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Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special
arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton
number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating
perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles.
Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost
degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss
the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space
from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be
derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also
demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much
weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small
to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments
for this case.
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I. INTRODUCTION

Neutrino oscillation experiments cannot distinguish
Dirac from Majorana neutrinos, hence it is still unknown
whether or not lepton number is conserved. Other
processes, such as neutrinoless double beta decay
[1,2], need to be probed in order to answer this question.
However, while the nature of neutrinos is often seen as a
dichotomy, presenting two sharply distinct scenarios, the
Dirac neutrino case can be seen as a limit of the more
general Majorana case in which lepton number violating
mass terms are zero, and this limit can be approached
smoothly.
In practice, one can start with a model of 2n Majorana

neutrinos and get a phenomenology arbitrarily close to the
one of a model of n Dirac neutrinos. This can already be
seen with only one generation of active (ν) and sterile
neutrinos (Nc). In the basis ðν; NcÞT the most general mass
matrix reads:

mν ¼
�
mL mD

mD mR

�
: ð1Þ

If mL ¼ mR ¼ 0, lepton number is preserved and neutrinos
are Dirac particles. This limit can alternatively be charac-
terized by two exactly degenerate mass eigenstates com-
posed in equal parts of ν and Nc: ν1 ¼ 1=

ffiffiffi
2

p ðνþ NcÞ and
ν2 ¼ i=

ffiffiffi
2

p ð−νþ NcÞ.1 Small deviations from the limit
mL ¼ mR ¼ 0 lead to a quasi-Dirac scenario where lepton
number is no longer exactly preserved.
Let us rewrite Eq. (1) using:

ε ¼ ðmL þmRÞ
2mD

; ð2Þ

θ ¼ ðmL −mRÞ
4mD

: ð3Þ

As long as ε and θ are much smaller than one, we obtain:

m1;2 ≃mDð1� εÞ; ð4Þ

ν1 ≃ 1=
ffiffiffi
2

p
½ð1þ θÞνþ ð1 − θÞNc�; ð5Þ

ν2 ≃ i=
ffiffiffi
2

p
½ð−1þ θÞνþ ð1þ θÞNc�: ð6Þ
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1Note the factor i in ν2. One could equally well choose the two
mass eigenstates to be �mD instead.
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Departures from the Dirac case therefore can manifest
themselves as either new mass splittings or new mixing
angles (or, in general, both). Moreover, as this simple
example shows, mass splittings and mixing angles are
completely independent of each other. Note that for small
values of ε and θ, lepton number violation is naturally
suppressed, as expected. This can be most easily seen in our
one generation scenario for the double beta decay observ-
able hmνi: for θ ¼ 0 (ε ¼ 0) it is straightforwardly calcu-
lated to be hmνi ≃ εmD (hmνi ≃ 2θmD).
We have therefore the following situation. Oscillation

experiments cannot distinguish a model with n Majorana
neutrinos (containing n Weyl spinors) from one with n
Dirac neutrinos (containing 2n Weyl spinors) with match-
ing masses and mixing angles. Nevertheless, once we add
to a model with Dirac neutrinos small sources of lepton
number violation, oscillation probabilities will change.
Some illustrative examples are shown in Fig. 1. We plot
there the electron neutrino survival probability for low-
energy (reactor) neutrinos at distances up to (and slightly
larger than) the typical distances of the KamLAND experi-
ment [3]. In all plots the black lines show the expectation

for the current global best fit point [4] for the ordinary
neutrino parameters in the standard three generation case,
to which we have added either a nonzero mass splitting to a
Dirac state (top row) or one particular new quasi-Dirac
angle (bottom row).
In Sec. II we will discuss the general parametrization of

masses and mixing angles for scenarios with three gen-
erations of quasi-Dirac neutrinos. However, from the
examples shown in Fig. 1 one can read off already some
basic facts about oscillations of quasi-Dirac neutrinos,
which we will work out in greater detail in Sec. III.
First, small nonzero values of ε’s are equivalent to
introducing new, large oscillation lengths. Thus, the best
constraints on ε will come from oscillation experiments
with the largest possible baselines. And second, even if
mass splittings are negligibly small, the new, nonstandard
angles which appear in this setup (called θ above) may
affect oscillation probabilities in a way similar to standard
angles, hence creating parameter degeneracies. For exam-
ple, as Fig. 1 shows, from Pee alone one cannot provide
limits on a single angle. (In this example variations of θ14
can be compensated by varying θ12.) Even by combining

FIG. 1. Electron neutrino survival probability for quasi-Dirac neutrinos with a fixed energy Eν ¼ 4 MeV as a function of distance
(left), and for fixed distance L ¼ 200 km as function of Eν (right). The standard 3-generation neutrino oscillation parameters have been
fixed at their best fit point values [4], to which a small perturbation has been added. In the top row, we show the effect of mass splittings:
ε22 ¼ 0 (black), ε22 ¼ 10−5 eV2 (orange) and ε22 ¼ 2 × 10−5 eV2 (red). In the bottom row, it is possible to see the effect of introducing a
nonstandard angle: θ14 ¼ 0 (black), θ14 ¼ π=8 (orange) and θ14 ¼ π=4 (red). The exact definition of ε2 and θ14 will be given latter
in Sec. II.
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more than one oscillation probability, constraints can only
be derived for certain combinations of angles and phases
of the mixing matrix. We will discuss this in detail in
Sec. III B. Constraints on mass splittings are discussed in
Sec. III A.
Aword on nomenclature. The terminologies quasi-Dirac

and pseudo-Dirac neutrinos appear nearly interchangeably
in the literature. We prefer to define quasi-Dirac (QD)
neutrinos as being a mixture of active and sterile states, in
contrast with pseudo-Dirac (PD) neutrinos2 which are
composed of active states only. In both cases, the structure
of mass and mixing matrices must be such that the lepton
sector is close to preserving one or more Uð1Þ symmetries.
With this definition, quasi-Dirac and pseudo-Dirac

neutrinos are then very different objects, both theoretically
and phenomenologically. Let us briefly mention that
various aspects of pseudo-Dirac neutrinos have been
considered in the literature: Magnetic moments and double
beta decay [7], possible mass textures [8–10], and oscil-
latory behavior [11–14]. We note in passing that models of
pseudo-Dirac neutrinos require neutrino mass matrices
which no longer fit the solar and atmospheric neutrino
oscillation data [15–17].3
Many more papers discussed the phenomenology of

quasi-Dirac neutrinos. For example, double beta decay was
first discussed in this context in [6], while [19] and [20,21]
consider quasi-Dirac neutrinos as a possible explanation of
the atmospheric and solar neutrino problems, respectively.
More ambitiously, explaining atmospheric, solar and
LSND neutrino oscillations simultaneously was discussed
in [22–24]. However, all these proposals are by now ruled
out experimentally, since they predict too much oscillations
into sterile neutrinos. Limits on quasi-Dirac neutrino
parameters, on the other hand, have been derived from
solar neutrino data [25] as well as from solar, atmospheric
neutrino data and cosmology [26]. Furthermore, in [27–30]
QD neutrinos have been discussed in the context of
neutrino telescopes, such as IceCube.
Quasi-Dirac neutrino oscillations were also discussed in

[31], where it was claimed that to leading order inmR;L=mD
the flavor composition of the mass eigenstates does not
change (only mass splittings appear), hence oscillations for
n ¼ 3 pairs of quasi-Dirac neutrinos are described by the

standard mixing matrix. This assertion was taken to be true
by others [27–29,32], yet we want to stress that this claim is
not correct, as can be seen from the Eqs. (4)–(6). Already
for one generation, these expressions show that the mass
splitting and the departure from maximal mixing are both
linearly dependent on mR;L and, more importantly, they are
controlled by orthogonal combinations of these two param-
eters. As such, it is even possible to have no mass splittings
at all and at the same time have arbitrary mixing angles.
There are also a number of more theoretical papers

discussing how quasi-Dirac neutrinos could arise. One
possibility is the so-called “singular” seesaw where the
mass matrix for the singlet neutrinos (Nc) has a determinant
equal or close to zero [33]. Quasi-Dirac neutrinos from
such a singular seesaw with additional type-II seesaw
contributions have been discussed in [34]. Another pos-
sibility [32] involves introducing additional singlets (S), as
it is done for the inverse seesaw mechanism [35]. A double
seesaw is then responsible for producing very light S states
which, together with the active states, form quasi-Dirac
neutrinos [32]. The authors of [36] use a Dirac seesaw to
explain the necessary smallness of the Dirac neutrino mass
terms first, and then generate quasi-Dirac states by the
addition of a very small seesaw type-II term. The “mirror
world” model of [37] is another way to obtain these
particles.
In models with extended gauge groups quasi-Dirac

neutrinos can also appear. An example is the E6 inspired
331 model of [38]. Here, several electroweak triplets of the
gauge group SUð3ÞL are needed to accomodate the
Standard Model leptons, and the observed active light
neutrinos are automatically quasi-Dirac states [39]. A very
different idea, based on supergravity has been discussed in
[40]. There it was pointed out that if neutrino Dirac terms
are generated from the Kähler potential (instead of the
superpotential), neutrinos would be quasi-Dirac, since
Majorana terms come from higher order Kähler potential
terms and thus are expected to be suppressed. This idea [40]
is particularly attractive, since it could, at least in principle,
explain the observed smallness of the Dirac neutrino
mass terms.
In addition to n active neutrinos, models of Dirac

neutrinos require the introduction of n Weyl spinors
transforming trivially under the electroweak gauge
group. For this reason, the study of quasi-Dirac neutrinos
necessarily has some overlap with the physics of sterile
neutrinos. Many experiments have searched for sterile
neutrinos. Most famously, the SNO neutral current
measurement rules out dominant contributions of sterile
neutrinos to the solar neutrino oscillations [41]. Super-
Kamiokande searched for steriles in atmospheric neutrinos
[42]. OPERA [43], MINOS and DayaBay [44], IceCube
[45] and NOνA [46] published searches for sterile neu-
trinos. For a more complete list of references see the recent
reviews [47,48]. Note, however, that constraints on sterile

2This distinction is based on two early papers on the subject
[5,6]. Wolfenstein [5] discussed pairs of active neutrinos, which
almost preserve lepton number (due to a relative CP-sign) if the
mixing angle between them is close to maximal and the mass
splitting is small. He called such particles “pseudo-Dirac”
neutrinos. Near the end of the paper, Wolfenstein then extended
the terminology to mass matrices which contain both, active and
sterile states. In [6], on the other hand, Valle proposed to use the
terminology “quasi-Dirac” neutrinos for active-sterile pairs, to
differentiate them from “pseudo-Dirac” (active-active pairs).

3PD neutrinos have mass matrices with entries close to zero on
the diagonal. This is similar to the case discussed in [15–17] for
the Zee model [18].
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are usually derived assuming best fit point values for the
standard oscillation parameters, to which two new param-
eters (one angle and one mass splitting) are added in the fit.
This approach does not cover the general quasi-Dirac
neutrino parameter space. In particular, keeping the stan-
dard neutrino parameters fixed can lead to misleading
conclusions about limits for the new/extra parameters.
There are also some hints for the existence of sterile

neutrinos. However, all these hints point to a new and much
larger mass scale in oscillations, i.e. Δm2 ≃Oð1Þ eV2.
Since these indications imply masses and mixings very
different from those of the standard oscillations, they can
not be explained by quasi-Dirac neutrinos. We thus do not
discuss these hints any further and refer only to the recent
review [48].
The rest of this paper is organized as follows. In Sec. II

we discuss the basics of quasi-Dirac oscillations, con-
structing general expressions for the mixing matrix for the
three generation case. In Sec. III we discuss constraints on
the new, nonstandard parameters from various neutrino
experiments. Constraints on quasi-Dirac mass splittings are
discussed in Sec. III A, while in Sec. III B we discuss the
constraints on angles, for the case in which mass splittings
are negligible. We then close with a short summary and
discussion.

II. DEFINITIONS FOR QUASI-DIRAC
NEUTRINO OSCILLATIONS

Dirac neutrinos can be described either in the weak or in
the mass basis. The two pictures are equivalent. We will
choose the latter one. Consider then a lepton-number
preserving model with three active and three sterile
neutrinos (ν and Nc).4 In the basis where the charged
lepton mass matrix is diagonal, the relevant part of the
Lagrangian reads

L ¼ gffiffiffi
2

p lL1γμνW−
μ þ νTmνNc þ H:c: ½flavor basis�:

ð7Þ
In order to diagonalize the matrixmν, both active and sterile
neutrinos must be rotated, ν → Vν and Nc → VNNc, such

that mðdiagÞ
ν ¼ VTmνVN :

L¼ gffiffiffi
2

p lLVγμνW−
μ þ νTmðdiagÞ

ν Nc þH:c: ½mass basis 1�:

ð8Þ
Strictly speaking, the neutrino mass matrix is not yet
diagonal since it is still mixing different states (active
and sterile neutrinos). This can be solved by rewriting νi
and Nc

i (i ¼ 1, 2, 3) as ψ i ≡ 1=
ffiffiffi
2

p ðνi þ Nc
i Þ, and

ψ iþ3 ≡ i=
ffiffiffi
2

p ð−νi þ Nc
i Þ:

L¼ gffiffiffi
2

p lLΩγμψW−
μ þ

X6
j¼1

mψ
j ψ jψ jþH:c: ½mass basis 2�:

ð9Þ

where the masses and the 3 × 6 mixing matrix Ω have a
special form (V is a 3 × 3 square matrix):

mψ
j ¼ ðm1; m2; m3; m1; m2; m3Þ ½Dirac limit�; ð10Þ

Ω ¼ 1ffiffiffi
2

p

2
6664

. .
. . .

.

V

. .
. . .

.

;

. .
. . .

.

iV

. .
. . .

.

3
7775 ½Dirac limit�:

ð11Þ

If the pattern of masses and mixing in Eqs. (10) and (11)
is perturbed, neutrinos are no longer Dirac particles and
lepton number is violated. Note that this is equivalent to
switching on the lepton number violating masses mL and
mR in Eq. (1). We shall now look into the possible
departures from the Dirac limit as seen from the mass basis.
In the case of masses, it is possible to split the three pairs

of ðmψ
i ; m

ψ
iþ3Þ, hence we may introduce three εi such that

ðmψ
i Þ2; ðmψ

iþ3Þ2 → m2
i −

ε2i
2
; m2

i þ
ε2i
2
; ð12Þ

with the understanding that, for quasi-Dirac neutrinos, the
εi are small in comparison to the atmospheric and solar
mass scales. In total there are now five mass parameters
relevant for oscillation experiments: the usual Δm2

Atm and
Δm2

⊙, plus three new εi mass splittings. (As usual, the
overall mass scale of neutrinos does not enter the oscillation
probabilities.)
Let us now turn our attention to a generic mixing

matrix Ω with dimensions n ×m. Such a matrix can be
described by 2nm real numbers, yet orthonormality of rows
(ΩΩ† ¼ 1) imposes n2 conditions on them, and further-
more it is possible to absorb n phases into the charged
lepton fields, hence there is a total of nð2m − n − 1Þ real
physical degrees of freedom in Ω. For a 3 × 6 matrix, this
corresponds to 12 angles and 12 phases, but note that 5 of
these phases cannot be observed in neutrino oscillation
experiments (they correspond to column phases). The
matrix Ω can be explicitly parametrized as follows [49]
(called below the SV parametrization). First, consider an
elementary rotation in the ði; jÞ entries given by the
complex number θ̃ij ≡ θij exp iϕij such that, in the (1,2)
case, it has the form4Fields with no flavor indices should be seen as vectors.
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Rðθ̃12Þ ¼

0
BBB@

cos θ12 −eiϕ12 sin θ12 0 � � �
e−iϕ12 sin θ12 cos θ12 0 � � �

0 0 1 � � �
..
. ..

. ..
. . .

.

1
CCCA:

ð13Þ

In the SV parametrization, the ith row of Ω (≡Ωi) is then
given by the expression

ΩT
SV;i ¼

Yi
a¼1

Y6
b¼aþ1

Rðθ̃abÞeðiÞ; ð14Þ

where eðiÞ is a column vector with entries eðiÞj ¼ δij. We do
not give here ΩSV in full because the expression is very
lengthy.
For a particular arrangement of the 24 angles and phases

in Eq. (14), Ω takes the special form (11) which is
associated with the Dirac limit. Note that, as usual, one
can write the 3 × 3 square matrix V with three angles and
one phase:

V¼

0
B@
1 0 0

0 cosθ23 sinθ23
0 −sinθ23 cosθ23

1
CA
0
B@

cosθ13 0 sinθ13e−iδ

0 1 0

−sinθ13eiδ 0 cosθ13

1
CA

×

0
B@

cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

1
CA: ð15Þ

Unfortunately, it is very complicated to describe the Dirac
limit in the SV parametrization. Hence we make a small
modification by introducing the following 6 × 6 rotation
matrix:

Ωðθij;ϕijÞ≡ΩSVðθij;ϕijÞU; U ¼ 1ffiffiffi
2

p
�
1 i1

1 −i1

�
:

ð16Þ

With this definition, the mixing matrix in Eq. (11), with V
parametrized as in Eq. (15), corresponds to Ωðθij;ϕijÞ, as
in (16), with θi4 ¼ θi5 ¼ θi6 ¼ 0 (i ¼ 1, 2, 3), ϕ12 ¼ ϕ23 ¼
0 and ϕ13 ¼ δ. In other words, with this definition the Dirac
limit forΩ simply corresponds to keeping only the standard
three generation neutrino mixing angles nonzero.
We can then write the probability of neutrino oscillation

from a flavor α to a flavor β for an energy E and after a
length L as5:

Pðνα → νβÞ ¼
����
X6
j¼1

ΩβjΩ�
αj exp

�
−
im2

jL

2E

�����
2

ð17Þ

Note that this expression is insensitive to column rephas-
ings Ω → Ωdiagðeiκ1 ; eiκ2 ; eiκ3 ; eiκ4 ; eiκ5 ; eiκ6Þ. It is easy to
show that Eq. (17) reduces to the standard oscillation
formula in the Dirac limit.

III. CURRENT EXPERIMENTAL LIMITS
AND FUTURE PROSPECTS

As discussed in the previous section, the full parameter
space for a system of 3 pairs of QD neutrinos has 30 free
parameters: Two independent Δm2

ij plus one overall mass
scale, three ε2i , twelve angles and twelve phases. Even
discounting the five Majorana phases and the overall mass
scale, which can not be probed in oscillation experiments,
the remaining number of parameters is much too large to fit
simultaneously.
Nearly all experimental data, on the other hand, is

consistent with the standard picture of only three active
neutrino species participating in oscillations [4], i.e. two
mass squared differences (Δm2

Atm and Δm2
⊙), three mixing

angles (θ23, θ12 and θ13) plus one phase (δ) are sufficient to
describe the data. As mentioned in the introduction, there
are also some hints for sterile neutrinos with a mass scale
of the order of Δm2 ∼OðeVÞ [47,48]. However, all these
hints are at most of the order of ð2–3Þσ, we will thus not
take them into account in the following. Instead, since the
standard three generation picture seems to describe the
data well, we will consider “small” perturbations and
derive limits on particular combinations of nonstandard
parameters.
In order to deal effectively with the large number of

parameters controlling quasi-Dirac neutrino oscillations,
we will consider two simplified scenarios:
(1) First, we take one nonzero εi at a time. In these one-

parameter extensions, very stringent limits on εi are
found, in agreement with earlier analysis, see for
example [25,26]. We then extend this analysis to two
new parameters: One mass splitting plus one new
angle. This second step allows us to identify “blind
spots” in the oscillation experiments, i.e. degenerate
minima in particular directions in parameter space,
where limits on mass splittings are much worse than
in the one parameter fits. We then discuss a
particular parametrization of these degenerate direc-
tions in parameter space, where the effects of εi can
be decoupled from oscillation experiments nearly
completely.

(2) In the second setup, we discuss the limit where
mass splittings are too small to be measured in
oscillation experiments, hence there are just angles
and phases of Ω to deal with. In this situation, it can
be shown that from the 24 parameters in Ω only 13

5This is true as long as the rows of Ω are orthonormal, i.e.
ΩΩ† ¼ 1.
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combinations enter the oscillation probabilities of
active neutrinos. Moreover, since there is only very
limited information on oscillations involving ντ, we
can in practice restrict ourselves to experiments
involving νe’s and νμ’s. There are then only 7
combinations of the 24 angles θij and phases ϕij

which appear in the oscillation probabilities. We
discuss the construction of these 7 quantities, the
current constraints and possible tests for quasi-Dirac
neutrinos in this limit.

In our analysis we do not take into account the data from
every existing oscillation experiment. Given the scarcity of
data on τ neutrinos, we ignored it altogether, concentrating
instead on the available charged current data for e and μ
neutrinos and anti-neutrinos. Also, we focus on those
experiments, which should provide the most important
constraints for quasi-Dirac neutrinos. First, we consider
KamLAND [3] since it fixes most accurately the so-called
solar mass splitting Δm2

⊙. From the solar neutrino experi-
ments we fit Super-K elastic scattering data [50] and from
Borexino the measured pp [51] and 7Be fluxes [52]. This
choice is motivated by the fact that Super-K [50] has the
most accurate data in the high energy range, while [51,52]
fix the low energy part of the solar neutrino spectrum.
We take the atmospheric neutrino data from [53]. We

concentrate in our fit on the sub-GeV sample, since the
lowest energetic neutrinos will be most sensitive to small
values of ε2i , as demonstrated in Fig. 2. In addition, we
use data from the MINOS Collaboration (muon and anti-
muon neutrino survival) [54] and T2K (muon neutrino
survival and muon to electron neutrino transition) [55],
since these two experiments determine Δm2

Atm better than
atmospheric data. And, finally, we take into account data
from DayaBay [56], since from the three current reactor
neutrino experiments DayaBay determines θ13 with the
smallest error.

In our fits, we use a simple χ2 method to determine the
allowed ranges of model parameters. We take statistical and
systematic errors from the experimental publications, to
which we added a further (small) systematic error for the
uncertainties in our theoretical calculations. This latter
systematic error was chosen such that our simulations
reproduce the allowed parameter ranges for the standard
oscillation parameters, determined by the respective experi-
ment, within typically ð1–1.5Þσ C.L. ranges. Note that we
do not attempt to do a precision global fit for standard
neutrino oscillation parameters. Rather, we consider repro-
ducing the experimental results for the standard case as a
test for the reliability of our derived limits.

A. Limits on mass splittings εi

1. One parameter limits

We will first discuss limits derived on εi assuming one
εi ≠ 0 at a time and taking all nonstandard angles to be
zero. Table I shows limits on ε2i and the corresponding
experimental data sets used to derive the limits.
For each case listed in Table I, we have calculated the

upper limits on the ε2i twice: (a) marginalizing over two
of the standard neutrino oscillation parameters and (b) for
the best fit point value of the standard parameters.
Marginalization over standard oscillation parameters leads
to less stringent limits. However, the importance of this
marginalization procedure differs widely for different
experiments. For example, in the case of KamLAND,
bounds on ε21 of the order of roughly 10−5 are derived
marginalizing over the allowed ranges ofΔm2

⊙ and sin2 θ12,
while for the best fit values of these last two parameters, the
limits are more stringent by “only” roughly a factor 2.
As the table shows, the strongest constraints on ε21 and ε

2
2

come from solar neutrino data. This is easily understood
from Fig. 3, which shows the electron neutrino survival

FIG. 2. Averaged atmospheric muon neutrino survival probability for neutrinos with energies Eν ¼ ð0.1–1Þ GeV (left) and Eν ¼
ð1–5Þ GeV (right), as a function of distance (L), for different choices of ε23. Lower neutrino energies are more sensitive to small ε3
values. This plot is calculated with the simplifying assumptions of sin2 θ23 ¼ 1=2, θ13 ¼ 0 and Δm2

⊙ ¼ 0.
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probability as a function of neutrino energy for different
values of ε22 and for the best fit values of the standard solar
oscillation parameters. For low values of neutrino energies,
vacuum oscillations dominate and so very small ε22 can be
probed up to a scale essentially determined by the Earth-
Sun distance (∼10−12;−11 eV2). Note that a nonzero ε22
reduces Pee, but this reduction could be hidden in the
relatively large error bar of the low-energy measurements.6

Nevertheless, at higher neutrino energies, a similar reduc-
tion of Pee is produced due to matter effects in the sun.
Since Super-K data provides a very accurate measurement
of Pee at these higher energies, one can rule out values of ε22
which can not be excluded by the Borexino measurements
alone. The situation is very similar for ε21: limits on ε21 and
ε22 are then of the order of 10−11 eV2 if we take the best fit
values of the standard solar oscillation parameters; slightly
less stringent numbers are obtained when marginalizing
over the standard parameter uncertainties.
Solar neutrino experiments have essentially no sensitiv-

ity to ε23. This is simply due to the smallness of θ13
(sin2 θ13 ≃ 0.0215 [4]). Thus, we have to rely on experi-
ments testing the atmospheric scale to derive limits on ε23.
Table I quotes numbers for two cases.
In the first scenario, we have combined data from

DayaBay [56], T2K [55] and MINOS [54]: DayaBay fixes
most accurately θ13, while both MINOS and T2K measure
Δm2

Atm with rather small errors. Here, the limit on ε22 is (not
surprisingly) less stringent than the one derived from
KamLAND (or solar). Depending on whether or not
Δm2

Atm and sin2 θ23 are used at their best fit value or
marginalized over, we get very different limits on ε23. This is
due to the fact that when scanning over the standard
oscillation parameters, the χ2 function has two almost
degenerate minima: one for small values of ε23 and
another for ε23 of the order 10−3 eV2. However, as the
table also shows (second case), this nonstandard solution
is excluded, once we add Super-K atmospheric neutrino
sub-GeV data to the fit. With the combination of these

four experiments limits on ε22 and ε23 are again of
order 10−5 eV2.
In the last line of Table I we give our forecast of the

sensitivity of the planned experiment JUNO [57]. JUNO
will measure Δm2

⊙ and Δm2
Atm very precisely and thus it

will also be able to derive limits on any ε2i . However, our
results indicate that, despite being a very precise experi-
ment, JUNO will not lead to a major improvement over
existing limits on ε2i . Here, it is important to stress that
limits using the best fit point and limits marginalizing over
standard parameter uncertainties are very different. This
can be traced back again to a near-degeneracy in the χ2-
function: For ϵ2i of the order of Δm2

ij one has two only
slightly different oscillation lengths contributing in the fit,
which can give a better description than a single oscillation
length.
In summary, strong limits on mass splittings can be

derived from atmospheric and solar neutrino data
(ε23 ∼Oð10−5Þ eV2 and ε21;2 ∼Oð10−11Þ eV2, respectively)
in the case where no other extra parameter is added to the
standard neutrino oscillation picture.

2. Two parameter case

While the discussion in the previous subsection seems to
show that constraints on QD mass splittings are very

TABLE I. 95% upper limits on ε2i derived from different experimental data sets. Two numbers are given for each case; the first one is
the limit obtained marginalizing over two standard oscillation parameters (see text), the second (in brackets) is the limit obtained for the
best fit point value of the standard oscillation parameters. For a discussion see text.

Experiment ε21 [eV2] ε22 [eV2] ε23 [eV2]

KamLAND 7.7ð3.4Þ × 10−6 1.7ð1.0Þ × 10−5 …
Solar þ KamLAND 1.7ð1.3Þ × 10−11 1.7ð1.5Þ × 10−11 …
DayaBayþMINOSþ T2K … 1.5ð0.9Þ × 10−4 1.3ð0.074Þ × 10−3

Super-Kþ DayaBayþMINOSþ T2K … 1.9ð1.8Þ × 10−5 1.2ð1.1Þ × 10−5

JUNO 1.7ð0.07Þ × 10−5 2.3ð0.09Þ × 10−5 6.0ð2.2Þ × 10−5

FIG. 3. Solar neutrino survival probability as a function of
neutrino energy, for different choices of ε22. Solar angle and mass
splitting have been fixed at their best fit values in this plot [4].

6Due to the annual variation of the Earth-Sun distance, for
values of ε22 larger than ∼10−10;−9 eV2, the oscillations are
averaged over, so only an overall reduction of survival probability
is seen.
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stringent, we will now see that this conclusion is valid only
under the assumption that no other nonstandard parameter
is different from zero.
As a simple example, consider the electron neutrino

survival probability at distances short enough that the
effects of Δm2

⊙ can be neglected.7 We shall consider the
particular example of a nonzero ε23 and a nonzero θ16 angle,
defined in Sec. II. One finds that

Pee ¼ 1 − 2c213c
2
16ðΔm−

eeðs16 þ c16s13Þ2
þ Δmþ

eeðs16 − c16s13Þ2Þ; ð18Þ

where cij and sij are short-hands for cos θij and sin θij and

Δm�
ee ≡ c212sin

2

�
L
4E

ðΔm2
31 � ε23=2Þ

�

þ s212sin
2

�
L
4E

ðΔm2
32 � ε23=2Þ

�
: ð19Þ

It is straightforward to see that the above expression for
the neutrino survival probability remains (nearly)
unchanged if we swap θ13 by θ16. This is true up to
very small terms proportional to ΔðPeeÞ ∝ ðΔm−

ee −
Δmþ

eeÞðc13 − c16Þs13s16. More specifically, in the limit
where Δm�

ee have the same value, Pee is only a function
of the combination sin2 θ13 þ sin2 θ16. Thus, there will be
a near-degeneracy of the relevant χ2 function involving
these two angles, and so values (or limits) derived for one
of these parameters, without varying the other, will be
misleading.
There is, however, another more interesting degen-

eracy associated to Eq. (18). In calculating this expres-
sion we have used a certain parametrization for the mass
splitting, which we may call the symmetric parametri-
zation: mi, miþ3 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i − ε2i =2
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ε2i =2
p

. Choosing
sin θ13 ¼ tan θ16, the second term inside the bracket in
Eq. (18) vanishes (this choice corresponds to Ωe6 ¼ 0).
So, by adjusting Δm2

31 and ε23 we can keep Δm2
31 − ε23=2

constant and equal to the best fit point value of Δm2
Atm,

in which case there will be no upper limit on ε23
itself coming from the electron neutrino survival
experiments.
Note that we could have defined mi, miþ3 → mi;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ε2i
p

.8 We call this the asymmetric parametrization.
Rewriting Eq. (18) with this parametrization, the first term
inside the bracket would not depend on ε23 at all, so it
becomes obvious that for the choice of sin θ13 ¼ tan θ16 all

dependence of Pee on ε23 disappears. Figure 4 shows these
parameter degeneracies in the space (ε23; sin

2 θ13; sin2 θ16),
using only the DayaBay data (on the left column). The
underlying scan was done in the asymmetric parametriza-
tion, which is numerically simpler to implement. The
plot in the upper and middle panel show clearly that there
is no upper limit on ε23 in this scan. The lower plot shows
the degeneracy in parameter space under the exchange
of θ13 ↔ θ16.
We can break this particular degeneracy in parameter

space, by adding more experiments. T2K measures two
probabilities: (a) The muon neutrino survival probability,
Pμμ, and (b) the electron neutrino appearance probability,
Pμe, both at values of L=E which give access to the
atmospheric neutrino mass scale, Δm2

Atm. If the only
nonstandard angle different from zero is θ16, then Pμμ will
not depend on θ16 at all, while Pμe will have θ16-
dependence which is different from the one of Pee.
Thus, adding T2K data to the scan is enough to break
the degeneracy in θ13 ↔ θ16 hence an upper limit on ε23
reappears. The middle column of Fig. 4 illustrates this
point; it shows the results of a combined scan over ε23,
sin2 θ13 and sin2 θ16 for DayaBay plus T2K data. By
comparison of the right with the middle column of
Fig. 4, one can clearly see that the addition of Super-K
data generates a strong upper limit on ε23, for this particular
choice of parameter subspace.
Given these results, one might wonder if there are

particular directions in parameter space for which oscil-
lation experiments become completely blind to QD neu-
trino mass splittings. Recall that the blind (or: degenerate)
direction discussed above for Pee corresponds to the
particular choice of Ωe6 ¼ 0. In a similar way, for example,
Pμμ would loose any sensitivity to ε23 ifΩμ6 ¼ 0. Thus, with
some special choice of θ16 and θ26 such that both Ωe6 and
Ωμ6 are zero at the same time, one can indeed make
DayaBay and T2K blind to variations of ε23.
While it is possible, in principle, to calculate the

combination of angles θij and phases ϕij (defined in
section II) associated to these blind directions, in the
following we will consider a simpler alternative.
Consider a unitary rotation of the columns i and iþ 3
of the mixing matrix Ω. Since we are not interested in
column phases, such a rotation is governed by just two
parameters (φi and βi):

0
BBB@

..

. ..
.

col:iofΩ col.iþ3ofΩ

..

. ..
.

1
CCCA→

0
BBB@

..

. ..
.

col:iofΩ col.iþ3ofΩ

..

. ..
.

1
CCCA

×

�
cosφi eiβi sinφi

−e−iβi sinφi cosφi

�
ð20Þ

7To a good approximation, this is the situation in the DayaBay
experiment.

8Numerically this leads to the same limits on ε2i , as long as the
mass splitting is much smaller than the relevant Δm2

ij (i.e., the
solar or atmospheric scale).
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Now, recall that in the Dirac limit [see Eq. (11)] the columns i and iþ 3 of the mixing matrix Ω are proportional to each
other,Ωα;i ¼ −iΩα;iþ3 ¼ Vα;i=

ffiffiffi
2

p
. This means that applying the ðφi; βiÞ transformation to the Dirac neutrino mixing matrix

and, without loss of generality setting βi ¼ 0, we obtain:

0
BBB@

..

. ..
.

Ωα;i Ωα;iþ3

..

. ..
.

1
CCCA ¼

0
BBB@

..

. ..
.

cosφiþsinφiffiffi
2

p Vα;i i cosφi−sinφiffiffi
2

p Vα;i

..

. ..
.

1
CCCA: ð21Þ

FIG. 4. Allowed parameter ranges for ε23, sin
2 θ13 and sin2 θ16 for different experiments. The parameter planes always marginalize over

the parameter not shown and all calculations used the best fit point value for Δm2
Atm. In the plots on the left only DayaBay data is taken

into account; the middle panel combines DayaBay with T2K and the panel to the right shows the combination of DayaBay, T2K with
Super-K atmospheric neutrino data. The different coloured regions present the 1, 2 and 3σ C.L. allowed regions (cyan, blue and red). For
discussion see text.

QUASI-DIRAC NEUTRINO OSCILLATIONS PHYS. REV. D 97, 095008 (2018)

095008-9



From the last of these equations it can be seen that the ith
column [the (iþ 3)th column] of Ω vanishes, if one
chooses φi ¼ 3π=4 (φi ¼ π=4).
Figure 5 shows a scan over the allowed parameter space

in the plane (ε23;φ3) using DayaBay, T2K, MINOS and
Super-K atmospheric neutrino data. In agreement with the
above discussion, there is a blind spot where no limit on ε23
exist. This blind direction corresponds to the choice of
φ3 ¼ π=4.9 Figure 5 also shows that the addition of JUNO
data can lead only to a marginally improved limit.
We now turn to a discussion of ε21 and ε22. For these two

parameters, again solar neutrino physics provides the most
important constraints. As above for ε23, we can define a
rotation angleφ1 (φ2) between the columns 1 and 4 (2 and 5)
of the mixing angle which will mitigate the effects of a
nonzero ε21 (ε22). Figure (6) shows the Pee probability for
solar neutrinos as a function of neutrino energy for two
different values of ε22 and various values of φ2.

10 The results
for ε21 andφ1 are completely analogous. As the figure shows,
for φ2 ¼ π=4 again the effects of ε22 completely decouple
from the oscillation probability.
Figure 7 shows the allowed parameter space in the two

planes (φ1; ε21) and (φ2; ε22) using solar data and combining
solar data with KamLAND. These plots have been calcu-
lated using the best fit point values for Δm2

⊙ and sin2 θ12

from the global fit [4]. The plots show in all cases that there
exists a slight preference, between ð2–2.5Þσ in all cases, for
nonzero values of ε2i . Note that the preferred solution of the
solar data in the region of φ1 ∼ 3=4π and ε21 ∼
ð10−4.5–10−4Þ is ruled out by KamLAND. However, even
combining solar and KamLAND data some preference for
nonzero ε2i of the order of very roughly 10−10.5 eV2

remains.
We have traced back this preference for nonzero mass

splittings in solar data to the well-known difference in
the best fit points from Δm2

⊙ in solar and KamLAND
data. As can be seen also in the latest global fits [4],
solar data prefers a Δm2

⊙ around ð4–5Þ × 10−5 eV2, while
KamLAND prefers Δm2

⊙ ≃ 7.6 × 10−5 eV2. This tension
between the two data sets is roughly of the order of 2σ, with
the error bar dominated by the larger error on Δm2

⊙ in the
solar data set. We have therefore recalculated the con-
straints on (φ1; ε21) from solar data for a value of
Δm2

⊙ ¼ 4 × 10−5 eV2. Figure 8 shows the results of such
a scan. As can be seen, in this calculation there is no longer
any preference for a nonzero value of ε21.
Note that such a low value of Δm2

⊙ is ruled out by many
σ from the KamLAND data. Thus, a small nonzero mass
splitting could provide, in principle, a solution for the
observed tension between solar and KamLAND data.
In summary, by introducing one mass splitting at a time,

we extracted bounds for the pairs of parameters ðεi;φiÞ,
i ¼ 1, 2, 3. In the limit where φi is ð2� 1Þ=4π, one column
of the mixing matrix vanishes and therefore the mass
splitting εi becomes unobservable. For this reason, one
expects that for reasonably large values of εi there must be
tight limits on jφi − ð2� 1Þ=4πj, meaning that φi has to be
quite far from the Dirac limit (φi ¼ 0). On the other hand,
for a small enough value of the mass splitting εi, the
associated oscillation length eventually become larger than
the baseline of the relevant experiments, and in that case φi
becomes unconstrained.

B. Quasi-Dirac neutrinos in the limit εi → 0

If masses are degenerate as in Eq. (10), then the
oscillation probability formula will not change under
unitary rotations of the columns i and iþ 3 of the mixing
matrix, see Eq. (20). In other words,

0
BB@

..

. ..
.

col:i of Ω col:iþ 3 of Ω

..

. ..
.

1
CCA

→

0
BB@

..

. ..
.

col:i of Ω col:iþ 3 of Ω

..

. ..
.

1
CCAUðiÞ ð22Þ

FIG. 5. Allowed parameter space in the plane (ε23;φ3) using
DayaBay, T2K, MINOS and Super-K atmosheric neutrino data.
The coloured plane shows the 2 and 3σ C.L. allowed regions
(blue and red). The dashed lines show the expected limits for
JUNO. The asymmetric parametrization of the mass splitting
(m3,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ ε23
p

) was used, so for φ3 ¼ π=4 there is no sensitivity
to ε23.

9Shifting ε23 one could alternatively define (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ ε23
p

; m3). In
that case, the blind spot occurs at φ3 ¼ 3π=4 instead.

10This probability is averaged over the variations of the Earth-
Sun distance, and neutrino production point inside the Sun.
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FIG. 6. Average solar neutrino survival probability as a function of neutrino energy, for different choices of φ2 and two different values
of ε22 and φ2.

FIG. 7. Allowed parameter range in the space φ1; ε21 (top) and φ2; ε22 (bottom). To the left: Solar data, to the right solar
dataþ KamLAND. This plot uses the best fit point values for Δm2

⊙ and sin2 θ12 from the global fit. This combination of data shows a
slight preference for a nonzero value of the mass splitting, for a discussion see text.
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for unitary matrices UðiÞ (i ¼ 1, 2, 3) leaves Pðνα → νβÞ
unchanged. Hence, there is a Uð2Þ3 redundancy in our
description of Ω, and in turn this means that out of the 24
parameters describing the mixing matrix, oscillation
experiments are only sensitive to 13.11 This number is
further reduced to 7 if we ignore tau neutrinos. In this latter
case the oscillation probabilities can be written as:

Pðνe → νeÞ ¼ 1þ ð1 − X1 − X2ÞX2A12

þ ð1 − X1 − X2ÞX1A13 þ X1X2A23; ð23Þ

Pðνμ → νμÞ ¼ 1þ ð1 − X3 − X4ÞX4A12

þ ð1 − X3 − X4ÞX3A13 þ X3X4A23; ð24Þ

Pðνe → νμÞ ¼ −ðX6 þ ReX7ÞA12 − ðX5 þ ReX7ÞA13

þ ReX7A23 þ ImX7ðB12 − B13 þ B23Þ;
ð25Þ

with the oscillating factorsAij≡−4sin2 ½ðm2
i −m2

jÞL=ð4EÞ�
and Bij ≡ 2 sin ½ðm2

i −m2
jÞL=ð2EÞ� and the 7 parameters

Xi defined as follows:

X1 ≡ jΩe3j2 þ jΩe6j2; X2 ≡ jΩe2j2 þ jΩe5j2; ð26Þ

X3 ≡ jΩμ3j2 þ jΩμ6j2; X4 ≡ jΩμ2j2 þ jΩμ5j2; ð27Þ

X5 ≡ jΩe3Ω�
μ3 þΩe6Ω�

μ6j2; X6 ≡ jΩe2Ω�
μ2 þΩe5Ω�

μ5j2;
ð28Þ

X7 ≡ ðΩe3Ω�
μ3 þ Ωe6Ω�

μ6ÞðΩ�
e2Ωμ2 þΩ�

e5Ωμ5Þ: ð29Þ

As a side remark, we would like to point out here that a
similar approach could, in principle, be used in the presence
of one εi: in this case, instead of 7, there would be 9
combinations of angles and phases to take into account.12

Note that the Xi defined above can take any value in our
framework, provided that the following constraints are
obeyed:
(1) the first six Xi are non-negative real numbers;
(2) neither X1 þ X2 nor X3 þ X4 can be larger than 1;
(3) X5 ≤ X1X3 and X6 ≤ X2X4;
(4) the norm of X7 is fixed by X5 and X6 (jX7j2¼X5X6),

so even though X7 is a complex parameter, only
argðX7Þ is an independent degree of freedom;

(5) X5 þ X6 þ 2 cos ½argðX7Þ�
ffiffiffiffiffiffiffiffiffiffiffi
X5X6

p
cannot be bigger

than ð1 − X1 − X2Þð1 − X3 − X4Þ.

FIG. 8. Allowed parameter range in the space φ1; ε21 (left) and φ2; ε22 (right) from solar data, using Δm2
⊙ ¼ 4 × 10−5 eV2.

11The counting goes as follows: each Uð2Þ describes 4
redundancies in the parameters, hence there is a total of 12
redundancies in Uð2Þ3. However, one of them corresponds to the
irrelevance of multiplyingΩ by an overall phase; that was already
taken care of when row phases were removed from the mixing
matrix. Hence we are left with 24 − 12þ 1 real parameters which
affect the neutrino oscillation probabilities if no εi’s are intro-
duced.

12Consider a nonzero ε1 (for εi¼2;3 ≠ 0, the changes to the
following expressions are trivial). Then the Pðνe → νeÞ,
Pðνe → νμÞ and Pðνμ → νμÞ probabilities depend only on the
following quantities:

X̂1 ≡ jΩe3j2 þ jΩe6j2; X̂2 ≡ jΩe2j2 þ jΩe5j2; X̂3 ≡ jΩe1j2;
ð30Þ

X̂4 ≡ jΩμ3j2 þ jΩμ6j2; X̂5 ≡ jΩμ2j2 þ jΩμ5j2; X̂6 ≡ jΩμ1j2;
ð31Þ

X̂7 ≡ jΩe3Ω�
μ3 þ Ωe6Ω�

μ6j2; argðX̂8Þ≡ arg ðΩe1Ω�
μ1Ω�

e4Ωμ4Þ;
ð32Þ

argðX̂9Þ≡ arg ½Ωe1Ω�
μ1ðΩ�

e2Ωμ2 þΩ�
e5Ωμ5Þ�: ð33Þ
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These conditions are a consequence of the definitions of the
Xi and the fact that the rows of the mixing matrix Ω are
orthonormal (ΩΩ† ¼ 1). Taking them into account, we are
able to pick out all valid points in the Xi parameter space,
without ever referencing back to specific entries of the
mixing matrix.
For reference, the values of these Xi parameters in the

Dirac limit as a function of the standard θ12, θ13, θ23 and δ
parameters [see Eq. (15)] are the following:

X1 ¼ sin2 θ13; X2 ¼ sin2 θ12 cos2 θ13;

X3 ¼ cos2 θ13 sin2 θ23; ð34Þ

X4 ¼ sin2 θ12 sin2 θ13 sin2 θ23 þ cos2 θ12 cos2 θ23

−
1

2
sin 2θ12 sin 2θ23 sin θ13 cos δ; ð35Þ

X5 ¼ X1X3; X6 ¼ X2X4; ð36Þ

X7 ¼ sin θ12 sin θ13 cos2 θ13 sin θ23ð− sin θ12 sin θ13 sin θ23

þ e−iδ cos θ12 cos θ23Þ: ð37Þ

Using Δm2
Atm ¼ 2.55×10−3 eV and Δm2

⊙ ¼ 7.56×10−5,
we performed a 7-dimensional scan over all Xi. Electron
neutrino survival data from at KamLAND, DayaBay,
SuperK and Borexino was used, together with muon
neutrino survival data at MINOS and T2K and νμ → νe
T2K data. The allowed values in the planes ðX1; X2Þ,
ðX3; X4Þ and ðX5; X6Þ are shown in Fig. 9. The margin-
alized χ2 function for X1;…;6 is shown in Fig. (10); the
marginalized χ2½argðX7Þ� function is not shown as it is
essentially flat from 0 to 2π.
Overall, the bounds on these 7 parameters are broadly

consistent with the standard three neutrino oscillation
picture. In other words, by substituting in expressions
(34)–(37) the numbers obtained for θ12, θ13, θ23 and δ from

global fits [4], we get values for the Xi roughly in
agreement with Figs. 9 and 10. In order to see clearly that
current data is consistent with the Dirac limit, note that in
this latter case there are only 4 independent parameters.
Thus, it follows that the standard three neutrino oscillation
picture must correspond to three relations among the 7 Xi.
These are

X5 ¼ X1X3; X6 ¼ X2X4 and

ReðX7Þ ¼
1

2
ð1 − X1 − X2 − X3 − X4 þ X1X4 þ X2X3Þ;

ð38Þ

and from Fig. 11 one can see that oscillation data is
compatible with each of these equalities within ∼1σ. The
three together are disfavored only at minðχ2DiracÞ −
minðχ2Þ ¼ 1.9 so, assuming no mass splittings εi, there

FIG. 9. One, two and three σ regions in the ðX1; X2Þ, ðX3; X4Þ and ðX5; X6Þ which are allowed by electron neutrino survival data from
at KamLAND, DayaBay, SuperK and Borexino, muon neutrino survival data at MINOS and T2K and muon to electron transition data
from T2K. This plots were obtained from a 7-dimensional scan of the Xi defined in Eqs. (26)–(29) and marginalizing over 5 variables.

FIG. 10. Marginalized Δχ2 values for the variables X1;…;6

defined in Eqs. (26)–(29). The χ2 function for X7 is essentially
flat. These parameters are a function of the entries of the mixing
matrix only; no mass splittings εi were considered.
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is currently no significant indication for quasi-Dirac
neutrinos.
We would like to point out that even in the absence of

new mass scales, quasi-Dirac neutrinos can, in principle, be
distinguished from some other scenarios through oscilla-
tion experiments. In particular, consider 3 active neutrinos
and a nonunitary 3 × 3 mixing matrix V. The oscillation
probabilities are then given by the expressions

Pðνe→νeÞ¼FðJ12ee;J13ee;J23eeÞþJ12eeA12þJ13eeA13þJ23eeA23;

ð39Þ

Pðνμ→νμÞ¼FðJ12μμ;J13μμ;J23μμÞþJ12μμA12þJ13μμA13þJ23μμA23;

ð40Þ

Pðνe → νμÞ ¼ F0ðJ12ee; J13ee; J23ee; J12μμ; J13μμ; J23μμ; J12eμ; J13eμ; J23eμÞ
þ ReðJ12eμÞA12 þ ReðJ13eμÞA13

þ ReðJ23eμÞA23 þ ImðJ12eμÞB12

þ ImðJ13eμÞB13 þ ImðJ23eμÞB23; ð41Þ

where Jijαβ ¼ V�
αiV

�
βjVβiVαj. The exact form of the func-

tions F and F0 which control the 0-distance neutrino
behavior is not important for the present discussion. The
more important point is that with a nonunitary V one can
have an oscillatory behavior which is impossible to
reproduce with quasi-Dirac neutrinos, and vice-versa.
For example, the Bij coefficients in Pðνe → νμÞ do not

need to be related for a nonunitary V, while for quasi-Dirac
neutrinos they must be the same [up to a minus sign—see
Eq. (25)]. On the other hand, note that from the Jijee and J

ij
μμ

one can extract the modulus of the absolute value of all Jijeμ,
hence by measuring Pðνe → νeÞ and Pðνμ → νμÞ, as well as
the coefficients Bij in Pðνe → νμÞ, the coefficients of the
oscillatory factors Aij in Pðνe → νμÞ are fixed for a
nonunitary V (up to �signs). However, for quasi-Dirac
neutrinos no such constraint exists. So, with this short
theoretical argument, one can conclude that in principle
these two nonstandard neutrino scenarios can be distin-
guished through oscillation experiments.

IV. SUMMARY

In general, neutrinos can have lepton number violating
(Majorana) and lepton number conserving (Dirac) mass
terms. If the lepton number violating mass terms are
smaller than the lepton number preserving ones, neutrinos
are quasi-Dirac particles. Phenomenologically, this corre-
sponds to the existence of three pairs of neutrinos with
slightly different masses, hence oscillation experiments
are sensitive not only to the usual solar and atmospheric
mass scales, but also to three small mass splittings εi.
Furthermore, for quasi-Dirac neutrinos there are more than
3þ 1 angles and phases to be considered. In this work, we
have analyzed the constraints on these quasi-Dirac neutrino
parameters imposed by current neutrino oscillation data and
also briefly discussed the potential of the future JUNO
experiment to improve upon existing constraints.
In Sec. II we have discussed a fully general parametri-

zation of the lepton sector for three generations of quasi-
Dirac neutrinos. In addition to the charged lepton masses,
there is a total of 6 masses, 12 angles and 12 phases.
Oscillation experiments are not sensitive to the overall
neutrino mass scale nor to 5 of the phases (which are of the
Majorana type). Hence we are left with a 24-dimensional
model space, compared to the six-dimensional space for an
ordinary three generation case (Δm2

⊙, Δm2
Atm, θ12, θ13, θ23

and δ).
It is numerically too costly to handle such a large number

of parameters at the same time, hence we analyzed several
different special cases. First, we took a single mass splitting
ε2i ≠ 0. If we split two neutrinos with mass mi into a quasi-
degenerate pair of particles with masses

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i − ε2i =2
p

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ε2i =2
p

then a new oscillation length L ∝ 1=ε2i
appears which is associated to the conversion of active
to sterile neutrinos. Very stringent limits on ε2i in such one
parameter extensions can be derived, of the order of
10−11 eV2 for ε21;2 (from solar neutrino data) and
10−5 eV2 for ε23 (dominated by Super-K atmospheric
neutrino data).
Next, we considered the case when one mass splitting

and one of the nonstandard angles are allowed to take
nonzero values at the same time. As we have shown, in this
situation degeneracies of the χ2 function can occur,
implying that from a single experiment in many cases it
will no longer be possible to derive meaningful limits on
individual parameters. These degeneracies can be resolved
by considering data from more than one experiment,
accessing different Pðνα → νβÞ.
We then considered the possibility of nullifying the

effects of the εi completely by changing some particular
combinations of the angles θij of our parametrization.
Instead of pursuing the exact form of these rather complex
parameter combinations, we discussed a simpler definition,
describing 3 angles φi associated to rotations between the
columns i and iþ 3 of the quasi-Dirac mixing matrix, such

FIG. 11. Δχ2 functions for the three combinations of param-
eters which, when equal to 0 simultaneously, signal the Dirac
limit [see Eq. (38)].
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that in the limit where these angles are equal to π=4 (3π=4)
the iþ 3ðiÞ column of the mixing matrix vanishes and
hence the associated neutrino mass disappears from the
oscillation probability formula. We stress that for these
particular parameter combinations no limits on the εi can be
derived from oscillation experiments. The regions in the
planes ðεi;φiÞ which are allowed by various experiments
are shown in Figs. 5 and 7. In this context, it is interesting to
note that the tension between the value of the solar mass
scale preferred by global fits (∼7.6 × 10−3 eV2) and the
lower one preferred by solar data (∼4 × 10−3 eV2) might
be resolved by a nonzero value for either ε1 or ε2.
Lastly, we considered the possibility that the mass

splittings εi are too small to be measured in oscillation
experiments. Even in this scenario, one can have departures
from the lepton-number-conserving Dirac scenario due to
the new angles θij (and phases ϕij). As mentioned above,
there is a large number of such parameters. However, it can
be shown that with 3 pairs of neutrinos with the same mass,
oscillations will only depend on a total of 13 combinations
of angles and phases. Additionally, if we focus just on
electron and muon neutrinos, this number is further reduced
to 7, corresponding to 6 angles and 1 phase. In the text we
called these parameter combinations X1���7 and stressed that
they cannot be identified with θ12, θ13, θ23 nor δ, as these
quantities by themselves are not physical. Instead, the 7 Xi
correspond to combinations of these and additional θij
angles and ϕij phases.

In Sec. III B we made a 7-dimensional scan of these Xi
parameters in the absence of mass splittings. Their exact
definitions, as well as the limits imposed on them by
current data can be found there. Crucially, for Dirac
neutrinos there are only 4 parameters. Hence the Dirac
limit corresponds to 3 relations among the 7 Xi. By testing
these relations, we find that minðχ2DiracÞ −minðχ2Þ ¼ 1.9,
i.e. current data is compatible with the Dirac scenario.
Progress on tests for quasi-Diracness can be made in the
future with a more precise measurement of Pðνe → νμÞ and
Pðνμ → νμÞ. Thus, more statistics taken in T2K, MINOS+
or NOνA and, in particular, the future precise measure-
ments possible at DUNE should provide more sensitive
probes for this particular setup of quasi-Dirac neutrinos
without new mass scales.
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