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The relation between the mixing matrices of leptons and quarks, UPMNS ≈ V†
CKMU0, where U0 is a

matrix of special forms [e.g., bimaximal (BM) and tribimaximal], can be a clue for understanding the lepton
mixing and neutrino masses. It may imply the grand unification and the existence of a hidden sector with
certain symmetry that generates U0 and leads to the smallness of neutrino masses. We apply the residual
symmetry approach to obtain U0. The residual symmetries of both the visible and hidden sectors are
Z2 × Z2. Their embedding in a unified flavor group is considered. We find that there are only several
possible structures of U0, including the BM mixing and matrices with elements determined by the golden
ratio. Realization of the BM scenario based on the SO(10) grand unified theory with the S4 flavor group is
presented. Generic features of this scenario are discussed, in particular, the prediction of CP phase 144° ≲
δCP ≲ 210° in the minimal version.
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I. INTRODUCTION

There is an appealing approximate relation between the
mixing matrices of leptons, UPMNS, and quarks, VCKM
[1–5],

UPMNS ≃ V†
CKMU0; ð1Þ

where U0 is close to the bimaximal (BM) (UBM) [6,7] or
tribimaximal (TBM) (UTBM) [8,9] mixing matrices. In
particular, Eq. (1) gives a relation between the Cabibbo
angle θC and the leptonic mixing angles θ13 and θ23:

sin2θ13 ≃ sin2θ23sin2θC: ð2Þ

The relation (1) is in a good agreement with available
experimental results [10] and has been widely studied in the
literature [11–26]. If not accidental, it can be the clue for
understanding peculiar features of the lepton mixing and,
eventually, the origins of neutrino masses. The following
logical steps lead to a rather restricted scenario:
(1) The relation (1) implies that leptons “know” about

quarks. It should be a kind of quark-lepton uni-
fication, probably the grand unification at high-
energy scale. Indeed, the grand unification can

ensure similarity of the Dirac mass matrices of
quarks and leptons: mν

D ∼mup
D and ml

D ∼mdown
D .

This leads to the appearance of mixing ∼VCKM in
the lepton sector.1

(2) At the same time, the difference between the quark
and lepton mixing implies the existence of some new
physics responsible for generation of matrixU0. The
structure of this matrix indicates certain underlying
symmetry that is difficult to extend to the quark
sector.

(3) It is natural to assume that the same new physics is
responsible for U0 and the smallness of neutrino
masses. In the grand unification framework, the
simplest way to get small neutrino masses is to
invoke the high-mass scale type-I seesaw mecha-
nism [27–31],

mν ¼ −mν
D

1

MR
mνT

D ; ð3Þ

where MR is the mass matrix of right-handed (RH)
neutrino components. Thus, in the seesaw mecha-
nism, MR with specific properties could be respon-
sible for the generation of U0.

(4) The latter, however, implies a very strong (quadratic)
hierarchy of masses of the neutrinos and enormous
fine-tuning that is very difficult (if possible) to
justify in the usual seesaw mechanism. One way
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1Alternatively, the relations between the mass matrices can be
obtained as a consequence of common flavor symmetry in both
sectors.
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to solve this problem is to introduce the double-
seesaw mechanism in which the RH neutrinos
themselves acquire masses via the seesaw mecha-
nism [32]. The realization of the double-seesaw
mechanism requires the introduction of new fer-
mions S with the Majorana mass matrix MS and
Yukawa interactions with the RH neutrinos that lead
to the Dirac mass matrix MD. This opens up the
possibility to cancel the strong hierarchy as a result
of certain symmetry, which leads to the proportion-
ality mD ∝ MD [33,34]. Furthermore, the structure
of the mass matrix of S, governed by certain
symmetry, can eventually lead to the required
mixing U0.

These general arguments can be realized in the following

scenario:
(i) There is the grand unification based on the SO(10)

gauge symmetry group [35,36] with fermions in
16-plet representations that also include the RH
neutrinos. This ensures similarity of the Dirac mass
matrices of the quarks and leptons and also the
coincidence of scales MSN ∼MGUT.

(ii) A hidden sector that consists of singlet fermions and
bosons of SO(10) exists. This sector couples with
the visible one via the RH neutrino portal. The
fermions S that participate in the double-seesaw
mechanism belong to this sector. Symmetries of the
hidden sector lead to the matrix U0 with the required
properties.

(iii) Information about mixing in the hidden sector
should be communicated to the visible sector. The
minimal possibility is to fix the basis of states in all
sectors (visible, portal, and hidden), and this can be
done by introducing the basis-fixing symmetry
[37–39]. In the case of three generations, the simplest
possibility is the Z2 × Z2 symmetry [37]. In turn,
such a symmetry can be a part of intrinsic symmetry
of the theory, which is always present. The basis-
fixing symmetry ensures that all mass matrices of the
visible sector and portal are diagonal. This symmetry
is spontaneously broken in the hidden sector by
interactions with flavons, leading to another unbro-
ken (intrinsic)Z2 × Z2 and generatingU0. No such a
structure exists in the quark sector.

(iv) Additional physics should be introduced to generate
the Cabibbo–Kobayashi–Maskawa (CKM) mixing.

(v) In the visible sector, Z2 × Z2 is broken by another
mechanism leading to the CKM mixing. The dou-
ble-seesaw mechanism allows one to disentangle the
generation of CKM and U0 mixings. Furthermore,
introducing the hidden sector allows one to construct
economical renormalizable theory with flavor
symmetry.

In general, Z2 × Z2 can lead to large mixing in U0, but it

does not produce specific structures such as BM or TBM.

To this end, non-Abelian symmetry should be introduced
in the hidden sector. In other words, the basis symmetry
Z2 × Z2 should be promoted to non-Abelian symmetry. In
this paper, we study such a possibility. We focus on the
symmetry issues: the interplay between the gauge SO(10)
and discrete flavor symmetries. We also consider the
generation of Ul ≃ VCKM.
The paper is organized as follows. In Sec. II, we describe

the scenario in details. In Sec. III, we study the possibility
to generate the matrix U0 using the residual symmetry
approach applied to the visible and hidden sectors. We find
all possible structures of U0. In Sec. IV, we present the
realization of the residual symmetry mechanism that
generates U0 ¼ UBM and is based on the S4 symmetry
group. We explore the possibility of generating the CKM
mixing and study the predictions for the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) mixing in Sec. V. Conclusions
are given in Sec. VI.

II. FRAMEWORK

Let us describe the main elements of the framework.

A. Visible, portal, and hidden sectors

The visible sector includes three families of fermions
accommodated in three 16-plets of SO(10): ðψ1;ψ2;ψ3Þ.
The fermions get masses mainly via the Yukawa couplings
with a 10-plet scalar field Hð10Þ. Additional nonrenorma-
lizable interactions will be added to generate the difference
of masses of down quarks and charged leptons.
The hidden sector consists of fermions Si and bosons ϕi,

which are all singlets of SO(10). In the simplest version,
three fermionic singlets are introduced. A connection
between the visible and hidden sectors is established via
the portal interaction of Si and ψ i. For this, the 16-plet of
scalar fields, Hð16Þ, should be introduced.
Thus, the Yukawa interactions relevant for generation of

fermion masses are

L ⊃ yvijψ iψ jHð10Þ þ ypijψ iSjHð16Þ þ hijSiSjϕij; ð4Þ
where yvij, y

p
ij, and hij are the Yukawa coupling constants of

the visible, portal, and hidden sectors, correspondingly.

B. Double seesaw

After the scalar fields develop vacuum expectation
values (VEVs), the visible sector interactions generate
the Dirac mass matricesmD ¼ yvijhHð10Þi at the electroweak
(EW) scale. The portal interactions produce the matrix
MRS ¼ ypijhHð16Þi, which mixes the RH neutrinos with the
singlet fermions.2 Flavon VEVs hϕiji generate the mass

2A linear seesaw contribution mLS (see Ref. [37]) can also be
generated, but in this framework, its contribution is negligibly
small.
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matrix of singlets MSij ¼ hijhϕiji. Consequently, the total
mass matrix of neutral leptons in the basis ðνL; νcL; SÞ [here,
νcL ≡ ðνRÞc] becomes

M ¼ −
1

2

0
B@

0 mD 0

mT
D 0 MRS

0 MT
RS MS

1
CA; ð5Þ

which is the mass matrix of the double-seesaw mecha-
nism [40]. It leads to the Majorana masses of the RH
neutrinos νR,

MR ¼ −MRSM−1
S MT

RS; ð6Þ

and the mass matrix of light neutrinos νL,

mν ¼ mDðM−1
RSÞTMSM−1

RSm
T
D: ð7Þ

The Higgs multiplet Hð16Þ breaks the grand unified
theory (GUT) symmetry, so the natural scale of the largest
portal mass term is MRS ∼MGUT ¼ Oð1016 GeVÞ. The
singlets S, which are not protected by SO(10), may have
masses of higher scales, say, the string-Planck scale,
MS ∼MPl ∼ ð1018–1019Þ GeV. In this case, MR ¼
M2

GUT=MPl ¼ Oð1014 GeVÞ, which produces the correct
scale of light neutrino masses mν ¼ Oð0.1 eVÞ. This
coincidence can be considered as another support of the
framework.

C. Intrinsic symmetries

Both the visible and hidden sector interactions (4) have
the built-in Z2 × Z2 × Z2 flavor symmetries [41–44]. The
symmetries are related to the Majorana character of
interaction (ψT · ψ , ST · S) and are obvious in the basis
in which the mass matrices are diagonalized. In a general
basis, the visible interactions are invariant under the
transformation

ψ → Tψ ; T ¼ Uψdiag½ð−1Þm; ð−1Þn; ð−1Þk�U†
ψ ; ð8Þ

where m, n, k ¼ 0, 1, and Uψ is a unitary matrix that
diagonalizes mD. Different choices of m, n, k generate
different T’s, including trivial cases T ¼ �I. These T’s
form the Z2 × Z2 × Z2 group, which can be reduced to
GV ¼ Z2 × Z2 if generators with the overall negative sign
are removed. Similarly, in the hidden sector, the mass terms
1=2ðMSÞijSiSj are invariant under

S → RS; R ¼ USdiag½ð−1Þm; ð−1Þn; ð−1Þk�U†
S; ð9Þ

where US is a unitary matrix that diagonalizes MS. So, the
hidden sector has another Z2 × Z2 symmetry, which is
denoted as GH henceforth.

D. Screening

The condition

mD ∝ MT
RS ð10Þ

leads, as follows from Eq. (7), to

mν ∝ MS; ð11Þ

i.g., to the “screening” (cancellation) of the Dirac structures
and, consequently, to the same structure of the mass
matrices of light neutrinos and the heavy singlets [33].
Consequently, the light neutrinos and the heavy singlets
have the same mixing. The renormalization group equation
(RGE) effects do not destroy the cancellation [33].
The screening condition (10) can be a consequence of

further unification, e.g., embedding of ψ and S into the
27-dimensional representation of the E6-multiplet. It can be
a remnant of E6 symmetry, which is not fully realized. In
this case, S cannot be considered as belonging to the hidden
sector. Another possibility is a common flavor symmetry
acting in the visible and portal sectors. In fact, it is easy
to get

mDM−1T
RS ¼ d;

where d is a diagonal matrix. The Klein symmetry Z2 × Z2

with the same charge assignment for ϕi and Si allows one to
achieve this. If the charges of three components ψ1, ψ2, and
ψ3 are different, e.g., ð−;−Þ ð−;þÞ, and ðþ;−Þ and scalar
multiplets Hð10Þ and Hð16Þ have zero charges, the matrices
mD and MRS are both diagonal [37]. However, additional
symmetry should be introduced to make the ratios of the
element inmD andMRS to be equal so that d ¼ I. A kind of
permutation symmetry ψ ↔ S could be used.

E. Basis-fixing symmetry

Gb ¼ Z2 × Z2 was introduced as the basis-fixing sym-
metry in all the sectors, thus allowing one to communicate
information about mixing from the hidden sector to the
visible one. This symmetry leads to the diagonal structure
of all Dirac mass matrices, even if several Higgs 10-plets
(or other representations) with zero charges are introduced.
This means that no CKM mixing is generated, UCKM ¼ I.
Therefore, generation of CKM mixing would require the
breaking of the Z2 × Z2 symmetry. Gb can be identified
with GV . To generate mixing U0, Gb should be broken in
the hidden sector.

F. Flavons

The key element of the framework is that scalars of the
hidden sector ϕ do carry nontrivial Gb charges, in contrast
toHð10Þ andHð16Þ. When ϕi get VEVs,Gb is spontaneously
broken in the hidden sector. This leads to nondiagonal
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matrixMS and, consequently, to the mixing of singlets Si. It
is this mixing that generates the matrix U0. The Klein
(Abelian) symmetry is not enough to obtain a special form
ofMS with a fully determined mixing matrix like TBM. For
this, non-Abelian symmetry should be introduced in the
hidden sector.

III. U0 FROM THE RESIDUAL SYMMETRIES
OF VISIBLE AND HIDDEN SECTORS

In the case of complete screening, the portal interactions
do not influence the mixing, and one can immediately
discuss the bases of the visible and hidden sectors. Then,
the mixing can be understood as a relation between the
bases in which generators of GV and GH have diagonal
forms. According to Eqs. (8) and (9), these two bases
should be connected by U0 ¼ U†

ψUS. Thus, we start with
common basis-fixing symmetry Gb in all the sectors and
then promote Gb to a larger non-Abelian group Gf in the
hidden sector. Then, the breaking of Gf should be arranged
in such a way that Gb ∈ Gf is broken and another intrinsic
unbroken GH ¼ ðZ2 × Z2ÞH symmetry is realized.
One can view this procedure as the residual symmetry

approach: GH and GV are embedded into a unified flavor
group,

Gf ⊃ GH; GV: ð12Þ

This embedding ensures that information about mixing
from the hidden sector is transmitted to the visible sector.
Then, Gf is broken explicitly down to GV in the visible
(low-mass scale) sector, and it is broken down to GH
spontaneously in the hidden sector.3

This is similar to the usual residual symmetry approach
[41–44] when, instead of mass matrices of the charged
leptons and neutrinos, we use the mass matrices of ψ and S.
Here, the residual symmetries operate at different energy
scales: the GUT scale and the Planck scale.
An important feature is that in both sectors the residual

symmetries are given by the Klein groups:

GV ¼ ðZ2 × Z2ÞV; GH ¼ ðZ2 × Z2ÞH: ð13Þ

The embedding of two Klein groups into a finite group and
its consequences for mixing have been explored in
Ref. [39]. The only difference is that in Ref. [39] the
results of embedding were applied to the relative matrix
between interactions with a Higgs 10-plet and Higgs 126-
plet, while here we deal with the relative rotation between
the mass basis generated by the Higgs 10-plet (visible
sector that coincides with the matrix of the portal) and the

mass basis generated by Higgs singlets in the hidden sector.
In what follows, we briefly remind the reader of the
important points and present the main results.
In a three-dimensional irreducible representation of Gf,

the elements T ∈ GV and R ∈ GH in Eqs. (8) and (9) with
positive determinants can be written as

T1 ¼

0
B@

1

−1
−1

1
CA;

T2 ¼

0
B@

−1
1

−1

1
CA;

T3 ¼

0
B@

−1
−1

1

1
CA; ð14Þ

R1 ¼ U0

0
B@

1

−1
−1

1
CAU†

0;

R2 ¼ U0

0
B@

−1
1

−1

1
CAU†

0;

R3 ¼ U0

0
B@

−1
−1

1

1
CAU†

0; ð15Þ

where we use the basis in which T is diagonal. By
definition, the group Gf should contain all these elements
as well as their products. Furthermore, since Gf is a finite
group, any product of T and R should have a finite order,

Wp
ij ≡ ðTiRjÞp ¼ ðTiU0Rd

jU
†
0Þp ¼ I; ði; j ¼ 1; 2; 3Þ;

ð16Þ

where p is a positive integer. This is the symmetry group
condition [39] that determines the i-j element of U0,

jðU0Þijj2 ¼ cos2
πn
p

; ð17Þ

where n and p are integers. The detailed derivation of
Eq. (17) is presented in Appendix A. Using one generator
Ti ∈ GV and another one Rj ∈ GH fixes the i-j element of
the matrix U0. The indices i, j ¼ 1, 2, 3 are identified by
the positive diagonal elements in Eqs. (14) and (15).
For instance, i ¼ 1 corresponds to generators with þ1 in
the 1-1 position, etc.

3One can consider also spontaneous symmetry breaking in the
visible and portal sectors, but this would introduce further
complication of the model.
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Each pair of ði; jÞ has its own power pij, which should be
larger than pij. Furthermore, for fixed pij, several nij can
exist. Taking three different symmetry group relations
given by one T and three R (or vice versa), we can fix
three elements of the row (column) of the mixing
matrix, and they should satisfy the unitarity condition.
Using Eq. (17), we can write the unitarity condition, in
general, as

cos2αþ cos2β þ cos2γ ¼ 1; ð18Þ

where α, β, and γ are rational numbers of π.
As we will see, the unitarity condition in the form (18)

already strongly restricts the number of possibilities even
before further applications of the group theory constraints.
Without loss of generality, we assume that cosα ≤ cos β ≤
cos γ and 0 ≤ α, β, γ ≤ 90°. Under these assumptions, we
only need to consider two cases: cosα ¼ 0 and cos α ≠ 0.
If cos α is zero (α ¼ π=2), Eq. (18) reduces to

cos2 β þ cos2 γ ¼ 1, from which one immediately obtains
γ ¼ π=2 − β. Since β ¼ πq=p, we get an infinite number of
solutions for the angles:

ðα; β; γÞ ¼ π

�
1

2
;
q
p
;
1

2
−
q
p

�
: ð19Þ

For cos α ≠ 0 (all cosines are nonzero), a numerical
search for all rationals q=p with p ≤ 100 gives only two
solutions:

ðα; β; γÞ ¼ π

�
1

3
;
1

3
;
1

4

�
ð20Þ

and

ðα; β; γÞ ¼ π

�
2

5
;
1

3
;
1

5

�
: ð21Þ

The elements of jU0j that correspond to Eqs. (19)–(21)
are

v1 ≡
�
0; cos

q
p
π; sin

q
p
π

�
; v2 ≡

�
1ffiffiffi
2

p ;
1

2
;
1

2

�
;

v3 ≡
� ffiffiffi

5
p þ 1

4
;
1

2
;

ffiffiffi
5

p
− 1

4

�
: ð22Þ

The last solution in Eq. (22) can be expressed in terms of
the golden ratio,

φ≡ 1

2
ð1þ

ffiffiffi
5

p
Þ ≈ 1.618; ð23Þ

v3 ¼ 1
2
ðφ; 1;φ−1ÞT . The first solution in Eq. (22) has two

interesting possibilities:

v1a ¼ ð1; 0; 0Þ; v1b ¼
�

1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0

�
: ð24Þ

Now, using the vectors in Eq. (22) as building blocks, we
can construct complete mixing matrices. There is the
freedom to take vi as rows or columns of the matrix and
also to permute elements within vi. Not all combinations
are allowed by unitarity. If the unitarity is satisfied for the
column, one should arrange the elements in each column so
that it is satisfied for rows as well. Clearly, using the same
column three times with permuted elements will automati-
cally satisfy the unitarity condition for whole the matrix.
Let us consider first that at least one of the columns of

jU0j is in the form of v1 in Eq. (22), which means that U0

has at least one zero entry. In general, one can prove4 that
the number of zero entries in a 3 × 3 unitary matrix can
only be 1 or 4 or 6. The matrix with four zeros constructed
of v1 is

jU0j ¼

0
B@

1 0 0

0 cos q
p π sin q

p π

0 sin q
p π cos q

p π

1
CA: ð25Þ

The case of six zeros corresponds to jU0j ¼ I.
For the case of a single zero, we take v1, while the other

columns cannot contain zero entries, and therefore they
have to be of the form v2 or v3. The conclusion about the
columns of jU0j also holds for the rows, which implies that
the rows consist of one vT1 and two vT2 or vT3 . As a result, the
two nonzero elements in v1 have to be 1=2, 1=

ffiffiffi
2

p
, φ=2, or

φ−1=2. The squared sum of the two nonzero elements
should be 1, leaving only one option: ð0; 1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p Þ.
Therefore, in the case of 1 zero, we have

jU0j ¼

0
B@

1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

1=2 1=2 1=
ffiffiffi
2

p

1=2 1=2 1=
ffiffiffi
2

p

1
CA; ð26Þ

which coincides with the BM mixing matrix [7,45–49].
There are no other possibilities with v1.
Next, let us consider jU0j constructed from v2 or v3 or v2

and v3 together. There is only one solution in each case:

4The proof is straightforward enumeration. The number of
zeros cannot be larger than six because it implies that at most two
elements of U0 can be nonzero, which is impossible for a unitary
matrix. If there are five zeros, i.e., four elements are nonzero, then
the orthogonality of rows/columns requires one of the four
elements to be zero. Likewise, one can check that U0 with
two or three zeros has the same problem.
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jU0j ¼
1

2

0
B@

ffiffiffi
2

p
1 1

1
ffiffiffi
2

p
1

1 1
ffiffiffi
2

p

1
CA;

1

2

0
B@

φ 1 φ−1

1 φ−1 φ

φ−1 φ 1

1
CA;

1

2

0
B@

φ−1 1 φ

1
ffiffiffi
2

p
1

φ 1 φ−1

1
CA: ð27Þ

The symmetry group condition gives the moduli of
elements, jU0j. To reconstruct U0 completely, one needs
to find the phases of elements that ensure the orthogonality
of the rows and columns in U0. Without loss of generality,
we assume that u11, u12, u13, u23, and u33 are real. Then, the
orthogonality of the columns gives

u11u13 þ ju21jeiϕ21u23 þ ju31jeiϕ31u33 ¼ 0; ð28Þ

u12u13 þ ju22jeiϕ22u23 þ ju32jeiϕ32u33 ¼ 0; ð29Þ

where ϕij ≡ argðuijÞ. Using the graphic representation of
the equalities (28) and (29) (i.e., the unitarity triangles), we
obtain

cosϕ2j ¼
ju3jj2u233 − u21ju

2
13 − ju2jj2u223

2u1ju13ju2jju23
;

cosϕ3j ¼
ju2jj2u223 − u21ju

2
13 − ju3jj2u233

2u1ju13ju3jju33
; ðj ¼ 1; 2Þ:

ð30Þ
Consequently, the phases for the three matrices in

Eq. (27) equal

argðU0Þ ¼

0
B@

0 0 0

arccos −1
2
ffiffi
2

p − arccos −3
4

0

− arccos −3
4

arccos −1
2
ffiffi
2

p 0

1
CA;

0
B@

0 0 0

π −π 0

0 π 0

1
CA;

0
B@

0 0 0

2π=3 − arccosð ffiffiffi
2

p ð ffiffiffi
5

p
− 3ÞÞ−1 0

−2π=3 2π=3 0

1
CA:

The matrices in Eqs. (25) and (26) contain zero mixing
angles, and therefore the phases can be removed by
rephasing. Orthogonality in Eqs. (25) and (26) can be
achieved by adding minus signs, e.g., to 2-1, 3-1, and 2-3
elements in Eq. (26) and to the 3-2 element in Eq. (25). The
mixing matrices including the phases are summarized in
Table I.

TABLE I. All rational mixing matrices with p ≤ 100 and the corresponding finite groups.

Matrix jU0j U0 ðTiRjÞp ¼ 1 Group

Uq=p

cos

0
B@ 0 π

2
π
2

π
2

q
p π

π
2
− q

p π
π
2

π
2
− q

p π
q
p π

1
CA

0
B@ 1 0 0

0 cos q
p π sin q

p π

0 − sin q
p π cos q

p π

1
CA

2
664
ðT1R1Þ1
ðT1R2Þ2
ðT2R1Þ2
ðT2R2Þp

3
775 ¼ 1

Dp

UBM

cos

 
45° 45° 90°
60° 60° 45°
60° 60° 45°

!  
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
0

−1=2 1=2 −1=
ffiffiffi
2

p
−1=2 1=2 1=

ffiffiffi
2

p

! 2
664
ðT1R1Þ4
ðT1R2Þ4
ðT2R1Þ3
ðT2R2Þ3

3
775 ¼ 1

S4

Uv2

cos

 
45° 60° 60°
60° 45° 60°
60° 60° 45°

! 0
B@

1ffiffi
2

p 1
2

1
2

1
2

−
ffiffi
7

p
iþ3

4
ffiffi
2

p
ffiffi
7

p
i−1

4
ffiffi
2

p
1
2

ffiffi
7

p
i−1

4
ffiffi
2

p −
ffiffi
7

p
iþ3

4
ffiffi
2

p

1
CA

2
664
ðT1R1Þ3
ðT1R2Þ3
ðT2R1Þ3
ðT2R2Þ4

3
775 ¼ 1

PSLð3; 2Þ

UGR

cos

 
36° 60° 72°
60° 72° 36°
72° 36° 60°

! 0
B@ φ=2 1=2 φ−1=2

1=2 −φ−1=2 −φ=2
φ−1=2 −φ=2 1=2

1
CA

2
664
ðT1R1Þ5
ðT1R2Þ3
ðT2R1Þ5
ðT2R2Þ5

3
775 ¼ 1

A5

UGR−v2
cos

 
36° 60° 72°
60° 45° 60°
72° 60° 36°

! 0
B@ φ=2 1=2 φ−1=2

1=2 − 2þi
ffiffi
3

p þ ffiffi
5

p
4φ

1
4
ð ffiffiffi

3
p

i − 1Þ
φ−1=2 1

4
ð ffiffiffi

3
p

i − 1Þ − φ
4
ð ffiffiffi

3
p

iþ 1Þ

1
CA

2
664
ðT1R1Þ5
ðT1R2Þ3
ðT2R1Þ3
ðT2R2Þ4

3
775 ¼ 1

C3 · A6
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Notice that until now we used only a general form of
matrix elements as cosines of rational numbers of π (17)
and the unitarity. The symmetry group condition is neces-
sary but not sufficient for embedding into the finite group.
Still, one should check that embedding is possible from the
group theory point of view. Using U0 given in the Table I,
we can find the corresponding generators Ri according to
Eq. (15) and check the group presentations. Then, using the
GAP program [50], we identify all the corresponding finite
groups (see the last column of Table I). Notice that the
block-diagonal matrices Uq=p are generated by a dihedral
group Dp, of which the order p is determined by the
denominator of the rational angle. The matrices UBM, Uv2,
and UGR are generated by the groups S4, PSLð3; 2Þ, and
A5, of orders 24, 168, and 60, correspondingly. It has been
well known (see, e.g., Refs. [48,49]) that the S4 symmetry
can be used to obtain UBM. The last and most complicated
matrix UGR−v2 can be obtained in a 1080-order group,
which is a nonsplit extension of A6 by C3, denoted as C3 ·
A6 in the GAP classification system.
Reconstructing finite groups from the residual sym-

metries has been studied Ref. [51] using theorems on sums
of roots of unity, which is technically similar to the trace
approach formulated in Eq. (A4). Some of the finite groups
presented in the Table I (e.g., S4 and A5) are the same as
those found in Ref. [51]. However, one should note that
Ref. [51] sets a finite order of T†RTR, while in Eq. (16), we
use the order of TR. Consequently, we obtain some
additional groups such as PSLð3; 2Þ and C3 · A6.
In summary, the BM mixing matrix can be obtained for

U0 in our approach. Also, the matrices Uv2 (constructed
with columns v2, v2, v2) and UGRðv3; v3; v3Þ can be of the
phenomenological interest once certain corrections are
taken into account. The matrix Uq=p can be considered
for the 2-3 mixing if the 1-2 mixing is generated, e.g., from
the portal interactions. Notice that the TBM mixing cannot
be obtained in this framework. This is because we require
that the residual symmetries should beZ2 × Z2 while TBM
actually needs a Z3 residual symmetry. Without the
requirement of Z2 × Z2, TBM may be obtained in SO
(10) frameworks—see, e.g., Ref. [52].

IV. BIMAXIMAL MIXING FROM THE
HIDDEN SECTOR

For definiteness, we consider generating the BM mixing
from the S4 embedding of the residual symmetries. Details
of the group S4, which has five irreducible representations
1, 10,2, 3, and 30, are given in Appendix B. All the fermions
are assigned to the three-dimensional representation 3. The
SO(10) Higgs multipletsHð10Þ andHð16Þ are flavor singlets.
In contrast, the Higgs fields in the hidden sector have

nontrivial S4 assignments, and so the flavor symmetry is
broken in this sector spontaneously. The symmetry assign-
ments for the fields are given in Table II.
We assume that in the visible and portal sectors the S4

symmetry is broken explicitly down to the residual sym-
metry ðZ2 × Z2ÞV. The ðZ2 × Z2ÞV charges of ψ and S are

Fields∶ ψ1; S1 ψ2; S2 ψ3; S3
ðZ2 × Z2ÞV∶ ðþ;−Þ ð−;þÞ ð−;−Þ :

The visible and portal sectors are invariant under the
transformation

ψ → Tiψ ; S → TiS; ði ¼ 1; 2Þ; ð31Þ

where Ti are defined in Eq. (14), and the transformations in
Eq. (31) belong to a subgroup of S4.
Because of the ðZ2 × Z2ÞV symmetry (31), the Yukawa

interactions in the visible and portal sectors are flavor-
diagonal, so the Lagrangian (4) reduces to

Lψ ¼
X3
i¼1

½yvi ψ iψ iHð10Þ þ ypi ψ iSiHð16Þ�: ð32Þ

In the hidden sector, the Yukawa interactions are

Lhidden ¼ yϕijkSiSjϕk þ yξijkSiSjξk þ yηSiSiη; ð33Þ

where the Yukawa couplings yϕijk and y
ξ
ijk are determined by

the S4 symmetry. According to the Clebsch-Gordan coef-
ficients of S4 (see Appendix B), the products of these
Yukawa couplings with the flavon fields (which eventually
determine the mass matrix of S) can be expressed in the
following matrix forms in the basis ðS1; S2; S3ÞT :

X
k

yϕijkϕk¼yϕ

0
B@

0 ϕ2−ϕ3 −ϕ2−ϕ3

ϕ2−ϕ3

ffiffiffi
2

p
ϕ1 0

−ϕ2−ϕ3 0 −
ffiffiffi
2

p
ϕ1

1
CA; ð34Þ

and

TABLE II. Field content of the model and symmetry assign-
ments.

ψ S Hð10Þ Hð16Þ η ξ ϕ

Type Fermion Fermion Scalar Scalar Scalar Scalar Scalar
SO(10) 16 1 10 16 1 1 1
S4 3 3 1 1 1 2 30
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X
k

yξijkξk ¼ yξ

0
BBB@

−eiπ
6 ξ1 −

ξ2ffiffi
3

p 0 0

0 1
6
ð3eiπ

6 ξ1 þ
ffiffiffi
3

p
ξ2Þ 1

2
ðeiπ

6 ξ1 −
ffiffiffi
3

p
ξ2Þ

0 1
2
ðeiπ

6 ξ1 −
ffiffiffi
3

p
ξ2Þ 1

6
ð3eiπ

6 ξ1 þ
ffiffiffi
3

p
ξ2Þ

1
CCCA: ð35Þ

To obtain nontrivial flavor structures, S4 should be
broken down to ðZ2 × Z2ÞH, which differs from
ðZ2 × Z2ÞV . ðZ2 × Z2ÞH is represented by the matrices
R (15) in 3 of S4 and by Rð1Þ, Rð10Þ, Rð20Þ, and Rð30Þ in the
representations 1, 10, 2, and 30, ðZ2 × Z2ÞH (see the
Appendix). Since the flavons ϕ and ξ are assigned to 30

and 2 and break S4 down to ðZ2 × Z2ÞH, their VEVs should
be invariant under ðZ2 × Z2ÞH, i.e.,

Rð30Þhϕi ¼ hϕi; Rð2Þhξi ¼ hξi: ð36Þ
This gives

hϕi ∝ ð0; 0; 1ÞT; hξi ∝ ð0; 1ÞT; ð37Þ

where we used explicit forms of Rð30Þ and Rð2Þ from
Eqs. (B4) and (B5). The potentials that produce the vacuum
alignment (37) can be easily constructed [48]. Finally from
Eqs. (34), (35), and (37), we obtain the explicit form ofMS,
and consequently mν,

mν ∝ MS ¼

0
B@

a − 2c b b

b aþ c −3c
b −3c aþ c

1
CA; ð38Þ

where

a ¼ yηhηi; b ¼ yϕhϕi; c ¼ yξ

2
hξi: ð39Þ

The mass matrix in Eq. (38) is diagonalized by U0 ¼
UBM with the eigenvalues

UT
0mνU0 ¼

0
B@

a −
ffiffiffi
2

p
b − 2c 0 0

0 aþ ffiffiffi
2

p
b − 2c 0

0 0 aþ 4c

1
CA:

ð40Þ
The three parameters a, b, and c are sufficient to fit three
light neutrino masses.

V. CKM MIXING AND PMNS MIXINGS

Generation of U0 and screening in our framework
require that the CKM-type mixing originates from the down
components of the EW doublets. Therefore, to reproduce
the relation (1), the mixing of the charged leptons should
be approximately equal to the down-quark mixing:

Ul ≈ VCKM.
5 This approximate equality of mixings should

be reconciled with the difference of masses of down quarks
and charged leptons in the second and the first generations.
In fact, according to the two-loop RGE running in the
standard model [53], we have at the GUT scale

mμ ≈ 3ms ≫ me; md: ð41Þ

This problem was extensively discussed before in connec-
tion to the quark-lepton complementarity [16]. Actually, in
the case of strong mass hierarchy, the difference of mixings
related to the difference of masses is not large and may be
even needed to better fit of the data.
In general, there are two approaches to keep the relation

Ul ≈Ud for different masses. One is to decouple com-
pletely the generation of masses from mixing so that the
mixing comes from certain relations between the elements
of the mass matrix, whereas the masses are determined by
absolute values of the elements. This decoupling is difficult
to obtain for small CKM mixing; simple discrete sym-
metries usually lead to large nonzero angles.6 Hence, this
approach would require substantial complications of the
model. Another possibility, which we will implement here,
is that one of the Higgs multiplets dominates in the
generation of charged fermion masses so that Md and
Ml have roughly the same form, and thus approximately
equal mixing. One can also add a mass matrix proportional
to the unit matrix; this does not change the mixing but
affects the mass ratio.
With one 10-plet, which conserves the basis-fixing

symmetry, we obtain at the GUT scale the diagonal mass
matrices

Mð10Þ
d ¼ Mð10Þ

l ¼ vd
vu

Mð10Þ
u ¼

0
B@

k1 0 0

0 k2 0

0 0 k3

1
CA; ð42Þ

where vd and vu are the VEVs of the 10-plet that generate
masses of the upper and bottom components of the EW

5We take the following convention in the definitions of
Uu, Ud, Ue, and U0: Mu ¼ Uudiagðmu;mc;mtÞUT

u , Md ¼
Uddiagðmd;ms; mbÞUT

d , Me ¼ Uediagðme;mμ; mτÞUT
e , and

mν ¼ U�
0diagðm1; m2; m3ÞU†

0. In this convention, the CKM
and PMNS matrices should be UCKM ¼ U†

uUd and UPMNS ¼
UT

l U0.
6There are, however, some finite groups that contain small

angles—see, e.g., Refs. [54–56].
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doublets, correspondingly. The difference of masses of up
and down components is due to the difference of VEVs:
vd=vu ≈mb=mt. Since ki’s are proportional to the quark
masses, for k3 ∼mb ∼mτ ∼ 1 GeV, we obtain the other
masses k2 ≈ 3 MeV and k1 ≈ 10−2 MeV, which are much
smaller thanms andmd, respectively. So, additional sources
of mass and mixing are needed. The simplest possibility is
that the total matrices of the down-type quarks and charged
leptons consist of

Md ¼ Mð10Þ
d þMx; Ml ¼ Mð10Þ

d þ aMx; ð43Þ
where jaj ≈ 3 is needed to reproduce (41) and maximal
values of elements in Mx should beMmax

x ∼ms so as not to
destroy the b − τ unification. The matrix Mx is nondiag-
onal, thus breaking the basis-fixing symmetry or GV and
producing the CKM mixing.
Correct masses and mixing can be obtained, provided

that Mx has the structure

Mx ≈

0
B@

d1 f f0

f d2 d0

f0 d0 d3

1
CA; ð44Þ

with

f0 ≈ f; d0 ∼ d2 ∼ d3; d1 ≪ d2; d3; ð45Þ
and

f ≈ d2 sin θC: ð46Þ
That is, the mass matrix Mx (44) has the dominant 2-3
block and the Cabibbo-suppressed 12 and 13 elements. It is
similar to the TBM or BM mass matrices. Therefore, it is
also similar to the structure ofMS and, consequently, tomν,
in the case of normal mass hierarchy. It is interesting to
speculate that common Planck scale physics is responsible
for the structure of MS and Mx.
Numerically, we need to have

di ∼ 0.1vEW
MGUT

MPl
∼ ð30–100Þ MeV; ð47Þ

comparable to the masses of second generation, i.e., the
muon and s quark.
The total mass matrices of the down quarks and charged

leptons (43) for a ¼ −3 become

Md ≈

0
B@

d1 þ k1 f f0

f d2 þ k2 d0

f0 d0 d3 þ k3

1
CA;

Ml ≈

0
B@

−3d1 þ k1 −3f −3f0

−3f −3d2 þ k2 −3d0

−3f0 −3d0 −3d3 þ k3

1
CA; ð48Þ

where d1 ≫ k1 and d2 ≫ k2. So, for the second and the first
generations, the contributions from Mx dominate. This
leads to i) a mass of the muon about three times larger than
the mass of the s quark and ii) approximately the same 1-2
mixing of leptons and quarks. For the third generation, the
contribution from the 10-plet dominates, k3 ≈ h3 ≫ d3,
thus ensuring the approximate b-τ unification. In general,
mτ ¼ mb þOð4mμÞ.
From Eq. (48), we obtain for the 2-3 quark mixing

Vcb ≈
d0

k3
≈

d0

mb
≈
ms

mb
ð49Þ

and the 1-3 quark mixing

Vub ≈
f0

k3
∼

f
mb

∼
ms

mb
sin θC; ð50Þ

in agreement with observations. According to Eqs. (49) and
(50), Vub ∼ VcbVus.
The lepton mixing parameters are about three times

larger:

Uμ3 ≈ −
3d0

mτ
; Ue3 ≈ −

3f0

mτ
: ð51Þ

This corresponds to the angles θl23 ∼ ð4–5Þ° and θl13 ∼ 1°,
which give a sizable deviation from maximal 2-3 mixing
and observable corrections to the 1-3 mixing.
Decoupling of the third state produces small corrections

to the 1-2 submatrix of Md: the correction to the 1-1
element f02=mb ∼ 0.05 MeV, and the relative corrections to
other elements are of the order d0=mb ∼ms=mb ∼ 3% and
can be neglected. The corresponding relative corrections in
the lepton sector are three times larger; the correction to the
1-1 element, which is an order of magnitude larger,
9f02=mb ∼ 0.45 MeV, can be important for the mass of
electron. In the 1-2 sector, we can reproduce the Gatto-
Sartori-Tonin relation: sin θC ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
.

Let us make a few comments on possible origins of Mx.
The straightforward way is to introduce a 126-plet that
produces a ¼ −3 in Eq. (43). This 126-plet should not
contribute substantially to the masses of neutrinos, not to
destroy the inverse seesaw with screening. For this, the
VEVs of the SU(2) singlet and triplet in the 126-plet should
be zero or small. The mass of the 126-plet can be at the
Planck scale to avoid the problem of perturbativity of the
theory (see, e.g., the review [57]).
Another possibility [58] is to use the composite 126-plet

constructed from the product of two 16-plets. The coupling
with fermions is given by nonrenormalizable operators
suppressed by the Planck scale MPl:

L ⊃
1

MPl
ψψHð16ÞH0ð16Þ: ð52Þ
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Here, H0ð16Þ is the new 16-plet of scalars with zero VEVof
the SU(2) triplet and singlet components. A similar
operator with Hð16ÞHð16Þ can be forbidden by additional
symmetry with respect to transformations Hð16Þ → iHð16Þ,
H0ð16Þ → −iH0ð16Þ, S → −iS, and ðη; ξ;ϕÞ → −ðη; ξ;ϕÞ.
Then, one should assume that, due to some Planck scale
physics, the down Higgs doublet in the composite 126-plet
acquires the VEV

h½Hð16ÞHð16Þ0 �ð126Þid ¼ vdMGUT: ð53Þ

For vd ∼ 0.1vEW, this reproduces Eq. (47).
Notice that, instead of the nonrenormalizable interaction

(52), we can introduce

L ⊃
1

MPl
ψψHð10ÞHð45Þ; ð54Þ

where Hð45Þ is the 45-plet responsible for the SO(10)
symmetry breaking [58]. The product Hð10ÞHð45Þ contains
antisymmetric 120-plet and therefore can remove the
degeneracy of charge lepton and d-quark masses. How-
ever, the matrix (44) with diagonal elements cannot be
reproduced.
In what follows, for simplicity, we will consider mixing

of the first two generations only. Inclusion of corrections
from the 1-3 or 2-3 mixing changes the following results
very little. The mass matrices (48) can be diagonalized by

Ud ¼

0
B@

c s̃ 0

−s̃� c 0

0 0 1

1
CAPd; Ul ¼

0
B@

cl s̃l 0

−s̃�l cl 0

0 0 1

1
CAPl;

ð55Þ

where

c≡ cos θC; s̃≡ sin θCeiϕC ;

cl ≡ cos θl; s̃l ¼ sin θleiϕl

and Pd and Pl are diagonal matrices containing complex
phases. Although all elements of the mass matrices in
Eq. (48) are complex, for simplicity, we assume that only f
is complex. Then, six real parameters d1;2;3 and k1;2;3 allow
us to accommodate the six masses ðmd;ms;mb;me;
mμ; mτÞ, while the complex f generates the Cabibbo
mixing, sin θC, with a complex phase ϕC and analogous
mixing sin θl and phase ϕl in the lepton sector.
The phase ϕC has no physical meaning for the 2 × 2

form of Ud. In contrast, as we will see, ϕl is directly related
to the CP phase in the PMNS matrix. Introduction of small
1-3 and 2-3 mixing will make ϕC be the origin of CP
violation in the CKMmixing. But this will have little effect
on the PMNS mixing.

Using the hierarchy md ≪ ms and me ≪ mμ as well as
the smallness of sin θC ≪ 1, we obtain the approximate
relations (for more details, see Appendix C)

ϕl

ϕC
¼ 1þO

�
md

ms

�
; ð56Þ

sin 2θl
sin 2θC

≈
3ðms þmd cosϕ1Þ
mμ þme cosϕ2

≈ 1; ð57Þ

where

ϕ1 ≡ π − arcsin

�
s2ms

c2md
sin 2ϕl

�
− 2ϕl;

ϕ2 ≡ arcsin

�
s2l mμ

c2l me
sin 2ϕl

�
− 2ϕl: ð58Þ

Equation (58) shows the complicated dependence of the
phases, on known quantities (fermion masses and the
Cabibbo angle) and on ϕl, which in turn is related to
the leptonic CP phase. Values of ϕ1 and ϕ2 for two special
values of ϕl can be obtained from Eq. (58),

ðϕ1;ϕ2Þ ≈
� ð0°; 180°Þ for ϕl ¼ �90° ðiÞ
ð180°; 0°Þ for ϕl ¼ 0° or 180° ðiiÞ :

ð59Þ

For other values of ϕl, results of the numerical study will be
presented later.
Equations (56) and (57) show that the charged leptons do

have approximately the same mixing as the down-type
quarks, θl ≈ θC and ϕl ≈ ϕC. Recall that the factor 3 in
Eq. (57) originates from the effective 126-plets. Taking the
1σ range values of me, mμ, mu, and ms from Ref. [53] and
using Eq. (57), we can evaluate the ratio of the angles for
the two choices of phases [cf. Eq. (59)]:

θl
θC

¼
�
0.871 − 1.22 ðiÞ
0.999 − 1.35 ðiiÞ: ð60Þ

For other values of the phases, one would get intermediate
results between those in the cases i and ii.
According to Eq. (55), the PMNS matrix should be

UPMNS ¼

0
B@

cl −s̃�l 0

s̃l cl 0

0 0 1

1
CAUBM ð61Þ

or explicitly
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UPMNS ¼

0
BBB@

1
2
ðs̃�l þ

ffiffiffi
2

p
clÞ − s̃�l

2
þ clffiffi

2
p s̃�lffiffi

2
p

s̃lffiffi
2

p − cl
2

1
2
ð ffiffiffi

2
p

s̃l þ clÞ − clffiffi
2

p

− 1
2

1
2

1ffiffi
2

p

1
CCCA: ð62Þ

Notice that the matrix of phases Pl does not appear here
since it can be removed by the rephasing of the fields. From
Eq. (62), one finds mixing parameters in the standard
parametrization,

s13 ¼
slffiffiffi
2

p ; ð63Þ

s212 ¼
1

2
−

ffiffiffi
2

p
clsl cosϕl

2 − s2l
; ð64Þ

s223 ¼
c2l

2 − s2l
≈
1

2

�
1 −

1

2
s2l

�
; ð65Þ

sin δCP ¼ − sinϕl − s2l sinϕlcos2ϕl þOðs3l Þ: ð66Þ

The above results can be expressed in terms of known
variables (θC, ms, md, mμ, me) and ϕl. Although ϕl ≈ ϕC,
we cannot connect it to the CP violation in the CKM
mixing without introducing 1-3 and 2-3 mixing. Using
expression (C18) for the mixing parameter sl and replacing
ϕl by δCP, we obtain from Eq. (63)

s13 ≈ 3
sin θCffiffiffi

2
p

����ms −mde−2iδCPe
−isin−1ðms

md
tan2θC sin 2δCPÞ

mμ þmee−2iδCPe
isin−1ðmμ

me
tan2θC sin 2δCPÞ

����: ð67Þ

From Eqs. (63) and (64), we obtain the relation between
observables:

s212 ≈
1

2
þ s13 cos δCP

c213
: ð68Þ

In Fig. 1, we show the mixing angles θ12 and θ13 as
functions of the CP phase δCP ≈ ϕl according to Eqs. (64)
and (63). We used sin θC ¼ 0.225 and the values ofms,md,
mμ, and me from Ref. [53]. The angle θ23 is in the first
octant: sin2 θ23 ¼ 0.49. Taking the 1σ allowed interval for
θ12, we obtain from (68) cos δCP < −0.86 or

δCP ∈ ð0.80π; 1.16πÞ: ð69Þ

Including 2-3 mixing in VCKM ≃ Ul changes the prediction
for δCP by a few degrees. The result (69) is in agreement
with general phenomenological analyses [59–61] for the
case of BM mixing receiving corrections from charge
lepton mixing Ul. According to Ref. [61], cos δCP should
be in the range ½−1.00;−0.72� at 3σ confidence level.
The upper value of the interval (69) is in agreement with

global fit results at about 1σ level. Notice that δCP is
strongly restricted here by the requirement of maximal
possible reduction of the 1-2 mixing from its BM value
sin2 θ12 ¼ 0.5. So, the best value would be cos δCP ¼ −1.
The only other parameter that enters the relation (68) is the
1-3 mixing, which is measured very precisely. If we would
use the TBM matrix U0 ¼ UTBM instead of BM, no large
corrections from U†

l are required, and cos δCP should be
close to zero. However, U0 ¼ UTBM cannot be obtained in
our residual symmetry approach. Thus, future measure-
ments of δCP will test the scenario.
The values of mixing angles are subjects of the renorm-

alization group (RG) corrections. TheCKMmixing receives
small corrections. For the PMNS mixing in our framework,
the RG corrections can be significant due to strong hierarchy
of the right-handed neutrino masses. The strong hierarchy
originates from the up-type quark-mass spectrum, as the
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FIG. 1. Predictions on the PMNS mixing angles. Shown are the dependencies of the angles θ12 (left panel) and θ13 (right panel) on
δCP. Red lines correspond to the charged fermion masses fixed at the central values according to the RGE running in Ref. [53]; blue
points are masses randomly generated within 1σ allowed regions. The black lines show the best-fit values and 1σ bounds of θ13 and θ12
from Ref. [62]. We take sin θC ¼ 0.225.
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right-handed neutrino mass matrix is determined by
mT

Dm
−1
ν mD, and in SO(10) models, mD is the same as Mu

(or approximately the same inmulti-Higgs variations). From
this, one obtains the masses of the order ð104; 109;
1014Þ GeV. Between the lightest and heaviest right-handed
neutrinos, one or two of them are integrated out, while the
others remain in the RG equations. This is where RG
running may have larger effects on the flavor structure [63].
The RG effects with such a strong hierarchy have been

studied in Ref. [18]. In the standard model (SM) extended
by RH neutrinos, the corrections mainly depend on the
lightest neutrino mass, Majorana phases, and the mass
ordering. The result in Ref. [18] shows that for m1 ¼
10−3 eV in the case of normal mass ordering the correction
to θ12 is in the range ð−1.5°; 1.0°Þ. For smaller/larger m1,
the correction can be significantly suppressed/enhanced.
For example, when m1 ¼ 10−4 eV, the correction can be
reduced down to 0.02° (cf. Fig. 10 in Ref. [18]), indepen-
dent of the Majorana phases, while for m1 ¼ 10−2 eV with
zero Majorana phases, it can reach 10°.
The other two mixing angles θ13 and θ23 are generally

much more stable with respect to the RG corrections than
θ12 [64–66]. In the scenario with strong hierarchy of right-
handed neutrino masses, the correction to the 1-3 mixing is
found to be always smaller than 0.3° in the SM, which is
negligible compared to the uncertainties caused by the
fermion masses at the GUT scale—see Eq. (60).
The fermion singlets S from the hidden sector may

produce further corrections. Since the mass scale of S is not
much higher than the GUT scale, we expect small RG
corrections from, e.g., 1016 to 1018 GeV. At the GUT scale
or below, the singlets can be integrated out, generating the
heavy Majorana masses of right-handed neutrinos.
Therefore, we can assume that the SM plus type-I seesaw
is valid up to the GUT scale, and in this range, one can
adopt the conclusions from Ref. [18]. Above the GUT
scale, up to the mass scale of S, we expect small RG
corrections due to the small interval or running.
Furthermore, the mixing of these singlets with active
neutrinos is strongly suppressed.
Variations of the CP phase predictions may be possible.

Essentially, the result (69) is obtained in the assumption of
negligible RG corrections. Large RG corrections ð∼10°Þ to
the 1-2 mixing can be obtained for the degenerate pair of ν1
and ν2. This can be realized for m1 ∼ 10−2 eV or inverted-
mass ordering. In this case, RG corrections can reduce θ12
down to 35°, and large corrections from Ul are not needed.
Consequently, cos δCP can be small.
One can use some other matrices from Table I, e.g.,UGR.

This, however, would require large corrections fromU†
l and

its substantial deviation from VCKM. Another possibility is
to produce some mixing from the portal interactions.
Finally, one can abandon the residual symmetry approach
and fix structure of MS using other symmetries or
principles.

Finally, let us comment on the viability of leptogenesis in
this framework. As previously mentioned, the typical RH
neutrino masses are ð104; 109; 1014Þ GeV, which is very
hierarchical. The lightest RH neutrino in this scenario is too
light to produce the observed baryon asymmetry [67].
However, the second RH neutrino is in the proper mass
range and may realize successful N2 leptogenesis (see, e.g.,
Refs. [68,69]).

VI. CONCLUSIONS

The relation between the lepton and quark mixings
[cf. Eq. (1)] can imply the grand unification and existence
of the hidden sector, which is connected to the visible sector
via the RH neutrino portal. The grand unification ensures
the approximate equality Ul ≈ Vd ≈ VCKM and, conse-
quently, UPMNS ≃ V†

CKMU0, whereas the hidden sector with
certain symmetries generates U0 and produces the small-
ness of neutrino masses.
We focus on the symmetry aspects of this scenario—the

interplay of discrete flavor symmetries and the SO(10)
gauge symmetry. We develop the residual symmetry
approach to generate U0, which connects the visible and
hidden sectors. The Z2 × Z2 residual symmetries of the
visible and hidden sectors are intrinsic symmetries of the
SO(10) Yukawa interactions.
Embedding of these residual symmetries into a unified

finite flavor group fixes the moduli of mixing matrix
elements in the form of cosines of rational multiples of
π. Imposing the unitarity condition results in only a few
forms of U0 that include the BM matrix. Using these
matrices, we reconstruct the group presentations and thus
identified the corresponding symmetry groups. The flavor
symmetry is broken in the hidden sector spontaneously. In
the visible sector (at lower energy scales), the breaking can
be explicit. In the latter case, only the basis symmetry in the
hidden sector is promoted to a larger non-Abelian sym-
metry. We consider a specific model that realizes the BM
mixing for U0.
We use the 126-plet with the Planck-scale mass or

composite 126-plet originating from the Plank-scale phys-
ics to generate the CKM mixing and Ul ∼ VCKM as well as
the differences of quark and lepton masses of the second
and the first generations. Thus, generation of CKM mixing
and the mass differences of the down quarks and charge
leptons of the first the second generations are connected.
Interestingly, the CKM mixing and the corresponding Ul
matrix can be reproduced with an additional contribution
from the Planck-scale physics with the flavor structure
similar to the one for S and, consequently, the light
neutrinos.
Assuming that the RGE corrections are small, we expect

the leptonic CP violation phase to be in the range
144°≲ δCP ≲ 210°. Future measurements of δCP in accel-
erator neutrino experiments such as T2K, NOVA, and
DUNE will be an important test of this scenario.
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Coupling of the hidden sector with the visible one
realizes the double-seesaw mechanism. It allows one to
disentangle the generation of the U0 mixing and the CKM
mixing. The latter is related to the Planck scale–suppressed
nonrenormalizable interactions.
An important feature of this scenario is a very strong

hierarchy of masses of the RH neutrinos. This can lead to
significant renormalization group effects that correct, in
particular, the 1-2 mixing. The lightest RH neutrino with
mass 104 GeV has mixing with active neutrinos of the
order 10−7. So, it cannot be observed at colliders but could
play some role in leptogenesis. The N2 leptogenesis can be
realized.
Future precise measurements of the CP phase, establish-

ing mass ordering and absolute scale (degeneracy) of
masses, will provide important tests of the scenario. In
particular, establishing a strong normal mass hierarchy and
substantial CP violation would exclude the simplest
realization based on the BMmixing from the hidden sector.
No new physics related to the neutrino-mass generation

should be observed at LHC and other future collider
experiments. Proton decay might be detected at some level.
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APPENDIX A: SYMMETRY GROUP CONDITION

All the T’s and R’s in Eqs. (14) and (15) are SU(3)
matrices, i.e., detT ¼ detR ¼ 1, which implies that the
product TiRj is also an SU(3) matrix. One can use
properties of SU(3) matrices to derive the relations below.
Introducing the eigenvalues of Wij ≡ TiRj ðλ1; λ2; λ3Þ,

we can represent this matrix as

Wij ¼ TiRj ¼ UTS

0
B@

λ1

λ2

λ3

1
CAU†

TS: ðA1Þ

Then, according to Eq. (16), λpi ¼ 1. Keeping in mind that
the eigenvalues satisfy the relations jλ1j2 ¼ jλ2j2 ¼ jλ3j2 ¼
λ1λ2λ3 ¼ 1 (the latter follows from detWij ¼ 1), we can
parametrize them as

λ1 ¼ e−iðθ2þθ3Þ; λ2 ¼ eiθ2 ; λ3 ¼ eiθ3 ðA2Þ

with

θi ¼
2πni
p

: ðA3Þ

Since unitary transformations do not change the trace of
a matrix, we have

trðTiRjÞ ¼
X
i

λi ¼ e−iðθ2þθ3Þ þ eiθ2 þ eiθ3 : ðA4Þ

For a given p, this sum has discrete sets of values.
On the other hand, we compute the trace of TiRj from

Eqs. (14) and (15),

trðTiRjÞ ¼ 4ðU0ÞijðU0Þ�ij − 1 ¼ 4jðU0Þijj2 − 1; ðA5Þ

which is a real number. Therefore, Eq. (A4) must be a real
number, too, which requires that

sin θ2 þ sin θ3 − sinðθ2 þ θ3Þ ¼ 0: ðA6Þ

This equation has only three solutions in the range ½0; 2πÞ,

θ2 ¼ 0; θ3 ¼ 0; θ2 þ θ3 ¼ 0 ðA7Þ

or, equivalently, n1 ¼ 0, n2 ¼ 0, n3 ¼ 0. Consequently, in
any of these three cases, the eigenvalues of TiRj can be
taken as ð1; e2πn=p; e−2πn=pÞ, and thus the trace equals

trðTiRjÞ ¼ 1þ 2 cos
2πnij
pij

¼ 4 cos2
πnij
pij

− 1: ðA8Þ

Using Eqs. (A5) and (A8), we immediately obtain equal-
ity (17).

APPENDIX B: THE S4 GROUP AND ITS
REPRESENTATIONS

The group S4 is the permutation group of four objects. It
can be defined by four generators r1, r2, t1, and t2 with the
following relations:

r21 ¼ r22 ¼ t21 ¼ t22 ¼ 1; ðB1Þ

ðt1r1Þ4 ¼ ðt1r2Þ4 ¼ ðt2r1Þ3 ¼ ðt2r2Þ3 ¼ 1: ðB2Þ

The group has five irreducible representations, denoted as
1, 10, 2, 3, and 30, in which the generators are represented by
the matrices

Rð3Þ
1 ¼−

1

2

0
B@

0
ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
2

p
1 −1ffiffiffi

2
p

−1 1

1
CA; Rð3Þ

2 ¼−

0
B@
1 0 0

0 0 1

0 1 0

1
CA;

Tð3Þ
1 ¼

0
B@
1 0 0

0 −1 0

0 0 −1

1
CA; Tð3Þ

2 ¼

0
B@
−1 0 0

0 1 0

0 0 −1

1
CA; ðB3Þ
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Rð30Þ
1 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; Rð30Þ

2 ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; Tð30Þ

1 ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; Tð30Þ

2 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ðB4Þ

Rð2Þ
1 ¼

�−1 0

0 1

�
; Rð2Þ

2 ¼
�
1 0

0 1

�
; Tð2Þ

1 ¼
�
1 0

0 1

�
; Tð2Þ

2 ¼
 

1
2

ffiffi
3

p
2
e−

πi
6ffiffi

3
p
2
e
πi
6 − 1

2

!
; ðB5Þ

where ω≡ expð2πi
3
Þ, and

Rð10Þ
1 ¼ −1; Rð10Þ

2 ¼ 1; Tð10Þ
1 ¼ 1; Tð10Þ

2 ¼ −1; ðB6Þ

Rð1Þ
1 ¼ 1; Rð1Þ

2 ¼ 1; Tð1Þ
1 ¼ 1; Tð1Þ

2 ¼ 1: ðB7Þ

The Clebsch-Gordan coefficients are given by0
B@

x1
x2
x3

1
CA

ð3Þ

⊗

0
B@

y1
y2
y3

1
CA

ð3Þ

¼ ð x1y1þx2y2þx3y3ffiffi
3

p Þð1Þ ⊕ 1

6
ffiffiffi
2

p
�

6x1y1 − 3ðx2 þ x3Þðy2 þ y3Þ
e
πi
6

ffiffiffi
3

p ð2x1y1 − x2ðy2 − 3y3Þ þ x3ð3y2 − y3ÞÞ

�ð2Þ

⊕
1ffiffiffi
2

p

0
B@

x3y2 − x2y3
x1y3 − x3y1
x2y1 − x1y2

1
CA

ð3Þ

⊕
1

2

0
B@

ffiffiffi
2

p ðx2y2 − x3y3Þ
x2y1 − x3y1 þ x1ðy2 − y3Þ

−ðx2y1 þ x3y1 þ x1ðy2 þ y3ÞÞ

1
CA

ð30Þ

; ðB8Þ

0
B@

x1
x2
x3

1
CA

ð30Þ

⊗

0
B@

y1
y2
y3

1
CA

ð30Þ

¼ ð x1y1þx2y2þx3y3ffiffi
3

p Þð1Þ ⊕ 1ffiffiffi
2

p
� x1y1 − x2y2

e
πi
6 ðx1y1þx2y2−2x3y3Þffiffi

3
p

�ð2Þ

⊕
1

2

0
B@

ffiffiffi
2

p ð−x3y2 þ x2y3Þ
ðx2y1 þ x3y1 − x1ðy2 þ y3ÞÞ
ð−x2y1 þ x3y1 þ x1ðy2 − y3ÞÞ

1
CA

ð3Þ

⊕
1ffiffiffi
2

p

0
B@

ðx3y2 þ x2y3Þ
ðx3y1 þ x1y3Þ
ðx2y1 þ x1y2Þ

1
CA

ð30Þ

; ðB9Þ

�
x1
x2

�ð2Þ
⊗
�
y1
y2

�ð2Þ
¼
�
x1y1 − ωx2y2ffiffiffi

2
p

�ð1Þ
⊕
�
x1y2 − x2y1ffiffiffi

2
p

�ð10Þ
⊕

1ffiffiffi
2

p
�

x2y1 þ x1y2
−ω2x1y1 − x2y2

�ð20Þ
: ðB10Þ

APPENDIX C: ANALYTIC DIAGONALIZATION IN THE VISIBLE SECTOR

To diagonalize the mass matrices in Eq. (48), we reconstruct the mass matrices of down quarks and charged leptons in
terms of mass eigenstates and mixing angles,Md ¼ Uddiagðm̃d; m̃s; m̃bÞUT

d andMl ¼ Uldiagðm̃e; m̃μ; m̃τÞUT
l , which gives�

m̃dc2 þ s̃2m̃s cðs̃m̃s − m̃ds̃�Þ
cðs̃m̃s − m̃ds̃�Þ m̃sc2 þ m̃ds̃�2

�
¼
�
d1 þ k1 feiϕf

feiϕf d2 þ k2

�
; ðC1Þ

�
m̃ec2e þ s̃2em̃μ ceðs̃em̃μ − m̃es̃�eÞ

ceðs̃em̃μ − m̃es̃�eÞ m̃μc2e þ m̃es̃�2e

�
¼
�
−3d1 þ k1 −3feiϕf

−3feiϕf −3d2 þ k2

�
: ðC2Þ

Because m̃ds̃�2 ≪ m̃sc2 and m̃es̃�2e ≪ m̃μc2e, we neglect m̃ds̃�2 and m̃es̃�2e below. Equating the corresponding elements of
the matrices on the left-hand side and right-hand side, we obtain expressions for d1;2 and k1;2:
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k1 ¼
1

4
ð3c2m̃d þ c2l m̃e þ m̃μs̃2l þ 3m̃ss̃2Þ;

k2 ¼
1

4
ð3c2m̃s þ c2l m̃μÞ; ðC3Þ

d1 ¼
1

4
ðc2m̃d − c2l m̃e − m̃μs̃2l þ m̃ss̃2Þ;

d2 ¼
1

4
ðc2m̃s − c2l m̃μÞ: ðC4Þ

Since −3d2 þ k2 and d2 þ k2 in Eqs. (C2) and (C1) are real
under our assumptions, m̃s and m̃μ should be approximately
real, either positive or negative. Because d2 is dominant,
we take positive m̃s and negative m̃μ, i.e., m̃s ≈ms and
m̃μ≈−mμ. Furthermore, the equalities Imðd1þk1Þ¼
Imð−3d1þk1Þ¼0 give

c2md sin αd þ s2ms sin 2ϕC

¼ c2eme sin αe − s2l mμ sin 2ϕl ¼ 0; ðC5Þ

which leads to

sin αd ¼ −
s2ms

c2md
sin 2ϕC; sin αe ¼

s2l mμ

c2l me
sin 2ϕl: ðC6Þ

From the equality of the off-diagonal elements of
Eqs. (C1) and (C2), we obtain

feiϕf ¼ cðs̃ms − m̃ds̃�Þ ¼
1

3
clðs̃lmμ þ m̃es̃�eÞ ðC7Þ

or

2feiϕf ¼ sin 2θCðmseiϕC − m̃de−iϕCÞ

¼ 1

3
sin 2θeðmμeiϕl þ m̃ee−iϕlÞ: ðC8Þ

Because ms ≫ md and mμ ≫ me, one can immediately see
from Eq. (C8) that the phases ϕC and ϕl should be
approximately equal to ϕf:

ϕC ¼ ϕf þO
�
md

ms

�
; ϕl ¼ ϕf þO

�
me

mμ

�
: ðC9Þ

This reproduces the result in Eq. (56). Equation (C8) also
gives

sin2θl
sin2θC

¼3ðmseiϕC −m̃de−iϕCÞ
mμeiϕe þm̃ee−iϕl

≈
3ðmsþmdeiϕ1Þ
mμþmeeiϕ2

; ðC10Þ

ϕ1 ≡ π þ αd − 2ϕf; ϕ2 ≡ αe − 2ϕf; ðC11Þ

where we have taken the approximation ϕC ≈ ϕf ≈ ϕe.
Because of the relations ms ≫ md and mμ ≫ me, in

Eq. (C10), the imaginary parts in mdeiϕ1 and meeiϕ2 can be
neglected, which leads to Eq. (57).
Finally, we express d1;2, k1;2, and f in terms of

ðmd;ms;me;mμ; θC;ϕlÞ and θl inserting results of
Eqs. (C9) and (C6) into Eqs. (C3), (C4), and (C7):

k1 ¼
1

4
ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4m2

d − s4m2
ssin22ϕl

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4l m

2
e − s4l m

2
μsin2ð2ϕlÞ

q
þ cos 2ϕlð3s2ms − s2emμÞÞ; ðC12Þ

d1 ¼
1

4
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4m2

d − s4m2
s sin2 2ϕl

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4l m

2
e − s4l m

2
μ sin2 2ϕl

q
þ cos 2ϕlðs2l mμ þ s2msÞÞ;

ðC13Þ

k2 ¼
1

4
ð3c2ms − c2l mμÞ; ðC14Þ

d2 ¼
1

4
ðc2ms þ c2l mμÞ; ðC15Þ

feiϕf ¼ sc½mseiϕC −md exp ð−iαd − iϕCÞ�: ðC16Þ

Here,

αd ¼ − arcsin

�
s2ms

c2md
sin 2ϕC

�
: ðC17Þ

The lepton mixing can be obtained from (C10)

sin2θl≈3sin2θC

������
ms−e−2iϕle

−isin−1ðs2 sinð2ϕlÞms
c2md

Þ
md

mμþe−2iϕle
isin−1ðsinð2ϕlÞmμs2l

c2eme
Þ
me

������; ðC18Þ

where the right-hand side still contains θl but it only
appears in the negligibly small term proportional tome. So,
one can simply replace θl by θC in this term.
We have checked that our analytic results agree with

numerical computations up to an order of 10−4.
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