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The anomalous magnetic moment (AMM) for excited states of an electron in a constant magnetic field
has been calculated within the framework of two-dimensional electrodynamics. The analytical results for
the interaction energy of the anomalous magnetic moment with the external magnetic field are obtained in
two limiting cases of nonrelativistic and relativistic energy values in a comparatively weak magnetic field.
It is shown that the interaction energy of the spin with the external field does not contain infrared
divergence and tends to zero as magnetic field decreases, while the electron’s AMM increases
logarithmically.
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I. INTRODUCTION

It is well known that the solution of the Dirac equation in
external magnetic field gives a kinetic (intrinsic) magnetic
moment of electron equal to one Bohr magneton

μB ¼ eℏ
2mc

≃ 5.79 × 10−19
eV
G

:

The theoretical explanation for the origin of the electron
anomalous magnetic moment (AMM) and the calculation
of its magnitude were given by Schwinger [1]. Taking
into account the part of the vacuum interaction energy of an
electron in a magnetic field, Schwinger showed in the
nonrelativistic approximation that a term linear in the
field strength leads to a change in the electron g-factor.
The electron behaves as if it had a static magnetic moment
equal to

μ ¼ −μB
�
1þ α

2π
þ � � �

�
;

where α is a fine-structure constant. Therefore, the true
magnetic moment of the electron has deviation from the
Bohr magneton, which is called “anomalous magnetic
moment.” Note that this result of Schwinger actually has
given an excellent quantitative explanation for contempo-
rary experiments in hyperfine splitting of energy levels of
S-states of hydrogen atom [2,3].
In previous publications [4–8], an interesting effect was

predicted and analyzed, demonstrating that the AMM of
electron has dynamic nature. It appears to be a complex

function of the magnetic field strength and electron’s
energy and in sufficiently strong magnetic fields, the
AMM can differ greatly from Schwinger’s result, which
is [6]

−μB
α

2π
¼ −μBðaeÞSchwinger:

Presently, the value ae ¼ Δμ
μB

is calculated in the standard
model of Weinberg-Salam-Glashow with very high accu-
racy, and its experimental verification serves as an impor-
tant method to verify predictions of the standard model
[9–13]. The accuracy for measuring the AMM of electrons,
according to [13], is evaluated as

μ

μB
− 1 ¼ g − 2

2
¼ 0.00115965218091

� 0.00000000000026;

δ

�
μ

μB
− 1

�
¼ 0.26 × 10−14:

The increasing accuracy of experiments for the deter-
mination of electron AMMs makes it possible to exper-
imentally verify its dynamic nature using

ae ¼
α

2π
fðE;HÞ;

where E is the electron energy and H is the magnetic field
strength. In a constant magnetic field, under normal
conditions of experiment, the numerical correction δf in
the formula fðE;HÞ ¼ 1 − δf is fairly small. For instance,
even at the energy of the electron of 1 GeV and the
magnetic field of 104G, we have δf ¼ 5 × 10−10.*peminov@mail.ru
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In the vacuum, the role of radiation effects in propagation
of an electron or photon becomes especially important,
when the external field strength in the rest system of the
electron, or in the system where the photon has the energy
of mc2, becomes comparable to Schwinger’s critical field
[2,14–16]

H0 ¼
m2c3

eℏ
¼ 4.41 × 1013G:

On the other hand, in solid matter or in a magnetized
plasma, the notion of a strong magnetic field at finite
temperature and nonzero chemical potential differs signifi-
cantly from the corresponding notion in the vacuum
[9,14,17–20]. In particular, it can be noted that, at room
temperature ðT ¼ 300KÞ, the dynamic nature of mass shift
and the AMM of electrons in QED3þ1 becomes apparent in
magnetic fields with intensity of H ≥ 106G, which is
significantly less than the maximum intensity of pulsed
magnetic fields of H ≈ 107G, reached in laboratory
conditions.
Recently, much attention has been paid to the study of

radiation and spin effects in low-dimensional models of
the quantum field theory [21–24]. The results of such
studies are used to explain the fractional Hall effect, high-
temperature superconductivity, electronic properties of
graphene [25–31], quantum optics [32], and other areas
of physics. In the graphene and a number of other planar
structures [33], the dynamics of electronic excitations is
described by Dirac effective two-dimensional equation for
both massless and massive charged fermions. The account
of spin effects is usually carried out phenomenologically
and reduced to addition in the Dirac effective equation of
spin summands which have an analogy in QED3þ1 (for
instance, refer to [34]). The results of experimental studies
of the electron spin g-factor in graphene in a constant
magnetic field are given in [35,36]. Theoretical analysis of
these results within the frameworks of the pseudo-QED
model is provided in [37] in linear approximation upon the
external field, i.e., without consideration of the dynamic
nature of the AMM of an electron.
As was demonstrated in a number of previous publica-

tions, reduction in system dimensionality leads to a
significant change in dependence of magnetic properties
of electrons and photons on field intensity and particles’
energy, as well as temperature and chemical potential. The
polarization operator and elastic-scattering amplitude of
the photon in QED2þ1 in a constant magnetic field was
considered in [38,39], while the polarization operator of
QED2þ1 with nonzero fermion density in the magnetic field
was discussed in [40,41]. The electron self-energy in
(2þ 1) QED with the Chern-Simons term at finite temper-
ature and density has been analyzed in the papers [42,43].
However, until now, the dynamic nature of AMM of
electrons in two-dimensional electrodynamics has not been

studied either with the Chern-Simons term or without it and
the question of possibility for experimentally observing a
dynamic nature of electron AMM in graphene remains
open. The first calculations of the AMM of electrons in
QED2þ1 with the Chern-Simons term were made based
on the vertex function in the field-free case, i.e., without
taking into account the influence of external magnetic
field [44–46].
In an external magnetic field, the radiative shift of the

electron ground state energy was calculated within the
framework of topologically massive two-dimensional
electrodynamics in the paper [47]. A complete description
of the electron stationary states in a magnetic field has been
conducted using two-dimensional electrodynamics based
on the spin operator proposed in our Ref. [48].
On the basis of this result, the calculation of the radiative

shift of the electron ground state energy and the electron
AMM in the magnetized plasma of topologically massive
QED2þ1 has been performed [48]. In particular, it was
shown that the vacuum value of electron AMM in QED2þ1

with the Chern-Simons term, obtained in [48] in a relatively
weak magnetic field, coincides with the result obtained
previously by other authors based on the calculation of
vertex function (for instance, refer to [44–46]).
The purpose of this work is to study the dynamic nature

of the AMM of electron in a constant magnetic field within
the framework of the two-dimensional electrodynamics.
The article has the following structure. In Sec. II, using one-
loop approximation the exact expression for the anomalous
magnetic moment of an electron are found as a function
of magnetic field strength and the electron energy. In
Secs. III–IV, the analytical results for the AMM of an
electron in QED2þ1 are obtained in limiting cases of
nonrelativistic and relativistic values of the energy in a
comparatively weak magnetic field. The main results of this
study are formulated in the final Sec. V.

II. AMM OF AN ELECTRON IN QED2 + 1 IN A
CONSTANT MAGNETIC FIELD

The Lagrangian of QED2þ1 can be described by
formula [23,49–51]

L ¼ −
1

4
FμνFμν þ Ψ̄½ðp̂þ eÂÞ −m�Ψ

−
1

2ξ
ð∂μAμÞ2; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field tensor, ξ is parameter
fixing calibration, m is the electron mass, −e < 0 is the
electron charge. We consider the four-component fermions
in QED2þ1, connected with a four-dimensional reducible
representation of the Dirac matrices [48,50–53]
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γ0 ¼
�
σ3 0

0 −σ3

�
; γ1;2 ¼

�
iσ1;2 0

0 −iσ1;2

�
; ð2:2Þ

where σμðμ ¼ 1; 2; 3Þ are Pauli matrices. In the one-loop
approximation, the electron mass operator Σðx; x0Þ in a
constant magnetic field is defined by the expression [9]

Σðx; x0Þ ¼ −ie2γμScðH; x; x0ÞγνDμνðx − x0Þ; ð2:3Þ

where

ScðH; x; x0Þ ¼ −
1

2πi

Z
∞

−∞
dω exp½iωðt − t0Þ�

×
X

s;ε¼�1

Ψε
sðx⃗ÞΨ̄ε

sðx⃗0Þ
ωþ εEsð1 − iδÞ ð2:4Þ

is the causal Green function of electron in an external
magnetic field [17], Dμνðx − x0Þ is the photon propagation
function, which in QED2þ1 in the Landau gauge are
determined by the formula [42,54]:

Dμ;νðpÞ ¼
igμν

p2 − θ2 þ i0
: ð2:5Þ

Here, gμν ¼ ð1;−1;−1Þ, and we note that, in QED2þ1

theory, e2 in (2.3) is given in mass units. In order to
compare our results with the contribution coming in
QED2þ1 with the Chern Simons term [46–48] only from
the gμν term in the photon propagator, we take into account
the dependence the numerator in (2.5) from the Chern-
Simons parameter Θ.
The summation in (2.4) is carried out over all quantum

numbers s of the positive ðε ¼ þ1Þ and negative ðε ¼ −1Þ
frequency states, ΨðεÞ

s ðx⃗Þ—is the coordinate part of the
Dirac equation solution in a static magnetic field in
QED2þ1 and Es is the energy of electron stationary states.
Choosing the vector potential for external magnetic field
in the Landau gauge ðA0 ¼ A1 ¼ 0; A2 ¼ −xHÞ, the
Hamiltonian of the Dirac equation

i
∂Ψ
∂t ¼ ĤΨ ð2:6Þ

can be represented in a magnetic field as

Ĥ ¼ α1p̂x þ α2ðp̂y þ exHÞ þmγ0; ð2:7Þ

where the matrices α1;2 ¼ γ0γ1;2, p̂x and p̂y are the
projections of a momentum operator, andH is the magnetic
field strength. Following to [48], we require that the
solution of the Dirac equation be an eigenfunction of the
following operators:

(1) energy operator:

ĤΨ ¼ εEΨ; ð2:8Þ

(2) operator p̂y

p̂yΨ ¼ pyΨ; ð2:9Þ

(3) operator Â ¼ iεγ0γ1γ2 of spin projection on “direc-
tion” of the magnetic field:

ÂΨ ¼ ξΨ; ð2:10Þ

where ξ ¼ �1—is the spin quantum number.
As a result, the Dirac equation solution for electron may

be represented in the following form [48]:

Ψε¼þ1 ¼
ðeHÞ14ffiffiffiffiffiffiffiffi
2En

p exp½−iEntþ iypy�

2
6664

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En −m
p

un
0

0

1
CCCAD1

þ

0
BBB@

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En þm
p

un

1
CCCAD−1

3
7775; ð2:11Þ

where with ξ ¼ þ1 it is necessary to set D1 ¼ 1; D−1 ¼ 0
(spin is directed along the field), while at ξ ¼ −1, on the
contrary, D1 ¼ 0; D−1 ¼ 1 (spin is directed against the
field). The coefficients D1 and D−1 satisfy the normaliza-
tion condition

D2
−1 þD2

1 ¼ 1: ð2:12Þ

The electron energy level in a magnetic field in (2þ 1)-
dimensional QED determined by the main quantum num-
ber n only and defined by the formula

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eHn

p
; n ¼ 0; 1; 2;…; ð2:13Þ

and the argument of the Hermite functions unðηÞ [2,48] is

η ¼
ffiffiffiffiffiffiffi
eH

p �
xþ py

eH

�
: ð2:14Þ

It has been shown in [48] that the operator Â in (2.10) is a
(2þ 1)-dimensional analog of the projection of the oper-
ator three-dimensional spin vector on the direction of
magnetic field in QED3þ1. In the absence of a longitudinal
component in the momentum, it is proportional to the
operator transverse polarization μ3 [2], and the quantum
number ξ does have meaning of electron spin projection on
the direction of the external magnetic field. It follows from
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(2.11) that in the ground state (n ¼ 0) the electron spin can
only be directed opposite to the direction of the magnetic
field D1 ¼ 0; D−1 ¼ 1.
In the one-loop approximation, the mass operator

Σðx; x0Þ determines the radiative correction to the electron
energy in the form

ΔEξ;ξ0
q ðHÞ ¼ −ie2

1

T

ZZ
d3xd3x0Ψ̄qξ0 ðxÞ

× γμScðH; x; x0Þ
× γνDμνðx − x0ÞΨqξðx0Þ: ð2:15Þ

Here, functions ScðH; x; x0Þ and Dμνðx − x0Þ are defined by
formulas (2.4)–(2.5), T is the interaction time, ΨqξðxÞ—is
the Dirac equation solution for an electron in an external
field in the stationary state with quantum number
ðq; ξÞ≡ ðn; qy; ξÞ, which radiation energy shift is to be
found, quantum numbers ξ and ξ0 ¼ �1 characterize the
dependence energy shift on the spin initial and final
orientation. The value determined by this formula diverges
and requires renormalization. For this reason, one should
subtract from it a similar value corresponding to a zero
field limit.
As is known, for the electron excited states in a magnetic

field, the energy shift part proportional to bilinear combi-
nation ðD1D0

1 −D−1D0
−1Þ is directly associated with the

presence of the electron AMM [2]. In the ground state,
when the electron spin can only be directed opposite to the
magnetic field orientation, the part of the whole amount of
the energy shift in a weak magnetic field, which is linear in
the magnetic field strength, equal to the energy of inter-
action of the Schwinger’s anomalous magnetic moment
with the magnetic field [1,2].
When calculating the electron propagator in for-

mula (2.4), we use a method proposed in [55] for
calculation of two-loop contribution to thermodynamic
potential of QED in a constant magnetic field. We follow
this approach also to study resonant processes in the field of
a plane electromagnetic wave [56].
To calculate (2.15), we expand the matrix Ks

αβ ¼
Ψε

sðx⃗ÞΨ̄ε
sðx⃗0Þ in (2.4) with respect to matrices I; γμ; γμγν;

γ0γ1γ2:

4K ¼ I þ γ0F0 þ γ1F1 þ γ2F2

þ iγ1γ2F12 þ iγ0γ1γ2F012; ð2:16Þ

where

I ¼ SpK; Fμ ¼ SpðγμKÞ;
F12 ¼ Spðiγ1γ2KÞ; F012 ¼ Spðiγ0γ1γ2KÞ: ð2:17Þ

Next, we perform summation in (2.4) over the principle
quantum number n0 of the electron intermediate states using
the formula [57]

X∞
n0¼0

zn
0
Lα
n0 ðxÞ ¼ ð1 − zÞ−ðαþ1Þ exp

�
xz

z − 1

�
; ð2:18Þ

where Lα
n0 ðxÞ is a Laguerre polynomial. As a result, in the

momentum representation, the following expression is
obtained for the propagator of the two-dimensional electron
in a constant magnetic field (also refer to [51,52,58]):

ScðkÞ ¼ −i
Z

∞

0

ds exp

�
is

�
k20 −m2 þ iδ − k⃗2

tgðeHsÞ
eHs

��

×

�
ðγ0k0 þmÞð1þ γ1γ2tgðeHsÞÞ − ðk⃗ γ⃗Þ

cos2ðeHsÞ
�
:

ð2:19Þ

Integration over variables xμ and x0μðμ ¼ 0; 1; 2Þ gives
Z

d3xd3x0 exp
�
−i
�
ðpþ kÞðx − x0Þ þ eH

2
ðy − y0Þðxþ x0Þ

− Enðt − t0Þ þ qyðy − y0Þ
��

unðηÞumðη0Þ

¼ ð2πÞ2LTδðp0 þ k0 − EnÞ
2

eH
ð−1Þm

× exp½iðn −mÞλ�In;m
�
2κ2

eH

�
: ð2:20Þ

Here, pμ ¼ ðp0; p⃗Þ is a 4-momentum of a virtual photon,

κ⃗ ¼ p⃗þ k⃗, λ ¼ π
2
− ϕ, tgϕ ¼ ðκ2κ1Þ, In;mðzÞ is the Laguerre

function [2], T is interaction time, L is the length of
periodicity in the direction of axis Oy, and the appearance
of the Dirac δ-function expresses the energy conservation.
As a result, we arrive at the next representation, which is

exact in one-loop approximation for the interaction energy
of the spin with the external field for arbitrary excited state
of a two-dimensional electron:

ΔEξ
nðgμνÞ ¼ −ξ

m2e2

16π
3
2En

exp

�
i
π

4

�Z
1

0

duffiffiffi
u

p
Z

∞

0

dyffiffiffi
y

p

× exp

�
−im2uy − i

yð1 − uÞ
u

Θ2

− 2inarctgλþ 2ieHnyð1 − uÞ
�
F0: ð2:21Þ

Here, we assumed ξ ¼ ξ0, and the notation is taken as

F0 ¼
2 − uþ 2u exp½−2ieHy�

1 − uþ u exp½−ieHy� sinðeHyÞ
eHy

−
exp½2iarctgλ�ð2uþ ð2 − uÞ exp½−2ieHy�Þ

1 − uþ u exp½−ieHy� sinðeHyÞ
eHy

;

ð2:22Þ
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λ ¼ tgz
1þ u

1−u
tgt
t

; t ¼ eHy: ð2:23Þ

In QED3þ1 with a constant magnetic field, the following
relation takes place between the AMM of the electron and
the energy shift, which explicitly dependent on the electron
spin orientation [59,60]:

ℜðΔEξ
nÞ ¼ −ðΔμÞ

�
ξBt þ

m
En

ξBl

�
: ð2:24Þ

Here Bt and Bl, are the transverse and longitudinal (relative
to the direction of motion of the electron) vectors of the
magnetic induction. Since the component of the vector of
the magnetic field strength that is longitudinal with respect
to the speed of electron is equal to zero, the real part of the
energy (2.21) is connected with the contribution to the
AMM of the electron in QED2þ1 by the formula

ℜðΔEξ
nÞ ¼ −ξHΔμ: ð2:25Þ

The expression for the mass shift of the electron ground
state was first obtained in [47], where the two-component
electron wave function is used, and then obtained inde-
pendently in [48]. It can be represented in the form

ΔE0 ¼
e2

8π
3
2

Z
1

0

duffiffiffi
u

p
Z

∞

0

dyffiffiffi
y

p exp½−m2uy�A0;

A0 ¼
e−ν½2 − uþ 2ue−2eHy�

Φ
− u − 2; ð2:26Þ

where the renormalization of the mass is conducted by
subtracting divergent part ΔEðH → 0Þ and the notations
are taken as

ν ¼ yð1 − uÞΘ2

u
; Φ ¼ 1 − uþ u

sinðeHyÞ
eHy

e−eHy:

III. THE AMM OF AN ELECTRON IN QED2 + 1
WITH THE CHERN-SIMONS TERM:

CONTRIBUTION FROM THE gμν TERM
IN THE PHOTON PROPAGATOR

First, we consider the case of a weak magnetic field and a
nonrelativistic electron, when the following conditions are
satisfied:

β ¼ H
H0

≪ 1; 2eHn ≪ m2: ð3:1Þ

The real part of the energy shift in (2.21)–(2.23) is related to
the electron mass shift Δmξ, which in contrast to ΔE

ξ
n is the

Lorentz invariant. The change in the electron mass Δmξ,
which is dependent on the electron spin orientation, can be
found from the formula

Δmξ ¼
Eξ
n

m
ΔEξ

n: ð3:2Þ

Up to a factor equal to −i, the exponent in formula (2.21)
can be represented in the form

t
β

�
uþ

�
1

u
− 1

�
ρ2
�
≡ t

β
Fðu; ρÞ; ð3:3Þ

where ρ ¼ Θ
m, t ¼ eHy, Fðu; ρÞ ¼ uþ ð1u − 1Þρ2. We note

that Fðu; ρÞ → ∞ at u → þ0, Fðu ¼ 1; ρÞ ¼ 1 and, with-
out restricting the generality, it is assumed that ρ < 2. At
the critical point u0 ¼ ρ ¼ Θ

m, which is a minimum point of
the function FðuÞ on the interval [0, 1], the following
inequation is true

Fðu0; ρÞ ¼ 2
Θ
m

�
1 −

Θ
2m

�
> 0: ð3:4Þ

In the limiting case,

Fðu0; ρÞ
β

≫ 1; ð3:5Þ

when the field parameter β is small as compared to the
Chern-Simons parameter ρ, the main contribution to
the radiation energy shift (2.21) provides the domain
t ¼ eHy ≪ 1. Expanding the expression in formula (2.22)
in a series in the variable t, further integration is carried out
taking into account the infinitesimal imaginary part of the
electron mass in the causal propagator:

lim
δ→0

Z
∞

0

t
1
2 exp½−δt�

�
cos

tFðu; ρÞ
β

− i sin
tFðu; ρÞ

β

�
dt

¼ exp

�
−i

3π

4

� ffiffiffi
π

p
β

3
2

2

u
3
2

½u2 þ ð1 − uÞðΘmÞ2�
3
2

: ð3:6Þ

As a result, in the leading order on the small parameter eH
mΘ,

the contribution to the mass shift of an electron (3.2), is
defined by the formula:

ΔmξðgμνÞ ≃ ξe2
β

16π

Z
1

0

u2ð2 − uÞdu
½u2 þ ð1 − uÞ2ρ2�32

¼ ξe2
β

16π

�
3 − 3ρ −

�
2 −

3ρ2

2

�
ln
ρþ 2

ρ

�
;

β ≪ Fðu0; ρÞ: ð3:7Þ

As it follows from formula (3.7), when the spin is directed
opposite to the field, the result (3.7) for a nonrelativistic
electron in a weak magnetic field agrees with result (38)
obtained in [48] for the ground state of an electron, in
which the electron spin can be only directed opposite to the
magnetic field.
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In the limiting case of small values of the parameter ρ,
from formula (3.7) we find

ΔmξðgμνÞ ¼
ξe2β
8π

�
3

2
þ ln

ρ

2

�
; β ≪ ρ ≪ 1: ð3:8Þ

Further, let us refer to the case of a weak magnetic field
and ultrarelativistic values of energy of the electron, when
the following condition

β ≪ 1; p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2eHn

p
≫ m ð3:9Þ

is justified. In this area, the movement of electrons obeys
the quasiclassical laws. Maintaining two first expansion
terms in formula (2.23) in the significant region ðt ≪ 1Þ,

arctgλ ≃ tð1 − uÞ þ t3uð1 − uÞ2
3

;

we find the following representation for the part of the
electron mass shift, defined by the interaction energy of the
spin with the external magnetic field:

ΔmξðgμνÞ ¼ ξ
e2

8π
3
2

Z
∞

o

u − 2

1 − u
GðzÞdu: ð3:10Þ

Here, we introduced the function (also refer to [39])

GðzÞ ¼
Z

∞

0

ffiffi
t

p
exp

�
−i
�
π

4
þ ztþ t3

3

��
dt; ð3:11Þ

which depends on the argument

z ¼
�

1ffiffiffi
u

p ð1 − uÞκ
�2

3

Fðu; ρÞ; ð3:12Þ

where the function Fðu; ρÞ is defined by the formula (3.3).
The expression on the right-hand side of (3.10) depends on
the external field and electron energy only as a function of a
characteristic dynamic parameter of synchrotron radiation,

κ ¼ 1

m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðeFμνqνÞ2

q
¼ H

H0

p⊥
m

: ð3:13Þ

Note that in the region u ∈ ½0; 1�, the following inequality
holds:

z ≥
3Fðu0; ρÞ
ð2κÞ23 :

Therefore, in the limiting case, when

3Fðu0; ρÞ
ð2κÞ23 ≫ 1; ð3:14Þ

the main contribution to the integral in (3.11) comes from
the region t ≪ 1, and in the first approximation, the term t3

3

in the exponent can be neglected. According to the
assumption (3.14), the dynamic parameter κ is small
compared with the Chern-Simons parameter.
The integral over variable t is again calculated using

formula (3.6), and we obtain the following result in the
quasiclassical approximation:

Δmξ ¼ ξ
κe2

16π

Z
1

0

u2ð2 − uÞdu
½u2 þ ð1 − uÞρ2�32 ; κ ≪

�
Θ
m

�3
2

< 1:

ð3:15Þ

Thus, the contribution to the AMM, which is caused by the
term in the photon propagator, which is proportional to gμν,
is equal to

ΔμðgμνÞ
μB

≈ −
e2

8πm

�
−ð3 − 3ρÞ þ

�
2 −

3ρ2

2

�
ln
ρþ 2

ρ

�
:

ð3:16Þ

IV. THE INTERACTION ENERGY OF THE SPIN
WITH A MAGNETIC FIELD IN THE QED2 + 1

WITHOUT THE CHERN-SIMONS TERM

The results of Sec. III were obtained in the limiting case,
when the parameters β and κ depending on the strength of
the magnetic field were small compared with the value
ρ ¼ Θ

m, where Θ is the Chern-Simons parameter. Otherwise,
when the parameter ρ is small in comparison with the
parameters β or κ, in order to obtain the main term of the
expansion in the small parameter mΘ

eH, it suffices to pass to
the limit Θ → 0 in the results of Sec. II, which corresponds
usually to QED2þ1 without the Chern-Simons term. The
entire interaction energy of the AMM with external
magnetic field in this case is determined by the for-
mula (2.21), where it should be assumed that Θ ¼ 0 .
Here, we consider several limiting cases of most

physical interest. Let us assume that conditions (3.1) are
met; i.e., the nonrelativistic electron moves in a weak
magnetic field. In order to obtain the asymptotics for the
value of ΔEξ

nðΘ ¼ 0Þ, determined by formula (2.21), we
divide the integration region for variable u into two parts. In
the first region u ∈ ½0; u0� and in the second region
u ∈ ½u0; 1�, where the value of the magnitude u0 satisfies
the condition

2β ≪ u0 ≪ 1: ð4:1Þ

Then, in the first region, we expand the integrand in
formula (2.21), except for corresponding exponent, in a
series in the variable u, since u ≤ u0 ≪ 1, and in the second
region, where u ≥ u0 ≫ 2β, the main contribution to the
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integral is given by the region of integration where the
variable t ≪ 1, and we expand the integrand in a series in
the variable t. In both cases, integrals over variable t are
taken using the following formulas [57]:

Z
∞

0

tμ−1 sin at sin btdt ¼ ΓðμÞ
2

cos
πμ

2

× ðjb − aj−μ − ðbþ aÞ−μÞ; a > b; b > 0;

a ≠ b; −2 < ℜμ < 1; ð4:2Þ
Z

∞

0

tμ−1 sinat cosbtdt ¼ ΓðμÞ
2

sin
πμ

2
ððaþ bÞ−μ

þ ja− bj−μsignða− bÞÞ; a > 0; b > 0; jℜμj < 1:

ð4:3Þ

After the integration over variable t, we obtain

ℜðΔEξ
nÞ ¼ −ξ

e2

16π
3
2

ffiffiffi
β

p ½I1 þ I2�: ð4:4Þ

Here,

I1 ¼ 2
ffiffiffiffiffiffi
πβ

p Z
u0

0

��
u

uþ 2β

�1
2

−
�

u
u − 2β

�1
2

Θðu − 2βÞ
�
du

þ 2

ffiffiffi
π

β

r Z
u0

0

ffiffiffi
u

p ½u1
2 − ðuþ 2βÞ12�du

þ 2

ffiffiffi
π

β

r Z
u0

0

ffiffiffi
u

p ½u1
2 − ðu − 2βÞ12Θðu − 2βÞ�duþ � � � ;

ð4:5Þ

I2 ¼
ffiffiffi
π

p
β

3
2½1 − u0 þ 2 ln u0� þ � � � :

The dots in (4.5) correspond to terms of a higher order of
smallness in the parameter β, and the Heaviside step
function ΘðxÞ is introduced.
As a result, after integration over variables u and t, the

terms that depend on the quantity u0 cancel each other in
the same order of perturbation theory, and in the first
approximation, we obtain the following result:

ℜðΔmξÞ ≃ℜðΔEξ
nÞ

≃ −ξ
e2

8π

�
3β

2
þ β ln

�
β

2

��
;

β ≪ 1; n ≪ β−1: ð4:6Þ

In the quasiclassical approximation (3.9), the radiative
mass shift of the electron, which is associated with the
anomalous magnetic moment of an electron in QED
without the Chern-Simons term, is described by the
formula

Δmξ ¼ ξ
e2

8π
3
2

Z
1

0

u−2

1−u
du

Z
∞

0

ffiffi
t

p
exp

�
−i
�
π

4
þλtþ t3

3

��
dt;

ð4:7Þ

where

λ ¼
�

u
ð1 − uÞκ

�2
3

: ð4:8Þ

For calculation of integrals in formula (4.7), we use the
Mellin transformation with respect to the parameter a ¼ 1

κ:

FðsÞ ¼
Z

∞

0

as−1FðaÞda; ð4:9Þ

FðaÞ ¼ 1

2πi

Z
γþi∞

γ−i∞
FðsÞa−sds: ð4:10Þ

As a result, we can then recast Eq. (4.7) into the form

Δmξ ¼ −ξ
e2

16π
1
2

1

2πi
exp

�
−i

π

4

�

×
Z

γþi∞

γ−i∞
a−s exp

�
−i

π

4
ð2sþ 1Þ

�
Γ
�
−
s
2
þ 1

2

�
3−

s
2
þ1

2

×
ðsþ 1ÞΓð3s

2
Þ

sin πs
ds; 0 < γ <

2

3
; ð4:11Þ

where ΓðzÞ—is the Euler gamma-function, which is a
meromorphic function with poles of the first order at the
points z ¼ 0;−1;−2;… and with a residue equal to ð−1Þn

n! at
z ¼ −n. Further, if κ ≪ 1, we close the integration contour
in (4.11) in the right half-plane and obtain an asymptotic
series in powers κ. For κ ≫ 1, we must close the integration
contour in the left half-plane of the complex variable s and
obtain a convergent series in inverse powers κ. Thus,
Eq. (4.11) allows the following asymptotic expansions to
be derived:

ℜðΔmξÞ ¼−ξ
e2

8π

�
κ lnκþ κ

2

�
1− ln3−ψð1Þþ 3ψ

�
3

2

���

þ� � � ;κ≪ 1; ð4:12Þ

where ψðxÞ is the Euler ψ-function. Calculation of energy
shift of the ground electron state, which is similar to
calculation shown above for nonrelativistic electron, gives
the result matching the right-hand part of formula (4.6) at
ξ ¼ −1:

Δmðn ¼ 0Þ ¼ e2

8π

�
3β

2
þ β ln

β

2

�
: ð4:13Þ

In superstrong magnetic fields ðH ≫ H0Þ electron even in
the first excited state (n ¼ 1) is relativistic. Assuming that,
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similarly to QED3þ1, the main contribution to the integral is
given by the region of integration where

t
1 − u
u

≫ 1;

we find that the mass shift of the ground state electron
ðn ¼ 0; ξ ¼ −1Þ and the AMM in the excited state
with (n ¼ 1) are described by the following asymptotic
formulas:

Δmðn ¼ 0Þ ≃ e2

8π
ln 2β; β ≫ 1; ð4:14Þ

ℜðΔEξ
1Þ ≃ ξ

e2

16π
ffiffiffi
β

p ½Cþ 4 ln 2�; β ≫ 1; ð4:15Þ

where C ¼ 0.577…—is the Euler constant. Asymptotics
similar to (4.13)–(4.14) were first obtained in [47], where
only the case of the ground electronic state was considered.

V. CONCLUSION

The one-loop vertex calculation of the AMM in QED2þ1

was performed earlier in the approximation of the small
transferred momentum of an electron [46]. It was shown
that there is an infrared divergence in the magnetic moment,
which can be regularized by including the Chern-Simons
term [46,48]. This is in contrast to the AMM in QED3þ1

that is infrared finite. In [61], in order to avoid the
logarithmic divergences in the computation of the
AMM, the spectral representation for the dressed photon
propagator was used. In this paper, it was shown that at
weak field ðH ≪ H0Þ in the one-loop approximation, the
interaction energy of the spin with the external field in
QED2þ1 without the Chern-Simons term is proportional to
the product κ ln κ, where κ is the dynamic parameter of
synchrotron radiation (3.13). It means that the external
magnetic field plays the role of the infrared regulator in the
calculation of the anomalous magnetic moment in QED2þ1.
It should be noted that the contribution to the AMM

coming from the term in the photon propagator, which is
proportional to the Chern-Simons parameterΘ, is convergent
at ρ ¼ 0 and does not contain infrared divergence [46,48].
Formulas (3.8) and (3.16) for the contribution to the

AMM of an electron from the gμν term in the photon
propagator, as was noted above, were obtained in [46] as a
result of the vertex function calculation. On their basis, in
[46], it was concluded that the AMM of an electron in
QED2þ1 without a Chern-Simons term contains an infrared
divergence ðF2 ∝ ln ρÞwhich is eliminated in topologically
massive QED2þ1.
However, this statement, if understood literally, does

not correspond to the results (4.6) and (4.12) for the
interaction energy of the electron AMM with the rela-
tively weak external magnetic field in QED2þ1 without the

Chern-Simons term. As it was demonstrated in Sec. IV, the
interaction energy of the spin with a magnetic field in
QED2þ1 without the Chern-Simons term is proportional
to β ln β and tends to zero at β → 0 [formula (4.6)], or at
κ → 0 [formula (4.12)], and the AMM of an electron in
these limiting cases increases logarithmically.
Therefore, we think, the statement that the Chern-

Simons parameter plays the role of a regulator for infrared
divergence appears unsatisfactorily proven in [46], pri-
marily because the authors of [46] did not verify the validity
of their result (18) for a weak magnetic field.
The AMM of electrons subjected to an external magnetic

field is derived from the spin-dependent part of the radiative
shift in the total interaction energy [1,2,6–8,50,51].
In the weak magnetic field, the energy shift of the

nonrelativistic electron in topologically massive QED2þ1

depends, as was demonstrated in Sec. III, on the Chern-
Simons parameter ρ ¼ Θ

m and the field parameter β ¼ H
H0
.

For the ground electron state, this important result was
obtained in [47], where the mass shift asymptotics of the
electron mass were found for the case when simultaneously
β ≪ 1, ρ ≪ 1, with arbitrary ratio between these param-
eters. Note that just in this particular case, when the
following condition is met,

β ≪ ρ ≪ 1; ð5:1Þ

Equation (11) in [47] for the mass shift of electrons within
the logarithmic approximation for the parameter ρ coin-
cides with the result (3.8) in [48] and agrees with
formula (3.8) in this work. Therefore, as it was demon-
strated in Sec. III, limiting transition ρ → 0 in formulas
(3.8) and (3.15)–(3.16) in a constant magnetic field is
impossible in principle.
In addition, for the QED2þ1 without the Chern-Simons

term in the one-loop approximation, at β → 0 the electron
AMM increases logarithmically, which differs entirely
from the case of QED3þ1 [2,6–9]. It should also be noted
that the result (4.9) for the radiation-induced electron mass
shift in the theory with the Chern-Simons term leads to the
result (4.13) obtained in the framework of the theory
without the Chern-Simons term using a mere substitution
ρ → β.
It is interesting to compare expressions (4.14)–(4.15)

with the corresponding results obtained in QED3þ1.
In the region H ≫ H0 in QED3þ1, the mass shift of
the ground state electron ðξ ¼ −1; n ¼ 0Þ [6,62] and the
AMM in the weakly excited states are described by the
formulas [8,63]:

Δmðn ¼ 0Þ ¼ αm
4π

ln2
2H
H0

;

Δμðn ¼ 1Þ ¼ −
αe
4πm

H0

H
ln
2H
H0

: ð5:2Þ
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It follows from (4.14)–(4.15) and (5.2) that reducing the
dimension from four to three drastically changes the
behavior of these values as functions of the magnetic field:

Δmð2þ1Þðn ¼ 0Þ
Δmð3þ1Þðn ¼ 0Þ ∼

1

ln β
;

Δμð2þ1Þðn ¼ 0Þ
Δμð3þ1Þðn ¼ 0Þ ∼

ln β
β

:

The general conclusion can be made that the space
dimension reduction leads to significant changes in
dependence of the electron AMM on intensity of the
magnetic field and energy of electron. In order to establish
the limits of applicability for the one-loop approximation
and to clarify whether logarithmic contributions to the
electron AMM remain in higher orders of perturbation
theory, as in QED3þ1 [7], it would be necessary to study the
contribution of fourth-order diagrams to the elastic scatter-
ing amplitude of an electron.
The possibility for experimental observation of the

dynamic nature of electron AMM in graphene [35,36] or
other planar structures [33] is especially interesting.
Experiments demonstrate that spin g-factor in graphene
takes values in the range of gs ≃ 2.2–2.7 [35,36]. In this
case the energy ðΔEs ¼ gsμBBÞ of electron AMM inter-
action with external magnetic field B ∝ ð11–14ÞT, has the
value of order ð1.5 − 2Þ meV and depends weakly on
magnetic field.
For theoretical explanation of these experiments, a

model of pseudo-QED is used in [37]. Mass operator is
calculated in linear approximation in the magnetic field

strength [37], i.e. dynamic nature of AMM of electron is
not taken into consideration. For the effective mass of
electron, a value M ≈ ð0.6 − 10Þ meV is used. Similar
M values range was found in estimate [30,35,36] resulting
from dynamic generation due to electron-electron and other
interactions in graphene without a magnetic field (see also
[64–66]). For the quoted values of fermion mass, condition

H ≪ Hð2Þ
0 ¼ ðMmÞ2 · 4.41 × 1013G in experiments [35,36] is

invariably true. For instance, at M ¼ 0.5 × 10−3 eV, we

have Hð2Þ
0 ¼ 4.41 × 1021G and the induction of external

magnetic field (in Gaussian system) is ∝ 105G. Then,
according to formula (4.6), for nonrelativistic electron
states with the main quantum number of n ≪ 2 × 106,
the energy of electron AMM interaction with external
magnetic field appears proportional to magnitude of β ln β
in a sufficiently broad range of values for the induction of
magnetic field. Therefore, a reliable experimental detection
of nonlinear magnetic field strength dependence for the
electron AMM interaction energy would be a direct
evidence for the dynamic nature of the electron AMM in
graphene. This can also become an important stimulus for
the further developments in theoretical studies for the
impact of dynamic generation on electron masses in
two-dimensional systems.
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