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The one-loop contributions to the decays of the CP-odd and CP-even scalar bosons A → Zγγ and
ϕ → Zγγ (ϕ ¼ h, H) are calculated within the framework of CP-conserving two-Higgs doublet models
(THDMs), where they are induced by box and reducible Feynman diagrams. The behavior of the
corresponding branching ratios are then analyzed within the type-II THDM in a region of the parameter
space around the alignment limit and still consistent with experimental data. It is found that the A → Zγγ
branching ratio is only relevant when mA > mH þmZ, but it is negligible otherwise. For mA > 600 GeV
and tβ ≃Oð1Þ, BRðA → ZγγÞ can reach values of the order of 10−5 − 10−4, but it decreases by about 1
order of magnitude as tβ increases up to 10. A similar behavior is followed by the H → Zγγ decay, which

only has a non-negligible branching ratio when mH > mA þmZ and can reach the level of 10−4 − 10−3 for
mH > 600 GeV and tβ ≃Oð1Þ. We also estimated the branching ratios of these rare decays in the type-I
THDM, where they can be about 1 order of magnitude larger than in type-II THDM. As far as the h → Zγγ
decay is concerned, since the properties of this scalar boson must be nearly identical to those of the SM
Higgs boson, the h → Zγγ branching ratio does not deviate significantly from the SM prediction, where it is
negligibly small, of the order of 10−9. This result is in agreement with previous calculations.
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I. INTRODUCTION

The standard model (SM) has provided a successful
description of the observed electroweak phenomena at the
energy scales explored until now, as confirmed recently
with the discovery of the Higgs boson by the ATLAS and
CMS experiments at the CERN LHC [1,2]. Nonetheless, it
is worthwhile to explore whether there is a unique Higgs
boson, as predicted by the SM, or whether the electroweak
symmetry breaking (EWSB) mechanism requires addi-
tional Higgs bosons. To address some SM flaws, a plethora
of extension models have been proposed, several of which
contain a scalar sector with more than one Higgs multiplet,
thereby predicting more than one physical Higgs boson. If
experimental data reveal the existence of any additional
Higgs bosons, it will be crucial to test what extension
model is consistent with such particles. The simplest of
such theories are two-Higgs doublet models (THDMs)
[3,4], which are obtained by adding a second complex
SUð2ÞL Higgs doublet to the SM one. These models respect
the ρ ¼ 1 relation at the tree level, contrary to other

higher-dimensional Higgs-multiplet models. Also, in spite
of its simplicity, THDMs can predict several new phenom-
ena absent in the SM, such as new sources of CP violation,
tree-level scalar-mediated flavor changing neutral currents
(FCNCs), and a dark matter candidate. After EWSB, three
of the 8 degrees of freedom are removed from the spectrum
to provide the longitudinal modes of the W� and Z gauge
bosons. Five physical Higgs bosons remain as a remnant: a
charged Higgs boson pair H� and three neutral Higgs
bosons h, H, and A. If the scalar sector respects CP
invariance, the neutral scalar bosons are CP eigenstates: h
and H are CP-even, whereas A is CP-odd. It is usually
assumed that one of the neutral CP-even scalar bosons is
the one observed at the LHC. The most general CP-
conserving THDMs have tree-level FCNCs [5], which
can be removed by imposing a Z2 discrete symmetry that
forbids such interactions at the tree level [6]. In this
scenario, there are four THDM types, which are typically
known as type-I, type-II, lepton-specific [7], and flipped
THDM [8]. It turns out that type-II THDM is the most
studied in the literature as it has the same Yukawa couplings
as the minimal supersymmetric standard model (MSSM);
therefore its still-allowed region of parameter space has
been considerably studied.
Since the proposal of the Higgs mechanism, the phe-

nomenology of the Higgs bosons has been the focus of
considerable attention. As for the dominant tree-level decay
modes of a CP-even Higgs boson h → f̄f and h → VV
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(V ¼ W, Z), they have long been studied in the literature in
both the SM and several of its extensions, along with the
one-loop induced decays h → γγ, h → γZ, and h → gg.
Although the h → γγ decay has a tiny branching ratio for a
125 GeV Higgs boson, it was very helpful for the detection
of the SMHiggs boson. This decay mode has the advantage
of a relatively low background, so it was fundamental in the
design of the ATLAS and CMS detectors. As for the h →
gg decay, it is undetectable but it is fundamental to compute
the cross section for Higgs production via gluon fusion.
It is expected that the data collected at the LHCmay allow

us to search for any other rare decays of the Higgs boson [9],
such as lepton flavor changing Higgs decays h → l̄ilj
(i ≠ j) or invisible Higgs decays h → =ET , which are for-
bidden in the SM and can shed light on any new physics
effect. Evenmore, with the prospect of a future Higgs boson
factory, other exotic decays of the Higgs boson could be at
the reach of experimental detection. In particular, the rare
decayh → Zγγ is very suppressed in the SMas it arises at the
one-loop level via the exchange of charged particles, so it
can offer a relatively clean signal of new physics: two
energetic photons plus a back to back lepton antilepton pair.
This process can also provide a test for the couplings of the
Higgs boson to the particles running into the loops, which
can be SMparticles or any new charged particle predicted by
other extension models. A similar decay is h → Zgg, which
at the leading order can be straightforwardly calculated from
the h → Zγγ one. In addition, the study of the hZγγ and
hZgg vertices would allow us to obtain the leading order
contributions to the cross section of hZ pair production via
photon fusion γγ → hZ and gluon fusion gg → hZ [10,11].
On the other hand, a CP-odd scalar boson has fewer

decay channels, and so it is worth studying some one-loop
induced decays of such a particle. At tree level, its
dominant decay channels are A → f̄f, A → ZhðHÞ, and
A → W�H∓, when kinematically allowed, whereas at the
one-loop level aCP-odd scalar boson can decay as A → gg,
A → γγ, and A → Zγ [3]. These decay channels can have
significant branching ratios in some regions of the param-
eter space of THDMs. Other one-loop induced decay
modes such as A → WW and A → ZZ have already been
studied in [12,13], though they are more suppressed than
the aforementioned decay channels.
In this work we are interested in studying the A → Zγγ

and ϕ → Zγγ (ϕ ¼ h, H) decay modes in the context of
THDMs, which induce these processes at the one-loop
level via box and reducible Feynman diagrams, with
contributions from charged fermions, mainly from the
top and bottom quarks. The W gauge boson and the
charged scalar boson H� can only contribute through
reducible diagrams to the A → Zγγ decay. The respective
decay of the SM Higgs boson has already been studied:
the decayh → Zγγwas studied inRef. [14], and the analogue
decay h → Zgg was studied in [15,16]. To our knowledge,
the A → Zγγ decay has not been studied until now.

The organization of this paper is as follows. Section II is
devoted to a brief discussion of the general THDM,
focusing on the CP-conserving THDMs. In Sec. III we
present the details of the calculation of the decays A → Zγγ
and ϕ → Zγγ (ϕ ¼ h, H) by the Passarino-Veltman reduc-
tion scheme. We present the analytical expressions for the
invariant amplitudes, the decay widths, as well as the
kinematic distributions of the invariant mass of the photons
and the energy of the Z gauge boson, which can be useful to
disentangle the decay signal from its potential background.
The numerical analysis of the branching ratios within
type-II THDM is presented in Sec. IV, whereas the
conclusions and outlook are presented in Sec. V. The
Feynman rules necessary for the calculations and some
lengthy formulas are presented in the appendixes.

II. TWO-HIGGS DOUBLET MODELS

THDMs have been largely studied in the literature [3].
We will present here a brief outline of CP-conserving
THDMs, including only those details relevant for our
calculation. For the interested reader, a comprehensive
review of these models can be found in [4].

A. THDM Lagrangian

In THDMs, two complex SUð2ÞL Higgs doublets Φi are
introduced in the scalar sector:

Φi ¼
0
@ ϕþ

i

viþϕ0
iþiϕiffiffi
2

p

1
A ði ¼ 1; 2Þ; ð1Þ

where vi are the vacuum expectation values (VEVs) of the
neutral components, which satisfy v21 þ v22 ¼ v2, with
v ¼ 246 GeV. A well known parameter of this model is
the VEVs ratio tan β≡ tβ ¼ v2=v1. The EWSB mechanism
is achieved by the most general SUð2ÞL ×Uð1ÞY gauge
invariant Lagrangian

L ¼
X
i

jDμΦij2 − VðΦ1;Φ2Þ þ LYuk þ LSM; ð2Þ

where jDμΦij2 is the kinetic term for the Higgs doublets,
withDμ the SM covariant derivative,VðΦ1;Φ2Þ is theHiggs
potential,LYuk denotes the Yukawa interactions betweenΦi
and the SM fermions, and LSM describes the SUð2ÞL ×
Uð1ÞY interactions of fermions and gauge bosons.
The most general gauge-invariant renormalizable poten-

tial VðΦ1;Φ2Þ for THDMs is a Hermitian combination of
electroweak invariant combinations. It contains 14 param-
eters and can give rise to new sources of CP violation [17].
However, as long as CP is conserved in the Higgs sector,
the scalar potential for the two doublets Φ1 and Φ2 with
hypercharge þ1 can be written in terms of 8 parameters as
follows [3,4]:
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VðΦ1;Φ2Þ¼m2
11Φ

†
1Φ1þm2

22Φ
†
2Φ2−m2

12ðΦ†
1Φ2þH:c:Þ

þλ1
2
ðΦ†

1Φ1Þ2þ
λ2
2
ðΦ†

2Φ2Þ2þλ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þλ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þþ
λ5
2
½ðΦ†

1Φ2Þ2þH:c:�:
ð3Þ

After EWSB, 3 of the 8 degrees of freedom of the two
Higgs doublets are the Goldstone bosons ðG�; ξÞ, which
are absorbed as longitudinal components of the W� and Z
gauge bosons, whereas the remaining 5 degrees of freedom
become the physical Higgs bosons: there is a pair of
charged scalar bosons H�, two neutral CP-even scalar
bosons h and H, where mh < mH by convention, and one
neutral CP-odd scalar A. Since all the parameters appearing
in the potential are real, there are no bilinear mixing terms,
which is why the neutral mass eigenstates are also CP
eigenstates. In the neutral sector the following mass
term appears:

LA
mass ¼ ðϕ1;ϕ2ÞV2

A

�
ϕ1

ϕ2

�
; ð4Þ

with

V2
A ¼ 1

2

�
m2

12

v1v2
− λ5

��
v22 −v1v2

−v1v2 v21

�
: ð5Þ

Once V2
A is diagonalized, one obtains the neutral Goldstone

boson ξ and the physical CP-odd Higgs boson via the
rotation

�
ξ

A

�
¼

�
cos β sin β

− sin β cos β

��
ϕ1

ϕ2

�
; ð6Þ

with m2
A ¼ ðm2

12

v1v2
− λ5Þv2.

In the case of the CP-even scalar bosons we have

LH
mass ¼

1

2
ðϕ0

1ϕ
0
2ÞV2

H

�
ϕ0
1

ϕ0
2

�
; ð7Þ

where

V2
H ¼

�
As Bs

Bs Cs

�
; ð8Þ

with As ¼ λ1v21 þ v2
v1
m2

12, Bs ¼ m2
12 −

v1
v2
ðv21λ1 − 2m2

11Þ,
and Cs ¼ λ2v22 þ v1

v2
m2

12. The physical CP-even Higgs
bosons with masses mH and mh are obtained by rotating
the original basis by an angle α,

�
H

h

�
¼

�
cos α sin α

− sin α cos α

��
ϕ0
1

ϕ0
2

�
; ð9Þ

with m2
H;h ¼ 1

2
ððAs þ CsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAs − CsÞ2 þ B2

s

p
Þ, and the

mixing angle given as

sin 2α ¼ 2Bsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAs − CsÞ2 þ 4B2

s

p : ð10Þ

B. Flavor-conserving THDMs

As far as the Yukawa Lagrangian LYuk is concerned, the
scalar-to-fermion couplings are not univocally determined
by the gauge structure of the model. The most general
Yukawa Lagrangian for THDMs is [4]

−LYuk ¼
X2
k¼1

½L̄LΦkYl
klR þ Q̄LðΦkYd

kdR þ Φ̃kYu
kuRÞ�

þ H:c:; ð11Þ
where Φ̃j ¼ iτ2Φj, Yf are 3 × 3 complex matrices, and the
left- and right-handed fermion fields are tree vectors in
flavor space.
To prevent tree-level FCNCs it is usual to introduce a

discrete Z2 symmetry respected by the Φi doublets and the
fermions. Under this symmetry one of the scalar doublets is
even Φ2 → Φ2 and the other one is odd Φ1 → −Φ1. This
gives rise to four types of THDMs, which are usually
known as type-I THDM, type-II THDM, lepton-specific
THDM, and flipped THDM. The way in which each Higgs
doublet couples to the fermions in these models is sum-
marized in Table I. On the other hand, if no Z2 discrete
symmetry is imposed, there will be tree-level FCNCs. In
such a scenario both doublets couple to the charged leptons
and quarks. This model is known as type-III THDM
[18,19]. In this work, however, we are not interested in
this realization of THDMs.
Although we will present a rather general calculation

within flavor-conserving THDMs, the numerical analysis
will be carried out in the context of the type-II THDM,
which is by far the most studied THDM since it shares the
same Yukawa interactions as the MSSM. The most dis-
tinctive difference between the type-II THDM and the
MSSM is that the former does not have a strict upper bound

TABLE I. Couplings of quarks and leptons to the Higgs
doublets Φi in THDMs with natural flavor conservation. The
superscript i stands for the generation index. There is another
version of THDMs, known as type-III THDM, in which both
Higgs doublets couple to the leptons and quarks simultaneously,
thereby giving rise to tree-level FCNCs [3,4].

THDM ui di ei

Type-I Φ2 Φ2 Φ2

Type-II Φ2 Φ1 Φ1

Lepton-specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2
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on the mass of the lightest Higgs boson, which is an
important feature of the latter. In addition, in THDMs the
scalar boson self-couplings are arbitrary and so is the
mixing parameter α, which in the MSSM is given in terms
of tan β and the scalar boson masses.
Our calculation is to be performed in the unitary gauge.

The Feynman rules for THDMs can be obtained once the
Lagrangian is expanded in terms of mass eigenstates and
can be found, for instance, in Refs. [3,4]. We present those
Feynman rules required by our calculation in Appendix A.

III. A → Zγγ AND ϕ → Zγγ (ϕ=h, H,)
DECAY WIDTHS

A. Kinematic conditions

We now turn to present the A → Zγγ and ϕ → Zγγ
(ϕ ¼ h, H,) decay widths. We first present the kinematics
conditions, which are defined according to the following
notation for the external four-momenta:

ϕðpÞ → γμðk1Þ þ γνðk2Þ þ Zαðk3Þ: ð12Þ

The mass-shell conditions thus read p2 ¼ m2
ϕ, k

2
3 ¼ m2

Z,
and k21 ¼ k22 ¼ 0. We now introduce the following Lorentz
invariant quantities:

s1 ¼ ðk1 þ k3Þ2; ð13Þ
s2 ¼ ðk2 þ k3Þ2; ð14Þ
s ¼ ðk1 þ k2Þ2: ð15Þ

These variables are not all independent as s1þs2þs¼m2
ϕþ

m2
Z by four-momentum conservation. In our calculation, we

express all the scalar products between the four-momenta k1,
k2, and k3 in terms of the Lorentz invariant variables s1, s2,
and s as well as the scaled variable μZ ¼ m2

Z=m
2
ϕ.

In addition, because of the transversality conditions
obeyed by the gauge bosons, i.e., k1 · ϵμðk1Þ¼ k2 · ϵνðk2Þ¼
k3 · ϵαðk3Þ¼ 0, we drop from the invariant amplitudes any
terms proportional to kμ1, k

ν
2, and kα3 .

All the above kinematic conditions prove useful to
simplify the calculation. We now present the invariant
amplitudes for the A → Zγγ and ϕ → Zγγ (ϕ ¼ h, H)
decays, which are induced at the one-loop level at the
lowest order in perturbation theory.

B. A → Zγγ decay invariant amplitude

There are two sets of Feynman diagrams that induce this
decay: box diagrams and reducible diagrams. Once the
invariant amplitude for each Feynman diagram was written
down in the unitary gauge, we used the Passarino-Veltman
reduction scheme to solve the loop integrals [20], which
were reduced down to a combination of two-, three-, and
four-point scalar functions. The algebra was carried out
with the aid of the Mathematica package FEYNCALC [21].
We first present the invariant amplitude arising from the
box diagrams.

1. Box diagram contribution

In Fig. 1 we show the box diagrams that contribute to the
A → Zγγ decay. The dynamical content is rather simple in
the sense that there is only one kind of particle circulating
into the loop, namely, SM charged fermions. Other charged
particles do not contribute to this decay at the one-loop
level in THDMs: because of CP invariance in the scalar
sector, the CP-odd scalar A does not couple to a pair of W
gauge bosons or charged scalars H∓, though it can couple
to a W�H∓ pair. However, the VW∓H� vertex (V ¼ γ, Z)
is absent at the tree level, and so the A → Zγγ decay cannot
proceed via box diagrams with both W∓ and H∓ particles.
The main contributions of box diagrams are thus expected
to arise from the heaviest fermions. For small tβ, the top

(a) (b)

(c)

FIG. 1. Box diagrams that contribute to the A → Zγγ decay in the THDM. There are three additional diagrams that are obtained by
exchanging the photons. Similar diagrams also contribute to the ϕ → Zγγ (ϕ ¼ h, H) decay, after the replacement A → ϕ.
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quark contribution would dominate, whereas for large tβ
the bottom quark contribution would become relevant. This
is due to the presence of the factors 1=tβ and tβ appearing in
the Yukawa couplings for the top and bottom quarks,
respectively, as will be shown below.
Once the Passarino-Veltman reduction scheme was

applied, we performed several tests on our results. First,
we verified that the invariant amplitude for all the box
diagrams is gauge invariant under Uð1Þem; i.e., it vanishes
when the photon four-momenta are replaced by their
polarization vectors. We also verified that Bose symmetry
is respected and that ultraviolet divergences cancel out. The
invariant amplitude for the A → Zγγ decay can be cast in
the following gauge-invariant manifest form:

MðA→ZγγÞ¼MαμνðA→ZγγÞϵ�αðk3Þϵ�μðk1Þϵ�νðk2Þ; ð16Þ

with the Lorentz structures given as follows:

MαμνðA→ZγγÞ
¼F 1kα1ðkν1kμ2−k1 ·k2gμνÞþF 2ðkν3ðkα1kμ2−k1 ·k2gαμÞ

þk2 ·k3ðkν1gαμ−kα1g
μνÞÞþF 3

m2
A
kα2ðkμ3ðk2 ·k3kν1−k1 ·k2kνÞ

þk1 ·kðkν3kμ2−k2 ·k3gμνÞÞþðkμ1 ↔ kν2Þ; ð17Þ

where the form factors F i depend on s1, s2, s, and μZ,
though we will refrain from writing out such a dependency
explicitly. These form factors will receive contributions
from both box and reducible diagrams, which means that
the latter will not generate additional Lorentz structures.
We can thus write F i ¼ FBox

i þ FRD
i , where the notation is

self-explanatory. The expressions for the box diagram
contributions are too lengthy, and they are presented in
Appendix B in terms of Passarino-Veltman scalar
functions.

2. Reducible diagram contribution

There are also reducible diagrams in which the A → Zγγ
decay proceeds as A → Zϕ� → Zγγ (ϕ ¼ h, H), as
depicted in Fig. 2, with the two photons emerging from
the intermediate scalar boson via loops carrying charged
fermions, the W gauge boson, and the charged scalar
boson H�.
As was the case for the box diagram contribution, the

reducible diagram contribution is gauge invariant and
ultraviolet finite on its own. It turns out that these diagrams
contribute to the gauge-invariant amplitude of Eq. (17) only
through the form factor F 1, which includes the contribu-
tions of charged fermions, the W gauge boson, and the
charged scalar boson H�,

FRD
1 ¼ F f

1 þ FW
1 þ FH�

1 ; ð18Þ

with F χ
1 (χ ¼ f,W,H�) defined in Appendix A in terms of

Passarino-Veltman scalar functions.

C. ϕ → Zγγ (ϕ= h, H) decay

1. Box diagram contribution

As for the ϕ → Zγγ (ϕ ¼ h, H) decay, at the one-loop
level it also receives the contributions of the fermion box
diagrams of Fig. 1 with A replaced by ϕ. It is worth noting
that although a CP-even scalar boson does couple to
charged W∓ gauge bosons and charged scalar bosons
H∓, the corresponding box diagram contributions exactly
cancel out due to CP invariance. Notice that the amplitude
of this vertex must include the Levi-Cività tensor due to CP
invariance, but it cannot arise via box diagrams with
charged particles other than charged fermions, whose
coupling with the Z gauge boson includes a γ5 matrix.
As the invariant amplitude of a fermion loop includes the
trace of a chain of Dirac matrices, the term involving the γ5

matrix would give rise to the required Levi-Cività tensor.

FIG. 2. Reducible Feynman diagrams for the A → Zγγ decay in
the THDM. For the triangle diagrams there are additional
diagrams that are obtained by exchanging the photons. Similar
diagrams also contribute to the ϕ → Zγγ (ϕ ¼ h, H) decay,
except that the intermediate particle is now the CP-odd scalar
boson A and there is only a contribution from charged fermions in
the triangle loop.
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The most general Lorentz structure for the ϕ → Zγγ (ϕ ¼ h, H) decay can be written in the following gauge-invariant
manifest form:

Mαμνðϕ → ZγγÞ ¼ G1ðk1 · k2ϵαμνk3 þ gμνϵαk3k1k2 − kμ2ϵ
ανk3k1 þ kν1ϵ

αμk3k2Þ þ G2

m2
ϕ

ϵαμk3k1ðk3 · k2kν1 − k1 · k2kν3Þ

þ G3ðk1 · k2ϵαμνk1 þ kν1ϵ
αμk1k2Þ þ G4ðk3 · k2ϵαμνk1 þ kν3ϵ

αμk1k2Þ þ ðkν1 ↔ kμ2Þ; ð19Þ

where we use the shorthand notation ϵαkpq ¼ ϵαβλρkβpλqρ,
etc. Again the form factors Gi depend on s, s1, s2, and μZ. To
arrive at the above equation, we used Schouten’s identity.
These form factors receive contributions from both box
diagrams and reducible diagrams: Gi ¼ GBox

i þ GRD
i . As far

as the contributions from the box diagrams are concerned,
they are reported in Appendix B in terms of Passarino-
Veltman scalar functions.

2. Reducible diagram contribution

There are also contributions from reducible diagrams that
are analogue to those depicted in Fig. 2, but with the photons
emerging from the intermediate CP-odd scalar boson A via
loops of charged fermions only. There are also extra
reducible diagrams arising from the process ϕ → ZZ� →
Zγγ, as shown in Fig. 3. This diagram involves the well-
known triangle anomaly Z�γγ, which receives contributions
from charged fermions only. This is due toCP invariance as
the amplitude for this vertex must be proportional to the
Levi-Cività tensor, which can only arise via the trace of a
chain of Diracmatrices including γ5, which in turn is present
only in a fermion loop. Therefore loops of the charged W
gauge boson or the charged scalar boson do not contribute to
this vertex. Also, because of the Landau-Yang theorem, the
Z�γγ vertex vanishes for real Z, so this diagram does not
contribute to the ϕ → Zγγ decay when the ϕ scalar boson is
kinematically allowed to decay into a pair of real Z gauge
bosons. These reducible Feynman diagrams only contribute

to the invariant amplitude of the ϕ → Zγγ (ϕ ¼ h,H) decay
via the form factor G3,

GRD
3 ¼ GZ

3 þ GA
3 ; ð20Þ

where GZ
3 and GA

3 are the form factors arising from the
diagrams with the vertices Z�γγ and A�γγ, respectively.
Explicit expressions in terms of Passarino-Veltman scalar
functions are given in Appendix B. Note that we must
include the contributions of all the fermions of each family in
order to cancel the Z�γγ anomaly.

D. A → Zγγ and ϕ → Zγγ (ϕ= h, H) decay widths

There are two scenarios for the ϕi → Zγγ (ϕ ¼ h, H, A)
decays, which depend on the value of the mass of the
incoming scalar boson ϕi as compared to the mass of the
exchanged scalar boson, which we denote by ϕe: ϕe ¼ h,
H for ϕi ¼ A or ϕe ¼ A for ϕi ¼ h, H. We will present the
expression for the resulting decay width in both scenarios.

1. mϕi
< mϕe

+mZ

In this scenario, the incoming scalar boson ϕi will not be
heavy enough to produce an on-shell ϕe in addition to the
on-shell Z gauge boson. Therefore we will have a pure
three-body decay induced by both box and reducible
diagrams. The corresponding decay width can be written as

Γðϕi →ZγγÞ¼ mϕi

256π3

Z
x1f

x1i

Z
x2f

x2i

jM̄ðϕi →ZγγÞj2dx2dx1;

ð21Þ

where we introduced the following scaled variables:

x1 ¼
2p · k3
m2

ϕi

¼ 1þ μZ − ŝ; ð22Þ

x2 ¼
2p · k1
m2

ϕi

¼ 1 − ŝ2; ð23Þ

x3 ¼
2p · k2
m2

ϕi

¼ 1 − ŝ1; ð24Þ

with ŝ¼ s=m2
ϕi
and ŝi ¼ si=m2

ϕi
. In the center-of-mass frame

of the decaying ϕi we have x1 ¼ 2EZ=mϕi
, x2 ¼ 2Eγ=mϕi

,

FIG. 3. Feynman diagram that also contributes to the ϕ → Zγγ
(ϕ ¼ h, H) decay in the THDM, in addition to Feynman
diagrams analogue to those of Figs. 1 and 2. The diagram
obtained by exchanging the photons is not shown.
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and x3 ¼ 2Eγ0=mϕi
, where Eγ (Eγ0 ) stands for the energy of

the photon with four-momentum k1 (k2). From energy
conservation, these variables obey x1 þ x2 þ x3 ¼ 2.
The kinematic limits in Eq. (21) are as follows:

x1i ¼ 2
ffiffiffiffiffi
μZ

p
;

x1f ¼ 1þ μZ;

x2i;2f ¼ 1

2

�
2 − x1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 − 4μZ

q �
: ð25Þ

The squared average amplitudes for both decays A → Zγγ
and ϕ → Zγγ (ϕ ¼ h, H) are presented in Appendix C.

2. mϕi
> mϕe

+mZ

In this scenario the incoming scalar boson ϕi is heavy
enough to produce an on-shell scalar boson ϕe. Therefore
the ϕi → Zγγ decay proceeds as the pure two-body decay
ϕi → Zϕe, followed by the decay ϕe → γγ. Note that in the
case of the decay of a CP-even Higgs boson, although the
decay into a pair of real Z gauge bosons will now be
kinematically allowed, the Z → γγ decay is forbidden by
the Landau-Yang theorem, which means that the

contribution of the intermediary Z gauge boson will thus
vanish. In this scenario, using the Breit-Wigner propagator
for the exchanged scalar boson, Eq. (21) can be integrated
and the ϕi → Zγγ decay width can be written as

Γðϕi → ZγγÞ ¼ Γðϕi → ZϕeÞBRðϕe → γγÞ; ð26Þ
with the decay width Γðϕe → γγÞ given by

Γðϕe → γγÞ ¼ α2g2m3
ϕ

1024π3m2
W
jFϕeγγj2: ð27Þ

For a CP-even scalar boson ϕe ¼ h, H, Fϕeγγ receive
contributions from charged fermions, the chargedW gauge
boson, and the charged scalar boson H�:

Fϕeγγ ¼Fϕeγγ
f ðτfÞþFϕeγγ

W ðτWÞþFϕeγγ
H� ðτH�Þ for ϕe¼h;H;

ð28Þ

with τχ¼4m2
χ=m2

ϕe
. TheFϕeγγ

χ ðxÞ functions can be obtained
from the results for the reducible diagrams presented in
Appendix B by setting s ¼ m2

ϕe
. They are given by

Fϕeγγ
χ ðτχÞ ¼

8>>>>><
>>>>>:

P
f
gϕef̄fN

f
cQ2

f½−2τfð1þ ð1 − τfÞfðτfÞÞ� χ ¼ f;

gϕeWW ½2þ 3τW þ 3τWð2 − τWÞfðτWÞ� χ ¼ W;

m2
Wð1−2s2WÞgϕeH−Hþ

c2Wm2

H�
½τH�ð1 − τH�fðτH�ÞÞ� χ ¼ H�;

ð29Þ

for ϕe ¼ h, H. Also, fðxÞ is given by

fðxÞ ¼

8>>>><
>>>>:

�
arcsin

�
1ffiffiffi
x

p
��

2

x ≥ 1;

−
1

4

�
log

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − x
p

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
�
− iπ

�2
x < 1.

ð30Þ

On the other hand, when the intermediary scalar boson is
the CP-odd one A, we only have the contributions of
charged fermions

FAγγ ¼ FAγγ
f ðτfÞ ¼

X
f

gAf̄fQ
2
fN

f
c ½−2τffðτfÞ�: ð31Þ

As for the ϕi → ϕeZ decay width, it is given as follows:

Γðϕi →ZϕeÞ

¼ g2ϕZϕe
αm3

ϕi

256s2W
ðð4− ð ffiffiffiffiffiffi

τϕe

p −
ffiffiffiffiffi
τZ

p Þ2Þð4− ð ffiffiffiffiffiffi
τϕe

p þ ffiffiffiffiffi
τZ

p Þ2ÞÞ32:

ð32Þ

Note that τϕe
¼ 4m2

ϕe
=m2

ϕi
; thus τϕe

¼ 4m2
ϕ=m

2
A for A →

Zγγ and τϕe
¼ 4m2

A=m
2
ϕ for ϕ → Zγγ (ϕ ¼ h,H). A similar

expression with the corresponding replacements is obeyed
by the ϕe → W�H∓ decays if kinematically allowed.

TABLE II. Constants for the couplings of the scalar bosons to fermions and gauge bosons in type-II THDM as described in Figs. 12
and 13of Appendix A. We have used the shorthand notation sa ¼ sin a and ca ¼ cos a. The gϕZZ couplings obey gϕZZ ¼ 1

c2W
gϕWW [4].

ϕ gϕuu gϕdd (gϕll) gϕWW gϕZA gϕH−Hþ gϕW−Hþ

h −ðsβ−α þ cβ−α
tβ
Þ −ðsβ−α − tβcβ−αÞ sβ−α cβ−α ðcWcβ−α − 1

2cW
c2βcβþαÞ cWsβ−α

H −ðcβ−α − sβ−α
tβ
Þ −ðcβ−α þ tβsβ−αÞ cβ−α −sβ−α ðcWsβ−α þ 1

2cW
c2βsβþαÞ cWcβ−α

A 1
tβ

tβ 0 0 0 −icW
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All the necessary coupling constants gϕf̄f, gϕWW , gϕZZ,
gϕAZ, gϕW�H∓ , gϕH−Hþ ðϕ ¼ h;HÞ, along with gAf̄f and
gAW�H∓ are shown in Table II. Other coupling constants
involved in decays such as H → hh and ϕ → AA can be
found in Refs. [3,4] for instance. To obtain the branching
ratio BRðϕe → γγÞ, we need the main decay widths of both
CP-even and CP-odd scalar bosons, which have already
been studied in the literature considerably [3]. For com-
pleteness we present in Appendix D all the necessary
formulas, which can also be helpful to obtain the branching
ratio for the ϕi → Zγγ decay in type-II THDM and make a
comparison with that of other decay channels.

IV. NUMERICAL ANALYSIS AND RESULTS

We now turn to the numerical analysis. To begin with, we
will analyze the current constraints on the parameter space
of type-II THDM.

A. Allowed parameter space of type-II THDM

After the Higgs boson discovery, several studies have
been devoted to explore the implications on the parameter
space of THDMs [22–26]. From the recent analyses of the
ATLAS and CMS Collaborations [27], it is inferred that the
properties of the 125 GeV scalar boson found at the LHC
are highly consistent with the SM predictions, thereby
imposing strong constraints on the scalar sector of SM
extensions. If one of such theories predicts several CP-even
physical Higgs bosons, one of them must correspond to the
SM one and reproduce its couplings to fermions and gauge
bosons. In type-II THDM, the scalar boson h is usually
assumed to be the lightest one and so is identified with the
SM Higgs boson, which constrains the parameter space of
the model to a region very close to the alignment limit
sinðβ − αÞ ¼ 1, where the heavy Higgs H does not couple
to the gauge bosons and the coupling hZA is absent at tree
level [26,28,29]. The couplings of the h Higgs boson to the
fermions involve the mixing angles α and β. Therefore, the
LHC data can impose strong constraints on both param-
eters. Other constraints can be obtained from theoretical
requirements such as vacuum stability and unitarity of the
scalar potential as well as perturbativity of the Higgs
couplings. Also, the oblique parameters S, T, and U can
impose strong constraints on the masses of the new Higgs
bosons A and H, requiring that at least one of them is very
heavy: a CP-odd scalar with mA ∼ 200 GeV requires a
heavy CP-even scalar with mH ≥ 600 GeV and vice versa.
As for the charged Higgs boson mass, it can be constrained
through experimental measurements on low energy FCNC
processes.
All of the above constraints can be complemented with

the direct searches of additional Higgs bosons at LEP and
the LHC. Below we present the constraints most relevant
for our numerical analysis:

(i) Mixing angles β and β − α: since the h Higgs boson
is identified with the SM Higgs boson, the LHC data
restrict β − α to lie very close to π=2, namely,
j sinðβ − αÞj > 0.999, with a small interval around
tβ ¼ 1 where such a constraint is less stringent.
Furthermore, in type-II THDM, for β − α ≃ π=2, the
scalar couplings to the top quark (bottom quark)
behaves as 1=tβ (tβ); thus the FCNCs’ processes are
very sensitive to small and large values of tβ, which
will impose stringent constraints on this parameter.
We can thus consider values of tβ in the range 1–30.

(ii) Mass of the charged Higgs boson mH� : while the
direct search at LEP imposed the constraint mH� >
80 GeV [30], the measurement of the B̄ → Xsγ
branching ratio imposes the very stringent bound
mH� > 570 GeV, for tβ ∼ 1.5 [31].

(iii) Massof theCP-odd scalarmA: the authors ofRef. [25]
examine the scenarios where eithermA ormH is set to
a large value about 600–700 GeV while the other one
is bounded via theory constraints and experimental
data, with the remaining free parameters set to the
values mentioned above. We will follow closely this
analysis as it is of interest for the presentwork.We first
examine the case of a lightCP-odd scalar and a heavy
CP-even scalar with mass mH ¼ 600 GeV. In this
scenario the searches for the decays A → τ̄τ, A → γγ,
and A → hZ exclude the region mA < 350 GeV,
whereas the LHC data on the Higgs boson require
mA to be larger than 220 GeV. On the other hand, the
search for the channel bb̄ → A → τ̄τ allows for mA
values in the range 350–700 GeV and impose the
upper limit tβ < 2 formA≤500GeV, whereas tβ<15

for 500GeV≤mA≤700GeV;.
(iv) Mass of the heavy CP-even scalar mH: we now

examine the scenario with a lightCP-even scalar and
a heavy CP-odd scalar with mA ¼ 700 GeV. In this
case the whole constraints require mH > 300 GeV,
whereas the bb̄ → H=A → ττ̄ channel imposes an
upper bound on tβ as a function ofmH. For instance,
for mH ¼ 200 (600) GeV tβ < 6 (15). On the other
hand, the searches for theH decays into τ̄τ,WW, ZZ,
γγ, and hh require tan β > 2.5 for mH < 380 GeV.
For a lighter mA ¼ 600 GeV, the search for the A →
HZ channel can exclude the regionmH < 270 GeV.

We now turn to study the behavior of the A → Zγγ and
ϕ → Zγγ (ϕ ¼ h, H) branching ratios as functions of the
parameters tβ, β − α,mH� ,mA, andmH. We stick to the still
allowed values for these parameters, whereas for the SM
parameters we take the values given in Ref. [32]. For our
analysis we used the LOOPTOOLS package [33,34] for the
numerical evaluation of the Passarino-Veltman scalar
functions appearing in the decay amplitudes. The dominant
decay widths of the CP-odd and CP-even scalar bosons
were evaluated by our own Mathematica code that imple-
ments the formulas of Appendix D, including the QCD
corrections for the decays into light quarks.
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B. A → Zγγ branching ratio

We work in a region close to the alignment limit and use
sinðβ − αÞ ¼ 0.999. In this scenario, the strength of the
hZA vertex is negligible, and so the contributions to the
A → Zγγ decay only arise from box diagrams and reducible
diagrams with H exchange, which receive their main
contributions from the top and bottom quarks. The con-
tribution of the loops with W gauge bosons turns out to be
negligibly small as it is proportional to cos2ðβ − αÞ,
whereas the charged scalar boson also gives a very small
contribution for mH� of the order of a few hundred GeVs.
We can distinguish two scenarios of interest: mA <

mH þmZ and mA > mH þmZ. Below we examine the
behavior of the A → Zγγ branching ratio in such scenarios.

1. Scenario with mA < mH +mZ

We consider the scenario with mH ¼ 600 GeV and
analyze the behavior of BRðA → ZγγÞ as a function of
mA in the range 350–650 GeV. For the mixing angle β we
consider two values: tβ ¼ 2 and tβ ¼ 10, which are allowed
for mA < 500 GeV and 500 GeV ≤ mA ≤ 700 GeV,
respectively. In the upper plots of Fig. 4 we show the
behavior of theA → Zγγ branching ratio as a function ofmA
for the two chosenvalues of tβ.We also show themain decay
modes of the CP-odd scalar boson: A → bb̄, A → W−Hþ,
tt̄, gg, γγ, and Zγ. The decay A → Zh has a negligible
branching ratio in the region close to the alignment limit and

is not shown in the plots. We note that the main contribution
to BRðA → ZγγÞ arises from the reducible diagrams with
top quarks, whereas the contribution of the loops with
charged scalar bosons is negligible. Since in this scenario the
intermediary scalar boson H is far from the resonance, the
reducible diagram contribution is very small, though it is
larger than the box diagram contribution by almost 2 orders
of magnitude. Therefore, the Z → Aγγ branching ratio is
thus very small. For instance, for tβ ¼ 2, BRðA → ZγγÞ is of
the order of 10−11 formA ¼ 300 GeV with a small increase
asmA increases. When tβ increases up to 10, BRðA → ZγγÞ
decreases about 1 order of magnitude as the top quark
contribution is suppressed by a factor of 1=tβ. In this region
of the parameter space of the type-II THDM, the A → Zγγ
branching ratio is considerably smaller than those of the one-
loop induced decays A → γγ and A → Zγ.

2. Scenario with mA > mH +mZ

We now turn to analyze the scenario where the CP-even
scalar is relatively light, with a massmH ¼ 270 GeV along
with a heavier CP-odd scalar with a mass in the range
600–1000GeV.We use tβ¼5 and tβ ¼ 10, which are allowed
formA ¼ 600 GeVandmA ¼ 700 GeV, respectively. In this
scenario the intermediate scalar bosonH is on resonance and
the CP-odd scalar can decay as A → ZH with a large
branching ratio. The decay A → Zγγ would then proceed
in two stages: after the CP-odd scalar boson decays as

FIG. 4. Branching ratio for the A → Zγγ decay in type-II THDM as a function of mA for mH� ¼ 570 GeV, sinðβ − αÞ ¼ 0.999, and
two values of tβ allowed by theory and experimental constraints. In the upper (lower) plots we usemH ¼ 600 (270) GeV. The branching
ratios for the main A decay channels are also shown.
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A → ZH, the on-shell CP-even scalar boson decays into a
photon pair H → γγ, namely, A → HZ → Zγγ. The
enhancement of BRðA → ZγγÞ becomes evident in the lower
plots of Fig. 4, where we show its behavior as a function of
mA, along with that of the branching ratios of other
decay modes of the CP-odd scalar boson. We observe that
BRðA → ZγγÞ increases up to 4 orders of magnitude with
respect to the result obtained in the scenario with mA <
mH þmZ and can reach values of the order of 10−6 − 10−5

when mA is in the 600–800 GeV range. In this mass regime,
themain decay isA → HZ, which explainswhy theA → Zγγ
decay has such an enhanced branching ratio. For illustrative
purpose we also show the branching ratios for the decays
A → Zb̄b and A → Zgg, which arise from the decay A →
HZ followed by the decays H → b̄b and H → gg. We note
that the dominant decay channel is A → Zb̄b.
The above-described behavior of BRðA → ZγγÞ is best

illustrated in the contour plot on themA vsmH plane shown
in Fig. 5 for two values of tβ. We observe that BRðA →
ZγγÞ can reach its largest values, of the order of 10−5, in the
region where mA > mH þmZ, whereas it is negligible
when mA < mH þmZ. Since the A → Zγγ decay receives
its main contribution from the loops with top quark, it
decreases as tβ increases.

C. H → Zγγ branching ratio

We now analyze the behavior of the H → Zγγ branching
ratio as a function of mH in scenarios analogue to those
discussed for the CP-odd scalar boson. For sinðβ − αÞ ¼
0.999, apart from the box diagram contribution, the only
contribution from reducible diagrams is that with an
intermediary CP-odd scalar boson A, which receives
contributions mainly from the top and bottom quarks.
The diagram mediated by the Z gauge boson gives a
negligible contribution since theHZZ vertex is proportional
to cosðβ − αÞ.

1. Scenario with mH < mA +mZ

We consider a heavy CP-odd scalar with a mass mA ¼
600 GeV and takemH in the range 300–600 GeV. For tβ we
use the values 3 and 10. In the upper plots of Fig. 6 we show
the branching ratios for the main decay channels of the H
scalar boson. We note that the H → Zγγ decay has a very
suppressed branching ratio up to 5 orders of magnitude
smaller than the branching ratios of the one-loop induced
decays H → γγ and H → Zγ. It increases for smaller tβ but
it seems still beyond the reach of detection.

2. Scenario with mH > mA +mZ

In this scenario we consider mA ¼ 350 GeV and take
mH in the range 600–1000 GeV. We also use tβ ¼ 2 and
tβ ¼ 10. For the mass of the charged scalar boson we
use mH� ¼ 575 GeV as we do not need to assume that
mH� > mH since the H → W−Hþ decay channel has a
negligible branching ratio proportional to cosðβ − αÞ2. In
the lower plots of Fig. 6 we show the H → Zγγ branching
ratio along with those of the main decay channels. We note
that there is a considerable enhancement of BRðH → ZγγÞ,
up to 5 orders of magnitude, now that theH → ZA decay is
allowed; thus BRðH → ZγγÞ can be as large as 10−3 for
tβ ¼ 2. Again we include the decays H → ZA → Zb̄b
and H → ZA → Zgg, with the dominant decay being
H → ZA → Zb̄b.
In Fig. 7, we also show the contour plot of BRðH → ZγγÞ

in themH vsmA plane for two values of tβ. Again it is evident
that BRðH → ZγγÞ can reach its largest values whenmH >
mA þmZ and it is negligible when mH < mA þmZ. It also
decreases when tβ increases as it receives the main con-
tribution from loops with the top quark.
Finally, we would like to comment shortly on the

potential detection of the A → Zγγ and ϕ → Zγγ (ϕ ¼ h,
H) decays in the scenario we are considering in type-II

FIG. 5. Contour plot of BRðA → ZγγÞ in the mA vs mH plane for sinðβ − αÞ ¼ 0.999, mH� ¼ 570 × GeV;, and two values of tβ.
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THDM. Although there is a considerable enhancement of
the corresponding branching ratios, it still seems not
enough to put these decays at the reach of experimental
detection at the LHC in the near future. In Fig. 8 we show
the leading order production cross section for the CP-even
and CP-odd scalar bosons via gluon fusion at the LHC atffiffiffi
s

p ¼ 14 TeV as a function of the scalar boson mass. It
turns out that with an integrated luminosity of 300 fb−1, to
be achieved in LHC run 3, we would have about 1.64 × 105

(3.2 × 105) CP-even (CP-odd) scalar bosons with a mass
mϕ ¼ 500 GeV produced per year, but these numbers drop

by 1 order of magnitude when mϕ ¼ 700 GeV. For
BRðH → ZγγÞ ≃Oð10−3Þ, we would only have about
164 H → Zγγ events prior to imposing the kinematic cuts,
which would render this decay hard to detect. The situation
might be more promising at a future high-luminosity
100 TeV pp collider, where we could have thousands of
H → Zγγ events prior to imposing the kinematic cuts.
As discussed below, this event number would increase in
type-I THDM by 1 order of magnitude as the respective
branching ratios would have such an enhancement in
that model.

FIG. 6. Branching ratio for the H → Zγγ decay in type-II THDM as a function of mH for mH� ¼ 570 GeV, sinðβ − αÞ ¼ 0.999, and
two values of tβ allowed by theory and experimental constraints. In the upper (lower) plots we usemA ¼ 600 (350) GeV. The branching
ratios for the main H decay channels are also shown.

FIG. 7. Contour plot of BRðH → ZγγÞ in the mH vs mA plane for sinðβ − αÞ ¼ 0.999, mH� ¼ 570 GeV, and two values of tβ.
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D. h → Zγγ branching ratio

We now briefly discuss the lightest CP-even scalar
boson decay h → Zγγ. Since h must mimic the properties
of the SM Higgs boson, it is expected that the h → Zγγ
branching ratio does not deviate considerably from its SM
value. For sinðβ − αÞ ≃ 1, the only contributions arise from
box diagrams and the reducible diagram mediated by the Z
gauge boson. As mentioned before, the hZA vertex is
considerably suppressed, whereas the hHZ one is forbid-
den due to CP invariance. Even more, there is no enhance-
ment due to the Z-mediated reducible diagram since
mh < 2mZ. For mh ¼ 125 GeV and tβ ¼ 10 GeV we
obtain BRðh → ZγγÞ ≃ 10−9, which does not deviate sig-
nificantly from the SM value [16]. Therefore the new
physics effects provided by the THDM do not give a
significant enhancement to this decay and seem very far
from the reach of detection.

E. Kinematic distributions

In the scenario in which the intermediary scalar boson is
off-shell, the analysis of the behavior of some kinematic

distributions could be helpful to disentangle the decay
signal from the potential background. The Z gauge boson
energy distribution dΓðϕi → ZγγÞ=dEZ and the photon
invariant mass distribution dΓðϕi → ZγγÞ=dmmγγ0 could be

useful for this task. To obtain the former, one can plug the
relation dx1 ¼ ð2=mϕi

ÞdEZ into Eq. (21) to obtain

dΓðϕi → ZγγÞ
dEZ

¼ 1

128π3

Z
x2f

x2i

jM̄ðϕi → ZγγÞj2dx2; ð33Þ

where the Z gauge boson energy is defined in the
interval ðmZ; ðm2

ϕi
þm2

ZÞ=ð2mϕi
ÞÞ.

On the other hand, the expression for the photon
invariant mass distribution dΓðϕi → ZγγÞ=dmmγγ0 is

obtained using the relation dmγγ0 ¼ dEZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μZ − x1 þ 1

p
,

which leads to

dΓðϕi →ZγγÞ
dmγγ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μZ−x1þ1

p
128π3

Z
x2f

x2i

jM̄ðϕi →ZγγÞj2dx2;

ð34Þ
where mγγ0 is defined in the interval ð0; mϕi

−mZÞ.
For illustrative purposes we show in Fig. 9 the energy

distribution dΓðA → ZγγÞ=dEZ and the photon invariant
mass distribution dΓðA → ZγγÞ=dmγγ in the alignment
limit for mH ¼ 700 GeV, mH� ¼ 750 GeV, tβ ¼ 15, and
a few values of mA. We observe that in the rest frame of the
CP-odd scalar, the Z gauge boson energy is peaked at about
one-half of mA. A similar situation is observed for the
invariant mass mγγ.

F. A → Zγγ and H → Zγγ decays in type-I THDM

We now briefly analyze these decays in the framework of
type-I THDM, where the charged scalar boson mass has a
lower bound. Since the main contribution to the decays
A → γγ and H → γγ arises from the top quark, the effect of
a charged Higgs scalar boson with a mass less than 570 GeV
would not have a considerably effect on the decays we are
interested in. However, in type-I THDM the couplings of the
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CP-odd scalar boson to both quark types are now propor-
tional to cot β, and the same is true for the couplings of the
CP-even scalar bosons in the cosðα − βÞ → 0 limit [35].
Therefore, the decay widths of the scalar bosons into the b̄b
pair would be suppressed for large tβ, which can have an
effect on our decays indeed. Consider, for instance, the decay
A → Zγγ in the scenario where mA > mH þmZ. In type-II
THDM the main decay channel is A → ZH → Zb̄b, but for
large tβ this decay would get suppressed in type-I THDM as
theH → b̄b decay gets suppressed. This can translate into an
enhancement of the A → ZH → Zγγ decay width. To ana-
lyze this scenario we have performed the explicit calculation
of theA → Zγγ andH → Zγγ decaywidths in type-I THDM
in the same scenarios considered in type-II THDM. The
results for the respective branching ratios and those of the
main decay channels are shown in Fig. 10, wherewe observe
that theA → Zγγ andH → Zγγ decays can have an enhance-
ment of about 1 order of magnitudewith respect to the values
obtained on type-II THDM.

V. CONCLUSIONS

In this work we have calculated the one-loop contribu-
tions to the decays of theCP-odd andCP-even scalar bosons
A → Zγγ and ϕ → Zγγ (ϕ ¼ h, H) in the framework of
THDMs. We have presented analytical expressions for both
box and reducible diagrams in terms of Passarino-Veltman
scalar functions, though the main contributions arise from

reducible diagrams. We first discuss the A → Zγγ decay,
which has not been discussed previously in the literature to
our knowledge. For the numerical analysis we worked
within the type-II THDM and considered a region of the
parameter space still consistent with experimental data, with
sinðβ − αÞ ≃ 1, where the lightestCP-even scalar boson h is
identified with the SM Higgs boson, the hZA vertex has a
negligibly small strength, and the heavy CP-even scalar
does not couple to the weak gauge bosons. It was found that
the A → Zγγ branching ratio is only relevant in the scenario
where mA > mH þmZ, when the intermediary H boson is
on-shell. For mA > 600 GeV and tβ close to 1, BRðA →
ZγγÞ can reach values of the order of 10−5 − 10−4, but it
decreases by about 1 order ofmagnitude as tβ increases up to
10, which stems from the fact that the dominant contribution
arises from the loopswith the top quark,which couples to the
scalar boson with a strength proportional to 1=tβ. On the
other hand, when mA < mH þmZ, BRðA → ZγγÞ is negli-
gibly small, of the order of 10−10. As far as the H → Zγγ
decay is concerned, it exhibits a similar behavior and its
branching ratio is non-negligible only in the scenario where
mH > mA þmZ, when theCP-odd scalar is nowon-shell. In
this region of the parameter space, BRðH → ZγγÞ can reach
the level of 10−4 − 10−3 formH > 600 GeV and tβ ≃ 1, but
it decreases for larger tβ. We also discussed the h → Zγγ
decay, which receives a contribution from box diagrams and
a reducible diagram mediated by the Z gauge boson. Since

FIG. 10. Branching ratios for the A → Zγγ and H → Zγγ decays in type-I THDM as a function of the scalar boson masses for
mH� ¼ 570 GeV, sinðβ − αÞ ¼ 0.999, and two values of tβ allowed by theory and experimental constraints. The branching ratios for the
main decay channels are also shown.
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the properties of the h scalar boson are nearly identical to the
SM Higgs boson, it is found that the h → Zγγ branching
ratio does not deviate significantly from the SM prediction
and it is of the order of 10−9. Our calculation is in agreement
with previous evaluations. The new physics effects of
THDMs are thus not relevant for this decay. Finally, we
also estimated these rare decays in the framework of type-I
THDM, where we find that the respective branching ratios
can be enhanced by about 1 order of magnitudewith respect
to those of type-II THDM.
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APPENDIX A: FEYNMAN RULES

In this appendix we present the Feynman rules necessary
for our calculation, which was performed in the unitary
gauge. We first present the Feynman rules for the vertices
VW−Wþ, γγW−Wþ, and Vf̄f (V ¼ γ, Z), which are
identical to the SM ones and are shown in Fig. 11.

We also need the couplings of the neutral Higgs bosons
to the fermions, the gauge bosons, and the charged scalar
bosons. The Feynman rules for the couplings of the neutral
Higgs bosons to fermion pairs in THDMs are shown in
Fig. 12, and the corresponding coupling constants for
type-II THDM are presented in Table II [4].
As far as the couplings of scalar bosons to gauge bosons,

we must expand the covariant derivative of Eq. (2) in terms
of the physical fields. It is straightforward to obtain the
Feynman rules shown in Fig. 13 for the couplings ϕVV
(V ¼ W, Z) and ZϕA (ϕ ¼ h, H). Note that the AVV
(V ¼ W, Z) and HhZ couplings are absent due to CP
conservation. Other Feynman rules such as those for the
vertices γH−Hþ, ZH−Hþ, and γγH−Hþ are also obtained
from the Higgs kinetic sector and are shown in Fig. 13, and
so is the Feynman rule for the couplings of the CP-even
scalar bosons to a pair of charged scalar bosons ϕH−Hþ,
which emerge from the Higgs potential (3) once it is
diagonalized.

APPENDIX B: A → Zγγ AND ϕ → Zγγ (ϕ= h, H)
DECAY AMPLITUDES

We now present the form factors of Eqs. (17) and (19) in
terms of Passarino-Veltman scalar functions.

FIG. 11. SM Feynman rules necessary for our calculation. All the four-momenta are incoming. gVWW ¼ 1 (− cW
sW
) for V ¼ γ (Z). In

addition, Γαμνðk1; k2; k3Þ ¼ ðk1 − k2Þνgαμ þ ðk2 − k3Þαgμν þ ðk3 − k1Þμgαν and Σαβμν ¼ 2gαβgμν − gαμgβν − gανgβμ. We also need the
Feynman rules for the interactions of the photon and the Z gauge boson with a fermion pair, which are as follows: −ieQfγ

μ and

−i g
2cW

ðgfV − gfAγ
5Þγμ, respectively, where gfA ¼ 1

2
T3
f and g

f
V ¼ 1

2
Tf
3 −Qfs2W , with Qf the fermion charge and T3

f ¼ 1 (−1) for up quarks
(down quarks and charged leptons).

(a) (b)

FIG. 12. Feynman rules for the couplings of the scalar bosons to fermions in THDMs. The corresponding coupling constants for type-
II THDM are shown in Table II.
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1. A → Zγγ decay

a. Box diagrams

Box diagrams give the following contributions to the form factors of Eq. (17):

FBox
i ¼

X
f

16gfAgAf̄fg
2αm2

fQ
2
fN

f
c

mWcWsX2
A

fBoxi ; ðB1Þ

with

fBox1 ¼ s½XAΔ2Zþsm2
Zðs1þs2Þ�C1ðsÞþ

Δ2A

s
Δ2Z½s2Δ2

1Z−m2
ZΔ2

2A�C2ðs2Þþ
Δ1A

s
½s1ðs1þsÞΔ2

2Zþ½m2
Að2s1þsÞðs1−Δ2ZÞ

þðmZΔ1AÞ2− ðs1sþðs1þsÞ2Þs1�m2
Z�C2ðs1Þ−Δ2

1Z

�
Δ2Z

�
m2

Z−
XA

s

�
þsm2

Z

�
C3ðs1Þ

þΔ2AΔ2
2Z

�
m2

Z−
XA

s

�
C3ðs2Þþsm2

Z½ðs1−s2Þ2þXA�C4ðsÞþ
s
2

�
m2

Am
2
Zðs1ðΔ1Zþs1−s2Þ−2XAÞ

þs21ð2m4
Z− ð2s1þs2Þm2

Zþs22Þþ
�
m2

Z−
XA

s

�
4m2

fXA

�
D1ðs1Þ

−
s
2

�
s1s32−s2m2

Zðs2ðΔ2Zþs1þ3sÞþXAÞ−4Xm2
f

�
m2

Z−
XA

s

��
D1ðs2Þ

þ1

2

�
s2s2ðs2−4m2

fÞðm2
Zþs2ÞþΔ2AΔ2Z

�
2Δ2

2A

s
Δ2

2Z−Δ2Að4m2
f−m2

Z−5s2ÞΔ2Zþ2ðs2−2m2
fÞðm2

Zþ2s2Þs
��

D2ðs2Þ;

ðB2Þ

(a)

(c)

(e) (f)

(d)

(b)

FIG. 13. Feynman rules necessary for our calculation in THDMs. All the four-momenta are incoming. Here ϕ ¼ h, H in diagram
(b) but ϕ ¼ h, H, A in diagram (f). Also, in diagram (e) gAHþH− ¼ sW and gZHþH− ¼ c2W=2cW . The remaining coupling constants for
type-II THDM are presented in Table II.
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fBox2 ¼XA

2

�
2Δ2A

�
sC1ðsÞþΔ1AC2ðs1Þþ

Δ2Z

2
C3ðs2Þ

�
þsm2

AΔ1ZD1ðs1ÞþΔ1ZXAD2ðs2Þ−s½XAþs2Δ2A�D1ðs2Þ
�
; ðB3Þ

and

fBox3 ¼ 2sm2
A½XA þ sðs1 þ s2Þ�C1ðsÞ þ 2ss1Δ1AC2ðs1Þ − 2Δ2

2AΔ2ZC2ðs2Þ − 2Δ2
1ZΔ1AC3ðs1Þ þ 2ss2Δ2ZC3ðs2Þ

− 2s½XA þ ðs1 − s2Þ2�C4ðsÞ − XA½XA þ 4sm2
f�D2ðs2Þ − s½s1ðXA þ 2s1sÞ þ 4XAm2

f�D1ðs1Þ
− s½s2ðXA þ 2s2sÞ þ 4XAm2

f�D1ðs2Þ; ðB4Þ

where the kinematical invariant variables s1, s2, and s were
defined in Eqs. (13)–(15). In addition, we use the following
auxiliary variables:

Δij ¼ si −m2
j ; ðB5aÞ

Xχ ¼ s1s2 −m2
Zm

2
χ ; ðB5bÞ

for i ¼ 1, 2 and j ¼ A, Z. As for the three- and four-point
Passarino-Veltman scalar functions Ci and Di, they are
defined as

C1ðp2Þ ¼ C0ð0; 0; p2; m2
f; m

2
f; m

2
fÞ;

C2ðp2Þ ¼ C0ð0; p2; m2
A;m

2
f; m

2
f; m

2
fÞ;

C3ðp2Þ ¼ C0ðm2
Z; 0; p

2; m2
f; m

2
f; m

2
fÞ;

C4ðp2Þ ¼ C0ðm2
Z; p

2; m2
A;m

2
f; m

2
f; m

2
fÞ;

D1ðp2Þ ¼ D0ðm2
Z; 0; 0; m

2
A; p

2; s; m2
f; m

2
f; m

2
f; m

2
fÞ;

D2ðp2Þ ¼ D0ðm2
Z; 0; m

2
A; 0; s1; p

2; m2
f; m

2
f; m

2
f; m

2
fÞ: ðB6Þ

As we can see for Eqs. (B2)–(B4) the box diagrams’
amplitudes are free of ultraviolet divergences since they are
free of two-point Passarino-Veltman scalar functions.

b. Reducible diagram contribution

The reducible diagram of Fig. 2 only contributes to the
form factor F 1 of Eq. (17). The Passarino-Veltman tech-
nique allowed us to obtain the following results for the
fermion and W gauge boson contributions:

F χ
1 ¼

2g2αgϕZA
cWsðm2

ϕ − sÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

X
f

gϕf̄fm
2
fQ

2
fN

f
c

mW

�
1þ

�
2m2

f −
s
2

�
Cðs;m2

χÞ
�

χ ¼ f;

−
gϕWW

4mW

�
s
2
þ 3m2

Wð1þ ð2m2
W − sÞCðs;m2

WÞÞ
�

χ ¼ W;

gϕH�H�mZ

4

�
2m2

H�Cðs;m2
H�Þ þ 1

�
χ ¼ H�;

ðB7Þ

where the three-point scalar function Cðs;m2
χÞ can be written in terms of elementary functions as follows:

Cðs;m2
χÞ ¼ C0ð0; 0; s; m2

χ ; m2
χ ; m2

χÞ ¼ −
2

s
f

�
4m2

χ

s

�
; ðB8Þ

where fðxÞ is given in Eq. (30).
2. ϕ → Zγγ (ϕ=h, H) decay

a. Box diagram contribution

The box diagram contributions to the form factors of Eq. (19) are given as follows:

GBox
i ¼

X
f

16gfAgϕf̄fg
2αm2

fQ
2
fN

f
c

mWcWX2
ϕ

gBoxi ; ðB9Þ
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with

gBox1 ¼ Xϕ

32
ð2Δ2ϕC2ðs2Þ − 2Δ1ϕC2ðs1Þ þ 2ðs1 − s2ÞC4ðsÞ þ Δ2ϕΔ2ZD1ðs2Þ − Δ1ZΔ1ϕD1ðs1ÞÞ; ðB10Þ

gBox2 ¼ m2
ϕð−2½Xϕ þ sðs1 þ s2Þ�C1ðsÞ þ

2

s
Δ1ZΔ2

1ϕC2ðs1Þ þ 2s2Δ2ϕC2ðs2Þ − 2Δ1ZsC3ðs1Þ −
2

s
Δ2

2ZΔ2ϕC3ðs2Þ
þ 2½2Xϕ þ ðs1 − s2Þ2�C4ðsÞ þ ½4m2

fXϕ þ s1ðXϕ þ 2s1sÞ�D1ðs1Þ − ½4m2
fXϕ þ s2ðXϕ þ 2s2sÞ�D1ðs2Þ

þ 1

s
½XϕðXϕ þ 4sm2

fÞ�D2ðs2ÞÞ; ðB11Þ

gBox3 ¼ 1

s2
ð−s2½s1s22þm2

Zðm2
ϕðm2

Zþ2s2ÞþΔ2Zs2Þ�C1ðsÞ−Δ1ϕ½m8
Z− ð3sþ2ðs1þ s2ÞÞm6

Z

þð2s2þ3s1sþ s21þ s22þ4ðsþ s1Þs2Þm4
Z− ððs1þ s2Þs2þ s2ð4s1þ s2Þsþ2s1s2ðs1þ s2ÞÞm2

Zþ s1ðsþ s1Þs22�C2ðs1Þ
þΔ2ϕΔ2Z½m2

ZΔ2
2ϕ−Δ2

1Zs2�C2ðs2ÞþΔ2ϕΔ2
2Z½Xϕ−sm2

Z�C3ðs2ÞþΔ2
1Z½sm2

Zðsþ2s2−m2
ZÞ−Δ1ZΔ2

2Z�C3ðs1Þ

−s2m2
Z½2Xϕþðs1− s2Þ2�C4ðsÞþ

1

2
s½4XϕðXϕ− sm2

ZÞm2
fþ sð−2m8

Zþð4sþ3s1þ4s2Þm6
Z

− ð2s2þ3s1sþ4s2sþ s21þ2s22þ6s1s2Þm4
Zþ s1ð3s22þ3ss2þ2s1s2−2ss1Þm2

Z− s21s
2
2Þ�D1ðs1Þ

þ1

2
s½4XϕðXϕ− sm2

ZÞm2
fþ ss2ðm4

Zðs2þm2
ϕÞ− s2ð3sþ2s1þ s2Þm2

Zþ s1s22Þ�D1ðs2Þ

þ1

2
Xϕ½2m8

Z− ð5sþ4ðs1þ s2ÞÞm6
Zþð3s2þ4m2

fsþ5s1sþ6s2sþ2s21þ2s22þ8s1s2Þm4
Z

− ð4sð2sþ s1þ s2Þm2
fþ s2ðs2þð6s1þ s2Þsþ4s1ðs1þ s2ÞÞÞm2

Zþ s1s2ð4sm2
fþðsþ2s1Þs2Þ�D2ðs2ÞÞ; ðB12Þ

and

gBox4 ¼ 1

8Δ1ZΔ2Z
ð4m2

ZXϕ½Δ1ZΔBðm2
Z; s2Þ þ Δ2ZΔBðm2

Z; s1Þ� þ 4Δ1ZΔ2ZXϕΔBðs;m2
AÞ

þ 2sΔ1ZΔ2Z½2Xϕ þm2
Zðm2

Z − sÞ − s1ðs2 þ s1Þ þ s22�C1ðsÞ þ Δ1ZΔ2Zðsþ Δ2ZÞ½2s1Δ1Z − Xϕ�C2ðs1Þ
− Δ1ZΔ2Zðsþ Δ1ZÞ½5Xϕ − 2s2ðΔ1Z þ s1Þ þ 2s22�C2ðs2Þ − Δ2

1ZΔ2Z½2s1Δ1Z − Xϕ�C3ðs1Þ
þ Δ1ZΔ2

2Z½5Xϕ − 2s2ðΔ1Z þ s1Þ þ 2s22�C3ðs2Þ þ 2Δ1ZΔ2Z½2m4
Zðm2

ϕ þ 2ðs1 þ s2ÞÞ
− ð5s21 − 3s22 þ 4sðs1 − s2ÞÞm2

Z þ ðs1 − s2Þðs1 þ s2Þ2�C4ðsÞ þ Δ1ZΔ2Z½−2m6
Zðm2

Z þ 2m2
ϕÞ

þ ð2s2 þ ð5s1 þ 4s2Þsþ 2ðs21 þ 4s2s1 þ s22ÞÞm4
Z − s1ðs2 − ðs1 − 5s2Þsþ 4s2ðs1 þ s2ÞÞm2

Z

þ s21ð2s22 þ sðs2 − 2s1ÞÞ − 4m2
fΔ1ZXϕ�D1ðs1Þ − Δ1ZΔ2Z½−2m6

Zðm2
Z þ 2m2

ϕÞ þ ð2ðsþ s1Þ2 þ 2s22

þ ð9sþ 8s1Þs2Þm4
Z − s2ð5s2 þ 3ð3s1 þ s2Þsþ 4s1ðs1 þ s2ÞÞm2

Z

þ s22ðs1ðsþ 2s1Þ þ 2ss2Þ þ 4m2
fðm2

Z − 2s1 þ s2ÞXϕ�D1ðs2Þ þ 4m2
fΔ1ZΔ2Zðs1 − s2ÞXϕD2ðs2ÞÞ; ðB13Þ

with the two-point Passarino-Veltman scalar functions defined as ΔBðr21; r22Þ ¼ B0ðr21; m2
f; m

2
fÞ − B0ðr22; m2

f; m
2
fÞ. It is also

evident that ultraviolet divergences cancel out.

b. Reducible diagram contribution

The reducible diagrams related to the processes ϕ → Zχ� → Zγγ, with χ ¼ A, Z, yield the following contribution to the
form factor of Eq. (20):

Gχ
3 ¼

X
f

g2αQ2
fm

2
fN

f
c

2cWmZπ

8>><
>>:
−

gAf̄fgϕZA
cWðm2

A−sÞCðs;m
2
fÞ χ¼A;

2gfAgϕZZ
s

Cðs;m2
fÞ χ¼Z:

ðB14Þ
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APPENDIX C: SQUARED AVERAGE AMPLITUDES

From the general form of the invariant amplitudes for the A → Zγγ and ϕ → Zγγ (ϕ ¼ h, H) decays presented in
Eqs. (17) and (19), respectively, we can readily obtain the square amplitudes averaged over photon and Z polarizations,
which are required for the calculation of the decay width (21). The results can be written as follows.

1. A → Zγγ decay

jM̄ðA→ZγγÞj2 ¼m6
A

4

�
ŝ2Δ̂2

1Z

2μZ
jF 1j2þ

1

2μZ
ζ3jF 2j2þ

1

8μZ
Δ̂2

2Zζ2jF 3j2þ
ŝ2ζ1
2μZ

Re½F 1F̃
�
1�

−
1

2μZ
Δ̂1ZΔ̂2Zð2ŝμZ− Δ̂1ZΔ̂2ZÞRe½F 2F̃

�
2�þ

1

8μZ
ζ1ζ2Re½F 3F̃

�
3�þ ŝ2Δ̂1ZRe½F 1F �

2�þ
1

2
ŝ2ζ1ζ2Re½F 1F �

3�

þ 1

2μZ
Δ̂1ZΔ̂2

2Zζ1ζ2Re½F 2F �
3�− ŝ2Δ̂1ZRe½F 1F̃

�
2�þ

1

2
ŝ2Δ̂2

1ZRe½F 1F̃
�
3�þ

1

2μZ
Δ̂1ZRe½F 2F̃

�
3�
�
þðŝ1 ↔ ŝ2Þ;

ðC1Þ

where ŝi ¼ si=m2
A, ŝ ¼ s=m2

A, Δ̂ij ¼ Δij=m2
A, F̃ iðs; s1; s2Þ ¼ F iðs; s2; s1Þ. Also

ζ1 ¼ μ2Z − ð2ŝþ s1 þ ŝ2ÞμZ þ ŝ1ŝ2; ðC2Þ

ζ2 ¼ ðμ4Z − 2ðŝþ ŝ1 þ ŝ2Þμ3Z þ ð2ŝ2 þ 2ðŝ1 þ ŝ2Þŝþ ŝ21 þ ŝ22 þ 4ŝ1ŝ2Þμ2Z − 2ŝ1ŝ2ðŝþ ŝ1 þ ŝ2ÞμZ þ ŝ21ŝ
2
2Þ; ðC3Þ

and

ζ3 ¼ ŝ21Δ̂
2
2Z þ 2ŝ1ðŝ − Δ̂2ZÞμZΔ̂2Z þ μ2Zð−2ŝ2 þ 2μZŝþ ŝ22 þ μ2Z − 2ŝ2ðŝþ μZÞÞ: ðC4Þ

2. ϕ → Zγγ (ϕ=h, H) decay

From Eq. (19) we obtain

jM̄ðϕ→ZγγÞj2 ¼ ŝm6
ϕ

2

�
η2jG1j2−

1

4
Δ̂2

1Zη1jG2j2þ
ŝΔ̂2

1Z

4μZ
jG3j2þ

1

4ŝμZ
η3jG4j2−η2Re½G1G̃

�
1�þ Δ̂2Zη1Re½G1G̃

�
2�

− ŝΔ̂2ZRe½G1G̃
�
3�−η2Re½G1G̃

�
4�þ

1

8
Δ̂1ZΔ̂2Zη1Re½G2G̃

�
2�þ

1

2
ŝη1Re½G2G̃

�
3�þ Δ̂1Zη1

1

2
ŝRe½G2G̃

�
4�

þ 1

2μZ
½Δ̂1ZΔ̂2Z−2ŝμZ�Re½G3G̃

�
3�− Δ̂1ZRe½G3G̃

�
4�−

1

4ŝμZ
η3Re½G4G̃

�
4�− Δ̂1Zη1Re½G1G�

2�þ ŝΔ̂1ZRe½G1G�
3�

þη2Re½G1G�
4�− Δ̂1Zη1Re½G2G�

4�þ
1

2
ŝΔ̂1ZRe½G3G�

4�
�
þðŝ1 ↔ ŝ2Þ ðC5Þ

with G̃iðs; s1; s2Þ ¼ Giðs; s2; s1Þ and

η1 ¼ ŝμZ − Δ̂1ZΔ̂2Z; ðC6Þ

η2 ¼ 2Δ̂1ZΔ̂2Z − ŝμZ; ðC7Þ

η3 ¼ ðŝ21Δ̂2
2Z − 2ŝ1ðΔ̂2Z − ŝÞμZΔ̂2Z þ μ2ZðΔ̂2

2Z − 2ŝðΔ̂2Z þ ŝÞÞÞ: ðC8Þ

R. SÁNCHEZ-VÉLEZ and G. TAVARES-VELASCO PHYS. REV. D 97, 095038 (2018)

095038-18



APPENDIX D: DECAY WIDTHS OF CP-EVEN
AND CP-ODD SCALAR BOSONS

For completeness, we present the expressions for the
most relevant A → X and ϕ → X (ϕ ¼ h, H) decays,
with X a final multiparticle state. These formulas have
been summarized, for instance, in [3,36,37]. We use the
notation introduced in the Feynman rules shown in Figs. 12
and 13.

1. CP-even scalar boson decays

The tree-level two-body decay width into fermion
pairs is

Γðϕ → f̄fÞ ¼
f2
ϕf̄f

Nf
cmϕ

8π
ð1 − τfÞ3=2; ðD1Þ

with fϕf̄f ¼ gmfgϕf̄f=ð2mWÞ, where the gϕf̄f constants are
shown in Table II for type-II THDM. Also, we use the
definition τa ¼ 4m2

a=m2
ϕ, and Nf

c stands for the fermion
color number.
The widths of the decays into a pair of on-shell

gauge bosons V ¼ W; Z, when kinematically allowed,
are given by

Γðϕ→VVÞ¼ f2ϕVVm
3
ϕ

64nVπm4
V

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τV

p �
1− τV þ

3

4
τ2V

�
; ðD2Þ

with nV ¼ 1ð2Þ for V ¼ WðZÞ. Here fϕWW ¼ gmWgϕWW

and fϕZZ ¼ gmWgϕWW=c2W , where again the gϕVV constants
are shown in Table II for type-II THDM.
For the present work another relevant decay is ϕ → ZA,

whose decay width was already presented in Eq. (32),
which can also be useful to compute the ϕ → W∓H� decay
when kinematically allowed. On the other hand, we will
assume that other tree-level decays such as ϕ → AA and
ϕ → H−Hþ are not kinematically allowed, and we refrain
from presenting the respective decay widths here.
One-loop decays can also be important for Higgs boson

phenomenology: while the decay ϕ → γγ has a clean
signature, the decay ϕ → gg is important for the cross
section of Higgs boson production via gluon fusion. As for
the ϕ → γγ decay width, it is given in Eqs. (27)–(29),
which can also be used for the two-gluon decay width by
taking the quark contribution only and making the replace-
ments α2 → 2α2S and Nf

cQ2
f → 1.

The ϕ → Zγ decay has also been largely studied in the
literature. The decay width can be written as

Γðϕ → ZγÞ ¼ α2m3
ϕ

512s2Wm
2
Wπ

3

�
1 −

τZ
4

�
3

jFϕZγj2; ðD3Þ

with FϕZγ¼FϕZγ
f ðτf;ξfÞþFϕZγ

W ðτf;ξWÞþFϕZγ
H� ðτH� ;ξH�Þ.

The contributions of charged fermions, theW gauge boson,
and the charged scalar are given by

FϕZγ
χ ðτχ ; ξχÞ ¼

8>>>>>>>><
>>>>>>>>:

X
f

2gϕf̄fQfN
f
cg

f
V

cW
ðI1ðτf; ξfÞ − I2ðτf; ξfÞÞ χ ¼ f;

gϕWWcW

���
2

τW
þ 1

�
t2W −

2

τW
− 5

�
I1ðτW; ξWÞ þ 4ð3 − t2WÞI2ðτW; ξWÞ

�
χ ¼ W;

2cWmWgϕH−Hþ

m2
H�

I1ðτH� ; ξH�Þ χ ¼ H�;

ðD4Þ

where we introduced the definition ξi ¼ 4m2
i =m

2
Z.

2. CP-odd scalar boson decays

The decay of a CP-odd scalar boson A into a pair of
fermions is given by

ΓðA → f̄fÞ ¼
f2
Af̄f

Nf
cmA

8π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τf

p
; ðD5Þ

where now we use the definition τa ¼ 4m2
a=m2

A.
There are no decays into pairs of electroweak gauge

bosons at the tree level, but the A → ϕZ (ϕ ¼ h, H) decay
can be kinematically allowed. Its decay width is given in
Eq. (32) and a similar expression with the corresponding
replacements is obeyed by the A → W�H∓ decay if
kinematically allowed.

As far as one-loop decays are concerned, the two-photon
decay proceeds via charged fermion loops and its decay
width is presented in Eqs. (27) and (31), whereas the two-
gluon decay width can be obtained from these equations by
summing over quarks only and making the additional
replacements α2 → 2α2S and Nf

cQ2
f → 1.

The A → Zγ decay also receives a contribution from
charged fermions only, and its decay width is given by
Eq. (D3), with ϕ → A and

FAZγ ¼FAZγ
f ðτf;ξfÞ¼

X
f

2gAf̄fQfN
f
cg

f
V

cW
I2ðτf;ξfÞ: ðD6Þ

3. QCD radiative corrections for the decays ϕ → q̄q

For light quarks, the running mass m̄q at the scale mϕ

must be used in Eqs. (D1) and (D5) to take into account the
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next-to-leading order QCD corrections. As for higher order
QCD corrections, they are important and must also be
included. They are summarized in [37], and we include
them here for completeness. For light quarks we have

Γðϕ→ q̄qÞ¼ 3g2g2ϕq̄qm̄qmϕ

32πm2
W

ð1− τqÞp=2ð1þΔqqþΔ2
ϕÞ;

ðD7Þ
where p ¼ 1 (3) for the CP-even (CP-odd) scalar boson
and the running quark mass m̄q is defined at the scale mϕ.
As for Δqq, it is the same for both CP-even and CP-odd
scalar bosons for mϕ ≫ mq. In the M̄S renormalization
scheme it is given by

Δqq ¼ 5.67
ᾱs
π
þ ð35.94 − 1.36NfÞ

ᾱ2s
π2

þ � � � ; ðD8Þ

where Nf is the number of flavors of light quarks and ᾱs is
the strong coupling constant defined atmϕ scale. As forΔϕ,

it differs for CP-even or CP-odd scalar bosons, and it is
given at order ᾱ2s as

Δϕ¼
ᾱs
π2

8>>>><
>>>>:

�
1.57−

2

3
log

�
m2

ϕ

m2
t

�
þ1

9
log2

�
m̄2

q

m2
ϕ

��
ϕ¼ h;H;

�
3.83− log

�
m2

ϕ

m2
t

�
þ1

6
log2

�
m̄2

q

m2
ϕ

��
ϕ¼A:

ðD9Þ
For the top quark, the leading order QCD corrections are
given by [37]

Γðϕ→ t̄tÞ¼ 3g2g2ϕt̄tmtmϕ

32πm2
W

ð1− τtÞp=2
�
1þ4

3

αs
ϕ
Δt

ϕðβtÞ
�
;

ðD10Þ
with βt ¼ 1 − τt, whereas Δt

ϕðβÞ is given in Ref. [37].
However, these corrections are small compared to the case
of the b and c quarks.
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