ð1 − rÞð1þ 3rþ 6r2Þ h0jP1ð3P2Þj0i −

ð2þ 3rÞ
2mð1þ 3rþ 6r2Þ h0jT 8ð3P2Þj0i

	
; ð61cÞ

where we recall that r≡ 4m2=s.
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The dependence on the physical quarkonium mass arises due to the presence of MχcJ in Eqs. (22) and (23). This
dependence can easily be eliminated via the Gremm-Kapustin relations. In particular, using Eq. (50) we arrive at cross
sections that do not explicitly depend on the mass of the χcJ. These are

d
d cos θ

σðeþe− → χc0 þ γÞ ¼ ð4παÞ3e4Qð1 − 3rÞ2ð1þ cos2θÞ
48πm3s2ð1 − rÞ

×

��
1þ αs

π
C0
0ðrÞ

�
h0jO1ð3P0Þj0i −

ð13 − 18rþ 25r2Þ
10m2ð1 − rÞð1 − 3rÞ h0jP1ð3P0Þj0i

þ 2rð2 − 3rÞ
mð1 − rÞð1 − 3rÞ h0jT 8ð3P0Þj0i

	
; ð62aÞ

d
d cos θ

σðeþe− → χc1 þ γÞ ¼ ð4παÞ3e4Q
8πm3s2ð1 − rÞ ð62bÞ

×

��
ð1þ cos2θÞ

�
1þ αs

π
C0
1ðrÞ

�
þ 2rð1 − cos2θÞ

�
1þ αs

π
C�1
1 ðrÞ

��
h0jO1ð3P1Þj0i

−
ð11 − 21rÞð1þ cos2θÞ þ 2rð1 − 11rÞð1 − cos2θÞ

10m2ð1 − rÞ h0jP1ð3P1Þj0i

−
ð3 − 5rÞð1þ cos2θÞ þ 4rð1 − 2rÞð1 − cos2θÞ

2mð1 − rÞ h0jT 8ð3P1Þj0i
	
; ð62cÞ

d
d cos θ

σðeþe− → χc2 þ γÞ ¼ ð4παÞ3e4Q
24πm3s2ð1 − rÞ

×

��
ð1þ cos2θÞ

�
1þ αs

π
C0
2ðrÞ

�
þ 6rð1 − cos2θÞ

�
1þ αs

π
C�1
2 ðrÞ

�

þ 6r2ð1þ cos2θÞ
�
1þ αs

π
C�2
2 ðrÞ

��
h0jO1ð3P2Þj0i

−
ð7 − 9r − 38r2 − 30r3Þð1þ cos2θÞ þ 30ð1 − 3rÞrð1 − cos2θÞ

10m2ð1 − rÞ h0jP1ð3P2Þj0i

−
ð3 − 5rþ 6r2 − 18r3Þð1þ cos2θÞ þ 12rð1 − 2rÞð1 − cos2θÞ

2mð1 − rÞ h0jT 8ð3P2Þj0i
	
; ð62dÞ

and

σðeþe− → χc0 þ γÞ ¼ ð4παÞ3e4Qð1 − 3rÞ2
18πm3s2ð1 − rÞ

×

��
1þ αs

π
C0
0ðrÞ

�
h0jO1ð3P0Þj0i −

ð13 − 18rþ 25r2Þ
10m2ð1 − 4rþ 3r2Þ h0jP1ð3P0Þj0i

þ 2rð2 − 3rÞ
mð1 − 4rþ 3r2Þ h0jT 8ð3P0Þj0i

	
; ð63aÞ

σðeþe− → χc1 þ γÞ ¼ ð4παÞ3e4Qð1þ rÞ
3πm3s2ð1 − rÞ

×

��
1þ αs

π

C0
1ðrÞ þ rC1

1ðrÞ
1þ r

�
h0jO1ð3P1Þj0i −

ð11 − 20r − 11r2Þ
10m2ð1 − r2Þ h0jP1ð3P1Þj0i

−
ð3 − 3r − 4r2Þ
2mð1 − r2Þ h0jT 8ð3P1Þj0i

	
; ð63bÞ
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σðeþe− → χc2 þ γÞ ¼ ð4παÞ3e4Qð1þ 3rþ 6r2Þ
9πm3s2ð1− rÞ

×

��
1þ αs

π

C0
2ðrÞ þ 3rC1

2ðrÞ þ 6r2C2
2ðrÞ

1þ 3rþ 6r2

�
h0jO1ð3P2Þj0i

−
ð7þ 6r− 83r2 − 30r3Þ

10m2ð1− rÞð1þ 3rþ 6r2Þ h0jP1ð3P2Þj0i−
ð3þ r− 6r2 − 18r3Þ

2mð1− rÞð1þ 3rþ 6r2Þ h0jT 8ð3P2Þj0i
	
: ð63cÞ

Comparing these results with the literature, we observe
that the matching coefficients F1ð3PJÞ agree with those
reported in [11] and in all subsequent studies. Furthermore,
our values for G1ð3PJÞ are consistent with the K-factors
given in [14]. The values of the matching coefficients
T̃8ð3PJÞ and T8ð3PJÞ are original of this work.

VIII. NUMERICAL RESULTS

The main limitation in the determination of the eþe− →
γ� → χcJ þ γ production cross sections comes from the
uncertainties in the LDMEs. Nevertheless we will see that
we can express the LDMEs in such a way to reduce those
uncertainties in the final results.
For h0jO1ð3PJÞj0i we can use the value quoted in [35],

which follows from a Buchmüller-Tye potential model
calculation [49]

h0jO1ð3PJÞj0i ¼ ð0.107� 0.032Þ GeV5: ð64Þ

The error corresponds to an Oðv2Þ uncertainty that we
estimate to be 30% of the central value.7 This uncertainty
accounts also for the breaking of the heavy-quark spin
symmetry. Further, we notice that within the error bounds
the choice in Eq. (64) is consistent with the most accurate
values of h0jO1ð3P0;2Þj0i determined in Table I of the
recent study [50] devoted to Oðα2sv0Þ corrections of the
χcJ → 2γ decay.
The number of the remaining independent LDMEs can

be reduced by applying the heavy-quark spin symmetry [7],
which relates matrix elements with the same orbital
momenta but different spin values and is valid up to
corrections of Oðv2Þ. Since h0jP1ð3PJÞj0i and
h0jT 8ð3PJÞj0i are already v2 suppressed as compared to
h0jO1ð3PJÞj0i, the corrections from the breaking of the
heavy-quark spin symmetry to the total cross section are of
Oðv4Þ and therefore irrelevant for the accuracy that we are
aiming at:

h0jP1ð3PJÞj0i ¼ h0jP1ð3P0Þj0ið1þOðv2ÞÞ; ð65Þ

h0jT 8ð3PJÞj0i ¼ h0jT 8ð3P0Þj0ið1þOðv2ÞÞ: ð66Þ

This is clearly different from the case of h0jO1ð3PJÞj0i
where spin symmetry breaking effects, being relevant at
Oðv2Þ, cannot be neglected at our accuracy and have been
included in the uncertainty of Eq. (64).
The values of h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i can be

determined from the electromagnetic decays χc0 → γγ and
χc2 → γγ that have recently been measured by the BES-III
experiment [51],

Γðχc0 → γγÞ ¼ ð2.33� 0.20� 0.22Þ × 10−3 MeV; ð67Þ

Γðχc2 → γγÞ ¼ ð0.63� 0.04� 0.06Þ × 10−3 MeV; ð68Þ

where the first error is statistical, and the second one
consists of systematic errors and the error in the branching
fraction combined in quadrature. Combining the NRQCD
results for the electromagnetic decay rates in Eq. (51) with
the Gremm-Kapustin relation in Eq. (49) we obtain

Γðχc0 → γγÞ ¼ 6α2e4Qπ

m4

�
1þ 3π2 − 28

9

αs
π

�
h0jO1ð3P0Þj0i

−
14α2e4Qπ

m6
h0jP1ð3P0Þj0i

−
3α2e4Qπ

m5
h0jT 8ð3P0Þj0i; ð69aÞ

h0jP1ð3P0Þj0i ¼ mEχc0h0jO1ð3P0Þj0i þmh0jT 8ð3P0Þj0i;
ð69bÞ

and

Γðχc2 → γγÞ ¼ 8α2e4Qπ

5m4

�
1 −

16

3

αs
π

�
h0jO1ð3P2Þj0i

−
16α2e4Qπ

5m6
h0jP1ð3P2Þj0i; ð70aÞ

h0jP1ð3P2Þj0i ¼ mEχc2h0jO1ð3P2Þj0i þmh0jT 8ð3P2Þj0i:
ð70bÞ

7The authors of [49] do not provide an uncertainty for their
result.
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The decay rate formulas in Eqs. (69a) and (70a) contain
not only corrections of Oðα0sv0Þ and Oðα0sv2Þ but also the
OðαsÞ correction to Imfemð3P0;2Þ [52,53]. This is required
for consistency with the NRQCD power counting, where
corrections of Oðαsv0Þ and Oðα0sv2Þ are assumed to be
equally important.
Equations (69) and (70) each describe a system of two

linear equations with three unknowns: h0jP1ð3P0Þj0i,
h0jT 8ð3P0Þj0i, Eχc0 and h0jP1ð3P2Þj0i, h0jT 8ð3P2Þj0i,
Eχc2 , respectively. Since we employ the heavy-quark spin
symmetry, both systems can be used to determine the
unknown LDMEs, which we choose to be h0jP1ð3P0Þj0i,
h0jT 8ð3P0Þj0i, as a function of the binding energy. We will
therefore use both Eqs. (69) and (70) and present the
combined results.
The mass m appearing in the above equations is

the charm pole mass. The pole mass is a poorly known
quantity that, however, can be traded for the physical
masses of the χcJ, which are experimentally known,

and the binding energy, which is one of our unknowns,
according to

m ¼ MχcJ − EχcJ

2
: ð71Þ

In order to be consistent with the NRQCD power counting,
we replacemwith ðMχcJ − EχcJÞ=2 in contributions that are
of order v0 and use m ¼ MχcJ=2 in contributions that are of
order v2 (with αs ∼ v2). Solving the system for the
unknown LDMEs and expanding in EχcJ ∼ v2 up to relative
order v2 yield

h0jP1ð3P0Þj0i ¼
3

34
Mχc0h0jO1ð3P0Þj0i

×

�
Mχc0 þ

ð3π2 − 28Þ
9π

Mχc0

αs
π
þ 5Eχc0

�

−
M6

χc0

1088πα2e4Q
Γðχc0 → γγÞ; ð72aÞ
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FIG. 2. The matrix elements h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i as a function of x0 [determined from Eq. (72)] or x2 [determined
from Eq. (73)]. The cyan bands indicate the total uncertainty obtained from the quadrature of the uncertainty in h0jO1ð3P0Þj0i
and the combined (in quadrature) uncertainty in MχcJ and ΓðχcJ → γγÞ. The small uncertainty of h0jP1ð3P0Þj0i in the region around
xJ ¼ −1.1 results from the fact that, for this value of xJ , the terms proportional to h0jO1ð3P0Þj0i in Eqs. (72a) and (73a) become
very small. Furthermore, when h0jT 8ð3P0Þj0i is determined from Eq. (73b), it does not depend on the binding energy and
hence on x2.
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h0jT 8ð3P0Þj0i ¼
3

17
h0jO1ð3P0Þj0i

×

�
Mχc0 þ

ð3π2 − 28Þ
9π

Mχc0

αs
π
−
2

3
Eχc0

�

−
M5

χc0

544πα2e4Q
Γðχc0 → γγÞ; ð72bÞ

for the determination using Eq. (69) and

h0jP1ð3P0Þj0i ¼
1

8
Mχc2h0jO1ð3P0Þj0i

×

�
Mχc2 −

16

3π
Mχc2

αs
π
þ 4Eχc2

�

−
5M6

χc2

1024πα2e4Q
Γðχc2 → γγÞ; ð73aÞ

h0jT 8ð3P0Þj0i ¼
1

4
Mχc2h0jO1ð3P0Þj0i

�
1 −

16

3π

αs
π

�

−
5M5

χc2

512πα2e4Q
Γðχc2 → γγÞ; ð73bÞ

for the determination using Eq. (70). Furthermore, we
choose

Mχc0 ¼ ð3414.75� 0.31Þ MeV; ð74Þ

Mχc2 ¼ ð3556.20� 0.09Þ MeV; ð75Þ

αðMχc0=2Þ ¼ αðMχc2=2Þ ¼ 1=133; ð76Þ

αsðMχc0=2Þ ¼ 0.285; ð77Þ

αsðMχc2=2Þ ¼ 0.280; ð78Þ
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FIG. 3. Cross sections for the exclusive production of a χcJ and a hard photon in the energy region of Belle II. The matrix elements
h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i were determined from Eq. (69). The dash-dotted curve shows only the contribution from the
h0jO1ð3P0Þj0i matrix element multiplied with the tree-level matching coefficient. The dotted curve also includes the loop correction to
the matching coefficient of h0jO1ð3P0Þj0i. The dashed curve incorporates the contribution from h0jP1ð3P0Þj0i but not h0jT 8ð3P0Þj0i.
Finally, the solid curve displays our final result that contains all the relevant contributions.
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where for MχcJ we use the most recent PDG values [54],
while the values of the strong coupling constant (at 1-loop
accuracy) were obtained with RUNDEC [55–57]. The errors
of αs from varyingMχcJ are of relative order 10

−5 and hence
can safely be neglected in comparison to other error sources
in the present analysis.
The matrix elements h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i

depend on the binding energy, EχcJ . Since of the binding
energy we only know the nonrelativistic scaling,
EχcJ ∼mv2, where v2 ≈ 0.3 for charmonia [7], it may be
useful to parametrize the binding energy in terms of a
dimensionless parameter xJ of Oð1Þ and write it as

EχcJ ¼ 0.3xJ
MχcJ

2
: ð79Þ

The LDMEs h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i as a function
of xJ are shown in Fig. 2. The uncertainties coming from
MχcJ , ΓðχcJ → γγÞ, and h0jO1ð3P0Þj0i have been estimated
using Gaussian error propagation and are shown by
the band. Because the Buchmüller-Tye potential or the

Cornell potential or a purely confining potential would all
give a positive binding energy,8 we will restrict xJ to
positive values centered around the natural value xJ ¼ 1.0.
Allowing for a 100% uncertainty, we take

xJ ¼ 1.0� 1.0: ð80Þ

With this choice we obtain

h0jP1ð3P0Þj0i ¼ ð0.098� 0.058� 0.082� 0.012Þ GeV7;

ð81aÞ

h0jT 8ð3P0Þj0i ¼ ð0.0027� 0.0176� 0.0064

� 0.0072Þ GeV6; ð81bÞ

from the determination using Eq. (69) and
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FIG. 4. Cross sections for the exclusive production of a χcJ and a hard photon in the energy region of Belle II. The matrix elements
h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i were determined from Eq. (70). The dash-dotted curve shows only the contribution from the
h0jO1ð3P0Þj0i matrix element multiplied with the tree-level matching coefficient. The dotted curve also includes the loop correction to
the matching coefficient of h0jO1ð3P0Þj0i. The dashed curve incorporates the contribution from h0jP1ð3P0Þj0i but not h0jT 8ð3P0Þj0i.
Finally, the solid curve displays our final result that contains all the relevant contributions.

8A purely Coulombic potential, which would give a negative
binding energy, seems inappropriate for the loosely bound χcJ .
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h0jP1ð3P0Þj0i ¼ ð0.012� 0.057� 0.102� 0.020Þ GeV7;

ð82aÞ

h0jT 8ð3P0Þj0i ¼ ð−0.050� 0.015� 0.000� 0.011Þ GeV6;

ð82bÞ

from the determination using Eq. (70), where the uncer-
tainties were estimated using theGaussian error propagation
formula. The first error originates from the uncertainty in
h0jO1ð3P0Þj0i, the second one originates from the uncer-
tainty in xJ, and the third one is the combined (in quadrature)
uncertainty in MχcJ and ΓðχcJ→γγÞ.
The values of the LDMEs given in Eqs. (81) and (82) are

consistent with each other within the error bounds, as
expected from the heavy-quark spin symmetry. Under the
assumption that the heavy-quark spin symmetry holds at
leading order in the velocity expansion, we can average the
two determinations, which yields our best determination for
these LDMEs,

h0jP1ð3P0Þj0i ¼ ð0.055� 0.058� 0.092� 0.024Þ GeV7;

ð83aÞ

h0jT 8ð3P0Þj0i ¼ ð−0.024� 0.016� 0.003� 0.014Þ GeV6;

ð83bÞ

where the uncertainties in h0jO1ð3P0Þj0i and xJ were added
linearly [first and second uncertainties in Eq. (83), respec-
tively], while those in MχcJ and ΓðχcJ → γγÞ (third uncer-
tainty) are regarded as independent and were therefore
added quadratically. The values given in Eq. (83) represent
our best determination of h0jP1ð3P0Þj0i and h0jT 8ð3P0Þj0i
using the heavy-quark spin symmetry.
In order to reduce the uncertainties in the total cross

sections σðeþe− → χcJ þ γÞ, it is useful to compute them
by replacing the matrix elements h0jP1ð3P0Þj0i and
h0jT 8ð3P0Þj0i with their expressions from Eq. (72) or
(73). In this way each cross section will have five
independent sources of uncertainty, which are MχcJ ,
ΓðχcJ → γγÞ, h0jO1ð3P0Þj0i), xJ, and the renormalization
scale μ that enters through αs.
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FIG. 5. Final cross sections for the exclusive production of χcJ and a hard photon in the energy region of Belle II. The results are
obtained from averaging the cross sections with the subleading LDMEs obtained from Eqs. (72) and (73). The error bands are obtained
from the quadrature of all four sources of uncertainties listed in Tables II and III.
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The process eþe− → χcJ þ γ can be measured at B-
factories with a sufficiently high CM energy to produce a
χcJ and a hard photon, e.g., at Belle II. Hence, we select our
input parameters as

ffiffiffi
s

p ¼ 10.6 GeV; ð84Þ

αð10.6 GeVÞ ¼ 1=131: ð85Þ

In principle, one power of α that originates from the photon
emission of the heavy quark (cf. Fig. 1) could run as low as
αðMχcJ=2Þ. However, for simplicity we will ignore this
potential uncertainty and evaluate all α at the same value.
To estimate the uncertainty in the choice of the renorm-
alization scale of the strong coupling, we use four possible
values of μ:

αsð
ffiffiffi
s

p Þ ¼ 0.171; ð86Þ

αsð
ffiffiffi
s

p
=2Þ ¼ 0.200; ð87Þ

αsðMχc0=2Þ ¼ 0.226; ð88Þ

αsðMχc2=2Þ ¼ 0.223; ð89Þ

all obtained with RUNDEC; αsð
ffiffiffi
s

p
=2Þ is taken as the central

value, while αsð
ffiffiffi
s

p Þ and αsðMχc0;2=2Þ are used to estimate
the uncertainty in μ.
The contributions of different LDMEs to the total cross

section in the energy region of Belle II are shown in Figs. 3
and 4, and summarized in Tables II and III forffiffiffi
s

p ¼ 10.6 GeV. The full cross sections with the corre-
sponding error bands are presented in Fig. 5 (total cross
sections as functions of

ffiffiffi
s

p
) and Fig. 6 (differential cross

sections for
ffiffiffi
s

p ¼ 10.6 GeV as functions of the angle
between the beam line and the outgoing photon, θ, in the
laboratory frame). In Fig. 7 we also show the ratios of the
total cross sections, where the LDME h0jT 8ð3P0Þj0i is
included (denoted as σ8) or omitted (denoted as σ1) as a
function of

ffiffiffi
s

p
. The only difference between σ8 and σ1 is

that in the latter the value of h0jT 8ð3P0Þj0i is set to zero,
while the values of h0jO1ð3P0Þj0i and h0jP1ð3P0Þj0i
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FIG. 6. Differential cross sections for the exclusive production of χcJ and a hard photon at
ffiffiffi
s

p ¼ 10.6 GeV. The results are obtained
from averaging the cross sections with the subleading LDMEs obtained from Eqs. (72) and (73). The error bands are obtained from the
quadrature of all four sources of uncertainties listed in Tables II and III. The central values and the errors are normalized with respect to
the average of the central values of the total cross sections at

ffiffiffi
s

p ¼ 10.6 GeV.
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entering σ8 and σ1 are identical and given by Eqs. (64),
(72a), and (73a).9 The numerical values of the ratios atffiffiffi
s

p ¼ 10.6 GeV can be read off the last columns of
Tables II and III.
All the uncertainties are estimated assuming Gaussian

error propagation. The first uncertainty originates from
h0jO1ð3P0Þj0i. It is clearly a large contribution to the total
uncertainty of the production cross section of χcJ, espe-
cially for χc0. In the case of χc2 the small uncertainty
appears to be the result of a numerical cancellation. The
second uncertainty stems from the uncertainty in xJ and
therefore in the binding energy. It is a large source of
uncertainty for all the χcJ. The third uncertainty is obtained
from varying the renormalization scale μ. It is significant
for χc1 and χc2, while its effect on the production cross

section of χc0 is negligible. Finally, the fourth source of
uncertainty comes from the uncertainties in the experimen-
tal values of MχcJ and ΓðχcJ → γγÞ. It leads to a large error
in the case of χc1 but is much less important for χc2 and χc0.
Note that having attributed to the quarkonium binding
energy a 100% uncertainty [see Eqs. (79) and (80)] makes
that uncertainty parametrically of the same size as the
uncertainty of h0jO1ð3P0Þj0i.
Averaging the results stemming from Eqs. (72) and (73),

we obtain

σðeþe−→ χc0þ γÞ¼ ð1.40�0.27�0.16�0.05�0.09Þ fb;
ð90Þ

σðeþe−→ χc1þγÞ¼ð14.98�0.69�2.32�0.52�2.17Þ fb;
ð91Þ

σðeþe−→ χc2þ γÞ¼ ð4.49�0.09�1.12�0.46�0.72Þ fb;
ð92Þ

where the errors in h0jO1ð3P0Þj0i (first uncertainty),
in xJ (second uncertainty), and in μ (third uncertainty)
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FIG. 7. Ratios of the total cross sections with h0jT 8ð3P0Þj0i included (σ8) or omitted (σ1) in the energy region of Belle II. The results
are obtained from averaging the ratios with the subleading LDMEs obtained from Eqs. (72) and (73). The error bands are obtained from
the quadrature of all four sources of uncertainties listed in Tables II and III.

9Our σ1 estimate does not require a different determination of
h0jP1ð3P0Þj0i to be consistent. Owing to Eq. (70a), the value of
h0jP1ð3P0Þj0i quoted in Eq. (82a) does not depend on the
size of h0jT 8ð3P0Þj0i and hence does not change for
h0jT 8ð3P0Þj0i¼0. Furthermore, determining h0jP1ð3P0Þj0i from
Eq. (69a) with h0jT 8ð3P0Þj0i set to zero leads to h0jP1ð3P0Þj0i ¼
ð0.099� 0.064� 0.080� 0.015Þ GeV7 which is almost identi-
cal to the value quoted in Eq. (81a).
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were added linearly, while those in MχcJ and ΓðχcJ → γγÞ
(fourth uncertainty), regarded as independent, were added
quadratically.
Adding the uncertainties in quadrature, our final pre-

dictions at
ffiffiffi
s

p ¼ 10.6 GeV read

σðeþe− → χc0 þ γÞ ¼ ð1.4� 0.3Þ fb; ð93Þ

σðeþe− → χc1 þ γÞ ¼ ð15.0� 3.3Þ fb; ð94Þ

σðeþe− → χc2 þ γÞ ¼ ð4.5� 1.4Þ fb: ð95Þ

As for the influence of the additional LDME h0jT 8ð3PJÞj0i
on the total cross section, we refer to the last columns of
Tables II and III and to Fig. 7. We see that the contribution
of h0jT 8ð3PJÞj0i is small, but, at its central value, not
negligible for χc0 and potentially significant for χc1 and χc2.
While our analytic results for the matching coefficients

are unambiguous, the numerical results strongly depend on
the estimated size of the quarkonium binding energy and
the assumed value of h0jO1ð3PJÞj0i. Moreover, the exper-
imental errors in the knowledge of ΓðχcJ → γγÞ are also not
negligible. A reliable determination of h0jO1ð3PJÞj0i,
h0jP1ð3P0Þj0i, and h0jT 8ð3P0Þj0i from experimental data
or lattice calculations is therefore highly desirable and
would provide a major improvement of the present cross
section determinations.

IX. SUMMARY

NRQCD factorization provides a systematic prescription
to compute production cross sections of heavy quarkonia
order by order in αs and v. Higher order corrections in αs
arise from loop effects, while higher order corrections in v
are generated by the inclusion of higher-dimensional
operators. A consistent computation of higher order cor-
rections requires both loop corrections to matching coef-
ficients of lower dimensional operators and relativistic
corrections from higher dimensional operators.
In this work we have computed theOðα0sv2Þ contribution

induced by the higher Fock state jQQ̄gi to the eþe− →
γ� → χcJ þ γ cross section, in this way completing the
order v2 corrections to this P-wave quarkonium production
process. The new pieces of information contained in this
work are the leading order expressions of the matching
coefficients T8ð3PJÞ multiplying LDMEs that depend on
the chromoelectric field.
We match QCD to NRQCD perturbatively at the

amplitude level, where we treat the final state gluon as a
part of the quarkonium system, together with the heavy
quark pair. In the course of the calculation we encountered
infrared singularities induced by the emission of the gluon
from a heavy quark line. We explicitly verified that such
terms cancel exactly in the matching. As a further con-
sistency check we performed the matching calculation in

two different reference frames: the CM frame of the
colliding leptons and the rest frame of the heavy quarko-
nium. Although these two calculations are technically very
different, they lead to the same matching coefficients.
The process eþe− → γ� → χcJ þ γ should be observable

at B-factories with sufficiently high CM energy, e.g., at
Belle II. As no published experimental results are available
so far, the phenomenological relevance of contributions
from higher Fock states remains to be tested.
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APPENDIX A: ADDITIONAL
SHORT-DISTANCE COEFFICIENTS

As discussed in Sec. IV, not all short-distance coeffi-
cients that are obtained in the matching of the amplitude are
relevant for our final NRQCD-factorized production cross
section. Therefore, as a by-product of our calculations we
could also determine short-distance coefficients that appear
up toOðv4Þ and contribute through the dominant Fock state
jQQ̄i to the amplitude Apert QCD,

AJ¼0
NRQCD þ cJ¼0

4

m5
hHjψ†

�
−
i
2
D
↔
�

4

χj0i; ðA1Þ

for J ¼ 0 states, and
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�
−
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χj0i
�
; ðA2Þ

for J ¼ 2 states. We provide their values in the laboratory
frame
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cJ¼0
4 ¼ −

8

15
λðL · ðk̂ × ε�γÞÞ; ðA3Þ

ðcJ¼2
4 Þij ¼ 8

7
λðL · ðk̂ × ε�γÞÞk̂ik̂j; ðA4Þ

ðcJ¼2
5 Þij ¼ 1

42
λr−ð5

ffiffiffi
r

p ð1− 5
ffiffiffi
r

p ÞðL · k̂Þðk̂iε�jγ þ i ↔ jÞ
þ 25rðLiε�jγ þ i ↔ jÞ− ð3þ 17rÞðL · ε�γÞk̂ik̂jÞ;

ðA5Þ

and in the rest frame

cJ¼0
4;R ¼ −

8

15
λðLR · ðk̂R × ε�γ;RÞÞ; ðA6Þ

ðcJ¼2
4;R Þij ¼ 8

7
λðLR · ðk̂R × ε�γ;RÞÞk̂i

Rk̂
j
R; ðA7Þ

ðcJ¼2
5;R Þij ¼ i

42
λr−ð25rðLi

Rε
�j
γ;R þ i ↔ jÞ

− 5rrþð5rþ 3ÞðLR · k̂RÞðk̂i
Rε

�j
γ;R þ i ↔ jÞ

− ð3þ 17rÞðLR · ε�γ;RÞk̂i
Rk̂

j
RÞ; ðA8Þ

as a reference for future studies. For the notation we refer
to Sec. V.

APPENDIX B: THRESHOLD
EXPANSION METHOD

1. 2-body system

We consider, first, the case of a quarkonium state
described by a QQ̄ pair whose quark and antiquark carry
momenta p1 and p2. We follow [25]. These momenta can
be written in terms of the Jacobi momenta of a 2-body
system as

p1 ¼
1

2
PþQ; p2 ¼

1

2
P −Q; ðB1Þ

where P ¼ p1 þ p2 denotes the total momentum of
the quarkonium, while Q ¼ ðp1 − p2Þ=2 stands for the
relative momentum between the heavy quark and the heavy
antiquark.
In the laboratory frame, where the heavy quarkonium is

moving (i.e., p1 þ p2 ≠ 0), we have

P ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ P2
p

;P
�
; Q ¼


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

p
;Q
�
: ðB2Þ

In the rest frame of the heavy quarkonium, where
p1;R þ p2;R ¼ 0, PR and QR have a particularly simple
form

PR ¼


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
; 0
�
≡ ð2Eq; 0Þ; QR ≡ q ¼ ð0;qÞ;

ðB3Þ

with

q≡ p1;R ¼ −p2;R: ðB4Þ

Here q is indeed soft and can be used as an expansion
parameter. The two frames are related by a Lorentz trans-
formation, which means that we can express Q and P in
terms of q. According to [25] the Lorentz transformation
reads

Qμ ¼ Λμ
i qi; ðB5Þ

Λ0
i ¼

Pi

2Eq
; Λi

j ¼ δij þ
�
P0

2Eq
− 1

�
P̂iP̂j; ðB6Þ

where

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2

q þ P2

q
: ðB7Þ

The Dirac spinors in the rest frame are given by

uRðp1;RÞ ¼ N

� ξ
q·σ

Eqþm ξ

�
; vRðp2;RÞ ¼ N

� −q·σ
Eqþm η

η

�
;

ðB8Þ

where N is the normalization factor. In case of relativistic
normalization, it is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eq þm

p
, while in the

nonrelativistic case one has N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEq þmÞ=ð2EqÞ
p

.
When boosted to the laboratory frame they become

uðp1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EqðP0 þ 2EqÞ
q ð2Eq þ =Pγ0ÞN

� ξ
q·σ

Eqþm ξ

�
;

ðB9Þ

vðp2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EqðP0 þ 2EqÞ
q ð2Eq þ =Pγ0ÞN

� −q·σ
Eqþm η

η

�
:

ðB10Þ

For practical purposes, it is more convenient to work with
boosted Dirac bilinears. Only vector and axial vector
bilinears appear in our process of interest; they can be
written as
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ūðp1Þγμvðp2Þ

¼ N2Λμ
i

�
2Eq

Eq þm
ξ†σiη −

2

ðEq þmÞ2 q
iξ†q · ση

�
;

ðB11Þ

ūðp1Þγμγ5vðp2Þ

¼N2

�
m
Eq

1

Eqþm
Pμξ†η−2i

1

Eqþm
Λμ

i ξ
†ðq×σÞiη

�
:

ðB12Þ

2. 3-body system

We now turn to the case of a quarkonium state composed
by a heavy quark, a heavy antiquark, and a gluon. The
momenta of the three constituents can be written in terms of
the Jacobi momenta of a 3-body system as

p1 ¼
1

3
PþQ1 −Q2; p2 ¼

1

3
P −Q1 −Q2;

pg ¼
1

3
Pþ 2Q2: ðB13Þ

In the rest frame, where p1;R þ p2;R þ pg;R ¼ PR ¼ 0, we
have

p1;R ¼ 1

3
PR þ q1 − q2; p2;R ¼ 1

3
PR − q1 − q2;

pg;R ¼ 1

3
PR þ 2q2; ðB14Þ

or

q1 ¼
1

2
ðp1;R − p2;RÞ;

q2 ¼
1

6
ð2pg;R − p1;R − p2;RÞ; ðB15Þ

and, in particular,

p1;R ¼ q1 − q2; p2;R ¼ −q1 − q2;

pg;R ¼ 2q2; ðB16Þ

with q1 and q2 not being hard momenta. Furthermore,

q01¼
1

2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1−q2Þ2þm2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1þq2Þ2þm2

q �
; ðB17Þ

q02 ¼
1

6



4jq2j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 − q2Þ2 þm2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ q2Þ2 þm2

q �
;

ðB18Þ

and

P0
R ¼



2jq2j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 − q2Þ2 þm2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ q2Þ2 þm2

q �
:

ðB19Þ

Since scalar products of 4-vectors are Lorentz invariant, we
have

Q2
1 ¼ ðq01Þ2 − q2

1; Q2
2 ¼ ðq02Þ2 − q2

2;

P2 ¼ ðP0
RÞ2 that implies P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0

RÞ2 þ P2

q
: ðB20Þ

To rewrite the laboratory frame 4-momenta, Q1 and Q2, in
terms of the soft expansion parameters from the rest frame,
q1 and q2, we use that

Qμ
1 ¼ Λμ

ν qν1; Qμ
2 ¼ Λμ

ν qν2; ðB21Þ

where the boost matrix now reads

Λ0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

ðP0
RÞ2

s
; Λ0

i ¼ Λi
0 ¼

Pi

P0
R
;

Λi
j ¼ δij þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

ðP0
RÞ2

s
− 1

!
P̂iP̂j: ðB22Þ

As far as the Dirac spinors are concerned, in the rest
frame they read

uRðp1;RÞ ¼ N1

� ξ
p1;R·σ
E1;Rþm ξ

�
; vRðp2;RÞ ¼ N2

� p2;R·σ
E2;Rþmη

η

�
;

ðB23Þ

with Ei;R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i;R þm2

q
and Ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei;R þm

p
for relativ-

istic and Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEi;R þmÞ=ð2Ei;RÞ

p
for nonrelativistic

normalization, respectively. The boost matrix for these
spinors is given by

SðΛÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 þ P0

R

2P0
R

s  
1 σ·P

P0þP0
R

σ·P
P0þP0

R
1

!
; ðB24Þ

so that we arrive at

uðp1Þ ¼
N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P0
RðP0þP0

RÞ
p ðP0

Rþ=Pγ0Þ
� ξ

p1;R·σ
E1;Rþmξ

�
; ðB25Þ

vðp2Þ ¼
N2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P0
RðP0þP0

RÞ
p ðP0

Rþ=Pγ0Þ
� p2;R·σ

E2;Rþmη

η

�
: ðB26Þ

Again, for practical purposes it is more useful to have
explicit expressions for the boosted Dirac bilinears, which
read
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ūðp1Þγμvðp2Þ ¼ Λμ
νūRðp1;RÞγνvRðp2;RÞ; ðB27Þ

ūðp1Þγμγ5vðp2Þ ¼ Λμ
νūRðp1;RÞγνγ5vRðp2;RÞ; ðB28Þ

where the rest frame bilinears are given by

ūRðp1;RÞγ0vRðp2;RÞ ¼ N1N2ξ
†
�

p1;R · σ
E1;R þm

þ p2;R · σ
E2;R þm

�
η; ðB29Þ

ūRðp1;RÞγivRðp2;RÞ ¼ N1N2ξ
†
�
σi þ 1

E1;R þm
1

E2;R þm
ðpi

1;Rðp2;R · σÞ þ pi
2;Rðp1;R · σÞ

− ðp1;R · p2;RÞσi − iðp1;R × p2;RÞiÞ
�
η; ðB30Þ

ūRðp1;RÞγ0γ5vRðp2;RÞ ¼ N1N2ξ
†
�
1þ 1

E1;R þm
1

E2;R þm
ðp1;R · p2;R þ iσ · ðp1;R × p2;RÞÞ

�
η; ðB31Þ

ūRðp1;RÞγ0γ5vRðp2;RÞ ¼ N1N2ξ
†
�
pi
1;R − iðp1;R × σÞi

E1;R þm
þ pi

2;R þ iðp2;R × σÞi
E2;R þm

�
η: ðB32Þ

APPENDIX C: POLARIZATION SUMS FOR
A HADRON WITH ARBITRARY SPIN

The helicity of a hadron state jHðλÞiwith spin J and spin
third component λ can be represented by a symmetric
traceless rank-J tensor εi1i2���iJλ , constructed from polariza-
tion vectors as

εi1i2���iJJ ≡ εði1þ εi2þ � � � εiJÞþ ≡ EðJÞi1i2���iJ
i0
1
i0
2
���i0J ε

i0
1þε

i0
2þ � � � εi0Jþ; ðC1Þ

where EðJÞi1i2���iJ
i0
1
i0
2
���i0J is the natural projection that can be

computed following [46] and

εi� ¼ 1ffiffiffi
2

p

0
B@

∓1

−i
0

1
CA; εi0 ¼

0
B@

0

0

1

1
CA: ðC2Þ

εi1i2���iJλ with λ < J is easily constructed from εi1i2���iJJ by the
trick of raising and lowering operators. Polarization tensors
are normalized such that

εi1i2���iJλ εi1i2���iJλ0 ¼ δλλ
0
: ðC3Þ

The polarization tensor transforms under a rotation R
according to

Ri1i2���iJ
i0
1
i0
2
���i0Jε

i0
1
i0
2
���i0J

λ ¼ DJ
λ0λε

i1i2���iJ
λ0 ; ðC4Þ

where DJ
λ0λ is the rotational matrix in a 2J þ 1 dimensional

representation. Because DJ
λ0λ is a unitary matrix,

Πi1i2���iJ
i0
1
i0
2
���i0J ≡

XJ
λ¼−J

εi1i2���iJλ ε
i0
1
i0
2
���i0J

λ ðC5Þ

is invariant under rotation. Moreover, Πi1i2���iJ
i0
1
i0
2
���i0J is symmetric

and traceless about both upper and lower indices. Then due
to theorem 4 in Ref. [46],

Πi1i2���iJ
i0
1
i0
2
���i0J ∼ EðJÞi1i2���iJ

i0
1
i0
2
���i0J : ðC6Þ

The proportionality constant can easily be determined by
observing that

Πi1i2���iJ
i00
1
i00
2
���i00JΠ

i00
1
i00
2
���i00J

i0
1
i0
2
���i0J ¼ Πi1i2���iJ

i0
1
i0
2
���i0J ; ðC7Þ

which is exactly the one satisfied by the natural projection
operator. Thus, we have

Πi1i2���iJ
i0
1
i0
2
���i0J ¼ EðJÞi1i2���iJ

i0
1
i0
2
���i0J : ðC8Þ

Let us consider an NRQCD operator Oi1i2���iJ that is
irreducible under space rotation. According to the Wigner-
Eckart theorem,

h0jOi1i2���iJ jHðλÞi ¼ N ðOÞεi1i2���iJλ ; ðC9Þ
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where N ðOÞ is a constant that can readily be determined.
By virtue of Eqs. (C5) and (C8), we haveX

λ

h0jO0i0
1
i0
2
���i0J†jHðλÞihHðλÞjOi1i2���iJ j0i

¼ N ðO0Þ�N ðOÞEðJÞi0
1
i0
2
���i0J

i1i2���iJ : ðC10Þ

Taking the trace of both sides with respect to the upper and
lower indices, we get

N ðO0Þ�N ðOÞ ¼ 1

2J þ 1

X
λ

h0jO0i1i2���iJ†jHðλÞi

× hHðλÞjOi1i2���iJ j0i: ðC11Þ

Then we haveX
λ

h0jO0i1i2���iJ†jHðλÞihHðλÞjOi0
1
i0
2
���i0J j0i

¼ 1

2J þ 1

X
λ

h0jO0i00
1
i00
2
���i00J†jHðλÞi

× hHðλÞjOi00
1
i00
2
���i00J j0iEðJÞi1i2���iJ

i0
1
i0
2
���i0J ; ðC12Þ

which for χc states becomesX
λ

h0jO0i†jχc1ðλÞihχc1ðλÞjOi0 j0i

¼ 1

3

X
λ

h0jO0j†jχc1ðλÞihχc1ðλÞjOjj0iδii0 ; ðC13Þ

X
λ

h0jO0ij†jχc2ðλÞihχc2ðλÞjOi0j0 j0i

¼ 1

5

X
λ

h0jO0kl†jχc1ðλÞihχc2ðλÞjOklj0i

×

�
1

2
δii

0
δjj

0 þ 1

2
δij

0
δji

0 −
1

3
δijδi

0j0
�
: ðC14Þ

APPENDIX D: GENERALIZED
GREMM-KAPUSTIN RELATIONS

FOR 3PJ QUARKONIA

The Gremm-Kapustin relations [29] follow from

hHj½O; Heff �j0i ¼ −hHjHeffOj0i
¼ ð2m −MHÞhHjOj0i; ðD1Þ

whereO is an operator with a nonvanishing matrix element
hHjOj0i. For instance, takingH¼χc0, andO¼−iψ†D ·σχ,
we get up to order 1=m (notice that −E is the canonical
momentum conjugate to A in the Hamiltonian formalism)

ðMχc0 − 2mÞhχc0jiψ†D · σχj0i ¼ −
1

m
hχc0jiψ†D · σD2χj0i

þ ihχc0jψ†ðgE · σÞχj0i:
ðD2Þ

Similarly, for ηc, χc1, and χc2, we have up to order 1=m

ðMηc − 2mÞhηcjψ†χj0i

¼ −
1

m
hηcjψ†D2χj0i − 1

m
hηcjψ†ðgB · σÞχj0i; ðD3Þ

ðMχc1 − 2mÞhχc1jψ†iðD× σÞiχj0i

¼−
1

m
hχc1jψ†iðD× σÞiD2χj0iþ ihχc1jψ†gðE× σÞiχj0i;

ðD4Þ

ðMχc2 − 2mÞhχc2jψ†iDðiσjÞχj0i

¼ −
1

m
hχc2jψ†iDðiσjÞD2χj0i þ ihχc2jψ†ðgEðiσjÞÞχj0i:

ðD5Þ
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