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In this paper we investigate, within the standard model extension framework, the influence of Lorentz-
and CPT-violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave
packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by
averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the
physical implications of the Lorentz- and CPT-violating terms on the spectra. The comparison of our
results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-
violation cnμν coefficients. We find that ultracold neutrons are sensitive to the ani and eni coefficients, which
thus far are unbounded by experiments in the neutron sector. We propose two additional problems
involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-
resonance spectroscopy and neutron whispering gallery wave.
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I. INTRODUCTION

Oneof themain challenges ofmodern physics is the search
for a quantum theory of gravity (QTG). On the experimental
front, the major difficulty is the lack of experimentally
accessible phenomena at the Planck scale that could shed
light on a possible route to QTG. However, suppressed
effects emerging from the underlying theory might be
observable in sensitive experiments performed at our pres-
ently low-energy scales. One candidate set of Planck scale
signals is relativity violations, which are associated with the
breaking of Lorentz and CPT symmetries, hence the con-
siderable amount of attention it has gained in the past two
decades. Some modern approaches to QTG, such as non-
commutative field theories [1], quantum gravity [2], string
theory [3], brane-worlds scenarios [4], condensed matter
analogues of “emergent gravity” [5], Hořava-Lifshitz gravity
[6–8], gauge emergent bosons [9], and other Lorentz-
violating scenarios [10–12], are examples that lead to setups
in which Lorentz invariance is no longer an exact symmetry.
Studies of Lorentz violation (LV) are conducted more

easily in low-energy effective field theory frameworks,

which allow us to focus on measurable physical effects
rather than the fundamental mechanism that produces the
breakdownofLorentz symmetry. In particular, the Standard-
Model extension (SME) [13] was conceived within these
low-energy frameworks to encompass all possible LV
effects. The Lagrangian of the minimal SME include the
standard model and general relativity terms plus all the
Lorentz-violating operators of mass dimension four or less
that can be constructed from the coupling of the standard
fields with vector and tensor coefficients that parametrize
Lorentz violation. Such coefficients are motivated by a
spontaneous symmetry breaking in a more fundamental
theory [14] and whose fixed directions in spacetime trigger
the breakdown of Lorentz symmetry. It is worthwhile to
mention that some properties as observer Lorentz invari-
ance, energy-momentum conservation, gauge invariance,
power-counting renormalizability [15,16], causality, stabil-
ity, and Hermiticity (see [17] for the fermion sector and [18]
for the photon sector) can be maintained in the Lagrangians
of the minimal SME.
Since Lorentz violation has not been detected yet in

experiments, it is generally assumed that LV coefficients
have small components in Earth-based laboratories, thus
leading to very tiny modifications in physically meas-
urable quantities. There are also some cases where the
SME terms lead to new effects which are absent in the
Lorentz-symmetric theory, for instance, forbidden decays
[19], magnetoelectric phenomena [20], and birefringence
in vacuum [21]. High precision experiments have been
used to find tighter bounds for the LV coefficients (see
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Ref. [22] for current bounds). For example, the SME
causes small shifts in the energy levels of an atomic
system that could, in principle, be detected by high-
precision spectroscopy. This idea has been used to set
stringent bounds to the electron sector of the SME, since
the 2S-1S transition in hydrogen has been measured
with particularly high precision [23]. The neutron sector
of the SME has received less attention, and current
bounds on the Lorentz- and CPT-violating coefficients
are based mainly on nuclear binding models and Cs
interferometers.
In this paper we consider the physics of ultracold

neutrons (UCNs) as a possible candidate to test Lorentz
and CPT invariance. In particular, the recently observed
gravitational quantum states of UCNs in the GRANIT
experiments [24] offer an interesting opportunity of testing
departures from both the neutrons quantum mechanical
behavior and possible modifications of the local gravity
field [25]. This fact motivates the investigation of SME
effects on neutron gravitational quantum states, which is
precisely the question we address here. A detailed descrip-
tion of the GRANIT experiment at the Institute Lau-
Langevin can be found in Ref. [24]. In short, they show
that an intense beam of UCNs moving in Earth’s gravity
field does not bounce smoothly but at certain well-defined
quantized heights, as predicted by quantum theory. Since
we aim to compare our theoretical results with the ones
obtained in the GRANIT experiments, we frame this work
according to the laboratory conditions under which
experiments were carried out. To this end, we start with
the fermion sector of the SME coupled to a general
curved spacetime background, and we work out its spin-
independent nonrelativistic expansion, which is appropriate
to describe the dynamics of an unpolarized beam of
slow neutrons. Since the neutrons motion in the plane
perpendicular to the free falling axis is governed by
classical laws, we use a Gaussian wave packet to derive
an effective Hamiltonian which describes the SME effects
on the quantum bouncer. The resulting energy shifts can be
compared with the results obtained in the GRANIT experi-
ments, and an upper bound can be set for the Lorentz- and
CPT-violating coefficients.
This paper is organized as follows. We begin in Sec. II by

introducing the nonrelativistic Hamiltonian which
describes the spin-independent effects of a nonrelativistic
fermion in a uniform Newtonian gravitational field. We
closely follow Ref. [26], wherefrom we take notations and
conventions. In Sec. III we derive the effective Hamiltonian
that affects the neutrons’ motion along the free falling axis.
We have relegated the technical computations to Appendix.
Comparing the energy shifts induced by Lorentz violation
and the experimental precision in the GRANIT experi-
ments, we set bounds to the cnμν SME coefficients in Sec. IV.
Finally, in Sec. V we briefly discuss two experiments
involving UCNs, which can be used to improve our bound
to the SME coefficients.

II. LORENTZ VIOLATION IN A UNIFORM
GRAVITATIONAL FIELD

In order to investigate the SME effects on nonrelativistic
quantum systems in a uniform Newtonian gravitational
field, we have to consider first the action for a single
fermion ψ of mass m in a general curved spacetime back-
ground. The appropriate SME action is given by [27]

S¼
Z

e

�
i
2
eμaðψ̄Γa∇μψ − ð∇μψ̄ÞΓaψÞ− ψ̄Mψ

�
d4x; ð1Þ

where e is the determinant of the vierbein eμa, and the
covariant derivative ∇μ acts on the spinors as

∇μψ ¼ ∂μψ þ i
4
ωμ

abσabψ ; ð2Þ

∇μψ̄ ¼ ∂μψ̄ −
i
4
ωμ

abψ̄σab; ð3Þ

with ωμ
ab as the spin connection and σab ¼ i

2
½γa; γb�. The

Dirac matrices γa are taken to satisfy fγa; γbg ¼ −2ηab,
where ηab ¼ diagð−1; 1; 1; 1Þ is the tangent-space metric.
The symbols Γa and M appearing in the action (1) are

defined by

Γa ≡ γa − cμνeνaeμbγb − dμνeνaeμbγ5γb

− eμeμa − ifμeμaγ5 −
1

2
gλμνeνaeλbeμcσbc ð4Þ

and

M≡mþ aμeμaγa þ bμeμaγ5γa þ
1

2
Hμνeμaeνbσab; ð5Þ

where γ5 ¼ iγ0γ1γ2γ3. The first term in Eq. (4) leads to the
usual Lorentz-invariant kinetic term for the Dirac field,
while the first term of Eq. (5) corresponds to the Lorentz-
invariant mass. The Lorentz breaking coefficients, aμ, bμ,
cμν, dμν, eμ, fμ, gλμν, and Hμν, are assumed to have small
components in an Earth-based laboratory (concordant
frame [17]).
In any static spacetime the vierbein can be written as

eμ0 ¼ δμ0e
0
0ðxkÞ and eμj ¼ δμi e

i
jðxkÞ, where e00 ≠ 0 [28].

The Dirac equation that results from the action (1) can be
written as

ie00Γ0∂0ψ ¼ −ieijΓj∂iψ −
i
2
eμað∂μΓaÞψ þMψ

−
i
2
eμaωμcd

�
ηacΓd þ i

4
fΓa; σcdg

�
ψ : ð6Þ

The Hamiltonian H associated with this Dirac equation
must satisfy Hψ ¼ i∂0ψ, and this is naively achieved by
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inverting e00Γ0. However, the resulting Hamiltonian is not
Hermitian and then is physically unacceptable. As shown in
Ref. [27], this problem can be repaired by making a
spacetime-constant field redefinition ψ ¼ Wχ, where W
is chosen to restore the usual time-derivative coupling. In
the present case, to first order in the SME coefficients, the
Hermitian operator W ¼ ð3 − γ0Γ0Þ=2 correctly works
[26]. The modified Dirac equation takes the standard form
i∂0χ ¼ Hχ, where the Hermitian Hamiltonian reads

H ¼ −i
eij
e00

γ0Γ̃j∂i þ
1

e00
γ0M̃; ð7Þ

with W̄ ¼ γ0W†γ0, Γ̃a ¼ W̄ΓaW, and

M̃ ¼ W̄MW − ieμaW̄γað∂μWÞ − i
2
eμaW̄ð∂μΓaÞW

−
i
2
eμaωμcdW̄

�
ηacΓd þ i

4
fΓa; σcdg

�
W: ð8Þ

To proceed further, we have to choose properly the back-
ground spacetime in order to characterize the gravitational
field in any experiment intended to measure Lorentz
violation effects in the fermion sector of the SME. This is
achieved by working with the usual uniform Newtonian
field, which is described by the vierbein eμν ¼ δμiδνjþ
δμ0δν0ð1þΦÞ−1, where Φ is the uniform Newtonian
potential [29]. In this case, the resulting relativistic
Hamiltonian is [26]

H ¼ −ið1þΦÞγ0Γ̃i∂i þ ð1þΦÞγ0M̃; ð9Þ

where Γ̃i ¼ γi þ Γi þ ½γ0γi;Γ0�=2 and

M̃ ¼ mþM −
m
2
fγ0;Γ0g − i

2
γ0γið∂iΓ0Þ − i

2
ð∂iΓiÞ

−
i
2

ð∂iΦÞ
1þΦ

ðγi þ Γi þ γ0γiΓ0Þ: ð10Þ

The main goal of this paper is to look for signals or possible
effects of Lorentz violation in experiments with ultracold
neutrons in the presence of the Earth’s gravitational field.
UCNs have nonrelativistic velocities and can thus be
described by the nonrelativistic limit of the Hamiltonian
(9), which can be obtained by using the standard Foldy-
Wouthuysen (FW) procedure [30]. The FWmethod consists
in finding a unitary transformation S in the Hilbert space
such that the 4 × 4 Hamiltonian H̃ ¼ eiSHe−iS is 2 × 2
block diagonal, where the leading 2 × 2 block then repre-
sents the desired nonrelativistic Hamiltonian. Performing
the FW transformation for the complete Hamiltonian of
Eq. (9) is cumbersome and also unnecessary for our
purposes because the GRANIT experiment, which is the
onewithwhichwewant to compare our results, is performed

with an unpolarized beam of slow neutrons [24]. This
requires averaging the spin states and thus diminishing
the effects of any spin-dependent Lorentz-violating coef-
ficient. This is why, in the remainder of this paper, we focus
on general spin-independent SME effects, which are asso-
ciated with the coefficients aμ, cμν, and eμ.
The detailed derivation of the nonrelativistic Hamiltonian

using the FW procedure is presented in Refs. [26,27]. The
resulting Schrödinger operator valid to linear order inΦ and
∂iΦ is found to be

H¼ðmþa0−mc00−me0Þð1þΦÞ

þ ηij

2m
½aj−mðc0jþ cj0Þ−mej�ð2p̂iþΦp̂iþ p̂iΦÞ

þ 1

2m
½ηijð1− c00Þ−2ηilηjmcðlmÞ�p̂ðið1þΦÞp̂jÞ; ð11Þ

where p̂i ¼ −i∂i is the momentum operator which, as
usual, acts on all objects on its right. In this expression
we have defined the coefficients a0¼ð1−ΦÞa0, aj¼aj,
e0¼ð1−ΦÞe0, ej¼ej, c00¼ð1−2ΦÞc00, c0j ¼ ð1 −ΦÞc0j,
and cij ¼ cij, which acquire additional factors depending on
the gravitational potential. The indices inside parentheses
denote symmetrization with a factor of 1=2. In the limit
whereΦ ¼ 0, the Hamiltonian (11) correctly reduces to the
one obtained in Ref. [31]. Moreover, it also reduces to the
one reported in Ref. [32] when all the SME coefficients are
set to zero. Notice that the previous analysis holds for any
fermion (e.g., electron, neutron). From now on, we focus on
the neutron sector of the SME, and then we label the LV
coefficients with an additional superfix n to indicate this
fact, i.e., anμ; cnμν, and enμ.

III. EFFECTIVE HAMILTONIAN

In this section we derive the effective Hamiltonian Heff
which describes the SME effects on the quantum free fall of
UCNs. We first note that, in any fixed frame, the term
ða0 −me0Þð1þΦÞ, which is second order in the gravita-
tional potential, can be absorbed into the rest mass m and
therefore is not observable; we shall henceforth ignore both
terms. Therefore we are left with the effective Hamiltonian

Heff ¼
γ−ij
2m

�
p̂ip̂jþ

1

c2
Φ;ðip̂jÞ

�
þ γþij
2mc2

Φp̂ip̂jþmαþΦ

−βi

�
p̂icþ

1

2c
Φ;i

�
þςip̂icþ

ςi
c

�
Φp̂iþ

1

2
Φ;i

�
;

ð12Þ

where we have used the commutator ½p̂i;Φ� ¼ Φ;i, with
Φ;i ≡ p̂iΦ and p̂i ¼ −iℏ∂i. In Eq. (12) we have restored
the fundamental constants c and ℏ; and we have defined
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α� ≡ 1� cn00; γ�ij ≡ δijα
� − cnij − cnji;

βi ≡ cni0 þ cn0i; ςi ≡ ðani =mÞ − eni : ð13Þ

In order to reduce further the Hamiltonian (12), let us recall
the experimental work performed at the Institute Laue-
Langevin by Nesvizhevsky and co-workers. The GRANIT
experiment shows that UCNs moving in the Earth’s gravity
do not move smoothly but jump from one height to another,
as predicted by quantum theory [24]. In practice, they use
an intense horizontal beam of UCNs directed slightly
upwards and allowing the neutrons to fall onto a horizontal
mirror. By placing a neutron absorber above the mirror and
counting the particles as they moved the absorber up and
down, they found that neutrons are measured only at certain
well-defined heights. In this situation, the horizontal
motion of neutrons is governed by classical laws, while
the vertical motion is quantized. Ideally, the vertical and
horizontal motions of a neutron are independent; however,
in a Lorentz-violating background this statement is no
longer valid, as we can see in the Hamiltonian (12). Based
on the above, in this paper we consider that the neutron’s
motion in the tangent plane to the Earth’s surface, which
is classical, can be modeled by a Gaussian wave packet of
the form

ψðr⊥Þ ¼
1ffiffiffi
π

p
σ
e

i
ℏp⊥·r⊥−

r2⊥
2σ2 ; ð14Þ

where r⊥ ¼ ðx; yÞ and p⊥ ¼ ðpx; pyÞ are the coordinates
and momentum in the plane perpendicular to the free fall
motion, respectively. The classicality condition requires the
characteristic width σ of the wave packet to be very small.
Since the GRANIT experiment measures the neutrons’
vertical position, in the following we use the ansatz (14) to
derive a reduced one-dimensional Hamiltonian describing
the neutrons vertical motion in a Lorentz-violating back-
ground as

Hz ≡ hHeffi ¼
Z

ψ�ðr⊥ÞHeffψðr⊥Þd2r⊥; ð15Þ

which indeed corresponds to the first order perturbation in
the perpendicular x-y plane. The rest of this section is
devoted to the computation of the reducedHamiltonian (15).
We first focus on the expectation values of the Φ-

independent terms in the Hamiltonian (12). From now
on, latin indices of the middle of the alphabet ði; j; k; lÞ
refer to the three spatial components x, y, z; while the latin
indices from the beginning of the alphabet ða; b; c; eÞ refer
to the coordinates x, y.We built up to the evaluation of hβip̂ii
in two steps. First, we decompose βip̂i into its vertical (z)
and perpendicular (x, y) components by writing βip̂i ¼
βap̂a þ βzp̂z; and second, we evaluate the expectation value
using the Gaussian wave packet (14). The result is

hβip̂ii ¼ βapa þ βzp̂z; ð16Þ

where we have used that hp̂ai ¼ pa. We can now apply the
same procedure to the term γ�ijp̂ip̂j to obtain

hγ�ijp̂ip̂ji ¼ γ�abhp̂ap̂bi þ ðγ�az þ γ�zaÞpap̂z þ γ�zzp̂2
z ; ð17Þ

where

hp̂ap̂bi ¼ papb þ
ℏ2

2σ2
δab: ð18Þ

Now we consider the Φ-dependent terms. In the coordinate
system attached to the Earth’s surface, the Newtonian
potential is given by

ΦðrÞ ¼ −
GM⊕

r
; ð19Þ

where G is the gravitational constant, M⊕ is the Earth’s
mass, and r2¼x2þy2þðR⊕þzÞ2, with R⊕ being the
Earth’s radius. Since the potential is not isotropic but
axially symmetric, we can use polar coordinates
(x¼ρcosφ and y ¼ ρ sinφ) to evaluate hΦi in the semi-
classical state (14), i.e.,

hΦi ¼ −
2GM⊕

σ2

Z
∞

0

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðR⊕ þ zÞ2

p e−
ρ2

σ2dρ; ð20Þ

where we have performed the trivial angular integration.
The resulting radial integral can be computed in a simple
fashion. The final result is

hΦi ¼ −
ffiffiffi
π

p
GM⊕

σ
eξ

2

erfcðξÞ; ð21Þ

where erfcðξÞ is the complementary error function [33] and
ξ≡ ðR⊕ þ zÞ=σ. In practice, the experiments with UCNs
bouncing on a horizontal mirror are very localized as
compared with the Earth’s radius, and thus we may
approximate the effective potential (21) for R⊕ ≫ z and
R⊕ ≫ σ. Using the asymptotic expansion of the comple-
mentary error function for large real x [33]

erfcðxÞ ∼ e−x
2

ffiffiffi
π

p
x

X∞
n¼0

ð−1Þn ð2n − 1Þ!!
ð2x2Þn ; ð22Þ

we can write the effective potential (21) as an infinite serie

hΦi ¼ −
GM⊕

σξ

X∞
n¼0

ð−1Þn ð2n − 1Þ!!
ð2ξ2Þn ≡X∞

n¼0

hΦin: ð23Þ

Since the nth term behaves as ðσ=R⊕Þ2n, only small values
of n contribute. The leading contribution arises from n ¼ 0,

hΦi0 ¼ U0 þ gz; ð24Þ
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and we can safely disregard the higher order contributions.
In this expression, U0 ¼ −GM⊕=R⊕ is the Newtonian
potential on the Earth’s surface and g ¼ GM⊕=R2

⊕ is the
gravitational acceleration. Equation (24) is the expected
classical result, and it will be useful to compute the
remaining Φ-dependent terms. We can perform an analo-
gous analysis for the term βiΦ;i. The axial symmetry of the
problem yields to the result hβiΦ;ii ¼ βzhΦi;z ≡ βzp̂zhΦi.
The analysis of the remaining terms, γþijΦp̂ip̂j and
γ−ijΦ;ðip̂jÞ, is more cumbersome, but it is straightforward.
We left the details of the technical computations to
Appendix, and here we present only the final results.
The leading order contributions are

hγ�ijΦp̂ip̂ji ¼ hΦi0hγ�ijp̂ip̂ji; ð25Þ

hγ�ijΦ;ðip̂jÞi ¼ −δabγ�ab
gℏ2

4R⊕
þ 1

2
ðγ�az þ γ�zaÞpahΦi0;z

þ γ�zzhΦi0;zp̂z: ð26Þ

Now we have the pieces to build up the reduced one-
dimensional Hamiltonian, which we conveniently write as

Hz ¼ H0 þH⊥ þ V; ð27Þ

where

H0 ¼
p̂2
z

2m
þmgz ð28Þ

is the standard one-dimensional Hamiltonian for a free
falling neutron in the absence of Lorentz violation, and

H⊥¼mc2
�
α−þαþ

U0

c2

�
þ 1

2m

�
γ−abþ γþab

U0

c2

�
hp̂ap̂bi

−βapacþςapac

�
1þU0

c2

�
−

1

2mc2
gℏ2

4R⊕
γ−abδab ð29Þ

collects constant terms and those depending on the neutron
motion in the tangent plane to the Earth’s surface. We omit
this term as from now since it does not affect the energy
eigenvalues measured in the GRANIT experiment. The
potential

V ¼ mg

�
cn00 þ γþab

hp̂ap̂bi
2ðmcÞ2

�
zþ

�
τ− þ ð1þ τþÞU0

c2

�
p̂2
z

2m

þ
�
1þ τ−

2mc2
hΦi0;z − βzc −

�
1þU0

c2

�
ζapa

m

�
p̂z

þ ςapa

c
gzþ ςz

�
1þ U0

c2

�
p̂zcþ

ςz
c

�
gzp̂z þ

1

2
hΦi;z

�

−
ζapa

2mc2
ðhΦi0;z þ 2gzp̂zÞ þ

gð1þ τþÞ
2mc2

zp̂2
z ð30Þ

is the one that has possibilities of affecting the neutrons’
vertical motion. In this expression we have defined

ζa ≡ −ðγ�az þ γ�zaÞ=2; τ� ≡ γ�zz − 1: ð31Þ

As we shall see in the next section, many of these terms do
not contribute to the energy shifts.

IV. ENERGY SHIFTS AND BOUNDS ON cnμν
SME COEFFICIENTS

In this section we will work out the energy shifts on the
neutron states due to the SME terms, and we will compare
our theoretical results with the experimental ones obtained
in the GRANIT experiment. This comparison will allow us
to establish a simple formula for the upper bound on the
SME coefficients as a function of the maximal experimen-
tal uncertainty. We first describe in short the neutron states
in the absence of the SME.
The wave function of a quantum bouncer obeys the

stationary Schrödinger equation for the vertical motion
along the z axis: H0ψ ¼ Eψ , with the Hamiltonian given
by Eq. (28). The solution must obey the following
boundary conditions: ψðzÞ must vanish asymptotically as
z → ∞, and ψðz ¼ 0Þ ¼ 0 because of the presence of a
mirror at z ¼ 0. The general solution of the eigenvalue
equation can be written in terms of the Airy functions Ai
and Bi [34]. Since the latter goes to infinity as its argument
grows, it is not an acceptable solution for this problem. The
appropriate normalized solution is found to be

ψnðzÞ ¼
1ffiffiffiffi
l0

p Aiðan þ z=l0Þ
Ai0ðanÞ

ΘðzÞ; ð32Þ

where an is the nth zero of the Airy function Ai, l0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=ð2m2gÞ3

p
is the gravitational length, and ΘðzÞ is the

Heaviside function. The boundary condition at z ¼ 0
defines the quantum state energies

En ¼ −mgl0an: ð33Þ

Within the classical description, a neutron with energy En
can rise in the gravitational field up to the height
hn ¼ En=mg ¼ −anl0. The heights for the two lowest
quantum states are [24]

h1 ¼ 13.7 μm; h2 ¼ 24.0 μm: ð34Þ

Because of the weakness of the gravitational interaction and
the number of systematic errors in laboratory conditions,
quantum states in a gravitational field have hardly been
detected. In spite of these difficulties, the GRANIT experi-
ment has recently confirmed the quantum-mechanical
prediction that a noncoherent beam of UCNs propagating
upwards in the Earth’s gravity field reaches quantized
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heights only. The experimental average values of the two
lowest critical heights (taken from [35]) are

hexp1 ¼ ð12.2� 1.8sys � 0.7statÞ μm;

hexp2 ¼ ð21.6� 2.2sys � 0.7statÞ μm: ð35Þ

The theoretical values are therefore located within the error
bars. As a consequence of the good agreement between
theory and experiment, this finding could be used for
bounding deviations from the standard theory due to an
eventual new physical mechanism. It has been used, for
example, to constraint short-range gravitational interactions
[36], axionlike interactions [37], and the fundamental
length scale in polymer quantum mechanics [38]. In the
problem at hand, the potential V given by Eq. (30) will
cause small shifts ΔEn in the neutron energy spectrum
which must satisfy the constraint

jΔEnj < jΔEexp
n j; ð36Þ

where jΔEexp
n j is the maximal experimental error. Explicitly,

the energy shifts can be worked out using the formalism of
nondegenerate perturbation theory on the wave functions
ψnðzÞ up to linear order in the SME coefficients, that is,
ΔEn ¼ hVi ¼ R

ψ�
nVψndz. Using the properties of the Airy

functions [34], one can derive the following results:

hpzi¼ 0; mghzi¼ 2

3
En; hp̂2

z=2mi¼ 1

3
En;

g
2mc2

hzp̂2
zi¼−

2

15
anEn

gl0
c2

; ð37Þ

which yields the energy shifts

ΔEn

En
¼ 1

3
ð2cn00 þ τ−Þ þ 1

3
ð1þ τþÞ

�
U0

c2
þ 2

5

En

mc2

�

þ 1

3
γþab

�
vavb
c2

þ ℏ2

2m2c2σ2
δab

�
þ 2

3
ςa

va
c
; ð38Þ

where we have used that pa ¼ mva, with va being the
neutrons’ velocity. For nonrelativistic neutrons in low quan-
tum states, we find that U0=c2≈10−10, En=ðmc2Þ≈10−22,
va=c≈10−7, and ℏ2=ðm2c2σ2Þ ≈ 10−15, and thus we can
disregard the terms involving products of SME coefficients
and these quantities. Therefore we are left with

ΔEn

En
¼ 1

3
ð2cn00 þ τ−Þ; ð39Þ

which after substitution into Eq. (36) produces

jcn00 − 2cnzzj < 3
jΔEexp

n j
En

: ð40Þ

For the first two lowest quantum states, we know that
jΔEexp

1 j¼0.102peV and jΔEexp
2 j ¼ 0.051 peV [35]. With

these values Eq. (40) yields the constraint jcn00 − 2cnzzj <
10−2. Of course, this bound is largely far from the expected
values for the SME coefficients, but it can compete with
current bounds with an improvement of the experimental
precision in the measurement of the quantum states of
UCNs in a gravitational field, as wewill discuss in the next
section. According to the current data tables for the SME
coefficients [22], we observe that there are only very few
bounds involving the cn00 and cnzz coefficients. Even more,
the combination jcn00 − 2cnzzj that emerges in this work has
not been reported.
We point out that although the coefficients ani and eni

appear explicitly in the energy shifts (38), they are sup-
pressed by the additional factor va=c, and thus the exper-
imental precision leads to the noncompetitive bound
ani =m − eni < 105. The suppression of the observable effects
of the combination ςi ¼ ani =m − eni by the factor vi=c
deserves some explanation. If we look at the Lagrangian
density in Eq. (1), the contributions proportional toani and e

n
i

are not suppressed. Nonrelativistically, however, they cor-
respond to a different order of approximation in the FW
transformation than that of the coefficients cnjk and cn00, as
can be seen in the Hamiltonian (11). Indeed, the coefficients
cnjk and cn00 are of the order p2=m, while the combination
ςi ¼ ani =m − eni is of the order pc ¼ ðp2=mÞðv=cÞ−1, thus
revealing the nature of the additional factor of the latter. It is
worthwhile tomention that, even thoughwegot a large value
for the bound of the coefficients ani and eni , thus far such
coefficients are unbounded by experiment in the neutron
sector. In this manner, the present work, beyond theoretical
importance, can provide novel bounds in the context of the
SME. To obtain a significant result it is necessary to reduce
the value of such a bound by some orders of magnitude,
which indeed is possible as we will discuss later.
Bounds on the cnμν neutron sector coefficients of the SME

have been reported by using different physical systems. For
example, gravimetry sets the bounds cnTJ < 10−5, with
J ¼ X, Y, Z [39]. Similarly, nuclear binding models and
Cs interferometers yield cnTT < 10−6 [40]. More stringent
bounds on specific combinations of the neutron cnμν coef-
ficients come from pulsar timing, namely, min ðjcn11 − cn22j;
jcn11 − cn33j; jcn22 − cn33jÞ < 1.7 × 10−8 [41]. Importantly, the
best current bounds on such coefficients come from the
21Ne-Rb-K comagnetometer, which constrains the combi-
nations cnYZ þ cnZY , c

n
XZ þ cnZX, c

n
XY þ cnYX, and c

n
XX − cnYY at

a level of 10−29 [42]. It is worthwhile to mention that,
however, none of these experiments provide bounds on the
combination jcn00 − 2cnzzj, which is the one obtained here. In
the next section we will discuss two sensitive experiments
which also involve quantum states of UCNs in the Earth’s
gravity field and which would improve by some orders of
magnitude our current bound.
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V. DISCUSSION AND OUTLOOK

The experimental physics of slow neutrons has under-
gone significant evolution in the past decades. Recent high-
sensitivity experiments, called GRANIT, performed by
Nesvizhevsky et al. at the Institute Laue-Langevin, show
that UCNs in the Earth’s gravitational field move at certain
well-defined (quantized) heights, in agreement with quan-
tum mechanical predictions. Because of the good agree-
ment between theory and experiment, neutron gravitational
quantum states can be used for constraining deviations
from the standard theory due to eventual new physical
mechanisms. In light of this, in this paper we have
investigated how the fermion sector of the SME affects
the gravitational quantum states of UCNs, mainly focusing
on the energy shifts.
We first consider the Dirac equation in a Newtonian

field, which is appropriate to characterize the gravitational
field in any terrestrial experiment. Since UCN systems are
nonrelativistic, we have used the nonrelativistic limit of the
Dirac equation which can be obtained by using the Foldy-
Wouthuysen procedure. GRANIT experiments use an
intense horizontal beam of unpolarized UCNs directed
slightly upwards and allowing the neutrons to fall onto a
horizontal mirror, and then the neutrons’ horizontal motion
is governed by classical laws, while the vertical motion is
quantized. In order to isolate the effects along the axis of
free fall, we have considered a semiclassical Gaussian wave
packet and then obtained a reduced Hamiltonian by
computing the expectation value on the perpendicular axes.
We find a z- and p̂z-dependent perturbative potential V,
given by Eq. (30), which is proportional to the SME
coefficients and the (zeroth order) Newtonian gravity field
hΦi0 ¼ U0 þ gz. We have worked out the energy shifts
ΔE ¼ hVi to first order in perturbation theory, and we
found it contains both SMEand relativistic corrections. Next
we used the maximal experimental precision of the
GRANITexperiment to set bounds to the SME coefficients.
The lowest quantum states of UCNs yield jcn00 − 2cnzzj <
10−2, which although is far from the current bounds obtained
using other physical systems (e.g., by gravimetry, nuclear
binding models, Cs interferometry, pulsar timing, and
21Ne-Rb-K comagnetometer), it opens a new window to
test Lorentz and CPT violation using UCN systems. It is
worth mentioning that the specific combination we find,
cn00 − 2cnzz, has not been constrained by any of the afore-
mentioned experiments, thus justifying the importance
of the present work in the Standard-Model extension
framework. Even more, as we can see in the current data
tables [22], there exist no bounds on the ani and eni
coefficients in the minimal neutron sector of the SME, so
far. In the present work, indeed, we find that the GRANIT
experiment is sensitive to these coefficients; however, it does
not provide a realistic bound for them. This is so because in
the nonrelativistic Hamiltonian (11), the coefficients ani and
eni belong to a different order of approximation than that of

the cn00 and cnjk coefficients in the Foldy-Wouthuysen
procedure, thus justifying the additional suppression of their
bound by the factor v=c. An interesting improvement of our
bounds can be achieved with other experiments involving
UCNs: gravity-resonance spectroscopy and neutron whis-
pering gallery wave. Although they are beyond the scope of
this paper, wewill briefly discuss how these experiments can
enhance the bounds on the SME coefficients.
An interesting feature of the quantum bouncer, in contrast

to the harmonic oscillator, is the fact that levels are not
equidistant in energy. Therefore a combination of any two
states can be treated as a two level system. This fact has been
used by Jenke and colleagues to induce transitions between
the n ¼ 1 and n ¼ 3 states by means of mechanical oscil-
lations of the mirror [43]. This new spectroscopic technique
is called gravity-resonance spectroscopy. In the experiment,
the statistical sensitivity of the energy difference between
states j1i and j3i is 7.6 × 10−3, which corresponds to an
uncertainty in energy of δE ¼ 2 × 10−14 eV. Ignoring the
nonzero transitions induced by the Lorentz-violating pertur-
bation (30), a rough estimation yields an improvement of 1
order ofmagnitude on the bound (40) for the cnμν coefficients.
This, of course, requires a detailed theoretical analysis which
we leave for a future investigation.
In Sec. IV we have derived an expression for the upper

bound on the cnμν SME coefficients in terms of the exper-
imental precision ΔEexp

n and the unperturbed energy levels
En, from which we learn that a better bound can be obtained
by improving the experimental precision and/or by consid-
ering a system inwhich the unperturbed energy levels can be
considerably greater than those of the quantum bouncer.
This leads us to consider the recently observed neutron
centrifugal states [44], which is the quantum analog of the
so-called whispering gallery wave. In this case, UCNs are
scattered by a perfect cylindricalmirrorwith a radius of a few
centimeters, in which neutrons are affected by huge cen-
trifugal accelerations of the order 105–107g. Most neutrons
entering at a tangential trajectory are deviated to small
angles. However, some neutrons are captured into long-
living centrifugal states which behave exactly as the neutron
gravitational quantum states discussed in this paper. The
fundamental difference is that in the former case the
centrifugal force plays the role of gravity, while in the latter
we refer to the well-worked Newtonian gravity field. A
rough calculation shows that the characteristic energy scale
is of the order of neV, which together with the considered
experimental precision 10−2 peV, could improve our upper
bound by 5 orders of magnitude. This is an interesting
system that deserves a rigorous investigation.
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APPENDIX: EXPECTATION VALUES

In this section we evaluate the expectation value of the
terms γ�ijΦp̂ip̂j and γ�ijΦ;ðip̂jÞ, as defined in Eq. (15).
Decomposing the former into its vertical and perpendicular
components, its expectation value can be written as

hγ�ijΦp̂ip̂ji ¼ γ�abhΦp̂ap̂bi þ ðγ�az þ γ�zaÞhΦp̂aip̂z

þ γ�zzhΦip̂2
z : ðA1Þ

Now we evaluate each term involved. We start with

hΦp̂ai ¼ −iℏ
Z

ΦðrÞ
�
i
pa

ℏ
−
xa
σ2

�
jψðr⊥Þj2d2r⊥: ðA2Þ

Using the axial symmetry of the gravitational potential and
that of the wave packet, we easily find

hΦp̂ai ¼ pa

Z
ΦðrÞjψðr⊥Þj2d2r⊥ ¼ pahΦi; ðA3Þ

where hΦiwas computed in the main text. The next term to
be considered is

hΦp̂ap̂bi¼−ℏ2

Z
ΦðrÞψ�ðr⊥Þ

∂2

∂xa∂xbψðr⊥Þd
2r⊥: ðA4Þ

Taking the derivatives of the wave packet (14) and using the
axial symmetry of the problem, this expression can be
written as

hΦp̂ap̂bi ¼
�
papb þ

ℏ2

σ2
δab

�
hΦi

−
ℏ2

σ4

Z
ΦðrÞxaxbjψðr⊥Þj2d2r⊥; ðA5Þ

where hΦi is given by Eq. (21). The second term in
Eq. (A5), to be called Qab for brevity, must be computed
explicitly. We first observe that the integral is nonzero only
for a ¼ b. Using polar coordinates (x ¼ ρ cosϕ and
y ¼ ρ sinϕ) and performing the trivial angular integration,
the function Qab becomes

Qab ¼
GM⊕ℏ2

σ6
δab

Z
∞

0

ρ3

r
e−

ρ2

σ2dρ: ðA6Þ

With the simple change of variables λ ¼ r=σ, this integral
can be brought to the simple form

Qab ¼
GM⊕ℏ2

σ3
δabeξ

2

Z
∞

ξ
ðλ2 − ξ2Þe−λ2dλ; ðA7Þ

which can easily be evaluated to obtain

Qab ¼
GM⊕ℏ2

4σ3
δab½2ξþ

ffiffiffi
π

p ð1 − 2ξ2Þeξ2erfcðξÞ�; ðA8Þ

where ξ ¼ ðR⊕ þ zÞ=σ. Since R⊕ ≫ z ≫ σ, we have to
consider the asymptotic behavior of Eq. (A8) for ξ ≫ 1.
Using Eq. (22) up to second order we finally obtain

Qab ∼
GM⊕ℏ2

2ξσ3
δab ≈ −

ℏ2

2σ2
hΦi0δab; ðA9Þ

where hΦi0 is the leading order of the Newtonian potential
given by Eq. (24). The substitution of this result into
Eq. (A5) then produces

hΦp̂ap̂bi ¼
�
papb þ

ℏ2

σ2
δab

�
hΦi − ℏ2

2σ2
hΦi0δab; ðA10Þ

and the leading order of this result establishes Eq. (25).
Now we evaluate hγ�ijΦ;ðip̂jÞi. We proceed first by

decomposing one of these terms into its vertical and
perpendicular components:

hγ�ijΦ;ip̂ji ¼ γ�abhΦ;ap̂bi þ γ�azhΦ;aip̂z þ γ�zahΦ;zp̂ai
þ γ�zzhΦi;zp̂z: ðA11Þ

Some simplifications occur in this expression. First, we
observe that hΦ;zi ¼ hΦi;z, which follows from the fact that
we can commute a z derivative with an integral over the
perpendicular coordinates x and y. In a similar fashion we
obtain hΦ;zp̂ai ¼ pahΦi;z, where we have used both the
fact that ∂z and

R
d2r⊥ commute and the result of Eq. (A3).

Also, since the probability density jψðr⊥Þj2 is axially
symmetric and Φ;a ∝ xa=r3, then the expectation value
hΦ;ai is identically zero. Thus we are left with hΦ;ap̂bi.
Taking the required derivatives, this term can be explicitly
written as

hΦ;ap̂bi¼−GM⊕ℏ2

Z
xa
r3

�
i
pb

ℏ
−
xb
σ2

�
jψðr⊥Þj2d2r⊥:

ðA12Þ

The first integral vanishes by symmetry considerations,
while the second one is nonzero only for a ¼ b. Using
polar coordinates and performing the angular integration
we get

hΦ;ap̂bi ¼
GM⊕ℏ2

σ4
δab

Z
∞

0

ρ3

r3
e−

ρ2

σ2dρ; ðA13Þ
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which can be cast into a simpler form introducing the
change of variables λ ¼ r=σ:

hΦ;ap̂bi ¼
GM⊕ℏ2

σ3
δabeξ

2

Z
∞

ξ

λ2 − ξ2

λ2
e−λ

2

dλ: ðA14Þ

As in the previous cases, the resulting integral can be
expressed in terms of the complementary error function:

hΦ;ap̂bi¼
GM⊕ℏ2

σ3
δab

�
−ξþ

ffiffiffi
π

p
2

ð1þ2ξ2Þeξ2erfcðξÞ
�
;

ðA15Þ

from which, with the help of Eq. (22), we extract its
asymptotic behavior for ξ ≫ 1 to finally obtain

hΦ;ap̂bi∼−
GM⊕ℏ2

4σ3ξ3
δab≈−

gℏ2

4R⊕
δab

�
1−3

z
R⊕

�
; ðA16Þ

where in the last approximation we have used that z ≪ R⊕.
Note that the second term is strongly suppressed with
respect to the first one, and thus we can ignore it. Inserting
this result into Eq. (A11) and symmetrizing it we obtain

hγ�ijΦ;ðip̂jÞi ¼ −δabγ�ab
gℏ2

2R⊕
þ 1

2
ðγ�az þ γ�zaÞpahΦi;z

þ γ�zzhΦi;zp̂z: ðA17Þ

The leading order of this result establishes Eq. (26).
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