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Two different effective field theory descriptions of the pion-nucleon scattering data are constructed to
describe the region of the Roper resonance. In one, the resonance is the result of strong rescattering between
coupled meson-baryon channels, while in the other the resonance has a large bare-baryon (or quark-model-
like) component. The predictions of these two scenarios are compared with the latest lattice QCD
simulation results in this channel. We find that the second scenario is not consistent with lattice QCD
results, whereas the first agrees with those constraints. In that preferred scenario, the mass of the quark-
model-like state is approximately 2 GeV, with the infinite-volume Roper resonance best described as a
resonance generated dynamically through strongly coupled meson-baryon channels.
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I. INTRODUCTION

Since the discovery of the Roper resonance in 1964 [1],
its peculiar properties have challenged our understanding of
the quark structure of hadrons and ultimately of quantum
chromodynamics (QCD) itself [2–21]. With the first
negative-parity excitation of the nucleon, the N⋆ð1535Þ,
almost 600 MeV above the nucleon, expectations—based
upon the harmonic oscillator model which has enjoyed
success in treating hadron spectroscopy—suggest that the
first positive-parity excited state should occur around
2 GeV. Yet, empirically one finds the first positive-parity,
spin-1=2 Roper resonance of the nucleon to have a mass of
just 1.45 GeV, below the N⋆ð1535Þ [22].
To make matters worse, the first negative-parity excita-

tion of a strangeness −1 baryon, the famous Λð1405Þ, is
lower in mass than both of these nonstrange excited states
of the nucleon [22]. Fortunately, in this case there have
recently been advances in our understanding, via lattice
QCD simulations of not only the mass of this state but the
individual valence quark contributions to its electromag-
netic form factors [23,24]. These simulations have been
supported by analysis involving an effective Hamiltonian
[25], which allows a natural connection to be made between
the results calculated on a finite lattice volume and the
infinite volume of the real world [26,27]. As a result of
these studies, it is now clear that the Λð1405Þ is essentially
an antikaon nucleon bound state with very little content
corresponding to the sort of three-quark state anticipated in
a typical quark model [24].
In this article we use similar techniques to investigate

the nature of the Roper resonance. Our calculations are

founded on Hamiltonian effective field theory (HEFT), an
extension of chiral perturbation theory that incorporates the
Lüscher relation [28–30] connecting the energy levels
observed in finite volume to the scattering phase shifts
[31]. In the power-counting regime, HEFT reproduces the
expansion of chiral perturbation theory for ground state
phenomena [32].
The results presented herein are the first to incorporate a

basis state that can be associated with a quark-model state
for the Roper, where radial excitations of constituent quarks
describe the internal structure of the Roper. This is an
important development that admits, for example, three-
quark descriptions of nucleon-Roper transition form factors
in the large momentum transfer regime [33] where mesonic
dressings are suppressed.
The outline of this article is as follows. We first introduce

the coupled-channel scattering formalism [34] in Sec. II.
Experimental scattering data in the region of the Roper
resonance is analyzed in Sec. III where two different
descriptions of the data are obtained in the coupled-channel
formalism. In the first fit there is no significant three-quark
coupling, while in the second alternative fit to the data there
is. These models produce rather different behavior in the
unobserved πΔ and σN channels and cannot be distin-
guished by experiment. We then use the same effective field
theory on a finite volume in Sec. IV to compute the
spectrum one would expect to find in lattice QCD. Only
the first description of the experimental data is consistent
with recent lattice simulations, indicating that the Roper
resonance is generated dynamically through the rescatter-
ing of coupled meson-baryon channels.
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This discovery leads to a new contemporary role for
constituent quark models in describing the low-lying
baryon spectrum. Section V presents this role drawing
on recent developments in the understanding of the odd-
parity N and Λ spectra. The three-quark radial excitation
of the nucleon anticipated in traditional quark models
appears to lie closer to 2 GeV, which as explained earlier,
is in accord with the excitation energy of the observed
N⋆ð1535Þ. Finally, Sec. VI summarizes our conclusions
and suggests directions for future research.

II. THEORETICAL FRAMEWORK

In order to model the scattering data in the region of the
Roper resonance and describe the observed inelasticity, we
include three coupled channels, πN, πΔ and σN. In the rest
frame, the Hamiltonian has the following form:

H ¼ H0 þHI; ð1Þ

where the noninteracting Hamiltonian is

H0 ¼
X

B0

jB0im0
BhB0j

þ
X

α

Z
d3k⃗jαðk⃗Þi½ωα1ðk⃗Þ þ ωα2ðk⃗Þ�hαðk⃗Þj: ð2Þ

Here B0 denotes a bare baryon with mass m0
B, which may

be thought of as a quark model state and α1 (α2) indicates
the meson (baryon) state which constitutes channel α,

with ωαiðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

αi þ k⃗2
q

.

The energy independent interaction Hamiltonian
includes two parts, HI ¼ gþ v, where g describes the
vertex interaction between the bare particle and the
two-particle channels α

g ¼
X

α;B0

Z
d3k⃗fjαðk⃗ÞiG†

α;B0
ðkÞhB0j þ H:c:g; ð3Þ

while the direct two-to-two particle interaction is defined by

v ¼
X

α;β

Z
d3k⃗d3k⃗0jαðk⃗ÞiVS

α;βðk; k0Þhβðk⃗0Þj: ð4Þ

For the vertex interaction between the bare baryon and the
two-particle channels we choose

G2
α;B0

ðkÞ ¼ g2B0α

4π2

�
k
f

�
2lα u2αðkÞ

ωα1ðkÞ
; ð5Þ

where the pion decay constant f ¼ 92.4 MeV and lα is the
orbital angular momentum in channel α. Here, since we are
concerned with the Roper resonance, with isospin, angular

momentum and parity, IðJPÞ ¼ 1
2 ð12þÞ, l is 1 for πN and

πΔ, while it is 0 for σN. The regulating form factor, uαðkÞ,
takes the exponential form uαðkÞ ¼ exp ð−k2=Λ2

αÞ, where
Λα is the regularization scale. For the five direct two-to-two
particle interactions we introduce separable potentials

VS
α;βðk; k0Þ ¼ gSα;β

ḠαðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ωα1ðkÞ

p
Ḡβðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωβ1ðk0Þ

p ; ð6Þ

where ḠαðkÞ ¼ Gα;B0
ðkÞ=gB0α. The T-matrices for

two-particle scattering are obtained by solving a three-
dimensional reduction of the coupled-channel Bethe-
Salpeter equations for each partial wave

tα;βðk; k0;EÞ ¼ Vα;βðk; k0;EÞ þ
X

γ

Z
q2dqVα;γðk; q;EÞ

×
1

E − ωγ1ðqÞ − ωγ2ðqÞ þ iϵ
tγ;βðq; k0;EÞ:

ð7Þ
The coupled-channel potential is readily calculated from the
interaction Hamiltonian

Vα;βðk; k0Þ ¼
X

B0

G†
α;B0

ðkÞGβ;B0
ðk0Þ

E −m0
B

þ VS
α;βðk; k0Þ; ð8Þ

with the normalization hαðk⃗Þjβðk⃗0Þi ¼ δα;βδðk⃗ − k⃗0Þ. The
pole position of any bound state or resonance is obtained
by searching for the poles of the T-matrix in the com-
plex plane.
In order to compare the predictions of this infinite-

volume model with the results of lattice QCD simula-
tions, it is necessary to rewrite the problem on a finite
volume. The details of this procedure are described in
Refs. [25,26,31,34–36]. By solving for the eigenstates of
the HEFT one obtains energy levels and eigenstates which
can be compared with the energies and interpolating fields
in the lattice QCD simulations.
We can also extend the formalism to unphysical pion

masses. Using m2
π as a measure of the light quark masses,

we consider the variation of the bare mass and σ-meson
mass as

m0
Bðm2

πÞ ¼ m0
Bjphy þ α0Bðm2

π −m2
πjphyÞ; ð9Þ

m2
σðm2

πÞ ¼ m2
σjphy þ α0σðm2

π −m2
πjphyÞ; ð10Þ

where the slope parameter α0B is constrained by lattice QCD
data from the CSSM. In the large quark mass regime, where
constituent quark degrees of freedom become relevant, one
expects [37] α0σ ¼ ð2=3Þα0N . The nucleon and Delta masses
away from the physical point are obtained via linear
interpolation between the lattice QCD results.
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The incorporation of couplings between the three scat-
tering channels requires 6 parameters and coupling of these
channels to a bare basis state requires another three.
Regularization admits four fit parameters. This description
is typical of contemporary analyses of resonance phenom-
ena [38–40] and ensures accuracy in connecting experi-
ment to the finite-volume spectrum.

III. EXPERIMENTAL DATA ANALYSIS

By fitting the experimental data for πN scattering from
1200 to 1800 MeV, we found two different parameter sets
which appear equally acceptable in describing existing
data. The phase shifts and inelasticities for the πN → πN
channel are shown for these two scenarios in Fig. 1. The
parameter sets are described in Table I. The χ2 for
scenarios I and II are 241 and 135 respectively. The larger
χ2 for scenario I has its origin in just 6 points at the opening
of the πΔ channel and can be attributed to the zero-width
approximation for the Δ. In the context of the benchmark
result [41] of χ2 ¼ 236, both fits may be regarded as an
acceptable characterization of the experimental data.
In scenario I, the coupling of πN → πN is enhanced

while the coupling of the bare state to πN and σN is
suppressed relative to scenario II. This presents two differ-
ent pictures of the Roper. In scenario I, the Roper is a
resonance generated by strong rescattering in the meson-
baryon channels. In scenario II the rescattering is weaker
and the observed resonance is dominated by coupling to an
underlying bare, or quark-model-like, state. It is this latter
scenario that the community has anticipated for the Roper
since the advent of the constituent quark model [2].
While both scenarios describe the present experimental

data, they make unique predictions in the coupled
channels πΔ → πΔ and σN → σN as illustrated in

Fig. 2. Measurements of these scattering amplitudes would
enable us to distinguish between the scenarios.

IV. LATTICE QCD CONSTRAINTS

In the absence of the relevant experimental data, we now
turn to the results provided by lattice QCD simulations,
focusing on the recent work of Lang et al. [44] and the
CSSM [34]. HEFT predictions in the finite volume of the
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FIG. 1. The fitted phase shift δ, inelasticity η and T-matrix for
the πN → πN reaction. Red-solid and blue-dashed lines are
calculated from scenarios I and II, respectively.

TABLE I. Fit parameters constrained by πN scattering data and
the resultant pole positions in the two scenarios described in the
text. The pole position in the different Riemann sheets is also
indicated for each channel (πN, πΔ, σN). The unphysical sheet is
denoted “u” and the physical sheet is denoted “p,” as defined in
Ref. [42,43].

Parameter I II

gSπN;πN 1.156 0.634

gSπN;πΔ −0.662 −0.378
gSπN;σN −0.415 −1.738
gSπΔ;πΔ −0.438 −0.581
gSπΔ;σN 1.332 0.964

gSσN;σN 10.000 10.000
m0

B=GeV 2.000 1.7000
gB0πN 0.268 0.954
gB0πΔ 1.544 −0.118
gB0σN � � � −2.892
ΛπN=GeV 0.5953 0.6302
ΛπΔ=GeV 1.5000 1.4318
ΛσN=GeV 1.5000 1.4533

Pole (MeV) (uuu) 2012.28–42.09i 1355.57–70.81i
Pole (MeV) (upu) 1392.92–167.13i 1362.33–100.53i
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FIG. 2. The T-matrices for πΔ → πΔ and σN → σN corre-
sponding to the two scenarios described in the text. The two cases
are encoded as in Fig. 1 where red-solid and blue-dashed lines are
calculated from scenarios I and II, respectively.
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lattice are constrained at the physical quark masses by the fit
to experimental data. To extend the predictions to other quark
masses, we introduce one new parameter, α0B of Eq. (9),
providing a linear quark-mass dependence in the bare mass.
Noting that the lattice simulation at the lightest quark mass
involves a pion mass of 156 MeV, our key results are
insensitive to this extension to larger pion masses.
Lang et al.’s work [44] is particularly interesting as it

incorporates πN and σN five-quark nonlocal interpolating
fields with the momenta of each hadron projected to
provide excellent overlap with the low-lying scattering
states of the spectrum. These results are particularly
important in discriminating between scenarios I and II.
These nonlocal interpolators are complemented by

standard local three-quark interpolating fields, which have
proved to favor localized states and miss the nonlocal
scattering states [45–50], making the lattice spectrum
incomplete. In this case there may be concern that the
lattice energy levels extracted might be systematically
contaminated from the missed levels. The CSSM
Collaboration has explored this in detail [48–50] and has
developed methods that ensure these systematic errors are
suppressed through Euclidean time evolution. Their use of
a single-state ansatz and a full covariance-matrix calcu-
lation of the χ2=d:o:f: with a conservative cutoff of
χ2=d:o:f: < 1.2 ensures that any remaining contamination
is contained within the error bars reported [50]. While the
resultant uncertainties overlap with several states in the
HEFT spectrum, we will see that it is the absence of
localized states below 1.9 GeV [50,51] that facilitates a
discrimination of scenarios I and II.
In reporting the lattice QCD results in Figs. 3 and 4 we

have used solid (open) symbols to indicate states dominated
by local (nonlocal) interpolating fields. While the operator
overlaps are unrenormalized matrix elements and therefore
scale dependent, the qualitative aspects of this information
can be used to gain insight into the composition of the
states in addition to the standard analysis of the spectrum.
Just as insight into the composition of the lattice QCD
states can be obtained from the eigenvectors of the lattice
correlation matrix used to excite the states, HEFT also
provides insight into their composition via the superposi-
tion of basis states in each eigenvector.
Bär [52] has shown that the overlap of the noninteracting

nonlocal πN channel with standard local three-quark
interpolating fields is suppressed by 3 orders of magnitude
relative to the ground state nucleon on a 3 fm lattice. Thus
the lattice QCD states that are excited by local three-quark
operators correspond to HEFT states having a significant
bare-basis-state component in their eigenvector. This infor-
mation is indicated through the color coding of the HEFT
spectra illustrated in Figs. 3 and 4 for scenarios I and II
respectively. The red, blue, green and orange lines indicate
the states having the first, second, third and fourth largest
bare-baryon basis-state contributions, respectively.

For scenario I of Fig. 3, all of the lattice states dominated
by local three-quark interpolating fields can be associated
with a colored line. Similarly, all of the Hamiltonian states
having the largest bare basis-state component, indicated in
red in Fig. 3, have a nearby lattice QCD result. We quantify
this agreement through a χ2 measure associating each three-
quark dominated (solid) lattice point with a three-quark
dominated HEFT state. Open symbols are associated with
the nearest HEFT level. For scenario I the minimum
χ2=d:o:f: ¼ 16.5=ð15–1Þ ¼ 1.18.
On the other hand, scenario II of Fig. 4 displays little

correspondence to the lattice QCD results. Scenario II
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FIG. 3. The finite volume spectrum of scenario I with a bare
mass of 2.0 GeV. The CSSM results [34] are indicated by square
symbols and circles denote the more recent results from Lang
et al. [44]. Solid symbols indicate states dominated by local three-
quark operators and open symbols indicate states dominated by
nonlocal momentum-projected five-quark operators. The colors
red, blue, green and orange are used to indicate the relative
contributions of the bare-baryon basis state in the eigenstate, with
red being the largest contribution.
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FIG. 4. The finite volume spectrum corresponding to scenario
II having a bare mass of 1.7 GeV. Results are illustrated as
described in Fig. 3.
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predicts a low-lying state with a large bare basis-state
component of approximately 50%, approaching that for
the ground state. Such a state would be easy to excite in
lattice QCD with local three-quark operators. However
this three-quark dominated state is not seen in the
simulations. For this scenario, the χ2 measure provides
χ2=d:o:f: ¼ 635.7=ð15–1Þ ¼ 45.4.
We also consider a simple χ2 measure where only the

most bare-state dominated HEFT state and the closest
three-quark-interpolator dominated lattice QCD point are
considered at each mass. In scenario I the χ2=d:o:f: ¼
5.78=ð6–1Þ ¼ 1.16, whereas in scenario II the χ2=d:o:f: ¼
338=ð6–1Þ ¼ 68.
Focusing now on the lattice QCD results from Lang et al.

[44] at near physical quark masses, we see that both the
energy levels and their composition are correctly described
in scenario I of Fig. 3. The lowest-lying lattice QCD state
appears with the introduction of their momentum-projected
σN interpolator. The second state disappears if their
momentum-projected πN interpolator is omitted [44].
This composition agrees with the composition predicted
by HEFT in scenario I reported in Fig. 5. Near the physical
mass the first eigenstate is dominated by σN basis states.
The second state is dominated by the πN channel com-
plemented by some mixing with πΔ.
While the HEFT of scenario I correctly describes the

composition of these states, scenario II describes the lattice
πN state as a three-quark dominated state with 50% of the
composition in the local three-quark state. Yet three-quark
interpolators do not see this state. This is an important
discrepancy which again excludes scenario II as an accept-
able description of the nucleon spectrum.
It is only for the seventh, eighth and ninth eigenstates of

scenario I that we find a significant bare basis-state
contribution in Fig. 5 and this is precisely where the lattice
QCD states excited by local three-quark operators reside.
The ninth state has an extremely large bare-state compo-
nent exceeding 50% and both the CSSM and Lang et al.
observe three-quark dominated lattice QCD eigenstates
within one sigma of this state, lending further credence
to scenario I as the correct description of the nucleon
spectrum.
Finally, we examine how the eigenstates evolve as the

pion mass increases. In Fig. 5 we see that in scenario I,
the bare-baryon content of the second and fourth eigen-
states increases towards the upper end of the pion-mass
range. Once again this is consistent with the lattice
simulations as this is where the CSSM finds lower mass
states in the spectrum with local three-quark operators.
Overall the Hamiltonian eigenvectors obtained within
scenario I explain the lattice spectra very well.
In contrast, the lowest-mass eigenstates of scenario II are

dominated by the bare-baryon basis state. At near-physical
quark masses, their composition is inconsistent with the
results of Lang et al. and at larger quark masses neither the

CSSM nor the Cyprus Collaboration [53] observed such
low-lying states in their 3 fm lattice results.

V. CONTEMPORARY ROLE FOR
THE QUARK MODEL

Through a consolidation of the earlier lattice QCD and
HEFT approaches to the study of the N�ð1535Þ and
Λ�ð1405Þ resonances and the study of the N�ð1440Þ reso-
nance herein, a new understanding of the nature of these
resonances and the role of the quark model is emerging.
(1) The N�ð1535Þ is dominated by a three-quark core

and dressed by a meson cloud [25]. While the role of
the meson cloud is enhanced, the structure of this
state is qualitatively similar to ground state.

(2) The Λ�ð1405Þ is predominantly a molecular K̄N
bound state [23,26]. Mixing with the πΣ channel
creates a resonance with a two-pole structure. The
excited state of the quark model lies higher at
approximately 1.6 GeV.

(3) TheN�ð1440Þ resonance is best described as the result
of strong rescattering between coupledmeson-baryon
channelswith only a small component associatedwith
a quark-model-like state. This small but nontrivial
contribution is indicated by the green curve in Fig. 3
through the second excitation reported by Lang
et al. [44]. The first radially excited nucleon of the
quark model has a mass of approximately 2 GeV.

These conclusions provide a new understanding of the
low-lying N and Λ resonances as illustrated in Fig. 6. With
regard to the simple constituent quark model, we now
understand that it predicts three levels of hadron mass with
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approximately equal spacings. It describes the ground state,
an odd-parity state the order of 500 MeVabove the ground
state and an even parity excitation approximately 1 GeV
above the ground state.
Within the context of a constituent quarkmodel, a mass of

2 GeV for the first radial excitation is natural. With the first
negative-parity excitation of the nucleon, the N⋆ð1535Þ,
approximately 500 MeVabove the nucleon, expectations—
based upon a phenomenologically successful harmonic
oscillator model—suggest that the first positive-parity
excited state should occur another 500 MeV above, at
around 2 GeV.
We now understand that the structure of the Λ�ð1405Þ

andN�ð1440Þ is more complicated and beyond the scope of
a simple model based on three constituent quarks. Through
the analyses of lattice QCD results with HEFT, the nature of
the Λ�ð1405Þ and N�ð1440Þ appears to be predominantly
meson-baryon states. In other words, these two states are
beyond the quark model and tuning quark model param-
eters to encompass these states spoils the insight to be
gained from these models. Indeed, the states predicted in
the quark model as discussed above, are observed in the
spectra of contemporary lattice QCD results.

VI. CONCLUSION

We have examined experimental pion-nucleon scattering
data in Hamiltonian effective field theory, an extension of
chiral perturbation theory that incorporates the Lüscher
relation connecting the scattering phase shifts to the
energy levels observed in finite volume lattice QCD
calculations. By considering the Hamiltonian matrix in
the finite-volume, one not only learns the energy eigen-
values corresponding to the spectrum of lattice QCD
simulations, but one also learns the eigenvectors of these
eigenstates describing the composition of the states. This
information has been key to advancing our understanding
of the structure of low-lying baryon resonances.
We developed two scenarios for describing the Roper

resonance in the pion-nucleon scattering process. Scenario I
describes the Roper resonance as a baryon-meson scattering

state, while scenario II describes the Roper as a traditional
three-quark state. Both scenarios can fit the experimental
data very well. However, only scenario I is consistent with
lattice QCD results.
A particular focus of this investigation has been to

ascertain the possible role of a basis state in the
Hamiltonian formulation that can be associated with a
quark-model-like radial excitation of the nucleon. In con-
clusion, the quark-model-like basis state associated with the
Roper resonance lies at approximately 2 GeV. This large
mass is required in order to provide a finite-volume spectrum
consistent with lattice QCD. A lower bare-basis-state mass
leads to the prediction of quark-model-like low-lying states
dominated by a bare-state component. The absence of such
states in the lattice QCD spectrum rules out this scenario.
The description of both the experimental scattering data

in Fig. 1 and the lattice results presented in Fig. 3 for this
scenario is excellent. All localized lattice QCD states are
associated with a HEFT spectral line whose composition
includes a large quark-model-like basis state component.
Similarly, HEFT accurately predicts the positions of the
scattering states observed in lattice QCD by Lang et al. [44]
as well as their composition.
In the preferred scenario I with a 2 GeV bare-state mass,

quark-model-like states sit high in the spectrum. In the
finite volume of the L ¼ 3 fm lattice, the bare state is
dressed to produce states commencing at ≃1.9 GeV for the
lightest pion mass of 156 MeV. Indeed, the CSSM studied
the three-quark wave function of this state and discovered it
resembles the first radial excitation of the quark model
[54,55]. In the infinite volume, this state is associated with a
pole at approximately 2 GeV.
Thus, it is now clear that there is an unconventional role

for a quark-model-like description of the Roper in describ-
ing experimental data and the lattice QCD results. The
analysis shows that one can admit such a state provided it
sits high in the spectrum at approximately 2 GeV.
Remarkably, this is where simple quark models naturally
place the radial excitation of the nucleon.
Even though there are no localized states seen on the

lattice between this energy scale of ≃1.9 GeV and the
ground state nucleon mass [50], scenario I generates an
infinite-volume pole in the Roper resonance region of the
spectrum. This pole arises from strong rescattering in
the coupled meson-baryon channels, which dominate the
underlying structure of the Roper resonance.
These conclusions reveal that the spectrum of quark-

model-like states is relatively simple, once one excludes
the more exoticΛ�ð1405Þ andN�ð1440Þ from the traditional
scope of the model. The Λ�ð1405Þ and N�ð1440Þ contain
nontrivial meson-baryon interactions with the Λ�ð1405Þ
dominated by a molecular K̄N component and the
N�ð1440Þ arising out of strong meson-baryon rescattering.
Finally, the relationship between the radial excitation of

the nucleon and the Roper resonance is now understood.

FIG. 6. The low-lying N and Λ spectra of the simple quark
model described herein are presented in the context of exper-
imental data and the results of lattice QCD plus HEFTanalyses as
described in the text.
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The quark-model-like basis state at approximately 2 GeV
makes a small but nontrivial contribution to the finite
volume state observed in the regime of the Roper resonance
by Lang et al. at ≃1.5 GeV. While this state is excited with
the momentum-projected σN interpolating field, it has a
small 2 GeV quark-model-like basis-state component in
HEFT, as indicated by the green curve in Fig. 3 through the
second excitation reported by Lang et al. [44]. This
component may become the dominant component in large
Q2 transition form factors [33] where long-distance meson-
cloud effects are highly suppressed. Still, the predominant
structure of the Roper resonance has its origin in the strong
rescattering of πN, πΔ and σN channels.
With this new insight, the mystery of the low-lying

Roper resonance may be nearing resolution. Evidence
indicates the observed nucleon resonance at 1440 MeV
is best described as the result of strong rescattering between
coupled meson-baryon channels.

In working towards a definitive analysis there is ample
scope for new data to further resolve the nature of this state.
Further development of three-body channel contributions
[56,57] in effective field theory is desired. Similarly, a more
comprehensive lattice QCD analysis of the complete
nucleon spectrum in several lattice volumes would serve
well to further expose the role of the coupled channels
giving rise to the Roper resonance.
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