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We consider theories with a large number NF of charged fermions and compute the renormalization
group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1=NF. We
construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the
same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made
asymptotically safe and stay perturbative at the same time.
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I. INTRODUCTION

The Large Hadron Collider (LHC) data collected atffiffiffi
s

p ¼ 13 TeV are in line with the standard model (SM)
predictions and provide strong bounds on SM extensions,
in particular on those that were introduced to tame the
quadratic sensitivity of the Higgs mass operator on the scale
of new physics, known as natural extensions. The time is
therefore ripe to explore alternative approaches to natural-
ness and even better, new guiding principles, that can help
selecting a more fundamental theory of nature.
Weak-scale extensions of the SM valid up to infinite

energy bypass the issue of quadratically divergent correc-
tions to the Higgs mass [1] (we will ignore gravity, as an
extension of Einstein gravity can have this property [2,3]).
Extensions of the SM realizing total asymptotic freedom can
be built by embedding the Abelian Uð1ÞY into non-Abelian
gauge groups that explain the observed values of the hyper-
charges. Natural possibilities, where the extended gauge
group is broken around the electroweak scale [1], have been
proposed based on the groups SUð2ÞL ⊗ SUð2ÞR ⊗ SUð4Þc
and especially SUð3ÞL ⊗ SUð3ÞR ⊗ SUð3Þc [4]. However,
a fine-tuning at the % level is needed in order to make
the extra vectors above present bounds, such as MWR

>
2.5 TeV [5].

This is one of the motivations behind the search of
alternative fundamental SM extensions that are asymptotic
safe, rather than asymptotically free. In addition, asymp-
totically safe theories are an intriguing and yet much
unexplored possibility. Only recently the first controllable
perturbative example of a gauge-Yukawa theory able to
display asymptotic safety in all couplings [6] was discov-
ered, where theVeneziano-Witten limitN,NF ≫ 1 has been
employed to unquestionably establish the existence of such a
scenario. Quantum stability of the theory and the determi-
nation of the vacuum and potential of the theory were
established in [7]. The original model did not feature gauged
scalars nor radiative symmetry breaking and is a vectorlike
theory. Gauged scalars and related asymptotically safe
conditions were introduced for the first time in [8] while
chiral gauge theorieswere investigated in [8,9], and radiative
breaking in [10]. Extensions to semisimple groupswith SM-
like chiral matter appeared first in [11] while semisimple
gauge theories with vectorlike fermions appeared in [12].
The Veneziano limit leads to interesting phenomenological
applications once spontaneous breaking occurs [13].
Another virtue of a controllable perturbative limit is that
in these theories the Higgsmass can be naturally lighter than
the transition scaleΛ, given that nonperturbative corrections
are exponentially suppressed, δM2

h ∼ Λ2e−Oð1Þ=α [8].
Supersymmetric asymptotically safe quantum field

theories, where exact nonperturbative results have been
established in [14,15], are also an intriguing possibility
albeit presumably not of natural type because of the tension
with the Large Electron-Positron Collider (LEP) and LHC
bounds [16].
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In this work, we depart from the Veneziano limit and
supersymmetric extensions by taking another interesting
theoretical limit that can help taming the ultimate fate of one
or all of the SM Uð1ÞY , SUð2ÞL and SUð3Þc gauge factors.
This makes use of the large number of flavor expansions
discussed in [17–19]. In the presence of NF ≫ 1 extra
fermions one can resum corrections at leading order in 1=NF
[20,21]. Aswewill review in Sec. II, these fixed points occur
at predicted nonperturbative values of the product of their
gauge couplings times the associated large number of extra
flavors. Unsuccessful attempts of constructing perturbative
asymptotically safe extensions of the SM appeared in [22].
Here both the hypercharge and scalar quartics were still
under the spell of Landau poles, and in any event the
constructions depart from the rigorous limit of [6].
The renormalization group equations (RGEs) for the

Yukawa couplings get modified by the resummation [23].
We here compute how the RGE for the quartic Higgs
coupling gets modified and apply our results to the case of
the standard model.
The paper is structured as follows. In Sec. II, we review

how the introduction of many extra fermions allows for an
ultraviolet interacting fixed point for the gauge couplings,
and compute how the RGE for Yukawa and scalar quartic
couplings get modified. In Sec. III, we show that this allows
us to make the SUð2ÞL and/or SUð3Þc factors of the SM
gauge group asymptotically safe. However we find that
U(1) cannot be made asymptotically safe in a controlled
regime. We offer our conclusions in Sec. IV.

II. FIXED POINTS IN THE LARGE NUMBER
OF FLAVORS

We now discuss the fate of gauge theories at short
distance in the presence of a large number of vectorlike
fermions (NF ≫ 1). We do this by first summarizing the
associated β functions resummed at leading order in 1=NF.
We denote with αi ≡ g2i =4π for i ¼ Y, 2, 3 the SM gauge
couplings (we define gY as the hypercharge gauge coupling
in the normalization where the Higgs H has jYj ¼ 1=2).

A. Resummed gauge β functions

We conveniently write the gauge β functions as

∂αi
∂ ln μ ¼ βαi ¼ βSMαi þ βextraαi ; ð1Þ

where βSMαi are the perturbative SM contribution: at one-
loop βSMαi ¼ bSMi α2i =2π, with bSMY ¼ 41=6, bSM2 ¼ −19=6
and bSM3 ¼ −7. The contribution of the NF ≫ 1 extra
fermions can be written as their one-loop contribution plus
their resummation at leading order in 1=NF (see [17,24]
and reference therein):

βextraαi ¼ α2i
2π

Δbi þ
α2i
3π

Fi

�
Δbi

αi
4π

�
: ð2Þ

The one-loop coefficients are well known: for Dirac
fermions in the representation Ri with dimension DRi

and Dynkin index SRi
they are given by

ΔbY ¼ 4

3
Y2NFDR2

DR3
; Δb2 ¼

4

3
NFSR2

DR3
;

Δb3 ¼
4

3
NFSR3

DR2
: ð3Þ

We write the resumed contributions in the simpler limit
where only one of the Δbi is nonvanishing, in order to the
neglect the mixed contributions. At leading order in
NF ≫ 1, the result is dominated by the Feynman diagrams
in Fig. 1 (extra diagrams are present for non-Abelian
groups). Their resummation gives the functions FiðAÞ

F1ðAÞ≡ 2

Z
A

0

I1ðxÞdx;

FnðAÞ≡
Z

A

0

I1ðxÞInðxÞ for n ¼ 2; 3 ð4Þ

I1ðxÞ≡ð1þxÞð2x−1Þ2ð2x−3Þ2sin3ðπxÞΓðx−1Þ2Γð−2xÞ
π3ðx−2Þ ;

ð5Þ

InðxÞ≡ n2 − 1

2n
þ ð20 − 43xþ 32x2 − 14x3 þ 4x4Þn

2ð2x − 1Þð2x − 3Þð1 − x2Þ : ð6Þ

The Fi functions are plotted in Fig. 2. Note that F1 (F2;3)
has a logarithmic singularity at A ¼ 5=2 (A ¼ 1)

FIG. 1. Feynman diagram topologies that dominate at leading order in 1=NF (we do not show tadpoles).
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F1ðAÞ ≃
A→5=2 14

15π2
ln

�
1 −

2A
5

�
þ 0.611þ � � � ;

FnðAÞ ≃A→1 n
8
ln ð1 − AÞ þ � � � ð7Þ

where � � � in the latter expression represents contributions
which remain finite at the singularity. As clear from Fig. 2,
the locations of these singularities coincide to a very good
approximation with the points where the β functions
vanish, leading to the fixed points

α�2;3 ¼
4π

Δb2;3
; α�Y ¼ 10π

ΔbY
: ð8Þ

Such fixed-point values reproduce the observed values of
the SM gauge couplings renormalized at a few TeV for
ΔbY ≈ 1800, Δb2 ≈ 400, Δb3 ≈ 150: higher values of Δbi
are thereby not allowed.
A word of caution is in order here: the fixed point

resulting from the large-NF resummation is not on the same
rigorous footing as the perturbative fixed points arising in
the limit of large N;NF [6], or the supersymmetric fixed
points [14,15]. The physical meaning of the logarithmic
singularity needs to be investigated further, especially
because extra singular behaviors emerge at subleading
orders in NF [17]. Of course, the important issue is whether
the first singularity is unaffected by the emergence of new
singularities that might very well imply the existence of
different physical branches not linked to the original one as
argued in [17]. In fact, we can start to understand how the
first UV fixed point starts to emerge within perturbation
theory [18]. Singularities in beta functions are not a
pathology of the theory as the well known exact super-
symmetric beta functions show [25]. In fact, using alter-
native large number of colors limits one can even map these
supersymmetric beta functions in the one of one flavor

QCD [26,27]. Furthermore beta functions are scheme
dependent while fixed points are physical. This means
that one can, in principle, find another scheme in which the
beta function has a different behavior while the theory
retains the UV fixed point. This again happens in super-
symmetric field theories when going from the all-order
exact beta function to the exact Wilsonian (holomorphic
scheme) one-loop exact beta function, see [28] for a
discussion of the scheme transformations and their impact
on their derivation of the beta functions via string theory.
Clearly the transformation among the schemes is also
singular.
Another possible issue is that the resummation of a

perturbative series can produce meaningless results when
the series is asymptotic, not necessarily convergent (this
happens in the SM for the series in the quartic SM Higgs
coupling). In our case, the fermionic path integral gives a
functional determinant which is an analytic function of the
gauge coupling, such that the final path integral over
vectors can be expanded in a convergent series. The
predictions from resummation can be confirmed via lattice
simulations for which neither technical nor theoretical
impediment exist. Furthermore, lattice simulations can test
whether fixed points exist also away from the NF ≫ 1
limit. No fixed point was found in QED with one electron,
and this computation can be repeated with larger NF.

B. Resummed Yukawa β function

As pointed out in [23], one needs to resum corrections to
the RGE of Yukawa couplings. We consider a Yukawa
coupling yψ1ψ2H þ H:c:, where ψ1;2 are Weyl fermions
and H is a scalar field. All particles are in generic
representations of the gauge group G ¼ Q

iGi. The one-
loop β function improved by resumming the gauge propa-
gators can be written as

∂y
∂ ln μ ¼ βy

¼ −3
y
4π

X
i

ðCψ1i þ Cψ2iÞαi × RyðAiÞ þOðy3Þ ð9Þ

where Cψi is the quadratic Casimir of ψ under Gi. The well
known Oðy3Þ terms are not shown because not affected by
the resummation, encoded in the function RyðAiÞ, equal to
Ryð0Þ ¼ 1 in the limit of vanishing Ai ¼ Δbiαi=4π. This is
computed in Appendix A 2, with the result

RyðAÞ ¼
ð3 − 2AÞ2ð2 − AÞ sinðπAÞΓð2 − 2AÞ

9πAΓð3 − AÞ2

×

�
2þ A

CH

Cψ1
þ Cψ2

�
ð10Þ

which agrees with the computation in [23]. For a U(1) one
has Cp ¼ q2p, where qp is the charge of particle p, that

FIG. 2. The functions giving the resummed gauge β functions
in Eqs. (4), (5) and (6).
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satisfies qψ1
þ qψ2

þ qH ¼ 0. If multiple U(1) are present,
the expressions above hold in a basis where they do
not mix.
Particularly relevant are the values of Ry close to the

fixed point of gauge couplings: A ¼ 1 for a non-Abelian
coupling, and A ¼ 5=2 for an Abelian coupling:

Ryð1Þ ¼
1

18

�
2þ CH

Cψ1
þ Cψ2

�
;

RyðAÞ ≃
A→5=2 9þ 10qψ1

qψ2
=ðq2ψ1

þ q2ψ2
Þ

270π2ð5=2 − AÞ : ð11Þ

The pole at A → 5=2 implies that Yukawa couplings of
fermions charged under an asymptotically safe U(1) are
driven to negligibly small values at large energies.

C. Resummed quartic β function

At leading order in 1=NF, βλ is given by

∂λ
∂ ln μ ¼ βλ

¼ −
λ

4π

X
i

CiαiRλðAiÞ þ
X
ij

CijαiαjRgðAi; AjÞ

þOðλ2; λy2; y4Þ; ð12Þ

where Ci and Cij are the well known one-loop β-function
coefficients, and the terms of order λ2, λy2, y4 are not
affected by the resummation (unless there is a large number
NF of Yukawa couplings; in this case one needs to resum
them too). The values of Ci and Cij in a generic QFT can be
found in [29]. We compute the functions RλðAÞ and
RgðAÞ≡ RgðA; AÞ in Appendix A 1, finding

RgðA; AÞ ¼
½ð2A − 3ÞAðHA − 3H1−A þ 2H3−2AÞ − 4Aþ 3�Γð4 − 2AÞ

18Γð2 − AÞ3ΓðAþ 1Þ ; ð13Þ

RgðA; 0Þ ¼
ð3 − 2AÞΓð4 − 2AÞ

18Γð2 − AÞ3ΓðAþ 1Þ ; ð14Þ

RλðAÞ ¼
2ð3 − 2AÞΓð4 − 2AÞ

9Að4 − 2AÞΓð2 − AÞ3ΓðAÞ ; ð15Þ

with Hn the nth harmonic number. These functions are plotted in Fig. 3 and are regular at A ¼ 1, close to the fixed point of
non-Abelian gauge couplings: Rλð1Þ ¼ 1=9, Rgð1;1Þ ¼ −2=9, Rgð1; 0Þ ¼ 1=18. On the other hand, they diverge for
A → 5=2, close to the fixed point of Abelian gauge couplings. The leading behavior as A → 5=2 is

RλðAÞ ≃ −
2

135π2ðA − 5=2Þ þ � � � ð16Þ

FIG. 3. The functions Ry (left) and Rλ, Rg (right) encoding the correction due to the extra fermions in the large-NF limit to the β
function of the Yukawa and quartic couplings.
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and

RgðA; 0Þ ≃
1

270π2ðA − 5=2Þ þ � � � ;

RgðA; AÞ ≃ −
1

108π2ðA − 5=2Þ2 þ � � � ; ð17Þ

where the dots represent terms that are regular as A → 5=2.

III. ASYMPTOTICALLY SAFE SM EXTENSIONS

A. Asymptotically safe SUð3Þc
We add to the SM NF Majorana fermion color octets

with no weak interactions, such that Δb3 ¼ 2NF, while
Δb2 ¼ ΔbY ¼ 0. Then, the resummed one-loop beta func-
tions for the top Yukawa coupling is

ð4πÞ2 dyt
d lnμ

¼ 9

2
y3t − yt

�
8g23RyðA3Þ þ

9

4
g22 þ

17

12
g2Y

�
ð18Þ

while the RGE for the Higgs quartic remains as in the SM.
Close to the fixed point Ryð1Þ ¼ 1=9, such that the running
of yt is mildly modified. In our numerical example1 in
Fig. 4 (left) this has a minor indirect effect on the running of
the Higgs quartic. Nevertheless, by choosing NF ¼ 13
(or smaller values) it is possible to make the electroweak
vacuum stable. To solve the RG equations we take
the central value for the top quark mass from recent
measurements performed by ATLAS and CMS, Mt ¼
172.5 GeV [31].

B. Asymptotically safe SUð2ÞL
We add to the SM NF Majorana fermion triplets with no

hypercharge and no color, such that Δb2 ¼ 4NF=3, while
Δb3 ¼ ΔbY ¼ 0. Then, the resummed one-loop beta func-
tions for the top Yukawa coupling and for the Higgs quartic
λH (defined writing the tree-level SM potential as
V ¼ − 1

2
M2

hjHj2 þ λHjHj4) are

ð4πÞ2 dyt
d lnμ

¼ 9

2
y3t − yt

�
8g23 þ

9

4
g22RyðA2Þ þ

17

12
g2Y

�
ð19Þ

ð4πÞ2 dλH
d ln μ

¼ 24λ2H þ λHð12y2t − 9g22RλðA2Þ − 3g2YÞ

þ 9g42
8

RgðA2Þ þ
3g4Y
8

þ 3g22g
2
Y

4
RgðA2; 0Þ

− 6y4t : ð20Þ

We provide a numerical example in Fig. 4 (right). Once g2
approaches its fixed point, yt runs in a way slightly different
way than in the SM: it can become larger or smaller
depending on the fixed-point value of g2. More importantly,
the negative value of Rgð1Þ ≃ −2=9 together with the
enhanced g2 makes the Higgs quartic more negative at
large energies, conflicting with bounds from vacuum meta-
stability, λH ≳ −0.05. The conflict is reduced by keeping g2
as small as in the SM. However, in order to avoid this
problem, one needs to extend the SM in a way that avoids
vacuum instability. The simplest option is adding one extra
scalar that gives a tree-level positive correction to λH [32].

C. Asymptotically safe Uð1ÞY?
Since SUð2ÞL and SUð3Þc in the SM are anyhow

asymptotically free, while hypercharge has a possible
Landau pole around 1040 GeV, it would be especially

FIG. 4. Left panel: running couplings in the SM plus NF ¼ 13 ðΔb3 ¼ 26Þ fermion color octets with mass MF ≈ 5 TeV: SUð3Þc
becomes asymptotically safe; the electroweak vacuum becomes stable. Right panel: running couplings in the SM plus NF ¼ 220
ðΔb2 ¼ 880=3Þ SUð2ÞL fermionic triplets with mass MF ≈ 2 TeV: SUð2ÞL becomes asymptotically safe; the electroweak vacuum
becomes unstable.

1For fermions in the adjoint representation the lower boundary
of the safe conformal region has been estimated to be around
seven flavors [30]. It is consistently and considerably lower than
for fermions in the fundamental representation.
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interesting to bypass it by making hypercharge asymptoti-
cally safe. We add to the SMNF fermions with hypercharge
�Y and singlet under SUð2ÞL and SUð3Þc such that
ΔbY ¼ 4NFY2=3, while Δb3 ¼ Δb2 ¼ 0. Then, the
resummed one-loop beta functions for the top Yukawa
coupling and for the Higgs quartic λH are

ð4πÞ2 dyt
d lnμ

¼ 9

2
y3t − yt

�
8g23 þ

9

4
g22 þ

17

12
g2YRyðAYÞ

�
ð21Þ

ð4πÞ2 dλH
d ln μ

¼ 24λ2H þ λHð12y2t − 9g22 − 3g2YRλðAYÞÞ

þ 9g42
8

þ 3g4Y
8

RgðAYÞ þ
3g22g

2
Y

4
RgðAY; 0Þ

− 6y4t ð22Þ

The fixed point for gY corresponds to

1 −
2

5
AY ≃ exp

�
−

45

28π2
ðbSMY þ ΔbY þ 0.4Þ

�
ð23Þ

showing that it is exponentially close to the pole at
AY ≃ 5=2. The functions Ry, Rg, Rλ too have poles at
AY ¼ 5=2. As a result, when gY approaches its fixed point,
yt is driven to small values [23] and λH is driven to
nonperturbatively large values. Thereby it is not possible to
make the Abelian factor asymptotically safe.
Even adding NF fermions charged under all the SM

group factors, the problems related to the Abelian factor
prevents us from building a full asymptotically safe
extension of the SM. This can be build embedding the
SM in non-Abelian groups, even at the weak scale,
similarly to what already done for asymptotically free
extension [1,4].

IV. CONCLUSIONS

Theories where all couplings can be extrapolated up to
infinite energy are interesting per se, and offer alternative
solutions to the Higgs mass hierarchy problem. However, in
the SM, the hypercharge gauge coupling grows with
energy. Naively, adding a large numberNF of extra charged
fermions goes in the wrong direction, as the hypercharge
coupling grows even faster than in the SM. Fortunately, the
very large number of fermion limit helps to tame the high
energy growth of the coupling. The leading contribution of
the large number of fermions can be resummed.
By computing all the resummed RGE at leading order in

1=NF, we found that the non-Abelian factors of the SM
gauge group can be made asymptotically safe. However,
when hypercharge is made asymptotically safe, the Higgs
quartic flows out of perturbative control.
It should be noted that the large NF limit is merely a

mathematical tool that allows us to determine the location
of the asymptotically safe fixed points. Lattice simulations

may very well find that fixed points exist for moderate
values of NF—after all, large-Nc approximations are used
in QCD where Nc ¼ 3. In the meantime, it is interesting to
discuss the unusual physics resulting from having many
extra degrees of freedom. Electroweak corrections to theW
precision parameter get enhanced [33,34], tails of
dσðpp → lþl−Þ=dmlþl− at large invariant mass would
exhibit the pattern typical of fast running g2 coupling
[35,36]. For extra colored vectorlike fermions, the modified
high energy behavior would affect the three to two jet ratio
[37]. More interestingly, freeze-out of a keV-scale relativ-
istic sterile neutrino from a plasma with NF ≫ 1 extra
degrees of freedom provides an acceptable cold Dark
Matter candidate (rather than the usual too warm DM).
Furthermore, one can gauge the SUðNFÞ symmetry that
rotates the NF fermions, that can be identified as “dark
baryons” in models of composite dark matter. A new
feature of NF ≫ 1 is that the model is phenomenologically
acceptable even when stable dark baryons are charged: their
charge grows with NF, but their relic abundance gets
suppressed by 2−NF. This discussion exemplifies the new
spectrum of possibilities with atypical phenomenology in
(astro)particle physics and cosmology that these construc-
tions open up.
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APPENDIX: RESUMMED GAUGE
CORRECTIONS

We consider a simple gauge group G with gauge
coupling g and NF ≫ 1 fermions ψ j in a generic repre-
sentation of G. We here compute the β functions of the
scalar quartics and Yukawa couplings with the gauge field
propagator obtained by resumming the effects of the
fermions ψ j at the leading order in 1=NF.
We define A≡ Δbα=4π, where α≡ g2=4π and Δb is the

contribution of the NF fermions to the one-loop coefficient
of the gauge β function, βone−loopα ¼ Δbα2=2π. The limit
NF → ∞ is taken by keeping A fixed.
In order to perform the resummation of the leading terms

in the expansion in 1=NF we use the resummed gauge field
propagator DμνðkÞ, where k is the momentum. We choose
the Landau gauge, where the tree-level propagator DμνðkÞ
is transverse.

DμνðkÞ ¼ −i
PμνðkÞ
k2

; PμνðkÞ ¼ ημν −
kμkν
k2

: ðA1Þ

The Feynman iε is left implicit. In this gauge the resummed
propagator DμνðkÞ is
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DμνðkÞ ¼ −i
PμνðkÞ
k2

X∞
n¼0

Πðk2Þn

¼ −i
PμνðkÞ
k2

1

1 − Πðk2Þ ðA2Þ

where Πðk2Þ is defined in terms of the correction to the
vector self-energy ΠμνðkÞ due to a loop of the NF fermions
as follows

ΠμνðkÞ ¼ k2PμνðkÞΠðk2Þ: ðA3Þ

In dimensional regularization (d ¼ 4 − ϵ) one finds [23]

Πðk2Þ ¼
�
μ2

k2

�
ϵ=2

Π0;

with Π0 ≡ −6ð−4πÞϵ=2A0

Γðϵ=2ÞΓð2 − ϵ=2Þ2
Γð4 − ϵÞ ; ðA4Þ

where A0 is the bare value of A.

1. QUARTIC β FUNCTION

We here compute the β functions of the scalar
quartic couplings. We consider a set of real scalars ϕa in
a generic representation S of G. The covariant kinetic
terms of the ϕa appear in Lagrangian as 1

2
DμϕaDμϕa,

where the scalar covariant derivative is given by Dμϕa ¼
ð∂μϕa þ igθBabA

B
μϕbÞ and the θA are the generators in the

representation S. We write their quartic interactions in
the Lagrangian as −λabcdϕaϕbϕcϕd=4!. Here we show that
the λabcd obey the following RGEs at leading order in
1=NF:

ð4πÞ2 dλabcd
d ln μ

¼ 6g4RgðAÞθabcd − 3g2RλðAÞλabcd
X

k¼a;b;c;d

Ck
H

þOðλ2; λy2; y4Þ; ðA5Þ

where

θabcd ≡ 1

16

X
perms

fθA; θBgabfθA; θBgcd: ðA6Þ

The sum runs over all permutations of abcd, the Ca
H are

defined by θAacθ
A
cb ¼ Ca

Hδab and the functions RgðAÞ and
RλðAÞ are given in Eqs. (13) and (15). For A ≈ 0 one has
Rg ¼ 1–8A=3þOðA2Þ and Rλ ¼ 1–5A=6þOðA2Þ in
agreement with known 2-loop results [29].

a. Scalar field renormalization and Rλ

In Landau gauge Rλ is given only by the scalar field
renormalizations (diagram in Fig. 5, left). We define Zk

through ϕ0k ¼ Z1=2
k ϕk, where the ϕ0k are the bare scalar

fields. The (amputated) Feynman amplitude for the scalar
field renormalization of the kth external line with the

insertion of n bubbles is denoted as −iSðnÞk ðp2Þ, where p
is the momentum flowing through the diagram. Their

resummation is Sk ≡P
nS

ðnÞ
k . We have

Zk ¼ 1þ dSkðp2Þ
dp2

����
poles

: ðA7Þ

A calculation of Zk in the Landau gauge was presented in
[23]; however, we find a different result and, therefore, we
provide here the details of the calculation. By using
Eqs. (A2) and (A4), we find

dSkðp2Þ
dp2

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2A0Þn
Aϕðn; ϵÞ
nϵn

: ðA8Þ

We do not provide the explicit expression for Aϕðn; ϵÞ for
n > 0 because it is complicated and, as we will see, the
only quantity we need is Aϕð0; ϵÞ. Following [20] we
expand Aϕðn; ϵÞ as

Aϕðn; ϵÞ ¼
X∞
j¼0

AðjÞ
ϕ ðϵÞðnϵÞj: ðA9Þ

One can explicitly check that the coefficients AðjÞ
ϕ ðϵÞ do not

have poles at ϵ ¼ 0. By inserting the expansion Eq. (A9) in
(A8), one obtains

dSkðp2Þ
dp2

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2A0Þn
X∞
j¼0

AðjÞ
ϕ ðϵÞ n

j−1

ϵn−j
: ðA10Þ

In order to obtain the β function, we express the poles in
terms of the renormalized couplings. In the case of the
gauge coupling this consists in using the relation

A0 ¼
A
Z3

where Z3 ¼ 1 −
2A
ϵ

þO
�

1

NF

�
: ðA11Þ

Then, by using the binomial series we obtain

FIG. 5. Contributions at leading order in 1=NF to the β
functions of the quartic couplings from the scalar field renorm-
alizations (left) and the vertex contribution (right).
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An
0 ¼ An

X∞
i¼0

�−n
i

��
−
2A
ϵ

�
i
þO

�
1

NF

�
ðA12Þ

which, inserted in Eq. (A10), gives (dropping subleading powers in 1=NF)

dSkðp2Þ
dp2

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2AÞn
X∞
j¼0

AðjÞ
ϕ ðϵÞ n

j−1

ϵn−j
X∞
i¼0

�−n
i

��
−
2A
ϵ

�
i

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2AÞn
X∞
j¼0

AðjÞ
ϕ ðϵÞ n

j−1

ϵn−j
X∞
i¼0

ð−1Þi
�
nþ i − 1

i

��
−
2A
ϵ

�
i

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2AÞn
X∞
j¼0

AðjÞ
ϕ ðϵÞ
ϵn−j

Xn−1
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�
: ðA13Þ

In the last step, we substituted n → n − i, which requires
the sum over i to be truncated at i ¼ n − 1. Keeping only
the poles at ϵ ¼ 0, which are the only thing we need to
compute Zk [see Eq. (A7)], we obtain

dSkðp2Þ
dp2

����
poles

¼ −
2Ck

H

Δb

X∞
n¼1

ð−2AÞn
Xn−1
j¼0

AðjÞ
ϕ ðϵÞ
ϵn−j

×
Xn−1
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�
. ðA14Þ

The sum over i in the last expression is [20]

Xn−1
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�

¼ −δj0
ð−1Þn
n

ðfor 0 ≤ j ≤ n − 1Þ ðA15Þ

so only the term with j ¼ 0 matters and we find

dSkðp2Þ
dp2

����
poles

¼ 2Ck
H

Δb

X∞
n¼1

ð2AÞn A
ð0Þ
ϕ ðϵÞ
nϵn

: ðA16Þ

As anticipated before, only Að0Þ
ϕ ðϵÞ≡ Aϕð0; ϵÞ is relevant.

We have

Aϕð0; ϵÞ ¼
22−ϵð1 − ϵ

3
ÞΓð5

2
− ϵ

2
Þffiffiffi

π
p ð1 − ϵ

2
ÞΓð1 − ϵ

2
ÞΓð3 − ϵ

2
ÞΓðϵ

2
þ 1Þ : ðA17Þ

This expression agrees with the known 2-loop expressions,
and does not agree with the corresponding expression in
[23] that computed the resummed Yukawa β function (on
which we will agree).
In order to compute the correction Rλ to the quartic β

function, we only need the simple pole at ϵ ¼ 0. Using that
Aϕð0; ϵÞ is regular in ϵ ¼ 0 we expand

Að0Þ
ϕ ðϵÞ ¼

X∞
i¼0

ÃðiÞ
ϕ ϵi;

where ÃðiÞ
ϕ ¼ 1

i!

diAð0Þ
ϕ

dϵi
ðϵ ¼ 0Þ ðA18Þ

which, once inserted in (A16), gives the simple pole

dSkðp2Þ
dp2

����
simple pole

¼ 2Ck
H

Δb
1

ϵ

X∞
n¼1

ð2AÞn Ã
ðn−1Þ
ϕ

n
: ðA19Þ

This result allows us to compute the term proportional to
g2λabcd in the β function of λabcd. Using the general formula
provided in [38] one sees that the β function in this case is
obtained by taking a logarithmic derivative with respect to
A of (A19). Then, the n in the denominator of (A19)
disappears and one finds a closed form for the β function.
The result is given in Eqs. (A5) and (15).

b. Correction to the quartic vertex and Rg

Next, we compute Rg in Eq. (A5) by considering the
four-point loop vertex at the leading order in 1=NF at
vanishing external momenta. In the Landau gauge only the
diagram in the right panel of Fig. 5 contributes. The relative
Feynman amplitude iVabcd is given by

Vabcd

μϵ
¼−4iμϵθabcdg40

×
X∞
n;m¼0

ðΠ0μ
ϵÞnþm

Z
ddq
ð2πÞd

d− 1

ðq2−m2
γÞ2ðq2ÞðnþmÞϵ=2 ;

ðA20Þ

where mγ is a tiny vector mass added to regulate IR
divergences. The β function of λabcd is insensitive to this
divergence and so we set mγ → 0 at the end.
Equation (A20) has been obtained by substituting in the
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relevant one-loop diagram the tree-level gauge field propa-
gator Dμν with the resummed propagator Dμν of Eq. (A2).
The double sum over n and m is due to the presence of two
gauge field propagators in the diagram. Computing the loop
integrals in Eq. (A20) gives

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð−2A0Þn
A4ðn; ϵÞ
nϵn−1

ðA21Þ

for some coefficients A4ðn; ϵÞ. We do not display A4ðn; ϵÞ
because it is complicated for generic n, and because we
only need A4ð0; ϵÞ and A4ð1; ϵÞ. The double sum in
Eq. (A20) has been reduced to a single sum through the
identity (valid for any sequence cn)

X∞
n;m¼0

cnþm ¼
X∞
n¼0

ðnþ 1Þcn: ðA22Þ

We then follow an approach similar to the one used for the
scalar field renormalization. We expand

A4ðn; ϵÞ ¼
X∞
j¼0

AðjÞ
4 ðϵÞðnϵÞj; ðA23Þ

which, once inserted in the expression above for V4, gives

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð−2A0Þn
X∞
j¼0

AðjÞ
4 ðϵÞ nj−1

ϵn−1−j
: ðA24Þ

By using again the relation between the bare A0 and the
renormalized A, Eq. (A11), and performing steps similar to
those done for the scalar field renormalization one finds

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð−2A0Þn
X∞
j¼0

AðjÞ
4 ðϵÞ nj−1

ϵn−1−j

×
X∞
i¼0

ð−1Þi
�
nþ i − 1

i

��
−
2A
ϵ

�
i
: ðA25Þ

We now replace n → n − i, which requires here to stop the
sum over i at i ¼ n − 2, so

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð−2AÞn
X∞
j¼0

AðjÞ
4 ðϵÞ
ϵn−1−j

×
Xn−2
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�
: ðA26Þ

Next, we rewrite the sum over i as

Xn−2
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�

¼ ð−1Þn þ
Xn−1
i¼0

ðn − iÞj−1ð−1Þi
�
n − 1

i

�
; ðA27Þ

which leads to

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð2AÞn 1

ϵn−1

�X∞
j¼0

ϵjAðjÞ
4 ðϵÞ − Að0Þ

4 ðϵÞ
n

�
;

ðA28Þ

where we used that ϵAðjÞ
4 ðϵÞ are regular at ϵ ¼ 0 and,

therefore, we have used Eq. (A15) to compute the second

term proportional to Að0Þ
4 ðϵÞ. An explicit calculation shows

Að0Þ
4 ðϵÞ ¼ 0 and we are therefore left with

Vabcd

μϵ
¼ 16θabcd

9Δb2
X∞
n¼2

ð2AÞn A4ð1; ϵÞ
ϵn−1

; ðA29Þ

having used Eq. (A23). The explicit expression of
A4ð1; ϵÞ is

A4ð1; ϵÞ ¼ −
3π2ðϵ − 3ÞΓð4 − ϵÞ

Γð2 − ϵ=2Þ3Γðϵ=2þ 1Þ : ðA30Þ

In order to compute the β function, we only need the simple
pole, so we expand

A4ð1; ϵÞ ¼
X∞
i¼0

ÃðiÞ
4 ϵi ðA31Þ

and insert this expansion in the last expression of Vabcd, to
obtain

Vabcd

μϵ

����
simple pole

¼ 16θabcd
9Δb2ϵ

X∞
n¼2

ð2AÞnÃðn−2Þ
4

¼ 64θabcdA2

9Δb2ϵ
A4ð1; 2AÞ: ðA32Þ

Using again the general formula provided in [38] (which
allows us to extract the β function from the simple pole)
leads to the result in Eqs. (A5) and (13).
It is worth noting that one can perform these calculations

by using directly the resummed gauge field propagator in
the last equality in Eq. (A2) before doing the loop integral.
Let us illustrate this method in the calculation of Vabcd. In
this case

Vabcd

μϵ
¼ −4iμϵθabcdg40

Z
ddq
ð2πÞd

d − 1

ðq2 − q2Πðq2ÞÞ2 : ðA33Þ
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Using the expression of Πðk2Þ given in Eq. (A4), the loop
integral can be done analytically after performing the Wick
rotation. After expressing the bare A0 in term of the
renormalized A by means of Eq. (A11), one obtains

Vabcd

μϵ
¼ 32θabcd

9Δb2
AA4ð1; ϵÞ
1 − 2A=ϵ

; ðA34Þ

where A4ð1; ϵÞ is given in (A30). To compute the β
function, we only need the simple pole in this expression.
Therefore, we use the expansion in (A31) and

1

1 − 2A=ϵ
¼

X∞
j¼0

�
2A
ϵ

�
j

ðA35Þ

to obtain

Vabcd

μϵ

����
simple pole

¼ 32θabcdA
9Δb2ϵ

X∞
j¼1

ð2AÞjÃðj−1Þ
4

¼ 64θabcdA2

9Δb2ϵ
A4ð1; 2AÞ; ðA36Þ

which coincides with Eq. (A32), obtained instead by first
performing the loop integral and then resumming. This
provides another check for the β function of λabcd.
The derivation of RgðA; 0Þ is not explicitly presented

because it is very similar to the derivation of RλðAÞ.

2. YUKAWA β FUNCTION

We now present the derivation of the β function of the
Yukawa coupling discussed in Sec. II B. A calculation of βy
was presented in [23] and we do agree with their final
expression. However, their derivation mixes the Feynman
and Landau gauge in an apparently inconsistent way, so we
preferred to provide another independent calculation per-
formed in the Landau gauge.
To compute βy three ingredients are required: the scalar

field renormalization (already computed in Sec. A 1 a), the
fermion renormalization and the loop correction to the
Yukawa vertex. We provide the derivation of the remaining
pieces in the following part of the Appendix. Once the
simple poles of these three ingredients are obtained one can
determine βy with the general formula provided in [38] and
the result is the one given in Sec. II B.

a. Fermion field renormalization

One ingredient to obtain βy is the fermion field renorm-
alization. The (amputated) Feynman amplitude of the self-
energy of the fermions ψ1 and ψ2 is

−iΣ1;2ðpÞ¼ðig0Þ2μϵCψ1;2

Z
ddk
ð2πÞd γμ

i
=p−=k

γν
−iPμνðkÞ

k2ð1−Πðk2ÞÞ ;

ðA37Þ

where Cψ1;2
is the quadratic Casimir of ψ1;2 under G.

2 After
expanding 1=ð1 − ΠÞ in a power series of Π and dealing
with γ-matrices we extract dΣ1;2=d=p at zero external
momentum:

dΣ1;2

d=p

����
p¼0

¼−iμϵg20Cψ1;2

4þd2− 5d
d

Z
ddk
ð2πÞd

1

k4
X∞
n¼0

Πðk2Þn

ðA38Þ

as this is the quantity needed to obtain the fermion
renormalizations Z1;2:

Z1;2 − 1 ¼ dΣ1;2

d=p

����
p¼0;poles

: ðA39Þ

Once again, we rewrite the relevant expression as

dΣ1;2

d=p

����
p¼0

¼ Cψ1;2

Δb

X∞
n¼1

ð−2A0Þn
Aψ ðn; ϵÞ
nϵn

ðA40Þ

for some Aψ ðn; ϵÞ. Using a method similar to Sec. A 1 a, we
find the following simple pole:

dΣ1;2

d=p

����
p¼0;simple pole

¼ −
Cψ1;2

Δb
1

ϵ

X∞
n¼1

ð2AÞn Ã
ðn−1Þ
ψ

n
; ðA41Þ

where the coefficients Ãðn−1Þ
ψ are defined by

Aψð0; ϵÞ ¼
X∞
i¼0

ÃðiÞ
ψ ϵi;

where ÃðiÞ
ψ ¼ 1

i!
diAð0Þ

ψ

dϵi
ðϵ ¼ 0Þ ðA42Þ

and

Aψð0; ϵÞ ¼
ð3 − ϵÞϵΓð4 − ϵÞ

6ðϵ − 4ÞΓð2 − ϵ=2Þ3Γð1þ ϵ=2Þ : ðA43Þ

b. Correction to the Yukawa vertex

The remaining ingredient to calculate βy is the loop
correction to the Yukawa vertex, whose (amputated)
Feynman amplitude is denoted here with −iΛy. We can

2We displayed explicitly this form of Σ1;2 to make the
comparison with the corresponding expression in [23] easier.
While we use the Landau gauge consistently it seems that [23]
simply replaced Pμν with ημν, which appears to be an inconsistent
mixing of the Landau and Feynman gauge (as the resummation of
the gauge field propagator, Eq. (A2), is performed in the Landau
gauge both here and in [23]).
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set the external momenta to zero as the Yukawa coupling is
a nonderivative interaction. We obtain

Λy

μϵ
¼−

6y
Δb

ðCψ1
þCψ2

−CHÞ
X∞
n¼1

ð−2A0Þn
Ayðn;ϵÞ
nϵn

ðA44Þ

for some Ayðn; ϵÞ and, by using a technique similar
Sec. A 1 a, we find the simple pole:

Λy

μϵ

����
simple pole

¼ 6y
Δb

ðCψ1
þ Cψ2

− CHÞ
1

ϵ

X∞
n¼1

ð2AÞn Ã
ðn−1Þ
y

n

ðA45Þ

where the coefficients Ãðn−1Þ
y are defined by

Ayð0; ϵÞ ¼
X∞
i¼0

ÃðiÞ
y ϵi;

where ÃðiÞ
y ¼ 1

i!
diAð0Þ

y

dϵi
ðϵ ¼ 0Þ ðA46Þ

and

Ayð0; ϵÞ ¼
ð3 − ϵÞΓð4 − ϵÞ

24Γð2 − ϵ=2Þ3Γð1þ ϵ=2Þ : ðA47Þ
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