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We calculate in the nonrelativistic QCD (NRQCD) factorization framework all leading relativistic
corrections to the exclusive production of y.; + 7 in e™e™ annihilation. In particular, we compute for the
first time contributions induced by octet operators with a chromoelectric field. The matching coefficients
multiplying production long distance matrix elements (LDMEs) are determined through perturbative
matching between QCD and NRQCD at the amplitude level. Technical challenges encountered in the
nonrelativistic expansion of the QCD amplitudes are discussed in detail. The main source of uncertainty
comes from the not so well known LDMEs. Accounting for it, we provide the following estimates for the
production cross sections at /s =10.6GeV: o(ete™ =y +7) =(14+£0.3) b, o(eTe™ =y +7) =
(15.04+3.3) fb, and o(eTe™ = ypo +7) = (45+ 1.4) fb.
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I. INTRODUCTION

More than four decades have passed since the exper-
imental groups of Samuel Ting and Burton Richter [1,2]
discovered the J/y, the first observed bound state formed
by a heavy (charm) quark and a heavy antiquark. This event
was of crucial importance for the establishment of quantum
chromodynamics (QCD) as the theory of the strong
interactions. Even though heavy quarkonia are sometimes
regarded as the “hydrogen atoms” of QCD, our present
understanding of these hadronic systems is not as success-
ful as that of the hydrogen atom in quantum electrody-
namics. The nonperturbative nature of QCD at low energy
makes the theoretical description of heavy quarkonium on
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the one hand more challenging and on the other hand also
more interesting [3-5].

In particular, the theoretical description of the production
mechanism for charmonia and bottomonia is complicated.
While the creation of a heavy quark pair in a high energy
collision can be described in perturbative QCD, this is
not the case for the evolution of the pair into a heavy
quarkonium, which is governed by nonperturbative long-
distance effects.

Effective field theories (EFTs) provide an elegant way to
treat this problem by exploiting the nonrelativistic nature of
the system and the separation of the relevant scales [6]. The
EFT resulting from integrating out modes associated with
the energy scale of the heavy-quark mass or larger is known
as nonrelativistic QCD (NRQCD) [7]. It conjectures a
factorization theorem allowing one to write the quarkonium
production cross section as an expansion where each term
is the product of a short-distance coefficient and a long-
distance matrix element (LDME). The former is computed
from matching to perturbative QCD, it is a series in the
strong coupling a, and it incorporates effects from the hard
scale m (heavy quark mass) and above. The latter is of
nonperturbative nature and can be obtained from fits to
experimental data. The LDMEs are assumed to be universal
and to obey power-counting rules in the relative heavy
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quark velocity », which in a nonrelativistic system is much
smaller than one. Hence, the importance of each term in the
NRQCD-factorized cross section can be estimated by
powers of a, and v. This counting gives NRQCD predictive
power and allows for a systematic inclusion of radiative and
relativistic corrections.

NRQCD also predicts that quarkonium formation is not
limited to heavy quark pairs in a color singlet configuration,
as it was assumed by the color singlet model [8-10].
Instead, the Fock state of a heavy quarkonium can be
schematically understood as a sum over different contri-
butions. For example, for the P-wave charmonium y.; we
have

ltesCP;)) ~ O(1)[ce(Py)) + O(v)|ce(’S))g)
+ O(v?), (1)

where higher Fock states that involve gluons are suppressed
by powers of v. Nevertheless, in higher order calculations
such contributions become relevant and must be included to
obtain a consistent result.

Electromagnetic quarkonium production can be regarded
as a relatively simple and clean process that makes it a
perfect testing ground for verifying predictions made by
NRQCD. Electromagnetic quarkonium production is an
important subject of study at the BES-III experiment at the
tau-charm factory BEPC-II in China, and at the Belle
experiment at the KEKB asymmetric B-factory in Japan.
For the latter, one particularly interesting electromagnetic
quarkonium production process is the exclusive production
of a heavy quarkonium and a hard (k|2 m) photon in
electron-positron annihilations.

The scope of this work is to improve on the NRQCD
calculation of the process e™e™ = y* — y.; + y by includ-
ing higher Fock state contributions of O(alv?). The
leading cross section of O(a?+”) was obtained in [11].
Subsequently, corrections of O(a,v°) [12,13], partial cor-
rections of O(av?) [14,15], and finally partial corrections
of O(a,v?) [16] were computed as well. One of the reasons
why this process has attracted so much interest from the
theory side in the past years is the anticipated connection
between C-even quarkonia and some exotic XYZ particles
[4,17-19], although such identifications are still contro-
versial [20,21]. In any case, there is clear experimental
evidence [22] that the C-even state X(3872) can be
measured in the same channel [eTe™ — X(3872) +y] as
our process of interest. Therefore, irrespective of the true
nature of X(3872), in order to study this state in more
detail, it is very useful to have precise and unambiguous
predictions for ete™ — y* — y.; + 7. This is all the more
important in view of the fact that no experimental mea-
surements for the electromagnetic production of y.; and a
hard photon are yet available, while good perspectives for
this measurement exist at Belle II.

We emphasize that the above-mentioned NRQCD stud-
ies considered only operators that contribute through the
dominant Fock state |QQ). However, operators that project
on the subleading Fock state |QQg) already show up at
O(adv?). The importance of this kind of operators was
already noticed in the past. In particular, they were
explicitly incorporated in studies of the decay y.; — yy
[23,24], which is a process very similar to y* — y.; + 7. In
the present work, we will investigate these missing con-
tributions to the production cross section by determining at
O(a?1?) in NRQCD the matching coefficients of octet
operators containing chromoelectric fields.

The paper is organized in the following way. In Sec. 1I
we discuss the relevant operators and LDMEs, and write
the NRQCD-factorized cross sections for ete™ = y.; +7
at the desired precision. Different strategies for the deter-
mination of the NRQCD matching coefficients are dis-
cussed in Sec. III. In Sec. IV we outline the calculation of
the NRQCD amplitudes, while in Sec. V we describe the
QCD side of the matching and present the short-distance
coefficients obtained with two independent methods.
A long-standing discrepancy between the results of
[23] and [24] regarding some matching coefficients that
enter the NRQCD-factorized decay rates for y.; — yy at
O(adv?) is resolved in Sec. VI. Sections VII and VIII
contain the final cross sections and numerical predictions.
Finally, a summary of the obtained results and their impact
is presented in Sec. IX. In Appendix A we present addi-
tional short-distance coefficients that arise from the match-
ing. They are not relevant for our calculation but they are
new and appear at O(v*) contributing to the dominant Fock
state. Appendix B contains the details of the calculation
made with the threshold expansion method of Braaten
and Chen [25]. Appendix C contains useful formulas
about polarization sums of hadrons. Appendix D provides
a derivation of the generalized Gremm-Kapustin relations
for 3P, quarkonia.

II. NRQCD FACTORIZATION FOR THE
e*e~ — y.;+y CROSS SECTION

A. Definition of NRQCD operators for exclusive
quarkonium production

A generic NRQCD operator of naive scaling dimension
d, (which is given by the dimension of the gluonic and
fermionic fields only) that describes the production of a
heavy quarkonium H can be written as [7]

O, —)(*/Cnt/I(ZZ |H + X)(H +X|>WC;)(, (2)

where ICSL/) consists of a spin matrix (1 or ¢), a color matrix
(1 or T%), and a polynomial in B’ = €/*G" /2, El = G,
and D =V — igA with A* being the gluon field, G* the
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field-strength tensor of QCD, and ¢ the gauge coupling.]
Here and throughout the paper, bold fonts specify Cartesian
3-vectors. Furthermore, y (y) denotes a Pauli field that
annihilates (creates) a heavy quark (antiquark), while
|H + X) is a Fock state that contains a quarkonium H
and all other particles X that appear in the final state, and
have energy and momenta that are typically much smaller
than the hard scale m. The summations run over all allowed
X states and the magnetic quantum number m; = —J, ..., J,
where J denotes the spin of the quarkonium state. The
operators @n enter the NRQCD factorization formula as
vacuum expectation values

(010,]0) = <0|wcnw(22|ﬂ+x> <H+X|)w*/c;x|o>,
@)

where |0) denotes the QCD vacuum and the quarkonium
states have nonrelativistic normalization, i.e.,

(H(P)|H(P')) = (27)°8*(P - P'), 4)

with P} being the total 3-momentum of the heavy
quarkonium.

The sum over X in Eq. (3) is one of the reasons why
production matrix elements (0]®,|0) cannot easily be
calculated in lattice simulations [26]. However, in exclusive
electromagnetic production this sum is absent, such that the
corresponding LDME reads

(0/0,]0) = <0|fzcnw(Z|H><H|)w<;x|o>. 5)

my

Equation (5) can be further simplified using the rotational
invariance of the matrix elements [7,25]. Since all matrix
elements that differ only in the quantum number m; are
identical, the sum over m; trivially reduces to (2J + 1) and
the LDME factorizes into a product of two quarkonium-to-
vacuum matrix elements

(010,10) = (27 + 1)(0l"K,w|H) (H |y I, 2|0).  (6)

The matrix elements (0|y/C,w|H) and (H|w' K x|0)
are the same that enter NRQCD factorization formulas for
exclusive electromagnetic decays [27]. Hence, up to the
prefactor (2J + 1), the LDME for exclusive electromag-
netic production (0|0,,|0) is identical to the corresponding
LDME for electromagnetic decay (H|O,.n|H) with

Onem = WT}C;1)(|O> <O|)(T1Cnl//’

'In the case of polarized production, Ky may also depend on
polarization vectors [7]. Explicit NRQCD calculations of such
processes can be found, e.g., in [25]. In this work, we will restrict
ourselves to only unpolarized production.

(010,10) = (27 + 1)(H|Oyyem|H). (7)

For this reason from now on we will absorb the factor
(2J 4 1) into the matching coefficients F,,

010,10) = - 00,/0). 8)

F,—- (2J+1)F,,
B. Color singlet and color octet
production operators

In NRQCD it is customary to classify production
operators according to the color configuration of the QQ
pair in the leading Fock state through which these operators
contribute to the process. In the dominant Fock state |QQ)
the heavy quark pair is in a color singlet configuration;
hence operators that contribute dominantly through this
state are denoted as singlet operators. An octet operator is
an operator that gives a nonvanishing contribution only
when the QQ pair is in a color octet configuration, such as
in the subleading Fock state |QQg). An example for a color
octet operator is

rleToy <Z > H+X)(H + X|>1,ﬁaTa .9

X my

which contributes to the inclusive production of a spin-
triplet P-wave quarkonium at leading order in v. In
exclusive electromagnetic production there are no color
octet operators similar to Eq. (9). This is because a matrix
element like (0|y'6T%y|H) vanishes due to color con-
servation. However, if we replace 7% with the chromo-
electric field multiplied by the gauge coupling, we obtain

Olx"(gE - 6)y|H), (10)

which gives a nonvanishing contribution to the exclusive
electromagnetic production of a P-wave quarkonium at
subleading order in ». The corresponding operator reads

% <;(T <_§f’) . 6>W|H> (H|y' (E - o) + Hc) (11)

with w*le);(zWT(D)() — (Dy)"y, where H.c. stands for
Hermitian conjugate. According to the usual NRQCD
classification, the operator in Eq. (11) is a color octet
operator in the sense that this operator necessarily projects
on the subleading Fock state |QQyg).”

2Many NRQCD practitioners prefer to use the words “color
octet” to denote only operators similar to the one in Eq. (9). To
avoid misinterpretations we will speak in the following of
operators that contribute through the leading or subleading
quarkonium Fock state |QQ) or |QQg), respectively.
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To our knowledge, the number of studies that considered
contributions from operators with chromoelectric or chro-
momagnetic fields to NRQCD-factorized cross sections
and decay rates is very small. One of such studies was
concerned with the electromagnetic and hadronic decays of
the S-wave heavy quarkonia [28], where LDMEs contain-
ing one chromoelectric field were of relative order v* as
compared to the leading order LDMEs. The authors,
however, managed to eliminate such LDMEs from their
basis by using the Gremm-Kapustin relations [29]. An
explicit determination of the matching coefficients multi-
plying E-field dependent LDMEs was carried out in [23],
where the authors considered electromagnetic decays of the
P-wave spin triplet quarkonia. There, the relevant LDMEs
contributed already at relative order v»>. Matching coeffi-
cients of various decay LDMEs with chromoelectric and
chromomagnetic fields were determined in [24,30], where
the authors systematically studied relativistic corrections to
electromagnetic and hadronic decays of heavy quarkonia
up to relative order v’.

As far as the production of heavy quarkonia is con-
cerned, one should mention the study [31] of higher order
relativistic corrections to the gluon fragmentation into a
spin-triplet S-wave quarkonium. One of the LDMEs
contributing at relative order »* involves a combination

|

of a covariant derivative and a chromoelectric field. Also in
this case the authors could eliminate it from their basis via a
field redefinition. We believe that the present work is the
first study, in which matching coefficients multiplying
LDMEs with chromoelectric fields are explicitly computed
for a heavy quarkonium production process and cannot be
traded with other operators.3

C. Production cross section and
power-counting rules

After having clarified the NRQCD framework and the
terminology of this work, let us proceed with applying
NRQCD factorization to the exclusive process ete™ —
v" — y.; +v. To assess the relative importance of the
NRQCD matrix elements we adopt the power-counting
rules from [7]. To have a homogeneous counting, we count
a,(m) ~ v?, which will be important when combining our
results with the existing radiative corrections. Each of our
formulas depends on three LDMEs, where two of them are
v? suppressed as compared to the leading LDME. When we
refer to relative O(v?) corrections, we always do so with
respect to the absolute size of the leading order matrix
element. Hence, at relative O(v?) the NRQCD-factorized
cross sections for ete™ — y* — y.; + y can be written as

3 ie i
olere = o +7) = 0 (=550 oo Gl (~ 5 )20)
3 i< l i<
+G16(m120) <0|)("'<—§D )wlxco mlw( )(—QD)Z)(IOHH-C-]
iTg(? i<
+ T;f;()) {<0l)ﬁ< ;Do )wl;(co><xcolw*(gE-6))(|0>+H-C-]
3
=88 1010, ¢pyj0) + P o1y iy j0) + R 017, (g ), (120)
3 ie ie
olete” =y +v)= Flz(mlzl) <O|ZT( 5 X 0')‘/’|)(a1> <)(c1|l//T (_ED X 6>)(|0>
’ i< i i )\2
+ S 011 (=3B <0 Yz Gl (~ 3B ¢ ) (-2) 0) +
l 3 [ =g
# A 017 (=3B @ Jukze) - (0B x 0)el) + He
=102 10, ¢po10) + SO oppy a0 + U or oy ) (120)

’As shown in [24], using field redefinitions the relevant LDMEs with chromoelectric fields could, in principle, be traded
for LDME:s that involve a time derivative acting on fermion and gluon fields. We have chosen not to include such operators in

our basis.
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_ F,(°P,)
olete”™ » yo+v)= 1m4

. i<, . . =
01! (=507l (s’ (=507 )0

G, (P oie L de i <\ 2
O 0l (=350 Julra ol (~ 35000 ) (=55) 710) + e |

o

2m°

m 2

1(°P,)

m*

(0[O0 (°P,)|0) +

with alb/) =2abdah 314 .h The subscript 1 labels
operators contributing through the dominant Fock state
|Q0), while the subscript 8 labels operators that project on
the subleading Fock state |QQg) only.

According to the NRQCD power-counting rules, the
scaling of (0|0, (3P,)|0) is v°, while (0|P;(?P,)|0) scales
as v’ due to the presence of two additional covariant
derivatives. In comparison to (0|O;(*P,)|0) the matrix
element (0|7 ¢(*P;)|0) contains one covariant derivative
less, but involves a chromoelectric field, which scales as v°
so that the absolute size of this LDME is also v’ [7].

It is worth noting that, in general, expectation values of
operators such as Eq. (9), which contribute through the
subleading Fock state |QQg), contain an additional sup-
pression in v, if the QQ pair in the color octet configuration
is produced with a different angular momentum than the
QQ pair in the dominant Fock state. The reason for this is
that in the corresponding short-distance process we create a
color octet QQ pair that emits a soft gluon during its
nonperturbative evolution into a heavy quarkonium. The
emission of the gluon that changes the orbital angular
momentum of the pair by one unit and converts it into a
color singlet corresponds to an electric dipole (E1) tran-
sition, which accounts for the extra suppression. However,
according to the power-counting rules from [7], for LDMEs
that contain chromoelectric fields, the additional O(v)
suppression is already accounted for in the power-counting
rule of E.* This is why (0|75(3P,)|0) is only O(v?)
suppressed as compared to (0|0, (*P,)|0) and hence para-
metrically as important as (0|P;(*P;)|0).

It is well known that the power counting of [7] is not the
most conservative choice in the framework of NRQCD. In
particular, the underlying assumption that the typical
hadronic scale Agcp is of order mv? may not be satisfied
in all quarkonium production and decay processes. A more
cautious choice would be to assume that Agep ~ mv as was
done, e.g., in [24] (cf. also [6] and references therein for a

*We thank G. Bodwin for communications on this point; cf.
also [28] where the authors explicitly apply this prescription
when estimating the importance of LDMEs with chromoelectric
fields.

3 3
G topypio) + U i p0),

2

iTe (P io . . o
+ M [<0|)(T (——D(’cf”) wlxa)(xelw (gEU6?)x|0) + H-C-]
F

(12¢)

detailed discussion of different countings in NRQCD).
In the resulting conservative power counting, each chromo-
electric field scales only as v (not as v*) but there is also an
additional power of v coming from the subleading Fock
state |QQg). It is therefore interesting to observe that
(0|7 4(3P,)|0) scales as v’ both in the perturbative counting
of [7] and in the conservative counting of [24].

Equations (12) depend on nine matching coefficients.
The matching coefficients F;(*P;) and G,(°P;) at O(a?)
were computed in [11] and [15,32], respectively. In [15,32]
(as well as in the order a, analysis of [16]) the authors,
although working at O(v?), did not include the matrix
element (0|75(*P,)|0) in their cross section formula.
Therefore the corresponding matching coefficients
Tg(*P;) remained unknown. In this work, we compute
for the first time the matching coefficients Tg(*P;) at
O(a?). This is the last missing piece to have the complete
O(v?) corrections for exclusive electromagnetic production
of y.; and a hard photon. The calculation is essentially a
tree-level calculation, but nontrivial, as we need to work
with a quarkonium composed of two heavy quarks and a
gluon. How to determine T'g(*P;) from matching QCD to
NRQCD will be discussed in the next section.

III. MATCHING NRQCD
PRODUCTION COEFFICIENTS

A. Matching conditions

There exist different approaches to calculate the NRQCD
matching coefficients in a quarkonium production process.
In all of them the matching is done between perturbative
QCD and perturbative NRQCD, relying on the same behav-
ior of both theories at low energies. The NRQCD matrix
elements are evaluated in such a way that the quarkonium
Fock states are replaced by the perturbative Fock states
containing on-shell quarkonium constituents, e.g.,

(Ol " Koy | H) (H |y K |0)
= (01" K00} (00l K)x10).  (13)

The explicit calculation of matrix elements on the right-
hand side of Eq. (13) in perturbative NRQCD will be
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explained in Sec. I'V. To derive the values of the coefficients
multiplying such matrix elements, we need to impose a
relation between suitable quantities (e.g., Green’s func-
tions, cross sections, on-shell amplitudes) in QCD and
NRQCD. In EFTs such relations are called matching
conditions.

In [7] the matching condition for quarkonium production
was given as

F,
v

(0j022)0)

G(QQ) |pertQCD = Z

n

pert NRQCD ’ ( 14)

which imposes an equality between the partonic cross
section to produce an on-shell heavy quark pair in pertur-
bative QCD and the sum of suitable LDMEs multiplied by
matching coefficients F,, and inverse powers of the heavy
quark mass in perturbative NRQCD. Assuming that the
relative momentum of the heavy quarks in the rest frame, q,
is small, one can expand both sides of Eq. (14) in |q|/m.
Within this nonrelativistic expansion one can read off the
values of the matching coefficients F, and then substitute
them into the NRQCD-factorized production cross section.
A more technical explanation of this approach can be found
in [33].

One of the difficulties related to practical applications of
Eq. (14) is the necessity to perform a nonrelativistic
expansion of the phase-space measure on the QCD side
of the matching. In processes, where heavy quarkonium is
produced together with other particles, such an expansion
tends to become complicated and requires great care.

In case of exclusive reactions (such as our process of
interest) it is also possible to employ the NRQCD factori-
zation at the amplitude level [34,35],

Apengen = ¢ (QOI K 70)

= Apert NRQCD> (15)

where ¢;; " is a short-distance coefficient. Equation (15) is
an equality between the on-shell amplitude to produce a
heavy quark pair in perturbative QCD and a sum of
quarkonium-to-vacuum matrix elements multiplied or con-
tracted with short-distance coefficients in perturbative
NRQCD. Once the short-distance coefficients ¢, are
known, they can be substituted into the NRQCD-factorized
production amplitude

ANRQCD = Zcil]...ik <H|WTK:;}“){|O> (16)

n

Squaring Eq. (16) and integrating over the phase space of
the physical quarkonium we obtain the NRQCD production
cross sections as in Eq. (12). Notice that in general not all
matrix elements in A, nroep giVe a nonvanishing con-
tribution to Angqcp- Since QCD amplitudes do not have

definite angular momentum (cf. Sec. V), in the matching
we will determine more short-distance coefficients than
required in Eq. (12). The advantage of this method is
that the matching can be done in a much simpler way, since
it does not require one to compute the QCD matrix element
squared and expand the phase space measure in |q|/m. In
this work we calculate our matching coefficients by
employing the NRQCD factorization at the amplitude
level.

B. Kinematics

We now make explicit the kinematics that we will use
throughout the matching calculation. We distinguish
between two frames of reference. The laboratory frame
is the center of mass (CM) frame of the colliding leptons,
where the heavy quarkonium and the photon fly apart
from the interaction point in opposite directions. The
rest frame is the frame in which the heavy quarkonium
is at rest.

We denote the 4-momenta of the heavy quarks and the
gluon in the laboratory frame with p,, p,, and p,,
respectively; k stands for the 4-momentum of the photon,
while the momenta of the colliding leptons are labeled by [,
and /,. We will also make use of the polarization vectors
for the photon ¢,, for the gluon ¢/, and for the dilepton
system L¥ = ev(l,)y*u(l;). The direction of the photon
3-momentum is referred to as k = k/|k|. In the matching
all the external momenta are put on-shell and the masses of
the leptons are neglected as compared to the CM energy
\/s. Hence,

pi=pi=m’, (17)
B=B=k=p=0, (18)
g, -k=¢e,-p,= (L +15)-L=0. (19)

Finally, the 4-momentum of the heavy quarkonium is
denoted by P. In the perturbative matching P is expressed
as a sum of the heavy quark and gluon momenta, i.e., P =
p1+ py for a Q0 system and P = p; + p, + p, for a
QQg system. In the physical process, however, P is the
4-momentum of the quarkonium with P> = M , where
M, , denotes the mass of y.; measured in experiments. We
will explicitly state the meaning that we assign to P at the
different stages of this work.

To distinguish a laboratory frame vector from a rest
frame vector, the latter will be assigned an additional
subscript R. For example, when considering the QQ
system, it is convenient to introduce the relative momentum
of the heavy quarks in the rest frame, defined as
q= (p1.r — P2r)/2. In the case of the QQyg system, two
relative momenta are needed, given by
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1
©=-2p,r—P1r—P2r). (20

1
(h:—(Pl.R—Pz,R)a 6

2

More details regarding the kinematics of the QQ and QQg
systems can be found in Appendix B.

C. Automatized expansions

As all matching prescriptions involve nonrelativistic
expansions of the perturbative QCD amplitudes, let us
also briefly discuss different strategies to realize this task.

In [7], matching calculations for decays were done in such
a way that the expanded QCD amplitudes were explicitly
rewritten in terms of energies, Cartesian 3-vectors, Pauli
matrices, and Pauli spinors. Since such objects naturally
arise on the NRQCD side of the matching, having both sides
of the matching equation expressed as products of 3-vectors
and Pauli structures facilitates the extraction of the matching
coefficients. This approach to NRQCD matching calcula-
tions was developed further and generalized to be applicable
both to production and decays in [25,36]. Following [36] we
will denote it as the threshold expansion method. Applying
the technique developed by Braaten and Chen is concep-
tually simple, yet the calculations tend to become rather
cumbersome when one goes beyond tree level or leading
order in ». In particular, the necessity to work with non-
covariant objects on the QCD side of the matching makes
such calculations quite tedious not only when done by hand
but also when automatized with FORM [37] or similar
symbolic manipulation systems.

The manifest Lorentz covariance of the QCD amplitudes
can be preserved if one uses the covariant projector technique
[28]. This property is especially useful when the evaluation is
automatized using existing software for symbolic calcula-
tions in relativistic Quantum Field Theory (QFTs) (e.g.,
FEYNCALC [38,39], REDBERRY [40], or FDC [41] to name
those that are often used in NRQCD calculations). This is one
of the main reasons why almost all modern NRQCD
matching calculations are done using projectors.

For the present calculation, however, we will not use
this approach. The reason is that there is no literature on
how to apply the projector technique to extract matching
coefficients multiplying matrix elements of the type
(0|7 4(*P,)|0). On the other hand, the calculation of the
matching coefficients Tg(P,) using the threshold expan-
sion method and matching at the amplitude level is
straightforward, albeit tedious. Similar calculations have
already been done in the investigation of the electromag-
netic decay y.; — yy [23,24], such that one can benefit
from the existing knowledge on the subject. To automatize
our matching calculations we employ FEYNARTS [42],
FEYNCALC, FORM, and FEYNCALCFORMLINK [43]
as well as self-written Mathematica codes. The software
framework for automatizing nonrelativistic EFT calcula-
tions using FEYNCALC will be presented elsewhere [44].

IV. NRQCD AMPLITUDES

A. NRQCD-factorized production amplitudes
and cross sections

In order to apply the threshold expansion method at the
amplitude level, we introduce NRQCD production ampli-
tudes at O(v?) relative to the scaling of the leading order
quarkonium-to-vacuum matrix element

J=0 o’ s I8
'ANRQCD = 7<Zc0|‘// _ED -6 )7(0)

S ol (< 5B "5 4l0)
A0 (g
1 eolw'| =5 oD ) x

J=0

+ ﬁ (xcolw'(gE - 6)x|0), (21a)

Al ZL:l)i(;mlw"' ~Bxes i)(|0>
NRQCD 2 ¢ >
(571 (_is B ie)?
+ e (xerlw' —EDXO' _ED x10)
+(d{:1)i< ' (gE x 6)'(0 21b
7 Lalw' (9B x 6)%|0), (21b)
- ¢]=2)ii ic
AlRbep = % (xelw' <—§D('0'J>>)(O>

(ci2)" (D) i)
+ m4 <)(02|W 2D o 2D Z‘0>

(a2
+ .

(xe2lw'gEl67)y|0). (21c)

The scaling of these matrix elements in v is estimated
according to the power-counting rules discussed in Sec. I C.

For example, the matrix element { y o[y (—éIH) -6)y|0) scales
as v°/2, while the scaling of (y.oly' (gE-6)y|0) is v%/2,

As explained in Sec. III, to arrive at production cross
sections in the laboratory frame, we need to square
the amplitudes in Eq. (21), average over the polarizations
of the leptons, sum over the polarizations of the photon
and the heavy quarkonium, and integrate over the
phase space for producing a heavy quarkonium and a
photon,

1

olete” —’ch+7):2ch1(2]+1>/(1¢14 :

Z | AﬁRQCD

pols

(22)

where pols refers to the photon polarizations and the
summation over the polarizations of the heavy quarkonium
is implicit in the amplitude squared. The prefactor (2J + 1)
appears because of our redefinition of the matching
coefficients in Eq. (8) and will be precisely canceled by
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1/(2J +1) in the formula for the sum over the heavy
quarkonium polarizations (cf. Appendix C). The prefactor
2M,, , accounts for the fact that our matrix elements have
nonrelativistic normalization.’ Finally, the phase space
measure is given by

olete™ =y +7v) =2M,, /d‘bo Z

pols

s — M>
dd;, = — 29 4Q, 23
4 647252 k (23)

with the integration done over the solid angle of the photon
3-momentum k. This yields

( <78 010, (py)j0)

cjfo c*]*O d*] 0
+ 6 0ppyry) 0 - 31 i) ) (4)
1 I=Ni( =1y
alete = g+ 1) =2y, [ a0y 3 (ALEE L o ey
pols
(Cj 1) (C*J 1) .(CJ=1)i(d*J=1)i
+ai 2L oy Cpj0) - 2L S T (Pyj0) ). (24b)
S R T
ole'e = yatn) =2y, | d¢242( [ e —§<c{2>~<cl”>ﬂ} (010, CP2)0)
pols
2 J=2\ij (o d=2Nif _ X a=2vii xi=2Vjj 3
+og |7 (e3)Y =5 () (7)Y {0[P1 (P) 0)
i T TR L
- a2y = Sty oiTerlo) ). (240)
|
where we used that cycj = c3¢] and cjd,; :—cld*[.6
Comparing Eq. (24) with Eq. (12) we can express the G CPy) = M, / do, — 24 5’71, (25¢)
matching coefficients F,(°P;), G,(°P;), and Tg(°P,) POIg
through the short-distance coefficients c;, c3, and dj,
T5(P)) = —2iM, / dod, - Zz(c )i(d=1)E, (256)
Fi(Py) =2M, / dD,— Z3yc1 o2, (25a) i
pols
Fi(P,) = 2M, /d¢2—z< =2yl
G\(Py) = 2M, / D, ~ Z6C c1/=0), (25b) 1 pols
—§<c{2>”<cf“>ff), (25¢)
T <3P0) = —21M /dq)o 3C'/ =0 d*‘/ 0 (250) i
pzol; G,(°P,) =2M, /d®2—22( c5I=2)i
pols
1 . y
Fi(P) =2M, / do, - Zz /=N (25d) —g(c{z)“(c§12)/f>, (25h)
pols
5 : Ts(P,) = =2iM,,, | d® Z (cI=2)u(dy'=2)l
An easy way to understand where 2M,  comes from is to 2 2
compute the cross section from an NRQCD amplitude with Polq
relativistic normalization of the matrix elements and then convert 1 - B
to the nonrelativistic normalization via the well-known relation — (]2 (dy/ =)0 > (251)
[34] <H‘W-I-K:){|O>relnorm = V 2M)(d <H|V/IIC)(‘O> 3

These relations between products of the short distance
coefficients are given in anticipation of our explicit results listed
in Sec. V.

Our task is to calculate all matching coefficients and in
particular T5(3P,) at O(a?), which can be inferred from the
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knowledge of ¢; and d;. To determine the short-distance
coefficients ¢f, ¢, and d{ we need to carry out the
matching between perturbative QCD and perturbative

NRQCD at the amplitude level.

B. Computation of the NRQCD amplitudes

The perturbative NRQCD matrix elements are most
conveniently evaluated in the operator formalism by
rewriting heavy quark fields in terms of Pauli spinors
and single fermion creation and annihilation operators, as
explained in [45]. The evaluation of matrix elements that
enter perturbative NRQCD amplitudes is straightforward.
For example, replacing [H) with [Q(p;)Q(p2.r)) and

10(P1r)O(P22)9(Pyr)) In AlRep from Eq. (21a) we
find

(00 )02l (=3B )l0) = oy, 20
(002l (~5B-a ) (~1B) 70)

=q*¢' (- q)n, (27)
(Q(P1r)Q(P2r) W' (9E - 6)r[0) = 0. (28)
(001 002)spy ) (5B )10)

— gt (o€ n. 29)
(0010020, (550 ) (=3B 21}

= —g'e'n2q'(q - €} z) + £:rq%]. (30)

0 =0 c]=0 i o
A%QnNRQCD = <H|V/T)(|O> — (Hly" <—D-o->

CJ:O
S (-
m* 2

=0 ; =0 ois 30 Nt
FO 0, + L (<550 el + S i (D) A0,

J=1 _\a
Apert NRQCD m2

A}J):Z _ (c1”
ert NRQCD 2

+2

UI
Q
~
/I\
|~
=k}
~
~ S}
IS
_|_

S\ (5 o
Dis” J{ —5D Z|O>+T<H|1// gBla/)y|0) +

(O(p1.R)O(P2r)9(Py&) ' (E - 6)x]0)
= —iglp,|&T(c - € ). (31)

Notice that, although matrix elements made only of
covariant derivatives contribute through the leading Fock
state |QQ), because of the gluon field in the covariant
derivative they also give a nonvanishing contribution to the
subleading Fock state |QQg).

As explained in Sec. III, to match the QCD amplitudes we
need, however, more operators and matching coefficients on
the NRQCD sides than needed to compute production cross
sections alone. For example, apart from P-wave spin triplet
quarkonium (y.;) we may also produce S-wave spin singlet
quarkonium (1,.). Even though we are actually not interested
in the latter, we still have to determine the short-distance
coefficients of the corresponding operators. In fact, this
property of the threshold expansion method provides an
important consistency check of the whole matching calcu-
lation: if the short-distance coefficients were determined
correctly, the difference Aperi gcp — Apertnroep Would nec-
essarily vanish order by order in the expansion parameters.
Notice that the perturbative matching between QCD and
NRQCD does not rely on any specific power counting.
Instead, we compare A ocp 10 Aper nrep Order by order
in q; and q,. This follows the approach adopted in [24],
where the matching for electromagnetic decays was done
order by order in 1/m.

The NRQCD amplitudes relevant for the perturbative
matching (including additional matrix elements and
Lagrangian insertions allowed by the symmetries) read

J=0

e o ie)?
>+W<H|l// —5D x10)
1=0 J=0
= (H|y" (9B - 6)x|0) +

— 5 (H|y"(gE - 6)x|0)

(32a)

i ; i o i (C§:1>i : i< i 1 <\2 (dézl)i . ;
{Hly"| —5Dx6 ) x|0) +—3~(Hly" —5Dx0 | { 5D ) |0) +— 5= (H|y" (9B x 6)'x|0)

i= i
_ED X o‘) X0z, . (32b)

R

' i _iﬁ(i J) (e2)” i1 260}),‘)
(H|y 5 Dle x10) + 3 (Hly 5 7y |0)

@) 2)1 (H|y"gEl67)x|0)

[ 8 si) ()" NERARIES
_EDG I|0>£2,f+T<H|lI/ =) DUD/y(0),,

(32¢)
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Some explanations are in order. The matrix elements
with the subscript £,_; contain Lagrangian insertions,
where the relevant part of the NRQCD Lagrangian (2-
fermion sector only) is

R T T
)Y
o (g Bl
o) ®

In the diagrammatic representation of the NRQCD quar-
konium-to-vacuum matrix elements, Lagrangian insertions
correspond to the emission of a gluon from one of the
external heavy quark lines. For example, for (H|y"y|0) and
(Hly"x|0),, , we have

Ui(pr)
< = i (Q(p1)Q(p2n) Y 1X[0)
X(p2)
"(p1) I(p1),
év { Ay =i (Q(P1,r)Q(P2,r)9(Py.r)| ¢ X0, ;> (34b)
x(p2) X(p2)

where the quark-gluon vertex on the heavy quark
(antiquark) line is understood as a sum of all six vertices
from quark-gluon (antiquark-gluon) interaction terms in
Eq. (33). Hence, to calculate the diagrams on the left-hand
side of Eq. (34b) we need to apply Feynman rules for the
w'y operator and for the interaction terms in Eq. (33).
The derivation of such Feynman rules in the operator
approach is a simple QFT exercise: we sandwich the
operator between the vacuum and a Fock state that contains
our fields (so that all momenta are ingoing), calculate the
matrix element, amputate external states (Pauli spinors and
|

(34a)

iezeZQg

T°L,

polarization vectors), and multiply the result by i. For
example, for the operator y'{D? 6 -gB}/(8m)y we
obtain

a,i
1 2 2 ik
§ = s [2(Pg.r - P1.R) +2P1 5 + Pg,R} 4 5152pq T,
51, €1 S9,Co g

(35)

Once we have the full expressions for the amplitudes in
Eq. (32) with |H) replaced by the perturbative |QQ) and
|0Qg) Fock states, we can expand them in the relative
momenta of the quarkonium constituents. For the QQ case
we need to expand up to the third order in |q|/m, which
allows us to determine the values of ¢, ¢y, ¢, and c¢3. For
the QQg case it is sufficient to expand the amplitude up to
the first order in |q,|/m and |q,|/m, so that we can extract
dy and d;.

V. QCD AMPLITUDES AND MATCHING

In this section, we compute the nonrelativistic expan-
sions for the relevant QCD amplitudes that describe
exclusive electromagnetic production of QQ, i.e.,

e~ (l))e" (L) = O(p1)0(py) +r(k),
and QQg,
e~ (h)et(h) = 0(p1)Q(p2)g(p,) + (k).

(36)

(37)

The process in Eq. (36) is described by two QCD Feynman
diagrams (cf. left panel of Fig. 1) so that

400 iezeég u(p1)g, (P + K+ m)y'o(p,)
pert QCD — s H (pl + k)2 _
u(p)r (= — ¥ +m)dv(p2)
+ TR e ! : (38)

while the reaction in Eq. (37) involves six diagrams (cf.
right panel of Fig. 1) and the corresponding ampli-
tude reads

w(p1)fy (P + Py +m)ds (P + Py + K+ m)y'o(p,)

AI?Q!J — _
ertQCh ((p1 + py)?

—m*)((p1 + py + k)* —m?)
u(p1)g, (P + K+ m)de(p1 + Py + K+ m)y'o(p,)

u(pr)dy (P + Py +m)y*(=po =k +m)év(p,)

+

+

((p1 +k)* —=m?)((p1 + py + k)* —m?) ((p1 + py)* = m*)((p2 + k)* —m?)
+f4(p1)¢;‘(1/1 + ¥+ m) (=g — Py +m)gov(pa)  a(p)y'(—=o — Py — K+ m)és(—pr — Py +m)dsv(ps)
((p1 +k)2 —m?)((p2 + p,)* — m?) ((p2+ Py +K)? = m*)((p2 +pg) m?)

u(p)r'(—p — K+ m)dy (=K — po + m)g;v(p,)
Y | G9)
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FIG. 1. Representative QCD diagrams for the processes
ete” - 00 +y and ete” - QQg+y that are relevant for
the matching to NRQCD. For the production of QQ there are
only two diagrams in total: the one displayed here and a second
one where the photon is emitted from the heavy antiquark line.
The production of QQg is described by six diagrams that differ in
the quark (antiquark) line that emits the photon and/or the gluon.

where L, has been defined in Sec. III B and e, denotes the
heavy quark electric charge in units of e. The amplitudes

.Ageg qcp and AI%%‘{)CD can be evaluated in the laboratory
frame or in the rest frame. Both frames have their
advantages and disadvantages. In the course of this study
we carry out the calculations in both frames and verify that
we arrive at the same results for the final matching
coefficients.

It is convenient to decompose all Dirac structures
involving heavy quarks into scalar, pseudoscalar, vector,
axial-vector, and tensor components. Since this is a tree-
level calculation in four dimensions, such decomposition
can be done in an unambiguous way. Then the amplitudes
can be written as

- ie’e2 g
A}%%QCD: 2 A a(p)yuv(p2) +750(p1)varsv(p2)]s
(40)
iezezg )
Atoen = =T U5a(p1)7,0(p2)
+ Jau(p1)7ursv(pa)ls (41)

where the coefficients j{ do not depend on the heavy
quark spinors. The vector and axial-vector structures
i(p1)y,v(p2) and #(py)y,ysv(py) can be rewritten in
terms of Pauli matrices and spinors using formulas given
in Appendix B. Furthermore, all the propagators and scalar
products in j; have to be expressed in terms of q (for QQ)
or of q; and q, (for QQg). As in Sec. IV, we expand up to
the third order in |q|/m and up to the first order in |q;|/m
and |qa|/m.

The NRQCD amplitudes in Eq. (32) are given for
specific values of the total angular momentum J, but

AgechD and ApenQCD should be understood as sums of

contributions from different values of J. Therefore, on the
QCD side one has to identify Cartesian tensors that
correspond to the matrix elements on the NRQCD side
and decompose them into irreducible spherical tensors

along the lines of [46]. For example, a term that contains
the rank 2 tensor 6'q/ and no further occurrences of q
contributes to

<QQ|w( )z|o> (42)

J=0
from A \rqep but also to

J=1)i

_ i o i
0l (~3Bxe) 0. @
from AIJ);}NRQCD and

({0)

(00y' (_5 (g );(|O> (44)

from .A;;fNRQCD. We can disentangle these contributions
by explicitly projecting out the J = 0, 1, 2 components of
the tensor, i.e.,

15i(6 - q) for /=0
oiq) — { 29 forJ=1. (45)
M_%éij(g-q) for J =2

Applying such projections to the whole QCD amplitudes
allows us to do the matching between QCD and NRQCD
for each J-value separately and successfully extract the
short-distance coefficients order by order in the relative
momenta.

Before presenting our results for the short-distance
coefficients, we would like to mention that on the QCD
side of the matching we encounter terms that are singular in
the limit |p,[ — O, i.e., proportional to 1/|p,[. Such
singularities arise when the gluon is emitted from one of
the external heavy quark lines and should cancel in the
matching. Indeed, matrix elements with the Lagrangian
insertions given by Eq. (33) on the NRQCD side of the
matching generate terms that precisely reproduce the
singularities of the QCD amplitude. The identical infrared
behavior of the full QCD and NRQCD amplitudes follows
from general principles underlaying the construction of
low-energy effective field theories. The cancellation of the
1/|p,| singularities on both sides of the matching has been
explicitly checked in both the laboratory frame and the rest
frame. A more detailed discussion on this subject can be
found in [24,30].

A. Matching in the rest frame

Rest frame short-distance coefficients carry an additional
subscript R to distinguish them from the coefficients
obtained in the laboratory frame. They read

096001-11



BRAMBILLA, CHEN, JIA, SHTABOVENKO, and VAIRO

PHYS. REV. D 97, 096001 (2018)

céfo = —A(Lg - (RR X 8;,13))’ (46a)
el=0 = %(1 —3r)r_A(Lg - €)): (46b)
AR =AMLy - (kg % € r)): (46c)
0 = _% (9= 24r +35r2)A(Ly - € ). (46d)
a7 = —ar_(Ly - (kg x €] z)), (46e)
1
diy = (1430 ALg - €)0). (46f)
(&) = i2(r_(Lg x &, 4)" = ry (Lg - kg) (kg x €] )"),
(46g)
—1\; i * i
(%) = =5 A4 =9r)r2(Lg x &)
- (4+9r)ri(LRRR)(12R Xe;R)i)7 (46h)
(dgR) = Ar_(—(Lg - € )k +2rr, (Lg - kp)eg), (460)

(d{Z) =M+ )2 (Lg x & )
—r_ri(l=r+3r=r)(Lg- RR)(RR X 8;,R)i)’

(46])
(e]7)7 = =A(rr_(Liegd +i < j)

+rry(Lg - kR)(lA(éee}kéi +i< )

— (Lg - €] p)kik}). (46k)
()7 = —A(Lg - (kg x £ ) kK. (461)
(efZ)V = —ﬂ(Srzrﬁ(Lsee;-" +i< )

—5r%r7 (Lg - RR)(H?";JI +i< )

+ 3(Lg '9;,1{)12%1%), (46m)
(dyx)" =0, (46n)
(dI2)7 = M2r2r_r% (Lg - kg) (Ke + i < j)

—r_(Lg -k )R;ﬁg) (460)

with 1 = e*ef/s and ry. = (1 £ r)7!, where r = 4m?/s is
the kinematic suppression factor. Ly is the spatial part of
the leptonic current in the rest frame defined in Sec. III B.

The connection to the laboratory frame can be estab-
lished by means of the following Lorentz boost trans-
formations:

kp = \/E k, ey =¢€",
M}({:J
M _ 2
Ly :L+M(L k)k (47)

NG

where the appearance of the physical quarkonium mass
stems from the fact that we have employed the kinematics
of the physical quarkonium, ie., used P> =M; . In
Sec. V.C we will show how the dependence on M, = can
be eliminated up to the desired order in v.

Matching in the rest frame of the heavy quarkonium is
very similar to the calculation of the O(a?v?) corrections to
the decay process y.; — yy. The productlon of y.; at rest
can be regarded as the decay of a heavy vector boson y* into
a photon and a quarkonium. As has already been observed
in [11], in the limit s — 0, the production short-distance
coefficients from Eq. (46) should reduce into the short
distance coefficients for the decay of y.; into two photons.
In our calculation this is indeed the case.

B. Matching in the laboratory frame

In the laboratory frame it is straightforward to carry out
the phase space integrations in Eq. (25) and thus arrive at
the final matching coefficients. The more complicated part
of the calculation is the manipulation of the QCD ampli-
tudes. Obviously, potentially large laboratory frame
momenta of the heavy quarks and gluon are not suitable
parameters for doing a nonrelativistic expansion. The
correct expansion can be done only after these momenta
have been rewritten in terms of small rest frame momenta,
which greatly increases the number of intermediate terms.

Lorentz boost transformations that relate potentially
large laboratory frame momenta of a QQ system to the
small rest frame momenta in a way that is useful for
NRQCD matching calculations were introduced in [25]. In
this work we generalize those formulas for a QQg system
and summarize them in Appendix B.

The matching procedure yields the following values for
the short-distance coefficients:

)0 =-AL- (k x &), (48a)

=0 = (1 - 3r)r AL -€}), (48b)
o2 .

e JAL- (K xg7)), (48c)

=0 = —%(9 24r+35r7)r2A(L - €}), (48d)

di0=—r_AL- (k x&})), (48e)

=0 — é<1 L3 A(L-€)), (48f)
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(ef=) = —izr_((1 = Vr)(L-k)(k x &) — (L x €})"),

(48g)

— V)28 + 13\/r)(L-k)(k x &)

—2(4-9r)(L x &))", (48h)

(=) = =ar_(Vre; (L-k) —K'(L - €))). (481)
(d=1) = 2/1,, (2= r)(L-k)(k xe)' —2(Lxg})),

(48))

(™) = —idr_((1 = Vr)Vr(L - k) (K'e) +i < j)
+r(Liey +i < j)— (1 —r)(L-&)k'k’),
(48k)

(572 = —A(L- (k x &))k'k/, (481)

(cf72)" =—ﬂr (5v/r(1+2vr) (1 = V/r)?
X (L-k)(k' I i)
— 10/ (Liey +i < j) —6(1 —r)*(L-&;)k'k’),
(48m)

(dy=2)"7 =0, (48n)

(df=2)) =2 ar_(Vr(L-K)(K'e)/ +i < j) = 2K'K/ (L ¢))).

(480)

C. Relations between matrix elements and heavy
quarkonium masses

From the NRQCD point of view, the LDMEs should be
regarded as independent nonperturbative parameters.
Nevertheless, symmetries and approximations can be used
to establish relations between different LDMEs that are
valid up to a certain order in v.

m 3
C(xeo = 1y) = w@(dﬂ <

2Imger (*Po) z
g (~59-0) (-3
6m®
2Irnl‘Sem( PO)
—
3m 5

2Imfem(3p0)

. (0[O0 (*Py)|0) +

Particularly useful relations can be derived from the
equations of motion of NRQCD and are known as Gremm-
Kapustin relations [29]. Since our LDMEs are identical to
those that appear in the electromagnetic decay y.; — yy, we
can use the Gremm-Kapustin relations that were first
obtained in [23],

(0[P1(°P))[0) = mE, (0|0, (°P,)|0) + m{0|T5(°P,)|0),
(49)
where E, =M, —2m is the binding energy of y;.
Equation (49) is valid up to corrections of O(v*), and it
is useful for two reasons. First, we can solve it for M, ,
(0[P, (°P,)|0)

1 (0|75 (CP,)l0)
m (0|0, (°P,)|0)

_ |
(0[O, CPy)0)”

(50)

and use Eq. (50) to eliminate the dependence of the
matching coefficients on the heavy quarkonium mass in
Eq. (25). This is a crucial ingredient to check that the
matching coefficients that we will list explicitly in Sec. VII
are the same if obtained from the expansion of the QCD
amplitudes in the laboratory frame or in the rest frame.
Second, Eq. (49) allows us to reduce the number of
unknown matrix elements in the final NRQCD-factorized
production cross sections at the cost of making the
numerical predictions depend on the heavy quarkonium
binding energy. We will see this in the following Sec. VIIIL.

VI. ELECTROMAGNETIC DECAYS
OF x.; INTO TWO PHOTONS

In this section, we show that our matching calculations in
the rest frame also contribute to the resolution of the known
discrepancy between the results of [23] and [24] on the
values of some matching coefficients entering the NRQCD-
factorized decay rates for y., — yy at O(alv?). The
formulas for these decay rates read (using a remark made
in Sec. Il A we express eventually the widths in terms of
production LDMEs5)

é a>;(|o><0|;(( éﬁ 0')W|Zc0>

) 210)(0[* ( ;ﬁ-6>wl;(co> —&-H.c}

i

[()(cohl/ (gE - 6)x|0)(0] 1 ( 513 )wl;(co)—kH.c}

2Imgem( PO)
m

21mt8 em(3PO)

(OIP1(P)I0) +—— 5= (01T gem (*Po)[0).  (S1a)
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m 3
Dl — ) = P2l )y (

2P (- w’>) (~5B) A0yl (~5546 ybe) + |

+ ZImtSem( P2> |:

=AM enCP2) (100, (3p,)(0) +
m

While both collaborations obtained the same expressions
for

Imf e, (*Py) = 3a?e)ym, (52a)
I 3p _ 4 e 52b
mfem( 2) - ga €oT, ( )
Imge, (3Py) = =Ta?ejym, (52¢)

they disagree on the values of the other coefficients; cf.
Table I. In 2013, it was reported [47,48] that an independent
investigation of the y.; — yy decays confirmed the results
of [24]. In the course of this study we could repeat the
calculation of the O(alv?) corrections to these decay
processes. Matching at the amplitude level and at the level
of the total decay rates we also found agreement with the
values of the matching coefficients obtained in [24]. These
are

8
Imge, (3P,) = —gaze‘bn’, (53a)

3
Imtgem(3P0) = —§a2€zﬂ', (53b)

Imtgem(3P2) =0. (530)

Note that in [23] the decay rate of y., contains the
additional matrix element

TABLE I. Discrepancies in the results of [23,24].

Matching coefficient Value from [23] Value from [24]

Imgey, (°P,) -3 o e‘éﬂ —$aPeln
Imtg e (PPy) —2a’e —3a’eln
Imtg o, (3P5) —aze‘éﬂ 0

ic
(el B 0) 07 (=350 Yol +

2Irngem (3P2)
m6

m 3
oiP,Cpoj0) + 2l o7 a0y, (st
|

el (=) BB (1B -0 )00
<1 (=5B0) Juls) + e (54)

Since in [24] it was shown that the contribution of this
operator to the total decay rate is already accounted for by
the inclusion of (0|P;(*P,)|0), we do not include it in the
expression for the decay width.

VIL. PRODUCTION CROSS SECTIONS AT O(»?)

Plugging the laboratory frame short-distance coefficients
from Eq. (48) into Eq. (25) we obtain the values of the
matching coefficients that enter the factorized cross sec-
tions given in Eq. (12). If we define

1 -
F\CP) =M, (s— M) / dcosOF,(P,), (59
-1
1 -
G\(Py) =M, (s — M2 / dcos0G,(P,),  (56)
-1

1 .
TsCP)) =M, (s— M) /1 dcosOTs(°P;),  (57)

where 6 denotes the angle between the beam line and the
outgoing photon in the laboratory frame, the results read

. madely(1=3r)*(1 + cos?0)

F\(Py) = 0= , (58a)
~ e, (1 =3r)(9 —24r +3572)(1 20
G\ (Py) = Q( )(lss - _4—r)3 )(1 + cos )
(58b)
R radedy (1 —9r%)(1 + cos?0)
Typy =T, (58¢)
F,(P,) = 2na’e[(1 + cos*6) + 2r(1 — cos*0)] (584)

s3(1=r)? ’
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. 4radef[(4 —9r)(1 + cos?0) + (3r — 13r%)(1 - cos?0)]

G\(Py) =~ 59— 1) ; (58¢)
FoCPy) = 2z’ e|(1 —|—SC30<5129_) :)_2r(1 — c0s26)] ’ (58f)
F,(Py) = 2raded|(1+ 6r2);1s;(r]cisi)92) + 6r(1 — cos?0)] ’ (582)
&,(P,) = 4radef|(3 —6r — 21 — 30r31)5(s13(t C_Oiz)f) + 15r(1 = 37)(1 = cos?6)] ’ (58h)
7Py = - 2rna’e}[(1 +;;)3s(2;9)_4;;r(1 — c0s%0)] , (58i)
and
F\(Py) = 16”2(’362(19;2 )_ZM)Z( ~Mro), (59)
G.(Py) = - 16712&362(1 - 3r) (25;3§Tr_t;35r2)Mm(s - M) 7 (59b)
Ty(3Py) = 8720’ e ( 19;39(12)_ A/g;)(s -M; ) , (590)
FL(P,) = 32”2asez(31sj(lr)i\4;)g(s —Mil)’ (59d)
6,0py) = - 2B - :3(_11_3;)3% M), (59%)
rypy) - - ), (500
F1<3P2>—32”20‘363(12?2;6_?34 oG Mro) (592)
Gi(Py) = - i L 3")4(‘2; (31r__ r2)(3)r2)Mm (o= My ; (59h)
TyCPy) = - 167’ ely (24 3r)M,,, (s — M3 ) ' (59)

In order to write the production cross sections, for
consistency we combine our findings with the known
O(a,°) corrections to F;(*P;) computed in [12,17].
The explicit values of the coefficients Cj-(r) can be found
in Appendix B of [12]. The O(a,v?) corrections from [16]
are, however, not included. The first reason is that the

9s3(1—r)?

corrections reported in [16] are incomplete, as they do not
include contributions from (0|7 5(*P,)|0). The second one
is that, to be consistent with the NRQCD power-counting
rules at that order in o and v, one would also need to
include O(a2v*) and O(a?1°) corrections, which are not
available yet. The differential and total cross sections read
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d dra)det (1 —3r)2(1 + cos’O)M, (s — M?
et gty R =IP0  covM, (-0
dcos 6 1927°m*s>(1 —r)

a. - r 1”2
{1+ % et ) oioncroio) - LS i eryo

(1+3r)
U 0174 (P
S TPl (602
d (4za)’et,M, (s —M2 )
+ - — Q Xel el
dcosé’a(e ¢ =X ty) 322 mis* (1 - r)?

x { {(1 + cos?6) <1 + %c{f(ﬂ) +2r(1 — cos?0) <1 +%c¢1 (r)ﬂ (0|0, (3P,)|0)

—9r cos? r(3 = 13r)(1 — cos?
_2(4 9r)(1 + 5(?1)12—1(—12_(5) 13r)(1 0) (0[P, CP,)[0)

_ (L co’d) (1 - cos) <o|Ts(3P1)|0>}’ o

m
d (4na)’e,M, (s — M)
+ - — Xc2 X2
d cos 96(6 ¢ = xaty) 96m°m*s*(1 - r)?

x { [(1 + cos0) <1 +(j;cg(r)> +6r(1 = cos20) <1 +(:c;1(r)>

+

+6r2(1 + cos20) (1 —I—%sz(r))} (0|0, (3P,)|0)

2(3 = 6r—2r2 =30r3)(1 + cos?d) + 30r(1 — 3r)(1 — cos?0

B (1 + cos?d) + 3r(1 — cos?6) <O|T8(3P2)|0>}, (60c)

m

and
(47ra)3ez)(l -3r)?’M, (s—M2 )
36xm*s*(1—r)?

ole*e™ = 1o +7) =

«{ (14260 ) 0i0i0PI0) - S 2L o, o) + U2 0T Ol
(61a)
olee = o) = L e (M)
{1+ 290G g0,y o) - EZ =10 e ry o
- SO CP0) (610)
olete” = o +7) = (471“)362(11;3”:4;(6: 2_)[‘;[)%5'2 (o= My
(145 )
- 5(;2?13_”;)3 <1_ir3: iogig) (01 (P2)I0) - 2m<1(2++33 ; &) OTsCP2)0) } (61c)

where we recall that r = 4m?/s.
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The dependence on the physical quarkonium mass arises due to the presence of M,  in Egs. (22) and (23). This
dependence can easily be eliminated via the Gremm-Kapustin relations. In particular, using Eq. (50) we arrive at cross
sections that do not explicitly depend on the mass of the y.;. These are

d (4rna)’ely(1 = 3r)*(1 + cos?0)
te~ =
d cos 96(6 ¢ = Xoty) 48zm>s*(1 —r)

{1+ 200 010, CP0) - (o BB

(071 (°Po)|0)

2r(2 = 3r) 3
S OITCPI) ). (620)
dra)ie?
dcis96(6+e_ ~Hatr) = SJTI(HT)(IEF) (62b)

x { [(1 + cos20) <1 + %C?(r)) +2r(1 = cos26) (1 + %Cfl(r))] (0]0,(3P,)[0)

(11 =21r)(1 4 cos?0) + 2r(1 — 11r)(1 — cos®0) 0[P, CP)0)
- 1 1

10m2(1 = 1)
—5r cos? (1 =2r)(1 — cos?
_(B-5n(+ 29’;2:4_31) 2r){1 = cos™) <0|78(3P,)|0>}, (62c)
d 4dra)3 et
dcos96(€+€_ REChR MJT(TZ)UQ_’”)

x { [(1 + cos20) (1 —i—%Cg(r)) + 6r(1 — cos?0) (1 +%Czﬂ(r>)

+6r2(1 + cos?0) <1 +%C§2(r)>} (0]0, (3P,)|0)

B (7—=9r—=38r"=30r)(1 + (:205 0) +30(1 —3r)r(1 — cos*0) (0[P, (3P,)|0)
10m*(1 —r)

(3=5r+6r* = 18r%)(1 + cos?8) + 12r(1 — 2r)(1 — cos?0)

- 2m(1—r) <0|Ts(3P2)|0>}, (62d)

and
(4na)’ely(1 = 3r)?
18zm3s*(1 —r)
{ (1420 ) 0oy Cro) -

2r(2 = 3r)
m(1 —4r+3r?)

olete” >y +7) =

(13 — 18r + 25r%)
10m?(1 — 4r + 37?)

(0|P1(3Py)|0)
<0|Tg<3Po>|o>}, (632)

(471'(/{)362(1 +7)
3zm?s*(1 —r)

(1420
b4 1+r

olete” =y +7y)=

(11 = 20r — 1172)
10m>(1 — r?)

)<0|01<3P1>|o> - 01P1(P1)0)

—3r— 452
-Cos = amerom). (630)
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(4ra)’ey(1+3r+6r7)
97rm3 2(1-7)

olete” wyon+y)=

y 1+%C(2)(r)+3rC§(r) +6r2C3(r)
1+3r+6r2

(7 + 6r—83r* = 30r%)
10m*(1 = r)(1 + 37+ 672)

Comparing these results with the literature, we observe
that the matching coefficients F,(°P,) agree with those
reported in [11] and in all subsequent studies. Furthermore,
our values for G,(3P,) are consistent with the K-factors
given in [14]. The values of the matching coefficients
Ts(3P,) and Tg(P;) are original of this work.

VIII. NUMERICAL RESULTS

The main limitation in the determination of the ete™ —
y* = y.; +v production cross sections comes from the
uncertainties in the LDMEs. Nevertheless we will see that
we can express the LDMEs in such a way to reduce those
uncertainties in the final results.

For (0|0, (*P,)|0) we can use the value quoted in [35],
which follows from a Buchmiiller-Tye potential model
calculation [49]

(0|0, (3P,)|0) = (0.107 4+ 0.032) GeV>. (64)
The error corresponds to an O(v?) uncertainty that we
estimate to be 30% of the central value.” This uncertainty
accounts also for the breaking of the heavy-quark spin
symmetry. Further, we notice that within the error bounds
the choice in Eq. (64) is consistent with the most accurate
values of (0|O;(*Py,)|0) determined in Table I of the
recent study [50] devoted to O(a?1°) corrections of the
Xes — 2y decay.

The number of the remaining independent LDMEs can
be reduced by applying the heavy-quark spin symmetry [7],
which relates matrix elements with the same orbital
momenta but different spin values and is valid up to
corrections of  O(v?). Since (0|P;(°P,)|0) and
(0|7 4(3P,)|0) are already v suppressed as compared to
(0|0, (°P,)|0), the corrections from the breaking of the
heavy-quark spin symmetry to the total cross section are of
O(v*) and therefore irrelevant for the accuracy that we are
aiming at:

(0[P, (°P,) 0) =

(01P1(CP)[0) (1 + O(v?)).  (65)

"The authors of [49] do not provide an uncertainty for their
result.

(0|7, (°P1)10) —

)<0|ol<3pz>|o>

(3+r—6r2—18r7)
2m(1—r)(1 +3r—|—6r2)

<0|78<3P2>|o>}. (630)

(01T5(°P;)[0) = (0T 5 (°Po)|0)(1 + O(v?)).  (66)
This is clearly different from the case of (0|0, (°P;)|0)
where spin symmetry breaking effects, being relevant at
O(v?), cannot be neglected at our accuracy and have been
included in the uncertainty of Eq. (64).

The values of (0|P;(*Py)|0) and (0|7 5(*Py)|0) can be
determined from the electromagnetic decays y., — yy and
X — vy that have recently been measured by the BES-III
experiment [51],

(2.33 £0.20 +0.22) x 107 MeV,

C(xeo = vr) = (67)

(e — vy) = (0.63 £0.04 +0.06) x 107> MeV, (68)
where the first error is statistical, and the second one
consists of systematic errors and the error in the branching
fraction combined in quadrature. Combining the NRQCD
results for the electromagnetic decay rates in Eq. (51) with

the Gremm-Kapustin relation in Eq. (49) we obtain

6a’etn 3722 — 28 a
o = 1) = 2 (1435522 010, CPo)0)

l4a%et
—Q<0|7D (°Po)|0)

3(1

%07 (%Py)0). (69a)

(0[P, (Py)|0) = mE, (0O, (*Py)|0) + m(0|T5(*Py)]0),

(69b)
and
8atetn 16 a;
Ml = m) =5 (1= 5% ) 00,0P2)0
16a%e
———Z= (0[P, (°P,)|0). (70a)

5m 6

(0[P, (°P,)|0) = mE,_ (0O, (*P,)|0) + m(0|T5(*P,)]0).
(70b)
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The decay rate formulas in Egs. (69a) and (70a) contain
not only corrections of O(a?v’) and O(a?v?) but also the
O(ay) correction to Imf ., (°Py,) [52,53]. This is required
for consistency with the NRQCD power counting, where
corrections of O(a,v’) and O(alv?) are assumed to be
equally important.

Equations (69) and (70) each describe a system of two
linear equations with three unknowns: (0|P;(3Py)|0),
(075 (*Po)|0), E,, and (0|P;(*P,)|0), (0|75(*P,)|0),
E, ,, respectively. Since we employ the heavy-quark spin
symmetry, both systems can be used to determine the
unknown LDMEs, which we choose to be (0|P;(*Py)|0),
(0|7 4(*Py)|0), as a function of the binding energy. We will
therefore use both Egs. (69) and (70) and present the
combined results.

The mass m appearing in the above equations is
the charm pole mass. The pole mass is a poorly known
quantity that, however, can be traded for the physical
masses of the y.;, which are experimentally known,

— (0[P (*R)|0) in GeV™

Gev’

0.05
— (OITs(*Py)[0) in GeV®
0.04
0.03

0.02

GeV ©

0.00

-0.01

-0.02

Zo

and the binding energy, which is one of our unknowns,
according to

(71)

In order to be consistent with the NRQCD power counting,
we replace m with (M,  — E, )/2 in contributions that are

of order v* and use m = M .,/2 in contributions that are of
order v?> (with a, ~?). Solving the system for the
unknown LDMEs and expanding in E,, , ~ v? up to relative
order v? yield

3

(0[P, (Py)|0) = 3

M, (0101 (Py)[0)

6

M
_ X0 1" ,
1088 a?eh, " Ue0 = 17)

02¢ — (0P, (*Ry)|0) in GeV”

GeV

-0.01

— (0]Tz(*Ry)|0) in GeV®
-0.02

-0.03

-0.04

GeV ©

-0.05

-0.06

-0.07

-0.08

T2

FIG. 2. The matrix elements (0|P,;(3P;)|0) and (0|7 4(*P)|0) as a function of x, [determined from Eq. (72)] or x, [determined
from Eq. (73)]. The cyan bands indicate the total uncertainty obtained from the quadrature of the uncertainty in (0]O;(*Py)|0)
and the combined (in quadrature) uncertainty in M, and I'(y.; — yy). The small uncertainty of (0|P;(*P)|0) in the region around
x; = —1.1 results from the fact that, for this value of x,, the terms proportional to (0|O;(*P,)|0) in Egs. (72a) and (73a) become
very small. Furthermore, when (0|75(*Py)|0) is determined from Eq. (73b), it does not depend on the binding energy and

hence on x,.
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3 1 16 a
(017 5(°Po)|0) = 35 (0101 (*Po)[0) (01T 5(Po)[0) = 3 M,,, (0101 (Py)|0) (1 - §;>
(37% —28) a2 > 5MS3
x|\M, +——M, ——=E Xe
< X0 971. X0 s 3 X0 - m F(){CZ e 7/}/), (73b)
5
_ Ze0
54471'(12625 Mo = 17), (72b) for the determination using Eq. (70). Furthermore, we
choose
for the determination using Eq. (69) and M, = (341475 £0.31) MeV, (74)
1 M, 6 = (3556.20 + 0.09) MeV, (75)
(0[P, (°Py)[0) = s Mz (010, (°Py)|0)
16 a aM, /2)=alM,,/2) = 1/133, (76)
x (M)(cz - EM)&Q ; + 4E){e2)
S116 a; (MM/Z) = 0.285, (77)
-——f2 T 73a)
T02naed | e = 17 (73a
0 a,(M, ,/2) = 0.280, (78)
2.5 — O(a'[;v”) — O(a;’v”)
o 0(a%) + O(a’) » e o O0(a%”) + O(an”)
m: H_j\/;/z 77777 0(a%°) + O(a?) + 0% (a2v?) 52 e e . ka2 O(ade’) + O(a ) + 0" (alv?)
:(\:\\ 20 — 0(a%") + O(a’) + O(alv?) /:E ( )+ 0O
+ . +
T s T
e
® ©
1.0
10.0 10.5 11.0 11.5 12.0 10.0 10.5 11.0 11.5 12.0
Vs in GeV Vs in GeV
< - O(ad’)
st o
N - 0(a0) + O(an?)
7 AN . pNEZ O(a??) + O(a,0’) + 0 (av?)
’ (")

o(efe” = X2 +7) infb

10.0 10.5 11.0 11.5 12.0
Vs in GeV

FIG. 3. Cross sections for the exclusive production of a y.; and a hard photon in the energy region of Belle II. The matrix elements
(0|P1(3Py)|0) and (0|7 g(*Py)|0) were determined from Eq. (69). The dash-dotted curve shows only the contribution from the
(0|0, (*Py)|0) matrix element multiplied with the tree-level matching coefficient. The dotted curve also includes the loop correction to
the matching coefficient of (0|0, (*P)|0). The dashed curve incorporates the contribution from (0P, (*P)|0) but not (07 5(*P;)|0).
Finally, the solid curve displays our final result that contains all the relevant contributions.
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aleTe™ = xeo +7) in fb

10.0 10.5 11.0 115 12.0

— Xa +7) in b
[ S
N [=)} oo (=} %)

—_
(8]

o(ete

—_
(=)

10.0 10.5 11.0 11.5 12.0
Vs in GeV

alete™ = xe2 +7) in fb
W

10.0 10.5 11.0

V5 in GeV

FIG. 4. Cross sections for the exclusive production of a y.; and a hard photon in the energy region of Belle II. The matrix elements
(0|P,(3Py)|0) and (0|7 g(*Py)|0) were determined from Eq. (70). The dash-dotted curve shows only the contribution from the
(0|0, (*P)|0) matrix element multiplied with the tree-level matching coefficient. The dotted curve also includes the loop correction to
the matching coefficient of (0]O;(*Py)|0). The dashed curve incorporates the contribution from (0[P} (3Py)|0) but not (0|75 (*Py)|0).
Finally, the solid curve displays our final result that contains all the relevant contributions.

where for M, & we use the most recent PDG values [54],
while the values of the strong coupling constant (at 1-loop
accuracy) were obtained with RUNDEC [55-57]. The errors
of a from varying M, | are of relative order 1073 and hence
can safely be neglected in comparison to other error sources
in the present analysis.

The matrix elements (0|P;(*Py)|0) and (0|7 5(°Py)|0)
depend on the binding energy, E, . Since of the binding
energy we only know the nonrelativistic scaling,
E,  ~mv*, where v> ~ 0.3 for charmonia [7], it may be
useful to parametrize the binding energy in terms of a
dimensionless parameter x; of O(1) and write it as

M, ,
E, = 0.3x1%. (79)
The LDMEs (0|P; (*P,)|0) and (0|7 g(*P,)|0) as a function
of x; are shown in Fig. 2. The uncertainties coming from
M, ,T(x.; = vr), and (0|0, (°Py)|0) have been estimated
using Gaussian error propagation and are shown by
the band. Because the Buchmiiller-Tye potential or the

Cornell potential or a purely confining potential would all
give a positive binding energy,® we will restrict x; to
positive values centered around the natural value x; = 1.0.
Allowing for a 100% uncertainty, we take

x;=10+1.0. (80)
With this choice we obtain

(0P, (3Py)[0) = (0.098 £ 0.058 £ 0.082 & 0.012) GeV’,
(81a)

(0|T5(3Py)[0) = (0.0027 4 0.0176 =+ 0.0064

+0.0072) GeV®, (81b)
from the determination using Eq. (69) and

A purely Coulombic potential, which would give a negative
binding energy, seems inappropriate for the loosely bound y;.
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(0[P, (3P,)[0) = (0.012 + 0.057 + 0.102 + 0.020) GeV’,
(82a)

(0|T4(3Py)|0) = (—=0.050 £ 0.015 +0.000 4 0.011) GeV®,
(82b)

from the determination using Eq. (70), where the uncer-
tainties were estimated using the Gaussian error propagation
formula. The first error originates from the uncertainty in
(0|0, (?Py)|0), the second one originates from the uncer-
tainty in x;, and the third one is the combined (in quadrature)
uncertainty in M,  and I'(y.;—yy).

The values of the LDME:s given in Egs. (81) and (82) are
consistent with each other within the error bounds, as
expected from the heavy-quark spin symmetry. Under the
assumption that the heavy-quark spin symmetry holds at
leading order in the velocity expansion, we can average the
two determinations, which yields our best determination for
these LDMEs,

(0[P, (3P,)[0) = (0.055 + 0.058 & 0.092 + 0.024) GeV’,
(83a)

(0|7 5(3Py)|0) = (~0.024 £ 0.016 + 0.003 £ 0.014) GeV®,
(83b)

where the uncertainties in (0|0, (3P)|0) and x,; were added
linearly [first and second uncertainties in Eq. (83), respec-
tively], while those in M,  and I'(y.; — yy) (third uncer-
tainty) are regarded as independent and were therefore
added quadratically. The values given in Eq. (83) represent
our best determination of (0|, (°P,)|0) and (0|7 3(*P,)|0)
using the heavy-quark spin symmetry.

In order to reduce the uncertainties in the total cross
sections o(e*e™ = y.; +7), it is useful to compute them
by replacing the matrix elements (0|P;(°P;)|0) and
(0]T3(°Py)|0) with their expressions from Eq. (72) or
(73). In this way each cross section will have five

independent sources of uncertainty, which are M, ,

C(res = vr), (0|01 (°Py)|0)), x;, and the renormalization
scale u that enters through a.

20 0(a2°) + O(a®) + 0(alv?)

1=s/2

alete”™ = X +7) in fb
-

0(a20") + O(a®) + O(av?)

n=1/5/2

alete™ = xa +7) in fb
— )
w (=]

—_
(=3

10.0 10.5 11.0 115 12.0
Vs in GeV

10.0 10.5 11.0 11.5 12.0
Vs in GeV

8

7

6

olete” = xe2+7) infb

0(a%°) + O(a®) + O(alv?)

=152

10.0 10.5

11.0 11.5 12.0

Vs in GeV

FIG. 5. Final cross sections for the exclusive production of y.; and a hard photon in the energy region of Belle II. The results are
obtained from averaging the cross sections with the subleading LDMEs obtained from Egs. (72) and (73). The error bands are obtained
from the quadrature of all four sources of uncertainties listed in Tables II and III.
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The process ete™ — y.; +y can be measured at B- o
factories with a sufficiently high CM energy to produce a (M.,/2) = 0226, (88)
s and a hard photon, e.g., at Belle II. Hence, we select our

input parameters as a,(M, /2) = 0.223, (89)

Vs = 10.6 GeV, (84)  all obtained with RUNDEC; a(+/s/2) is taken as the central
value, while o (+/s) and (M, ,/2) are used to estimate
the uncertainty in pu.

a(10.6 GeV) = 1/131. (85) The contributions of different LDMES to the total cross

section in the energy region of Belle II are shown in Figs. 3

In principle, one power of a that originates from the photon ~ and 4, and summarized in Tables II and III for
emission of the heavy quark (cf. Fig. 1) could runaslow as /s = 10.6 GeV. The full cross sections with the corre-
a(M, /2). However, for simplicity we will ignore this  sponding error bands are presented in Fig. 5 (total cross

potential uncertainty and evaluate all « at the same value.  sections as functions of /s) and Fig. 6 (differential cross
To estimate the uncertainty in the choice of the renorm-  sections for /s = 10.6 GeV as functions of the angle
alization scale of the strong coupling, we use four possible  between the beam line and the outgoing photon, 6, in the
values of y: laboratory frame). In Fig. 7 we also show the ratios of the
total cross sections, where the LDME (0|7 3(°P,)|0) is

ag(v/s) = 0.171, (86)  included (denoted as og) or omitted (denoted as o) as a

function of +/s. The only difference between g and o, is
that in the latter the value of (07 5(*P,)|0) is set to zero,

as(v/s/2) = 0.200, (87)  while the values of (0|0, (3Py)|0) and (0[P, (°Py)|0)
10 — 0(a%°) + O(asv°) + O(av?) L0 — 0(a%) + O(a®) + O(av?)
. w=1/5/2,v/5=10.6 GeV . w=1/5/2,y/s = 10.6 GeV
= =
+ 0.8 + 08
3 3
= =
T 0.6 T 0.6
‘Q.) ‘Q.)
+ +
X X
se o4 S]] 0
—lb —lb
0.2 0.2
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
cosf cos 0
10 — 0(a%°) + O(asv°) + O(av?)
. w=1/5/2,v/s=10.6 GeV
=
+ 08
=
T s \/
‘Q)
5
L
,% |% 0.4
—| b
0.2
-1.0 -0.5 0.0 0.5 1.0

cosf

FIG. 6. Differential cross sections for the exclusive production of y.; and a hard photon at /s = 10.6 GeV. The results are obtained
from averaging the cross sections with the subleading LDMEs obtained from Eqs. (72) and (73). The error bands are obtained from the
quadrature of all four sources of uncertainties listed in Tables II and III. The central values and the errors are normalized with respect to
the average of the central values of the total cross sections at /s = 10.6 GeV.
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1.10
0(a%°) + O(a ) + O(av?)

n=1s/2

T 0(a%°) + O(a?) + O*(alv?)

1.05
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os(ete™ = X0 +7)
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105 11.0 11.5 12.0

V5 in GeV

—_
W

O(a%®) + O(a,®) + O(av?)

n=1/s/2

T 0(a%?) + O(a ) + O*(alv?)

os(efe” = xa +7)
ete™ = X1 +7)
5 L=

(
0'1(

o
o

o
%

12.0

._
o
=)

10.5 11.0

/5 in GeV

115

16 1= s/2

os(eTe” = X2 +7)
oi(ete” = X2 +7)

O(a%®) + O(a,0°) + O(av?)
T 0(a%0) + O(a ) + O (alv?)

10.0

10.5

11.0 11.5 12.0

Vs in GeV

FIG. 7. Ratios of the total cross sections with (0|7 s(3P)|0) included (3) or omitted (s, ) in the energy region of Belle II. The results
are obtained from averaging the ratios with the subleading LDMEs obtained from Eqs. (72) and (73). The error bands are obtained from
the quadrature of all four sources of uncertainties listed in Tables II and III.

entering og and o, are identical and given by Egs. (64),
(72a), and (73a).9 The numerical values of the ratios at
/s =10.6 GeV can be read off the last columns of
Tables II and III.

All the uncertainties are estimated assuming Gaussian
error propagation. The first uncertainty originates from
(0|0, (3Py)|0). Tt is clearly a large contribution to the total
uncertainty of the production cross section of y.;, espe-
cially for y.. In the case of y. the small uncertainty
appears to be the result of a numerical cancellation. The
second uncertainty stems from the uncertainty in x; and
therefore in the binding energy. It is a large source of
uncertainty for all the y.;. The third uncertainty is obtained
from varying the renormalization scale u. It is significant
for y.; and y.,, while its effect on the production cross

°Our 6, estimate does not require a different determination of
(0]P;(3Py)|0) to be consistent. Owing to Eq. (70a), the value of
(0|P;(3Py)|0) quoted in Eq. (82a) does not depend on the
size of (0[75(°Py)[0) and hence does not change for
(0|7 4(*Py)|0) =0. Furthermore, determining (0|P; (*Py)|0) from
Eq. (69a) with (0|7 5(3P;)|0) set to zero leads to (0[P, (3Py)[0) =
(0.099 £ 0.064 = 0.080 £+ 0.015) GeV’ which is almost identi-
cal to the value quoted in Eq. (81a).

section of y,., is negligible. Finally, the fourth source of
uncertainty comes from the uncertainties in the experimen-
tal values of M,  and I'(y.; — yy). It leads to a large error
in the case of y.; but is much less important for y., and y .
Note that having attributed to the quarkonium binding
energy a 100% uncertainty [see Eqs. (79) and (80)] makes
that uncertainty parametrically of the same size as the
uncertainty of (0|0 (3P,)|0).

Averaging the results stemming from Egs. (72) and (73),
we obtain

olete™ = yu+7) = (1.40£0.27 £0.16 +£0.05 £0.09) fb,
(90)
olete™ =y +7)=(14.98£0.69£2.32+£0.52+£2.17) fb,
(91)
olete™ =y +7)=(4.49+£0.09+1.12£0.46 £0.72) fb,
(92)

where the errors in (0|O;(°Py)|0) (first uncertainty),
in x; (second uncertainty), and in g (third uncertainty)
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were added linearly, while those in M,  and I'(y.; = 7y)
(fourth uncertainty), regarded as independent, were added
quadratically.

Adding the uncertainties in quadrature, our final pre-
dictions at /s = 10.6 GeV read

olete =y +y) = (14403) b,  (93)
olete” >y +7y)=(15.0+33) fb, (94)
olete” > yo+y)=(45+14) fb. (95)

As for the influence of the additional LDME (0|7 4(*P,)|0)
on the total cross section, we refer to the last columns of
Tables II and IIT and to Fig. 7. We see that the contribution
of (0|73(*P,)|0) is small, but, at its central value, not
negligible for y ., and potentially significant for y.; and y,.

While our analytic results for the matching coefficients
are unambiguous, the numerical results strongly depend on
the estimated size of the quarkonium binding energy and
the assumed value of (0|0, (*P,)|0). Moreover, the exper-
imental errors in the knowledge of I'(y.;, — yy) are also not
negligible. A reliable determination of (0|O;(°P,)|0),
(0|P;(3Py)|0), and (0|7 4(*P,)|0) from experimental data
or lattice calculations is therefore highly desirable and
would provide a major improvement of the present cross
section determinations.

IX. SUMMARY

NRQCD factorization provides a systematic prescription
to compute production cross sections of heavy quarkonia
order by order in @, and v. Higher order corrections in «;
arise from loop effects, while higher order corrections in v
are generated by the inclusion of higher-dimensional
operators. A consistent computation of higher order cor-
rections requires both loop corrections to matching coef-
ficients of lower dimensional operators and relativistic
corrections from higher dimensional operators.

In this work we have computed the O(alv?) contribution
induced by the higher Fock state |QQg) to the ete™ —
y* — y.; + v cross section, in this way completing the
order v* corrections to this P-wave quarkonium production
process. The new pieces of information contained in this
work are the leading order expressions of the matching
coefficients T's(*P;) multiplying LDMEs that depend on
the chromoelectric field.

We match QCD to NRQCD perturbatively at the
amplitude level, where we treat the final state gluon as a
part of the quarkonium system, together with the heavy
quark pair. In the course of the calculation we encountered
infrared singularities induced by the emission of the gluon
from a heavy quark line. We explicitly verified that such
terms cancel exactly in the matching. As a further con-
sistency check we performed the matching calculation in

two different reference frames: the CM frame of the
colliding leptons and the rest frame of the heavy quarko-
nium. Although these two calculations are technically very
different, they lead to the same matching coefficients.

The process eTe™ — y* — y.; + v should be observable
at B-factories with sufficiently high CM energy, e.g., at
Belle II. As no published experimental results are available
so far, the phenomenological relevance of contributions
from higher Fock states remains to be tested.
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APPENDIX A: ADDITIONAL
SHORT-DISTANCE COEFFICIENTS

As discussed in Sec. IV, not all short-distance coeffi-
cients that are obtained in the matching of the amplitude are
relevant for our final NRQCD-factorized production cross
section. Therefore, as a by-product of our calculations we
could also determine short-distance coefficients that appear
up to O(v*) and contribute through the dominant Fock state
|Q0) to the amplitude A ocps

J=0 i’ E)?
ANrocp T s (H|y" <—§D) x10), (A1)

for J = O states, and
J=2 (ci2)Y ¥ Sl —in)
Axrocp T Y (H|y 5 DUD/ _ED x10)
(cI=2)i e e is
+§v174 (H|y -3 D(D)) —ED-G 210)

2 ; i 2<->(.<_>4 i o\2
—§<H|ll/ ~3 Dlg)) —5D x10) ).

for J = 2 states. We provide their values in the laboratory
frame

~.

(A2)
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8
cl=0 = _Eg(L. (k x€})), (A3)
8 ~ A A
(el 27 = DAL (R x )RR, (84)

(cI=2)ii = ih_(s\/;u —5Vr)(L-k)(K'e) +i < j)

42
+25r(Liey +i < j)— (3+17r)(L-€)k'K)),
(AS)
and in the rest frame
J=0 8 > *
Car — —EA(LR (kg x ey,R))’ (A6)
J=2\ij _ 8 > * R
(C4,R )= §l(LR (kg x ey,R))kRkR7 (A7)
T i
()0 = Ar (5r(Ligg}ly +i < )
—5rr, (5r+3)(Lg - kg) (ke + i < j)
— (3+17r)(Lg - € g kk). (A8)

as a reference for future studies. For the notation we refer
to Sec. V.

APPENDIX B: THRESHOLD
EXPANSION METHOD

1. 2-body system

We consider, first, the case of a quarkonium state
described by a QQ pair whose quark and antiquark carry
momenta p; and p,. We follow [25]. These momenta can
be written in terms of the Jacobi momenta of a 2-body
system as

1 1

:—P s :—P— s
Pr=5 + 9 P2=35 )

(B1)
where P = p; + p, denotes the total momentum of
the quarkonium, while Q = (p; — p,)/2 stands for the
relative momentum between the heavy quark and the heavy
antiquark.

In the laboratory frame, where the heavy quarkonium is
moving (i.e., p; + p> # 0), we have

P=(VP+PP). o= (V&TQ.Q) (B2

In the rest frame of the heavy quarkonium, where
Pir +Por =0, Pr and O have a particularly simple
form

Pg = (2\/(12 + m2,0) =(2E,.0),  Qr=¢q=(0.q),
(B3)

with
q=P1r = ~P2r- (B4)

Here q is indeed soft and can be used as an expansion
parameter. The two frames are related by a Lorentz trans-
formation, which means that we can express Q and P in
terms of q. According to [25] the Lorentz transformation
reads

Qﬂ = Aﬂiqi9 (BS)
O A =687+ 2 ) e (B6)
'2E, e 2E, ’
where
PO = \/AE2 + P2 (B7)

The Dirac spinors in the rest frame are given by

¢ —qoc
ur(p1r) = N( qo 5), vr(par) = N<Eq+mn),

E,+m n

(B8)

where N is the normalization factor. In case of relativistic
normalization, it is given by /E,+ m, while in the

nonrelativistic case one has N = ./(E,+ m)/(2E,).

When boosted to the laboratory frame they become

¢
() =~ CE, + PN 0z )
4E,(P° +2E,) E,+m
(B9)
1 %5
o) = g, + P (F ).
4E,(P° +2E,) n

(B10)

For practical purposes, it is more convenient to work with
boosted Dirac bilinears. Only vector and axial vector
bilinears appear in our process of interest; they can be
written as
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iu(py)rtv(p,)

2E .

E,+m )2q§q'6n>’

2
(E, +m
(B11)

a(py)rysv(pa)

1 1
=N (= Pugiy—2i
E,E,+m E,+m

Aﬂf(qxa)fn).

(B12)

2. 3-body system

We now turn to the case of a quarkonium state composed
by a heavy quark, a heavy antiquark, and a gluon. The
momenta of the three constituents can be written in terms of
the Jacobi momenta of a 3-body system as

1 1
pr==-P+ Q- 09,, P2:§P—Q1—Q2,

3

1
Pg:§P+2Q2- (B13)

In the rest frame, where p; g + Pog + Pgr = Pr =0, we
have

1 1
pl,R:§PR+LI1_LI2’ pZ,R:§PR_QI_Q27
1
DPyRr = §PR + 24>, (B14)
or
1
q1 5(1’1 R~ Pz.R)’
1
9 = ¢ (2Pgr = PR = P2R): (B15)
and, in particular,
Pir =491 — 92, P2r = —91 —q2,
Pyr = 2q2, (B16)

with q; and q, not being hard momenta. Furthermore,

q(l):%<\/(‘l1 —Q2)2+m2—\/<(h +Qz)2+m2>,

% :é<4|Q2| ~ V(- @) +m -y (@ + @) +m2),
(B18)

(B17)

and

(2qu| + \/

—q)’ +m? +\/(q1+qz) +m)
(B19)

Since scalar products of 4-vectors are Lorentz invariant, we
have

9t = (4}
P2 = (P

P-q:, 3 =(4)?-4q3,

%)? that implies P° = /(P%)? + P2. (B20)
To rewrite the laboratory frame 4-momenta, Q; and Q,, in
terms of the soft expansion parameters from the rest frame,

q; and q,, we use that

Q” AN, g, Q’; =AM\, g5, (B21)
where the boost matrix now reads
P2 . P!
Ay =14+ — A=A =—,
(PY)? Py
. .. P? o
Al = 6Y 1+-——=—-1|PP. B22
= (522)

As far as the Dirac spinors are concerned, in the rest
frame they read

¢
”R(PLR) :N1< PirC §>v
E\g+m

P2rC n
vg(Pag) = N2 (E”;m > ,

(B23)

with E; = /p?x + m*> and N; = \/E;  + m for relativ-

istic and N; = \/(E;g +m)/(2E;g) for nonrelativistic
normalization, respectively. The boost matrix for these
spinors is given by

S(A) =

P
PO PO 1 P(? PO
+ Tk ) (B24)
2p?e P

T 1
0 0
PO1PY

so that we arrive at

_ N, o w0 ( ¢ ) 5
u(pl) 2P%(P0+P%) (PR +}D7/ ) EIT;R;:WE ’ (B 5)
__ N o 0 <EZ_ZAR¥2”)
v(p2) AP P%)(PR+}D7 ) . ) (B26)

Again, for practical purposes it is more useful to have
explicit expressions for the boosted Dirac bilinears, which
read
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w(p1)r'v(ps) = Nyig(prr)r vr(Par): (B27)
i(p1)rysv(pa) = M yar(P1r)7 YsvR(Pog) (B28)
where the rest frame bilinears are given by
i 0y — N,N *(p"’*’“ + p“"’) , B29
R(Pl.R)V R(Pz,R) 1N ¢ Eiptm Erg+m n ( )
- i o i 1 i i
ig(p1R)Y'VR(P2R) = N1NE' |67 + ExtmEgtm (Pix(P2r ") + P g(P1g - O)
— P1.r "P2R '~ 1.R 2.R i n,
(P1.r - P2r)6" = i(P1r X P2R)") (B30)
_ o " 1 1 .
ig(P1r)YYsvr(Par) = NIN2E |1 + EiptmEigtm (P1r " Pog Ti6- (P1gr X P2r)) |7 (B31)
R R
_ Pir—i(P1r*x06) Phr+i(prg x06)
ig(p1 )7 rsvr(Par) = NlszT[ LR E . + P 2R Eyp+m . (B32)

APPENDIX C: POLARIZATION SUMS FOR
A HADRON WITH ARBITRARY SPIN

The helicity of a hadron state |H(4)) with spin J and spin
third component 4 can be represented by a symmetric
traceless rank-J tensor s;‘ Bl
tion vectors as

, constructed from polariza-

iviyiy (i i ir) ()iviaiy 1y B i
€ =el'el el —Ez’ll; i, E+EF T EL (C1)
iyip-i . .
where E(/ )/ 27V is the natural projection that can be

1l

computed following [46] and

. Fl1 0
e, =—| —-i |, eh=10]. (C2)
2
V2 0 1
€1 with A < J is easily constructed from &} by the

trick of raising and lowering operators. Polanzatlon tensors
are normalized such that

e e = 5 (C3)
The polarization tensor transforms under a rotation R
according to

P . ! .
Lyly-1 iyiy-i
RyZ el =D e,

(C4)

where Dj, , 1s the rotational matrix in a 2J + 1 dimensional

representation. Because D/Jl,/1 1S a unitary matrix,

!

/l ll
11’2 lJ_ E 81112 lJ 12

A==J

(C5)

1117 z,

is invariant under rotation. Moreover, H is symmetric

and traceless about both upper and lower 1ndlces Then due
to theorem 4 in Ref. [46],

(Co)
The proportionality constant can easily be determined by
observing that

/1
iipiy ity
H// 1 //HI .
1

g
Llyely iyl

_ Hiliz"‘ij
- R
Lyl

i (C7)
which is exactly the one satisfied by the natural projection

operator. Thus, we have

Hlllz iy J)lllz iy
T / ! .
Ly t

iy (C8)
Let us consider an NRQCD operator (O'12s that is
irreducible under space rotation. According to the Wigner-
Eckart theorem,
(0]O" "= |H(4))

— N(O)e) ™, (C9)
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where N (O) is a constant that can readily be determined.
By virtue of Egs. (C5) and (C8), we have

S 0105 [H ) (H ()| 010y
A

_ N(O')*N(O)E(Di/‘igwi/].

iyiyiy

(C10)

Taking the trace of both sides with respect to the upper and
lower indices, we get

1 -
(o=t H (2))
27 +1 Z:

x (H(A)|0"211|0).

N(O)N(O) =

(C11)
Then we have

D (010 H(2)){H (2) 0% 0)
A

1 1 "
= 557 2_ (00" H ()
27 +1 Z:

x (H(2)| N30y ES)ia=is,

;! !
1l

(C12)
which for y. states becomes

> 010 e () (xer (A)|O7[0)

A

:%Z<O|O/ﬁ|)(c1(/1)><Zc1(/1)|0j|0>5ii/, (C13)
A

Y 0107 2 (1)) (zea (A)| O [0)

A

= 430010 () 2 (DIO¥)
A

1 PRV 1 PR 1 ce
5S4 258 —~5is ). Cl4
% (2 3 3 ) (C14)

APPENDIX D: GENERALIZED
GREMM-KAPUSTIN RELATIONS
FOR *P; QUARKONIA

The Gremm-Kapustin relations [29] follow from

(H|[O, Hei]|0) = —(H|HO|0)

= (2m - My)(H|0[0),  (D1)
where O is an operator with a nonvanishing matrix element
(H|0|0). For instance, taking H =y, and O=—iyD-cy,
we get up to order 1/m (notice that —E is the canonical
momentum conjugate to A in the Hamiltonian formalism)

1 .

- (xcoliy'D - 6D*x|0)

+i{xc0lw (9E - 6)x]0).
(D2)

(M., = 2m)(xc0li'D - 6]0) =

Similarly, for #., y.1, and y., we have up to order 1/m

(M, = 2m){n |y x|0)

1
(n:ly"D?x|0)

1
- 1wt (gB -6)y]0
- (nlw' (9B - 6)x|0),

m

(D3)

(M, —2m){x.|w"i(D x6)y|0)

1 , . . i

== e ly"i(D x6) Dx|0) +i(xc1|w'g(E x 6)ix|0),
(D4)

(M)(('Z

= 2m){x 2|y D6/ y|0)
(X2 lw D6 D?x|0) + i(x ol (gE67)y|0).
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