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The one-loop contributions to the decays of the CP-odd and CP-even scalar bosons A — Zyy and
¢ — Zyy (¢ = h, H) are calculated within the framework of CP-conserving two-Higgs doublet models
(THDMs), where they are induced by box and reducible Feynman diagrams. The behavior of the
corresponding branching ratios are then analyzed within the type-Il THDM in a region of the parameter
space around the alignment limit and still consistent with experimental data. It is found that the A — Zyy
branching ratio is only relevant when m, > my + my, but it is negligible otherwise. For m, > 600 GeV
and 13 ~ O(1), BR(A — Zyy) can reach values of the order of 1075 — 107, but it decreases by about 1
order of magnitude as #; increases up to 10. A similar behavior is followed by the H — Zyy decay, which
only has a non-negligible branching ratio when my > m, + m, and can reach the level of 10™* — 1073 for
my > 600 GeV and 145~ O(1). We also estimated the branching ratios of these rare decays in the type-I
THDM, where they can be about 1 order of magnitude larger than in type-Il THDM. As far as the h — Zyy
decay is concerned, since the properties of this scalar boson must be nearly identical to those of the SM
Higgs boson, the i — Zyy branching ratio does not deviate significantly from the SM prediction, where it is

negligibly small, of the order of 10~°. This result is in agreement with previous calculations.
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I. INTRODUCTION

The standard model (SM) has provided a successful
description of the observed electroweak phenomena at the
energy scales explored until now, as confirmed recently
with the discovery of the Higgs boson by the ATLAS and
CMS experiments at the CERN LHC [1,2]. Nonetheless, it
is worthwhile to explore whether there is a unique Higgs
boson, as predicted by the SM, or whether the electroweak
symmetry breaking (EWSB) mechanism requires addi-
tional Higgs bosons. To address some SM flaws, a plethora
of extension models have been proposed, several of which
contain a scalar sector with more than one Higgs multiplet,
thereby predicting more than one physical Higgs boson. If
experimental data reveal the existence of any additional
Higgs bosons, it will be crucial to test what extension
model is consistent with such particles. The simplest of
such theories are two-Higgs doublet models (THDMs)
[3,4], which are obtained by adding a second complex
SU(2), Higgs doublet to the SM one. These models respect
the p =1 relation at the tree level, contrary to other
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higher-dimensional Higgs-multiplet models. Also, in spite
of its simplicity, THDMs can predict several new phenom-
ena absent in the SM, such as new sources of CP violation,
tree-level scalar-mediated flavor changing neutral currents
(FCNCs), and a dark matter candidate. After EWSB, three
of the 8 degrees of freedom are removed from the spectrum
to provide the longitudinal modes of the W* and Z gauge
bosons. Five physical Higgs bosons remain as a remnant: a
charged Higgs boson pair H* and three neutral Higgs
bosons h, H, and A. If the scalar sector respects CP
invariance, the neutral scalar bosons are CP eigenstates: &
and H are CP-even, whereas A is CP-odd. It is usually
assumed that one of the neutral CP-even scalar bosons is
the one observed at the LHC. The most general CP-
conserving THDMs have tree-level FCNCs [5], which
can be removed by imposing a Z, discrete symmetry that
forbids such interactions at the tree level [6]. In this
scenario, there are four THDM types, which are typically
known as type-I, type-IL, lepton-specific [7], and flipped
THDM [8]. It turns out that type-Il THDM is the most
studied in the literature as it has the same Yukawa couplings
as the minimal supersymmetric standard model (MSSM);
therefore its still-allowed region of parameter space has
been considerably studied.

Since the proposal of the Higgs mechanism, the phe-
nomenology of the Higgs bosons has been the focus of
considerable attention. As for the dominant tree-level decay
modes of a CP-even Higgs boson &4 — ff and h — VV
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(V =W, Z), they have long been studied in the literature in
both the SM and several of its extensions, along with the
one-loop induced decays h — yy, h — yZ, and h — gg.
Although the 7 — yy decay has a tiny branching ratio for a
125 GeV Higgs boson, it was very helpful for the detection
of the SM Higgs boson. This decay mode has the advantage
of arelatively low background, so it was fundamental in the
design of the ATLAS and CMS detectors. As for the 7 —
gg decay, it is undetectable but it is fundamental to compute
the cross section for Higgs production via gluon fusion.

Itis expected that the data collected at the LHC may allow
us to search for any other rare decays of the Higgs boson [9],
such as lepton flavor changing Higgs decays h — ;¢ j
(i # j) or invisible Higgs decays h — E;, which are for-
bidden in the SM and can shed light on any new physics
effect. Even more, with the prospect of a future Higgs boson
factory, other exotic decays of the Higgs boson could be at
the reach of experimental detection. In particular, the rare
decay h — Zyyis very suppressed in the SM as it arises at the
one-loop level via the exchange of charged particles, so it
can offer a relatively clean signal of new physics: two
energetic photons plus a back to back lepton antilepton pair.
This process can also provide a test for the couplings of the
Higgs boson to the particles running into the loops, which
can be SM particles or any new charged particle predicted by
other extension models. A similar decay is 7 — Zgg, which
at the leading order can be straightforwardly calculated from
the h — Zyy one. In addition, the study of the hZyy and
hZgg vertices would allow us to obtain the leading order
contributions to the cross section of 4#Z pair production via
photon fusion yy — hZ and gluon fusion gg — hZ [10,11].

On the other hand, a CP-odd scalar boson has fewer
decay channels, and so it is worth studying some one-loop
induced decays of such a particle. At tree level, its
dominant decay channels are A — ff, A— Zh(H), and
A —> WEHT, when kinematically allowed, whereas at the
one-loop level a CP-odd scalar boson can decay as A — gg,
A — yy, and A — Zy [3]. These decay channels can have
significant branching ratios in some regions of the param-
eter space of THDMs. Other one-loop induced decay
modes such as A - WW and A — ZZ have already been
studied in [12,13], though they are more suppressed than
the aforementioned decay channels.

In this work we are interested in studying the A — Zyy
and ¢ — Zyy (¢ = h, H) decay modes in the context of
THDMs, which induce these processes at the one-loop
level via box and reducible Feynman diagrams, with
contributions from charged fermions, mainly from the
top and bottom quarks. The W gauge boson and the
charged scalar boson H* can only contribute through
reducible diagrams to the A — Zyy decay. The respective
decay of the SM Higgs boson has already been studied:
thedecay h — Zyy was studied in Ref. [14], and the analogue
decay h — Zgg was studied in [15,16]. To our knowledge,
the A — Zyy decay has not been studied until now.

The organization of this paper is as follows. Section II is
devoted to a brief discussion of the general THDM,
focusing on the CP-conserving THDMs. In Sec. III we
present the details of the calculation of the decays A — Zyy
and ¢ — Zyy (¢ = h, H) by the Passarino-Veltman reduc-
tion scheme. We present the analytical expressions for the
invariant amplitudes, the decay widths, as well as the
kinematic distributions of the invariant mass of the photons
and the energy of the Z gauge boson, which can be useful to
disentangle the decay signal from its potential background.
The numerical analysis of the branching ratios within
type-II THDM is presented in Sec. IV, whereas the
conclusions and outlook are presented in Sec. V. The
Feynman rules necessary for the calculations and some
lengthy formulas are presented in the appendixes.

II. TWO-HIGGS DOUBLET MODELS

THDMs have been largely studied in the literature [3].
We will present here a brief outline of CP-conserving
THDMs, including only those details relevant for our
calculation. For the interested reader, a comprehensive
review of these models can be found in [4].

A. THDM Lagrangian

In THDMs, two complex SU(2), Higgs doublets ®; are
introduced in the scalar sector:

oF
1
Vit +igh;

V2

(I)i:

(i=1.2), (1)

where v; are the vacuum expectation values (VEVs) of the
neutral components, which satisfy v + v3 = v, with
v =246 GeV. A well known parameter of this model is
the VEVs ratio tan § = t3 = v,/v,. The EWSB mechanism
is achieved by the most general SU(2), x U(1), gauge
invariant Lagrangian

L= Z‘Dﬂ(bi'z = V(®, @) + Lyu + Lsu. (2)

where [D,®;|? is the kinetic term for the Higgs doublets,
with D, the SM covariant derivative, V(®;, @, ) is the Higgs
potential, Ly, denotes the Yukawa interactions between @;
and the SM fermions, and Lgy; describes the SU(2); x
U(1)y interactions of fermions and gauge bosons.

The most general gauge-invariant renormalizable poten-
tial V(®,, ®,) for THDMs is a Hermitian combination of
electroweak invariant combinations. It contains 14 param-
eters and can give rise to new sources of CP violation [17].
However, as long as CP is conserved in the Higgs sector,
the scalar potential for the two doublets ®; and ®, with
hypercharge +1 can be written in terms of 8 parameters as
follows [3.,4]:
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V(@) ;) = m @@ +m, LD, —miy (0] d, +H.c.)
Z2)

+2(@],)? +3(q);q>2)2 +25(@] @, ) (D)

A
+ 24 (D] D) (3P ) +55 (®]®,)? +H.c].

(3)

After EWSB, 3 of the 8 degrees of freedom of the two
Higgs doublets are the Goldstone bosons (G*, £), which
are absorbed as longitudinal components of the W+ and Z
gauge bosons, whereas the remaining 5 degrees of freedom
become the physical Higgs bosons: there is a pair of
charged scalar bosons H*, two neutral CP-even scalar
bosons 4 and H, where m,;, < my by convention, and one
neutral CP-odd scalar A. Since all the parameters appearing
in the potential are real, there are no bilinear mixing terms,
which is why the neutral mass eigenstates are also CP
eigenstates. In the neutral sector the following mass
term appears:

Egass = (¢11¢2)V124<z;>’ (4)

1 mz 1}2 —U1Vy
ya oL (i )( 2 ) 5
A 2(Ulvz i -1y v? )

Once Vf, is diagonalized, one obtains the neutral Goldstone
boson ¢ and the physical CP-odd Higgs boson via the

rotation
)
cosfp ) \ ¢

In the case of the CP-even scalar bosons we have

with

cos f

(i) N (—sinﬁ

2
. m
with m?% = (TZ—AS)UQ.

rH 1o ovi2 ¢(1)
mass 5 (¢I¢Z>VH ¢(2) ’ (7)
where
VE = <A" B‘) (8)
"\B, )

with Ag = 2,0} + Z—?m%z, B, = m?, — z—;(v%ﬂl —2m?)),
and C, = A3 + f—;m%z The physical CP-even Higgs
bosons with masses my and m;, are obtained by rotating
the original basis by an angle a,

H cosa sina /¢
()= (e ()@
—sina cosa ¢,

TABLE 1. Couplings of quarks and leptons to the Higgs
doublets ®; in THDMs with natural flavor conservation. The
superscript i stands for the generation index. There is another
version of THDMs, known as type-III. THDM, in which both
Higgs doublets couple to the leptons and quarks simultaneously,
thereby giving rise to tree-level FCNCs [3.4].

THDM ut d el
Type—l q)z (D2 q)z
Type-II @, D, o,
Lepton-specific o, o, o,
Flipped o, D, o,

with m3; , = % (A, +Cy) £
mixing angle given as

(A; — C,)? + B?), and the

2B,
\/<As - Cs)z + 43? .

sin2a = (10)

B. Flavor-conserving THDMs

As far as the Yukawa Lagrangian Ly is concerned, the
scalar-to-fermion couplings are not univocally determined
by the gauge structure of the model. The most general
Yukawa Lagrangian for THDMs is [4]

2
—Lyw = Z (Lo @Y g+ OL(PY{dg + B Y{ug)]

=1

+H.c., (11)

where © = it,® s Y/ are 3 x 3 complex matrices, and the
left- and right-handed fermion fields are tree vectors in
flavor space.

To prevent tree-level FCNCs it is usual to introduce a
discrete Z, symmetry respected by the @, doublets and the
fermions. Under this symmetry one of the scalar doublets is
even @, — @, and the other one is odd ®; — —®;. This
gives rise to four types of THDMs, which are usually
known as type-I THDM, type-Il THDM, lepton-specific
THDM, and flipped THDM. The way in which each Higgs
doublet couples to the fermions in these models is sum-
marized in Table I. On the other hand, if no Z, discrete
symmetry is imposed, there will be tree-level FCNCs. In
such a scenario both doublets couple to the charged leptons
and quarks. This model is known as type-Ill THDM
[18,19]. In this work, however, we are not interested in
this realization of THDMs.

Although we will present a rather general calculation
within flavor-conserving THDMSs, the numerical analysis
will be carried out in the context of the type-II THDM,
which is by far the most studied THDM since it shares the
same Yukawa interactions as the MSSM. The most dis-
tinctive difference between the type-Il THDM and the
MSSM is that the former does not have a strict upper bound
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Z(kg)

FIG. 1.

Box diagrams that contribute to the A — Zyy decay in the THDM. There are three additional diagrams that are obtained by

exchanging the photons. Similar diagrams also contribute to the ¢p - Zyy (¢ = h, H) decay, after the replacement A — ¢.

on the mass of the lightest Higgs boson, which is an
important feature of the latter. In addition, in THDMs the
scalar boson self-couplings are arbitrary and so is the
mixing parameter o, which in the MSSM is given in terms
of tan # and the scalar boson masses.

Our calculation is to be performed in the unitary gauge.
The Feynman rules for THDMs can be obtained once the
Lagrangian is expanded in terms of mass eigenstates and
can be found, for instance, in Refs. [3,4]. We present those
Feynman rules required by our calculation in Appendix A.

III. A —» Zyy AND ¢ — Zyy (p=h, H,)
DECAY WIDTHS

A. Kinematic conditions

We now turn to present the A — Zyy and ¢ — Zyy
(¢p = h, H,) decay widths. We first present the kinematics
conditions, which are defined according to the following
notation for the external four-momenta:

$(p) = ru(k1) +7.(ka) + Zo(k3). (12)

The mass-shell conditions thus read p* = mj, k3 = m3,

and k3 = k3 = 0. We now introduce the following Lorentz
invariant quantities:

s1 = (ky + k3)?, (13)
52 = (ky + k3)2, (14)
s = (ki + k). (15)

These variables are not all independent as s +s5,+s= mi +
m% by four-momentum conservation. In our calculation, we
express all the scalar products between the four-momenta &,
k>, and k5 in terms of the Lorentz invariant variables s, s,,
and s as well as the scaled variable p; = m3/mj.

In addition, because of the transversality conditions
obeyed by the gauge bosons, i.e., k- ¢ (ky) =k, - €”(k,) =
k3 -€*(k3) =0, we drop from the invariant amplitudes any
terms proportional to k|, k5, and k§.

All the above kinematic conditions prove useful to
simplify the calculation. We now present the invariant
amplitudes for the A — Zyy and ¢ — Zyy (¢p =h, H)
decays, which are induced at the one-loop level at the
lowest order in perturbation theory.

B. A — Zyy decay invariant amplitude

There are two sets of Feynman diagrams that induce this
decay: box diagrams and reducible diagrams. Once the
invariant amplitude for each Feynman diagram was written
down in the unitary gauge, we used the Passarino-Veltman
reduction scheme to solve the loop integrals [20], which
were reduced down to a combination of two-, three-, and
four-point scalar functions. The algebra was carried out
with the aid of the Mathematica package FEYNCALC [21].
We first present the invariant amplitude arising from the
box diagrams.

1. Box diagram contribution

In Fig. 1 we show the box diagrams that contribute to the
A — Zyy decay. The dynamical content is rather simple in
the sense that there is only one kind of particle circulating
into the loop, namely, SM charged fermions. Other charged
particles do not contribute to this decay at the one-loop
level in THDMs: because of CP invariance in the scalar
sector, the CP-odd scalar A does not couple to a pair of W
gauge bosons or charged scalars HT, though it can couple
to a WHHT pair. However, the VWTH* vertex (V = 7, Z)
is absent at the tree level, and so the A — Zyy decay cannot
proceed via box diagrams with both WF and HT particles.
The main contributions of box diagrams are thus expected
to arise from the heaviest fermions. For small ig, the top
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quark contribution would dominate, whereas for large 74
the bottom quark contribution would become relevant. This
is due to the presence of the factors 1/; and t; appearing in
the Yukawa couplings for the top and bottom quarks,
respectively, as will be shown below.

Once the Passarino-Veltman reduction scheme was
applied, we performed several tests on our results. First,
we verified that the invariant amplitude for all the box
diagrams is gauge invariant under U(1),,,; i.e., it vanishes
when the photon four-momenta are replaced by their
polarization vectors. We also verified that Bose symmetry
is respected and that ultraviolet divergences cancel out. The
invariant amplitude for the A — Zyy decay can be cast in
the following gauge-invariant manifest form:

M(A— Zyy) =M (A= Zyy)ey(ks)e (ki ey (ko). (16)
with the Lorentz structures given as follows:

M(A = Zyy)
= F k(K — ky - ko) + Fo (R4 (K — ey - ko)

F

+ ko - ks (K g — k2 g™)) +m—23kg(k’3‘(k2 skt —ky - ko)
A

+ky - k(K5Ky —ky - k3 g)) + (ki <> k5), (17)

where the form factors F; depend on sy, s,, s, and uz,
though we will refrain from writing out such a dependency
explicitly. These form factors will receive contributions
from both box and reducible diagrams, which means that
the latter will not generate additional Lorentz structures.
We can thus write 7; = FBo* + FRP where the notation is
self-explanatory. The expressions for the box diagram
contributions are too lengthy, and they are presented in
Appendix B in terms of Passarino-Veltman scalar
functions.

2. Reducible diagram contribution

There are also reducible diagrams in which the A — Zyy
decay proceeds as A — Z¢* — Zyy (p=h, H), as
depicted in Fig. 2, with the two photons emerging from
the intermediate scalar boson via loops carrying charged
fermions, the W gauge boson, and the charged scalar
boson H*.

As was the case for the box diagram contribution, the
reducible diagram contribution is gauge invariant and
ultraviolet finite on its own. It turns out that these diagrams
contribute to the gauge-invariant amplitude of Eq. (17) only
through the form factor ', which includes the contribu-
tions of charged fermions, the W gauge boson, and the
charged scalar boson H™,

FR = F{ + FY + FlI", (18)

f W W

_l’_
_l’_

FIG.2. Reducible Feynman diagrams for the A — Zyy decay in
the THDM. For the triangle diagrams there are additional
diagrams that are obtained by exchanging the photons. Similar
diagrams also contribute to the ¢ - Zyy (¢ = h, H) decay,
except that the intermediate particle is now the CP-odd scalar
boson A and there is only a contribution from charged fermions in
the triangle loop.

with 7 (y = f, W, H*) defined in Appendix A in terms of
Passarino-Veltman scalar functions.

C. ¢ - Zyy (¢ =h, H) decay

1. Box diagram contribution

As for the ¢ — Zyy (¢ = h, H) decay, at the one-loop
level it also receives the contributions of the fermion box
diagrams of Fig. 1 with A replaced by ¢. It is worth noting
that although a CP-even scalar boson does couple to
charged WT gauge bosons and charged scalar bosons
HT, the corresponding box diagram contributions exactly
cancel out due to CP invariance. Notice that the amplitude
of this vertex must include the Levi-Civita tensor due to CP
invariance, but it cannot arise via box diagrams with
charged particles other than charged fermions, whose
coupling with the Z gauge boson includes a y> matrix.
As the invariant amplitude of a fermion loop includes the
trace of a chain of Dirac matrices, the term involving the °
matrix would give rise to the required Levi-Civita tensor.
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The most general Lorentz structure for the ¢ — Zyy (¢p = h, H) decay can be written in the following gauge-invariant

manifest form:

MOy = Z7) = Gy(ky - kyemohs bt — phcminh . tcmbt) 1 T2 conkts (k- ko — by - ko)

¢

+ Gs(ky - ke ki 4 Krewhika) 4 Gy (ks - kpe™h + Kye™hik) + (K < k), (19)

where we use the shorthand notation €74 = ¢**k;p,q,,
etc. Again the form factors G; depend on s, 51, 55, and u . To
arrive at the above equation, we used Schouten’s identity.
These form factors receive contributions from both box
diagrams and reducible diagrams: G; = GB% + GRP. As far
as the contributions from the box diagrams are concerned,
they are reported in Appendix B in terms of Passarino-
Veltman scalar functions.

2. Reducible diagram contribution

There are also contributions from reducible diagrams that
are analogue to those depicted in Fig. 2, but with the photons
emerging from the intermediate CP-odd scalar boson A via
loops of charged fermions only. There are also extra
reducible diagrams arising from the process ¢ — ZZ* —
Zyy, as shown in Fig. 3. This diagram involves the well-
known triangle anomaly Z*yy, which receives contributions
from charged fermions only. This is due to CP invariance as
the amplitude for this vertex must be proportional to the
Levi-Civita tensor, which can only arise via the trace of a
chain of Dirac matrices including y°, which in turn is present
only in a fermion loop. Therefore loops of the charged W
gauge boson or the charged scalar boson do not contribute to
this vertex. Also, because of the Landau-Yang theorem, the
Z*yy vertex vanishes for real Z, so this diagram does not
contribute to the ¢ — Zyy decay when the ¢ scalar boson is
kinematically allowed to decay into a pair of real Z gauge
bosons. These reducible Feynman diagrams only contribute

FIG. 3. Feynman diagram that also contributes to the ¢ — Zyy
(¢ = h, H) decay in the THDM, in addition to Feynman
diagrams analogue to those of Figs. 1 and 2. The diagram
obtained by exchanging the photons is not shown.

to the invariant amplitude of the ¢p — Zyy (¢ = h, H) decay
via the form factor Gj,

GiP = G + G4, (20)

where G§ and G4 are the form factors arising from the
diagrams with the vertices Z*yy and A*yy, respectively.
Explicit expressions in terms of Passarino-Veltman scalar
functions are given in Appendix B. Note that we must
include the contributions of all the fermions of each family in
order to cancel the Z*yy anomaly.

D. A —» Zyy and ¢p —» Zyy (¢ =h, H) decay widths

There are two scenarios for the ¢p; — Zyy (¢p = h, H, A)
decays, which depend on the value of the mass of the
incoming scalar boson ¢; as compared to the mass of the
exchanged scalar boson, which we denote by ¢,: ¢, = h,
H for ¢p; = A or ¢p, = A for ¢p; = h, H. We will present the
expression for the resulting decay width in both scenarios.

I.my <my +my

In this scenario, the incoming scalar boson ¢; will not be
heavy enough to produce an on-shell ¢, in addition to the
on-shell Z gauge boson. Therefore we will have a pure
three-body decay induced by both box and reducible
diagrams. The corresponding decay width can be written as

m.. Xif Xop o~
F(¢i—>277):256¢7‘[3 / / |M(¢; = Zyy)|*dx,dx,,
Xi X2i
(21)

where we introduced the following scaled variables:

2p -k
X1 = p23:l+,u2_3" (22)
mg,
2p -k
Xy = p2 121_32’ (23)
mg,
2p -k
xy=P 25, (24)
mg,

with§ = s/myg and§; = s;/mj . In the center-of-mass frame
of the decaying ¢; we have x| = 2E;/my, x, = 2E,/m,
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and x3 = 2E, /m,,, where E, (E,) stands for the energy of
the photon with four-momentum k; (k,). From energy
conservation, these variables obey x; + x, + x3 = 2.

The kinematic limits in Eq. (21) are as follows:

contribution of the intermediary Z gauge boson will thus
vanish. In this scenario, using the Breit-Wigner propagator
for the exchanged scalar boson, Eq. (21) can be integrated
and the ¢; - Zyy decay width can be written as

X1; = 21z, [(¢p; = Zyy) =T(¢p; » Z¢p.)BR(¢p, = yy), (26)
iy =1z, with the decay width I'(¢, — yy) given by
1
Xoinf =5 (2 —Xx F \/X% - 4#2). (25) PP’
2 (g = 17) = fompmamz FP7P - (27)
w

The squared average amplitudes for both decays A — Zyy
and ¢ — Zyy (¢ = h, H) are presented in Appendix C.

2. my >my +my

In this scenario the incoming scalar boson ¢; is heavy
enough to produce an on-shell scalar boson ¢,. Therefore
the ¢p; - Zyy decay proceeds as the pure two-body decay
¢; — Zg,, followed by the decay ¢p, — yy. Note that in the
case of the decay of a CP-even Higgs boson, although the
decay into a pair of real Z gauge bosons will now be
kinematically allowed, the Z — yy decay is forbidden by
the Landau-Yang theorem, which means that the
|

For a CP-even scalar boson ¢, = h, H, F? receive
contributions from charged fermions, the charged W gauge
boson, and the charged scalar boson H*:

Fberr = FU1 (1) + FE (2y) + FUL (244) for ¢, =h.H,
(28)
with 7, =4m;/m7 . The FJ<7(x) functions can be obtained

from the results for the reducible diagrams presented in
Appendix B by setting s = mj . They are given by

;gmeQ%[—%f(l + (I =zp)f(zp)] x =1

ngy}’(,[){) = gz[)gWW[Q’ -+ 3TW + 3Tw(2 - Tw)f(TW)} X = W’ (29)
m?,(1-2s2 -
Pt (e (L= s ()] 2 = H
|
for ¢, = h, H. Also, f(x) is given by As for the ¢p; — ¢,Z decay width, it is given as follows:
1\12
{arcsin (—)} x> 1, (¢ — Zg.)
o) - v : 30 gy 3
1 1+vV1-x\ . == e (4= (Tg, = VT2)) (4= (VT +VT2)7))>.
——|log| ———==| —izr| x<1 25657, ‘ ‘
4 I—v1-x

On the other hand, when the intermediary scalar boson is
the CP-odd one A, we only have the contributions of
charged fermions

FAT = F () = D a7 QN[22 (xp)]. - (31)
f

TABLE II.

(32)

Note that 7, = 4mj /mj ; thus 7, = 4m3/m} for A —
Zyy and z,, = 4m} /mg for ¢ — Zyy (¢ = h, H). A similar
expression with the corresponding replacements is obeyed
by the ¢, — WHHT decays if kinematically allowed.

Constants for the couplings of the scalar bosons to fermions and gauge bosons in type-Il THDM as described in Figs. 12

and 13of Appendix A. We have used the shorthand notation s, = sina and ¢, = cos a. The g4, couplings obey g4, = CLZ Geww [4].
w

¢ 9puu 9pdd (94;11) 9pww 9pzA 9pH-H* 9pw-H*
C, —a
h ~($p-a + %) ~(8p-a = 15Cp-a) Sp-a Cpa (CWCpa = 30, C2pCpa) CWSp-a
Sp—a
H ~(Cpa =) ~(Cpa + 1p5p—a) Cp-a ~Sp-a (CWSp-a T 50y C2pSp+a) CWCp-a
1 .
A 5 tﬂ O O 0 ICwy
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All the necessary coupling constants g,7r, gpww, 9pzz»
9paz> Gpwer=> Ypu-u+ (@ = h, H), along with g,7, and
gaw=p+ are shown in Table II. Other coupling constants
involved in decays such as H — hh and ¢» — AA can be
found in Refs. [3,4] for instance. To obtain the branching
ratio BR(¢p, — yy), we need the main decay widths of both
CP-even and CP-odd scalar bosons, which have already
been studied in the literature considerably [3]. For com-
pleteness we present in Appendix D all the necessary
formulas, which can also be helpful to obtain the branching
ratio for the ¢p; — Zyy decay in type-Il THDM and make a
comparison with that of other decay channels.

IV. NUMERICAL ANALYSIS AND RESULTS

We now turn to the numerical analysis. To begin with, we
will analyze the current constraints on the parameter space
of type-II THDM.

A. Allowed parameter space of type-II THDM

After the Higgs boson discovery, several studies have
been devoted to explore the implications on the parameter
space of THDMs [22-26]. From the recent analyses of the
ATLAS and CMS Collaborations [27], it is inferred that the
properties of the 125 GeV scalar boson found at the LHC
are highly consistent with the SM predictions, thereby
imposing strong constraints on the scalar sector of SM
extensions. If one of such theories predicts several CP-even
physical Higgs bosons, one of them must correspond to the
SM one and reproduce its couplings to fermions and gauge
bosons. In type-II THDM, the scalar boson & is usually
assumed to be the lightest one and so is identified with the
SM Higgs boson, which constrains the parameter space of
the model to a region very close to the alignment limit
sin(# — a) = 1, where the heavy Higgs H does not couple
to the gauge bosons and the coupling hZA is absent at tree
level [26,28,29]. The couplings of the & Higgs boson to the
fermions involve the mixing angles @ and f. Therefore, the
LHC data can impose strong constraints on both param-
eters. Other constraints can be obtained from theoretical
requirements such as vacuum stability and unitarity of the
scalar potential as well as perturbativity of the Higgs
couplings. Also, the oblique parameters S, 7, and U can
impose strong constraints on the masses of the new Higgs
bosons A and H, requiring that at least one of them is very
heavy: a CP-odd scalar with m, ~ 200 GeV requires a
heavy CP-even scalar with my > 600 GeV and vice versa.
As for the charged Higgs boson mass, it can be constrained
through experimental measurements on low energy FCNC
processes.

All of the above constraints can be complemented with
the direct searches of additional Higgs bosons at LEP and
the LHC. Below we present the constraints most relevant
for our numerical analysis:

(1) Mixing angles f and f — a: since the h Higgs boson
is identified with the SM Higgs boson, the LHC data
restrict f—a to lie very close to z/2, namely,
|sin(f — a)| > 0.999, with a small interval around
tp =1 where such a constraint is less stringent.
Furthermore, in type-Il THDM, for f — a ~ x/2, the
scalar couplings to the top quark (bottom quark)
behaves as 1/14 (t4); thus the FCNCs’ processes are
very sensitive to small and large values of 74, which
will impose stringent constraints on this parameter.
We can thus consider values of #; in the range 1-30.

(i) Mass of the charged Higgs boson my+: while the
direct search at LEP imposed the constraint mg: >
80 GeV [30], the measurement of the B — X,y
branching ratio imposes the very stringent bound
my+ > 570 GeV, for 153 ~ 1.5 [31].

(iii) Mass of the CP-odd scalar m ,: the authors of Ref. [25]
examine the scenarios where either m, or my is set to
a large value about 600-700 GeV while the other one
is bounded via theory constraints and experimental
data, with the remaining free parameters set to the
values mentioned above. We will follow closely this
analysis asitis of interest for the present work. We first
examine the case of a light CP-odd scalar and a heavy
CP-even scalar with mass my = 600 GeV. In this
scenario the searches for the decays A — 77, A — vy,
and A — hZ exclude the region m, < 350 GeV,
whereas the LHC data on the Higgs boson require
my to be larger than 220 GeV. On the other hand, the
search for the channel bb — A — 7r allows for m,
values in the range 350-700 GeV and impose the
upper limit 75 < 2 for m, <500GeV, whereas 75 <15
for 500GeV <m, <700GeV,.

(iv) Mass of the heavy CP-even scalar mpy: we now
examine the scenario with a light CP-even scalar and
a heavy CP-odd scalar with m, = 700 GeV. In this
case the whole constraints require my > 300 GeV,
whereas the bb — H/A — 17 channel imposes an
upper bound on 74 as a function of my. For instance,
for my = 200 (600) GeV 15 < 6 (15). On the other
hand, the searches for the H decays into 7z, WW, ZZ,
vy, and hh require tan f > 2.5 for my < 380 GeV.
For a lighter m, = 600 GeV, the search for the A —
HZ channel can exclude the region my < 270 GeV.

We now turn to study the behavior of the A — Zyy and

¢ — Zyy (¢ = h, H) branching ratios as functions of the
parameters 74, p—a, my=, my, and my. We stick to the still
allowed values for these parameters, whereas for the SM
parameters we take the values given in Ref. [32]. For our
analysis we used the LooPToOLS package [33,34] for the
numerical evaluation of the Passarino-Veltman scalar
functions appearing in the decay amplitudes. The dominant
decay widths of the CP-odd and CP-even scalar bosons
were evaluated by our own Mathematica code that imple-
ments the formulas of Appendix D, including the QCD
corrections for the decays into light quarks.
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FIG. 4. Branching ratio for the A — Zyy decay in type-Il THDM as a function of m, for my+ = 570 GeV, sin(ff — a) = 0.999, and
two values of 7; allowed by theory and experimental constraints. In the upper (lower) plots we use my = 600 (270) GeV. The branching

ratios for the main A decay channels are also shown.

B. A - Zyy branching ratio

We work in a region close to the alignment limit and use
sin(ff — a) = 0.999. In this scenario, the strength of the
hZA vertex is negligible, and so the contributions to the
A — Zyy decay only arise from box diagrams and reducible
diagrams with H exchange, which receive their main
contributions from the top and bottom quarks. The con-
tribution of the loops with W gauge bosons turns out to be
negligibly small as it is proportional to cos’(— a),
whereas the charged scalar boson also gives a very small
contribution for my+ of the order of a few hundred GeVs.

We can distinguish two scenarios of interest: my <
my + my and my > my + my. Below we examine the
behavior of the A — Zyy branching ratio in such scenarios.

1. Scenario with my < my+my

We consider the scenario with my = 600 GeV and
analyze the behavior of BR(A — Zyy) as a function of
m, in the range 350-650 GeV. For the mixing angle f we
consider two values: 753 = 2 and 75 = 10, which are allowed
for my <500 GeV and 500 GeV <m, <700 GeV,
respectively. In the upper plots of Fig. 4 we show the
behavior of the A — Zyy branching ratio as a function of m,
for the two chosen values of 75. We also show the main decay
modes of the CP-odd scalar boson: A — bb, A - W-H,
tt, gg, yy, and Zy. The decay A — Zh has a negligible
branching ratio in the region close to the alignment limit and

is not shown in the plots. We note that the main contribution
to BR(A — Zyy) arises from the reducible diagrams with
top quarks, whereas the contribution of the loops with
charged scalar bosons is negligible. Since in this scenario the
intermediary scalar boson H is far from the resonance, the
reducible diagram contribution is very small, though it is
larger than the box diagram contribution by almost 2 orders
of magnitude. Therefore, the Z — Ayy branching ratio is
thus very small. For instance, for 5 = 2, BR(A — Zyy) is of
the order of 10~!! for m, = 300 GeV with a small increase
as m, increases. When t increases up to 10, BR(A — Zyy)
decreases about 1 order of magnitude as the top quark
contribution is suppressed by a factor of 1/#,. In this region
of the parameter space of the type-Il THDM, the A — Zyy
branching ratio is considerably smaller than those of the one-
loop induced decays A — yy and A — Zy.

2. Scenario with my > myg +my

We now turn to analyze the scenario where the CP-even
scalar is relatively light, with a mass my = 270 GeV along
with a heavier CP-odd scalar with a mass in the range
600—-1000 GeV. We use tg= 5and PES 10, which are allowed
form, = 600 GeV and m, = 700 GeV, respectively. In this
scenario the intermediate scalar boson H is on resonance and
the CP-odd scalar can decay as A — ZH with a large
branching ratio. The decay A — Zyy would then proceed
in two stages: after the CP-odd scalar boson decays as
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FIG. 5. Contour plot of BR(A — Zyy) in the m, vs my plane for sin(f — a) = 0.999, my: = 570 x GeV,, and two values of #4.

A — ZH, the on-shell CP-even scalar boson decays into a
photon pair H — yy, namely, A — HZ — Zyy. The
enhancement of BR(A — Zyy) becomes evident in the lower
plots of Fig. 4, where we show its behavior as a function of
my, along with that of the branching ratios of other
decay modes of the CP-odd scalar boson. We observe that
BR(A — Zyy) increases up to 4 orders of magnitude with
respect to the result obtained in the scenario with m, <
my + my and can reach values of the order of 107¢ — 1073
when m, is in the 600-800 GeV range. In this mass regime,
the main decay isA — HZ, which explains why the A — Zyy
decay has such an enhanced branching ratio. For illustrative
purpose we also show the branching ratios for the decays
A — Zbb and A — Zgg, which arise from the decay A —
HZ followed by the decays H — bb and H — gg. We note
that the dominant decay channel is A — Zbb.

The above-described behavior of BR(A — Zyy) is best
illustrated in the contour plot on the my vs my plane shown
in Fig. 5 for two values of #;. We observe that BR(A —
Zyy) can reach its largest values, of the order of 1073, in the
region where my > my + my, whereas it is negligible
when my < my + my. Since the A — Zyy decay receives
its main contribution from the loops with top quark, it
decreases as 1 increases.

C. H — Zyy branching ratio

We now analyze the behavior of the H — Zyy branching
ratio as a function of my in scenarios analogue to those
discussed for the CP-odd scalar boson. For sin(ff —a) =
0.999, apart from the box diagram contribution, the only
contribution from reducible diagrams is that with an
intermediary CP-odd scalar boson A, which receives
contributions mainly from the top and bottom quarks.
The diagram mediated by the Z gauge boson gives a
negligible contribution since the HZZ vertex is proportional
to cos(f — a).

1. Scenario with my < my +my

We consider a heavy CP-odd scalar with a mass m, =
600 GeV and take my in the range 300-600 GeV. For 15 we
use the values 3 and 10. In the upper plots of Fig. 6 we show
the branching ratios for the main decay channels of the H
scalar boson. We note that the H — Zyy decay has a very
suppressed branching ratio up to 5 orders of magnitude
smaller than the branching ratios of the one-loop induced
decays H — yy and H — Zy. It increases for smaller 74 but
it seems still beyond the reach of detection.

2. Scenario with myg > m4 +my

In this scenario we consider m, = 350 GeV and take
my in the range 600-1000 GeV. We also use t; = 2 and
tg = 10. For the mass of the charged scalar boson we
use my+ = 575 GeV as we do not need to assume that
my= > my since the H — W™H™" decay channel has a
negligible branching ratio proportional to cos(f — @)?. In
the lower plots of Fig. 6 we show the H — Zyy branching
ratio along with those of the main decay channels. We note
that there is a considerable enhancement of BR(H — Zyy),
up to 5 orders of magnitude, now that the H — ZA decay is
allowed; thus BR(H — Zyy) can be as large as 1073 for
tg = 2. Again we include the decays H — ZA — Zbb
and H - ZA — Zgg, with the dominant decay being
H — ZA - Zbb.

In Fig. 7, we also show the contour plot of BR(H — Zyy)
in the my vs m, plane for two values of 75. Again itis evident
that BR(H — Zyy) can reach its largest values when my >
my + my and it is negligible when my < my + my. It also
decreases when 1, increases as it receives the main con-
tribution from loops with the top quark.

Finally, we would like to comment shortly on the
potential detection of the A — Zyy and ¢ —» Zyy (¢p = h,
H) decays in the scenario we are considering in type-II
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FIG. 6. Branching ratio for the H — Zyy decay in type-Il THDM as a function of my for my+ = 570 GeV, sin(f — a) = 0.999, and
two values of 74 allowed by theory and experimental constraints. In the upper (lower) plots we use m, = 600 (350) GeV. The branching

ratios for the main H decay channels are also shown.

THDM. Although there is a considerable enhancement of
the corresponding branching ratios, it still seems not
enough to put these decays at the reach of experimental
detection at the LHC in the near future. In Fig. 8§ we show
the leading order production cross section for the CP-even
and CP-odd scalar bosons via gluon fusion at the LHC at
\/s = 14 TeV as a function of the scalar boson mass. It
turns out that with an integrated luminosity of 300 fb~!, to
be achieved in LHC run 3, we would have about 1.64 x 10°
(3.2 x 10°) CP-even (CP-odd) scalar bosons with a mass
mg = 500 GeV produced per year, but these numbers drop

tg=2

1000

800 -

mpy [GeV]

400 |

1000

600
my [GeV]

my [GeV]

by 1 order of magnitude when m, =700 GeV. For
BR(H — Zyy) ~ 0(107%), we would only have about
164 H — Zyy events prior to imposing the kinematic cuts,
which would render this decay hard to detect. The situation
might be more promising at a future high-luminosity
100 TeV pp collider, where we could have thousands of
H — Zyy events prior to imposing the kinematic cuts.
As discussed below, this event number would increase in
type-I THDM by 1 order of magnitude as the respective
branching ratios would have such an enhancement in
that model.
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FIG. 7. Contour plot of BR(H — Zyy) in the my vs my plane for sin(f — a) = 0.999, my: = 570 GeV, and two values of #4.
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FIG. 8. CP-even and CP-odd scalar boson production cross
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0.999 and 1; = 2. The right axis shows the annual event number

achieved with an integrated luminosity of 300 fb~'.

D. h — Zyy branching ratio

We now briefly discuss the lightest CP-even scalar
boson decay h — Zyy. Since & must mimic the properties
of the SM Higgs boson, it is expected that the 7 — Zyy
branching ratio does not deviate considerably from its SM
value. For sin(ff — a) ~ 1, the only contributions arise from
box diagrams and the reducible diagram mediated by the Z
gauge boson. As mentioned before, the hZA vertex is
considerably suppressed, whereas the hHZ one is forbid-
den due to CP invariance. Even more, there is no enhance-
ment due to the Z-mediated reducible diagram since
my, <2my. For my, =125 GeV and 175 =10 GeV we
obtain BR(h — Zyy) ~ 107, which does not deviate sig-
nificantly from the SM value [16]. Therefore the new
physics effects provided by the THDM do not give a
significant enhancement to this decay and seem very far
from the reach of detection.

E. Kinematic distributions

In the scenario in which the intermediary scalar boson is
off-shell, the analysis of the behavior of some kinematic
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FIG. 9. Energy (left plot) and photon invariant mass (right plot) distributions dI'(A — Zyy)/dE, and dT'(A — Zyy)/dm

distributions could be helpful to disentangle the decay
signal from the potential background. The Z gauge boson
energy distribution dI'(¢; - Zyy)/dE; and the photon
invariant mass distribution dI"(¢p; — Zyy)/ dmmﬂ, could be
useful for this task. To obtain the former, one can plug the
relation dx; = (2/m,, )dE into Eq. (21) to obtain

dU(¢i = Zyy) _ 1
dE, 12873

Xy
[0~z (33
X2i
where the Z gauge boson energy is defined in the
interval (mz, (mg, +m3)/(2myg,)).

On the other hand, the expression for the photon
invariant mass distribution dI'(¢p; — Zyy) /dmmw, is

obtained using the relation dm,, = dE;/\/j; —x; + 1,
which leads to

dr(¢t - Z}/}/) \//m/xzf _
= |\M(¢i = Zyy)[Pdxs,
dmyy’ 12877:3 Xoi

(34)

where m,, is defined in the interval (0, m,, —my).

For illustrative purposes we show in Fig. 9 the energy
distribution dT'(A — Zyy)/dE, and the photon invariant
mass distribution dI'(A — Zyy)/dm,, in the alignment
limit for my = 700 GeV, my+ =750 GeV, 15 = 15, and
a few values of m,. We observe that in the rest frame of the
CP-odd scalar, the Z gauge boson energy is peaked at about
one-half of m,. A similar situation is observed for the
invariant mass n1,,.

F. A —» Zyy and H — Zyy decays in type-1 THDM

We now briefly analyze these decays in the framework of
type-I THDM, where the charged scalar boson mass has a
lower bound. Since the main contribution to the decays
A — yy and H — yy arises from the top quark, the effect of
a charged Higgs scalar boson with a mass less than 570 GeV
would not have a considerably effect on the decays we are
interested in. However, in type-I THDM the couplings of the
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masses of the CP-odd scalar boson in type-Il THDM. We use my = 700 GeV and t; = 15.
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FIG. 10. Branching ratios for the A — Zyy and H — Zyy decays in type-I THDM as a function of the scalar boson masses for
mp= = 570 GeV, sin(f — a) = 0.999, and two values of #; allowed by theory and experimental constraints. The branching ratios for the

main decay channels are also shown.

CP-odd scalar boson to both quark types are now propor-
tional to cot f3, and the same is true for the couplings of the
CP-even scalar bosons in the cos(a — ) — 0 limit [35].
Therefore, the decay widths of the scalar bosons into the bb
pair would be suppressed for large 74, which can have an
effect on our decays indeed. Consider, for instance, the decay
A — Zyy in the scenario where m, > my + mz. In type-II
THDM the main decay channel is A - ZH — Zbb, but for
large 1, this decay would get suppressed in type-I THDM as
the H — bb decay gets suppressed. This can translate into an
enhancement of the A - ZH — Zyy decay width. To ana-
lyze this scenario we have performed the explicit calculation
ofthe A — Zyyand H — Zyy decay widths in type-l THDM
in the same scenarios considered in type-Il THDM. The
results for the respective branching ratios and those of the
main decay channels are shown in Fig. 10, where we observe
thatthe A — Zyy and H — Zyy decays can have an enhance-
ment of about 1 order of magnitude with respect to the values
obtained on type-IIl THDM.

V. CONCLUSIONS

In this work we have calculated the one-loop contribu-
tions to the decays of the CP-odd and CP-even scalar bosons
A — Zyy and ¢ — Zyy (¢ = h, H) in the framework of
THDMs. We have presented analytical expressions for both
box and reducible diagrams in terms of Passarino-Veltman
scalar functions, though the main contributions arise from

reducible diagrams. We first discuss the A — Zyy decay,
which has not been discussed previously in the literature to
our knowledge. For the numerical analysis we worked
within the type-II THDM and considered a region of the
parameter space still consistent with experimental data, with
sin(f — a) ~ 1, where the lightest C P-even scalar boson £ is
identified with the SM Higgs boson, the hZA vertex has a
negligibly small strength, and the heavy CP-even scalar
does not couple to the weak gauge bosons. It was found that
the A — Zyy branching ratio is only relevant in the scenario
where m, > my + mz, when the intermediary H boson is
on-shell. For m, > 600 GeV and 4 close to 1, BR(A —
Zyy) can reach values of the order of 107> — 107, but it
decreases by about 1 order of magnitude as 7 increases up to
10, which stems from the fact that the dominant contribution
arises from the loops with the top quark, which couples to the
scalar boson with a strength proportional to 1/z5. On the
other hand, when m, < my + myz, BR(A — Zyy) is negli-
gibly small, of the order of 107!°. As far as the H — Zyy
decay is concerned, it exhibits a similar behavior and its
branching ratio is non-negligible only in the scenario where
my > my + myz, when the CP-odd scalar is now on-shell. In
this region of the parameter space, BR(H — Zyy) can reach
the level of 10~ — 1073 for m; > 600 GeV and tp =1, but
it decreases for larger 75. We also discussed the h — Zyy
decay, which receives a contribution from box diagrams and
a reducible diagram mediated by the Z gauge boson. Since
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the properties of the & scalar boson are nearly identical to the
SM Higgs boson, it is found that the 4 — Zyy branching
ratio does not deviate significantly from the SM prediction
and it is of the order of 10~°. Our calculation is in agreement
with previous evaluations. The new physics effects of
THDMs are thus not relevant for this decay. Finally, we
also estimated these rare decays in the framework of type-I
THDM, where we find that the respective branching ratios
can be enhanced by about 1 order of magnitude with respect
to those of type-11 THDM.
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APPENDIX A: FEYNMAN RULES

In this appendix we present the Feynman rules necessary
for our calculation, which was performed in the unitary
gauge. We first present the Feynman rules for the vertices
VW-W+, yyW-W*, and Vff (V =y, Z), which are
identical to the SM ones and are shown in Fig. 11.

Wt (ks)

—iegvivwlauw(k1, ko, k3)

We also need the couplings of the neutral Higgs bosons
to the fermions, the gauge bosons, and the charged scalar
bosons. The Feynman rules for the couplings of the neutral
Higgs bosons to fermion pairs in THDMs are shown in
Fig. 12, and the corresponding coupling constants for
type-Il THDM are presented in Table II [4].

As far as the couplings of scalar bosons to gauge bosons,
we must expand the covariant derivative of Eq. (2) in terms
of the physical fields. It is straightforward to obtain the
Feynman rules shown in Fig. 13 for the couplings ¢VV
(V=W, Z) and Z¢pA (¢ = h, H). Note that the AVV
(V=W, Z) and HhZ couplings are absent due to CP
conservation. Other Feynman rules such as those for the
vertices yH"H™, ZH H™, and yyH™H™ are also obtained
from the Higgs kinetic sector and are shown in Fig. 13, and
so is the Feynman rule for the couplings of the CP-even
scalar bosons to a pair of charged scalar bosons ¢H~H™,
which emerge from the Higgs potential (3) once it is
diagonalized.

APPENDIX B: A — Zyy AND ¢ — Zyy (¢ =h, H)
DECAY AMPLITUDES

We now present the form factors of Egs. (17) and (19) in
terms of Passarino-Veltman scalar functions.

ie2
—1e“Yaguw

FIG. 11. SM Feynman rules necessary for our calculation. All the four-momenta are incoming. gyyy = 1 (=3%) for V. =y (2). In
addition, T (ky, ky, k3) = (ky — ko) g™ + (ko — k3)%g" + (k3 — k( )# g™ and TP = 2g%# gv — g ghv — ¢, We also need the
Feynman rules for the interactions of the photon and the Z gauge boson with a fermion pair, which are as follows: —ieQ ¢y and
—in (g = g7°)y*, respectively, where ¢, = 3T} and gl =1T% — O;s%, with Q the fermion charge and 7% = 1 (—1) for up quarks
(down quarks and charged leptons).

_agmy B
Z2771;,yg¢5ff

gmy 5
“2my Jor Y

(b)

FIG. 12. Feynman rules for the couplings of the scalar bosons to fermions in THDMs. The corresponding coupling constants for type-
II THDM are shown in Table II
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2, W, Aw), 7
e
e
Ve
h, H Za s
. /
_____ LIMW Jovv Guv ANNNNK %W.GZ()A(P —D)a
N
N
N
N
o(p
p (b) p(p')
(2)
N Ve
N H- A,z H* Ve
N e
N e
N Ve
h, H / .
h 2ie’q,  _ _ _ _ _ < *’L%%u#ﬁ
Ve N
7 N
/7 N
Ve N
o Ht A, N
. © @ 2o
H*(p) ~ H~(p) ~
Ve 7
e Ve
e Ve
A 7Zﬂ P Ve I/I/“} p 7/
AVAVAVAVAVS A S S Y RAVAVAVAVAVE e 9w+~ = Pla
N N
N AN
N N
N N
N [ N
(e) H(p) ~ ) ()"

FIG. 13. Feynman rules necessary for our calculation in THDMs. All the four-momenta are incoming. Here ¢p = h, H in diagram
(b) but ¢ = h, H, A in diagram (f). Also, in diagram (e) gsy+x- = Sw and gzy+m- = Cow/2cy. The remaining coupling constants for
type-II THDM are presented in Table II.

1. A - Zyy decay
a. Box diagrams

Box diagrams give the following contributions to the form factors of Eq. (17):

FP, (B1)

Z 16g£gA]fgzam}Q]2cN£

Box __
my CwyS A

f
with

A A
I3 =5[X4 D07+ smZ(s1+52)]Cy (5) +%Azz[szA%z —m%A3,]1C5(s,) +%[S1 (514 5)A3, + [m3 (251 +5)(s1 - Ayz)

2800~ (5154 51 5P mBICa(00) = 8 [ (3 =7 ) om3 | x50

X Ky
+ A3, {m% —TA} C3(s2) +sm3[(s1—52)* +X4]Ca(s) +§ { amz(s1(A1z+s1—52)—2X,)

X
+ 71 (2my = (251 +s2)my +53) + (m% —f‘) 4m}XA} Dy(s1)

X
[SN% —s5om7(s5(Agz +51+35) +X4) —4Xm7 (m% _TA>] D(s,)

2A3,

+

N — N«

[stz(sz —4m3)(m7 +s3) +Agploz < A3, = Aop(4mF —m7 —555) gz +2(s5 —2m7) (m3 +2S2)S)] Ds(s2),

(B2)
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X4 A
Box — > <2A2A <SCI(s)+AIAC2<Sl)+%C3(S2)>+Sm%Alle(sl)+AlZXAD2(S2)_S[XA+52A2A]DI(32)>a (B3)

and

I3 = 2sm3[X 4 + 5(s1 4 55)]C1(s5) 4 2551 A1 Ca(51) = 245, 807C5(55) — 247,814 C5(s1) + 255:857C5(s5)
= 25[X5 + (51 = $2)*]Ca(s) = Xa[X4 + 4sm7|D;(s5) — s[51(Xa + 2515) +4X,m3]D, (s1)

= s[s2(Xy + 2528) 4+ 4X4m7]D; (s7), (B4)
l 2 2,2 2 0
where the kinematical invariant variables s, s,, and s were C(p?) = Co(0,0, p*,m oMy, m f)’
deﬁpgd in Eqs. (13?—(15). In addition, we use the following C(p?) = Co(0, p*. m2, m}zc ’ m}% ’ m} ),
auxiliary variables: )
C3(p*) = Co(m3,0, p?, mf’mfvmf)
C4(p2) Co(mz,p mmmf,mf,mf)
Ay =s;—m3, (B5a)  Dy(p?) = Dy(m3,0,0,m3, p*, s, my, m7, my, m3),
Dy(p?) = Do(m7,0,m3,0, sy, p*, m7, m7, mz,m7). (B6)
As we can see for Egs. (B2)-(B4) the box diagrams’
amplitudes are free of ultraviolet divergences since they are
X, = 5,5, - mim, (B5b) free of two-point Passarino-Veltman scalar functions.

b. Reducible diagram contribution

The reducible diagram of Fig. 2 only contributes to the

fori=1,2and j = A, Z. As for the three- and four-point
Passarino-Veltman scalar functions C; and D;, they are
defined as

form factor F; of Eq. (17). The Passarino-Veltman tech-
nique allowed us to obtain the following results for the
fermion and W gauge boson contributions:

202N
Gprrm Q Ne Ky
Ziqﬁff mf u {1 + <2mj2f 2>C(s m)z()} r=1
! W
292059/2,4
FX = PLA Geww | 2 2 2 — B7
! cws(my—s) | ~ 4y {5 + 3miy (14 (2my, - S)C(Svmw))] xr=W, (B7)
m
g‘ﬁHiZiZPm .C(s.m2, )—i—l} x = H*,
where the three-point scalar function C(s,m2) can be written in terms of elementary functions as follows:
4m
C(s,m2) = Cy(0,0, s, m2, m2, m2) = ——f (B8)
where f(x) is given in Eq. (30).
2. ¢ > Zyy (¢p=h, H) decay
a. Box diagram contribution
The box diagram contributions to the form factors of Eq. (19) are given as follows:
22 2N
g =3 1691947 amyQINE (B9)

- mycwX;,
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with

X
gBox = 3—; (2854C>(52) = 2A14Co(s1) +2(51 = 52)Ca(5) + DopArzDy(57) — AyzA14D1(s1)), (B10)

2 2
95 = my(=2[X, + s(s1 +52)]Cy (s) + ;AIZA%¢C2(S1) + 252894 Ca(s52) = 28125C5(s1) — ;A%zAz(/;Q(Sz)
+2[2X; + (51 = 52)°|Ca(s) + [4m7 X + 51(Xy + 2515)]D (51) = [4m7 X5 + 52(Xy + 2555)] Dy (52)

XXy + AmIDo(s2), (B11)

ngx:Slz(—sz[slsg+m%(m§s(m%+232)+AzzS2)]C1( )= Ayg[mG = (35 +2(s) +55))mf
+ (257 + 3515+ 57+ 53 +4(s +51)52)mg — (51 +52)8° +55(45) +52)5+ 25155 (51 +52))mz + 51 (s +51)3] Ca(s1)
+ Aoy loz[m7 A5, — AT;53]Ca(s7) + Aoy A3, Xy — sm7] Ca(s2) + AT [sm7 (s + 25, —m7) — Ay zA5,]C5(sy)
—s?m[2X 4 (51— 52)?]Cy(s) +%s[4X¢(X(/, —smZz)m7 +s(=2m5 + (45 + 35 +4s55)m§
— (252 + 3515+ 4555 + 57+ 253 + 6515, )my + 51 (353 + 3555 + 25,5, — 255, )m% — 5353)| D (s)

1
+§s[4X¢(X¢ —smz)my + 555 (my (s +mg) = 53(35 + 251 +55)m5 +5153)|Dy (s7)

1
+5Xg[2m5 — (55 +4(s1 +57))m + (35> +4mis + 5515 + 6555+ 257 +255 +8s15,)m,

2
— (45(25 451 4 52)mF +55(5> + (651 +52)5 + 45 (51 +5)))mz + 515 (4sm7 + (5 +251)57)|D(52)), (B12)
and
1
G5 = ————— (4m7 X y[A17AB(m3, 55) + Doz AB(m37, 51)] + 44,780, X 4, AB(s, m3)
8A 1707

+ 258 7807[2X 4+ m5(m7 — 5) = 51(52 + 51) 4+ 53]C1(5) + A1z807(s + A7) 251417 — X 4] Co(s1)

- Alezz(S + Alz)[5X¢ - 232(A1z + Sl) + 25%]C2(32) - A%ZAZZPSIAIZ - X¢]C3(Sl)

+ Ale%z[SX(/) = 255(A1z + 51) + 253]C3(s2) + 2A12A22[2m4z(m§5 +2(s1 +52))

- (SS% - 35% +4s(s; — 52))’"% + (51— 52) (51 + 52)*]Ca(s) + Alezz[—2m%(m% + 2’"5))

+ (252 + (551 + 4s52)s + 2(s7 + 4525, + 53))m% — 51(52 — (51 — 582)5 + 4s5,(s51 + 52))m%

+ 57(253 + (52 = 251)) = 4m7A X4 D1 (51) = A1z 807 [=2mG (m7 + 2m3) + (2(s + 51)* + 253

+ (95 + 8s1)s5)m% — 55(55% + 3(3s; + 55)5 + 451 (51 + 52))m%

+ 53(s1(s + 251) + 2555) + 4m7(m5 = 251 + 53)Xy| Dy (52) +4miA 1807 (51 — $2)XyDa(52)), (B13)
with the two-point Passarino-Veltman scalar functions defined as AB(r?, r3) = By(r}, m? bm f) By(r5, m3 Fom f) It is also

evident that ultraviolet divergences cancel out.

b. Reducible diagram contribution

The reducible diagrams related to the processes ¢p — Zy* — Zyy, with y = A, Z, yield the following contribution to the
form factor of Eq. (20):

9arr9pza
22 2 _ffizc(s’m?‘) X=A,
C/_Zg anmch CW(mA_s) ’ (B14)
Vg 2ewmam ) 2lggss
: —==—C(s,m%) r==Z.
s
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APPENDIX C: SQUARED AVERAGE AMPLITUDES

From the general form of the invariant amplitudes for the A — Zyy and ¢ — Zyy (¢ = h, H) decays presented in
Egs. (17) and (19), respectively, we can readily obtain the square amplitudes averaged over photon and Z polarizations,
which are required for the calculation of the decay width (21). The results can be written as follows.

1. A - Zyy decay

[M(A = Zyy)P = 4 71 |2+—Calfz|2+—AzzCz|f3|2+—Re[}" Fi)

m/ﬁa <SZA12 1 $2¢,
L A N N N T T A2 A s 1'\ ¢
—%Alezz(zsﬂz—Alezz)Re[j:zfz]+%C1§2Re[73f3]+52A12Re[}—1}—2]+55251C2Re[}—1}—3]

+iAIZA§ZC1C2Re[}'2}"§] — %A Re[F | F3] +%§2A%2Re[f15f§] +iﬁlzRe[}'ZJ’7—'§]> + (31 < $,),
(C1)
where §; = 5,/m3, § = s/m%, A = Ay /m%, Fi(s,s1,5,) = Fi(s, 52, 51). Also
$1=pz — (28 + 51+ 82)pz + 8152, (C2)
Cr = (U3 = 2(8 + 31 + So)py + (282 + 2(3) + 82)3 + 87 + 83 + 451 82)u7 — 2815,(8 + 81 + 8)uz +3153).  (C3)
and

{3 = 3%332 +281(5 = Doy )pzdoy + 15 (=287 + 2078 + 83 + ud — 25,(8 + pz)). (C4)

2. ¢ - Zyy (¢p=h, H) decay
From Eq. (19) we obtain

_ §m6 $A2 1 . R .
\M(p— Zyy)|? = <’12|g1|2—_Alz’71|gz|2+ 1Z|g3|2‘f' —113|G4 > —mRe[GGi] + Ayzm Re[G G5

2 4u, 4515

AR % Pk I N Pk 1 N Pk N 1 A~ Pk
—3A,7Re[G,G5] —nyRe[G, G +§A12Azz'l1Re[gzgz] +§S’71Re[g2g3] +Azm EsRe[gng

1 A A A - 1 A - PN -
—f—g[Alezz—Zs,uz]Re[%gﬂ AlZRe[Q3g4] ;13Re[g4g4] AlZ’?lRe[glgz] +SA1zRe[glg3]
z
~ | A . R R

+?’]2Re[g1gﬂ — A]Zn]Re[gzgz] +§SAlzRe[g3g4]> + (S] <> Sz) (CS)

with Gi(s. s1.5,) = Gi(s. 55, 5,) and

m =Spuz — A12522, (C6)
M = 2312322 — Suz, (C7)
n = (S%A%Z - 231(Azz - 3)#2522 + M%(Agz - 2§(Azz + 3))) (CS)
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APPENDIX D: DECAY WIDTHS OF CP-EVEN
AND CP-ODD SCALAR BOSONS

For completeness, we present the expressions for the
most relevant A - X and ¢ - X (¢ = h, H) decays,
with X a final multiparticle state. These formulas have
been summarized, for instance, in [3,36,37]. We use the
notation introduced in the Feynman rules shown in Figs. 12
and 13.

1. CP-even scalar boson decays

The tree-level two-body decay width into fermion
pairs is
2w
_ Ny (1
87
with f¢ff = gmgy7s/(2my ), where the g,7, constants are
shown in Table II for type -II THDM. Also, we use the
definition 7, = 4m? / m2 » and N‘C stands for the fermion
color number.
The widths of the decays into a pair of on-shell
gauge bosons V =W, Z, when kinematically allowed,
are given by

T(¢— ff)

-7)"%  (DI)

Igp->VV)=

Sorv ¢Vh__<—nﬂ-w> (02)

64nym?,
|

29,7r0,NLg],
; ¢ffcvj; 1% (11(Tfa~ff)

‘F)?Z}/(T;p f;() =

w

2cwmygpn-u+

—2¢) Il(THt,in)
my.

where we introduced the definition & = 4m?/m>.

2. CP-odd scalar boson decays

The decay of a CP-odd scalar boson A into a pair of
fermions is given by

meA

Imﬁﬁﬁi%fﬂﬁ?;

where now we use the definition 7, = 4m2/m?3.

There are no decays into pairs of electroweak gauge
bosons at the tree level, but the A — ¢pZ (¢ = h, H) decay
can be kinematically allowed. Its decay width is given in
Eq. (32) and a similar expression with the corresponding
replacements is obeyed by the A — W*HT decay if
kinematically allowed.

(Ds)

with ny, = 1(2) for V = W(Z). Here fyww = gmwgpww
and f 77 = gmy gpww/ c¥,, where again the ggvv constants
are shown in Table II for type-Il THDM.

For the present work another relevant decay is ¢p — ZA,
whose decay width was already presented in Eq. (32),
which can also be useful to compute the ¢ — WTH* decay
when kinematically allowed. On the other hand, we will
assume that other tree-level decays such as ¢ - AA and
¢ — H-H™" are not kinematically allowed, and we refrain
from presenting the respective decay widths here.

One-loop decays can also be important for Higgs boson
phenomenology: while the decay ¢ — yy has a clean
signature, the decay ¢ — gg is important for the cross
section of Higgs boson production via gluon fusion. As for
the ¢ — yy decay width, it is given in Eqgs. (27)—(29),
which can also be used for the two-gluon decay width by
taking the quark contribution only and making the replace-

ments o’ — 2a3 and N Q?- - 1.

The ¢p — Zy decay has also been largely studied in the
literature. The decay width can be written as

atm’ 3
¢ z
———— 1= |F%%r?2, (D3
512s3,m3, 7 ( 4) | | (D3)
with FO2 = F (008 0)+ FU (27, 8w) + FU (2ys 8y )
The contributions of charged fermions, the W gauge boson,
and the charged scalar are given by

(¢ = Zy) =

— I(7s.&y)) x=1

2 2
9¢WWCW<<<T—+1>t%v—a—5>11<7w,5w)+4(3—t%v)12(7w’5w>> =W, (D4)

x =H*,

As far as one-loop decays are concerned, the two-photon
decay proceeds via charged fermion loops and its decay
width is presented in Egs. (27) and (31), whereas the two-
gluon decay width can be obtained from these equations by
summing over quarks only and making the additional
replacements o — 2a% and N/ Q2 - 1.

The A — Zy decay also receives a contribution from
charged fermions only, and its decay width is given by
Eq. (D3), with ¢ - A and

29,470 :NLgl,
]:AZy:]:AZr(Tf §f) Z gAfof 9(/

(D6)
7 cw

Ir(z5.&y).

3. QCD radiative corrections for the decays ¢p — gq

For light quarks, the running mass m,, at the scale m,
must be used in Egs. (D1) and (D5) to take into account the
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next-to-leading order QCD corrections. As for higher order
QCD corrections, they are important and must also be
included. They are summarized in [37], and we include
them here for completeness. For light quarks we have

202 =
3g GpaqMgMep

320, (1—7,)P2(14A4,, +A%,,),

I(¢p—qq)=
(D7)

where p =1 (3) for the CP-even (CP-odd) scalar boson
and the running quark mass /n,, is defined at the scale m.
As for A, it is the same for both CP-even and CP-odd
scalar bosons for my > m,. In the MS renormalization
scheme it is given by

aS
By =567+ (3594~ 136N) 5+,

(D8)

where N is the number of flavors of light quarks and a is
the strong coupling constant defined at m,, scale. As for A,

it differs for CP-even or CP-odd scalar bosons, and it is
given at order @2 as

2 (mi\ 1 72
1.57-Zlog(—2 ) +=log? (=2} ) p=h.H.
a, 3 m; 9 my,

) 2 _5
T m 1
3.83—log(—2) +-log? (L)) ¢=A.
m; 6 ny,
(D9)
For the top quark, the leading order QCD corrections are
given by [37]
3gzgé;tm,m¢
327m3,

day

(1 _Tr)p/2 <1 +§ b A;ﬁ(ﬂt)) ,
(D10)

[(¢p—11) =

with f, =1 —1,, whereas Aj(p) is given in Ref. [37].
However, these corrections are small compared to the case
of the b and ¢ quarks.
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