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We formulate N ¼ 2� supersymmetric Yang-Mills theory on a Euclidean spacetime lattice using the
method of topological twisting. The lattice formulation preserves one scalar supersymmetry charge at finite
lattice spacing. The lattice theory is also local, gauge invariant and free from doublers. We can use the
lattice formulation of N ¼ 2� supersymmetric Yang-Mills to study finite temperature nonperturbative
sectors of the theory and thus validate the gauge-gravity duality conjecture in a nonconformal theory.
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I. INTRODUCTION

Supersymmetric quantum field theories are interesting
classes of theories by themselves. They can also be used to
construct many phenomenologically relevant models
such as the minimal supersymmetric Standard Model.
Supersymmetric quantum field theories exhibit many
interesting features when they are strongly coupled. It is
in general difficult to study analytically the strong coupling
regimes of supersymmetric quantum field theories. If we
could formulate such theories on a spacetime lattice, in a
consistent manner, we would have a first principles
definition of the theory that can be used to study their
nonperturbative sectors. Certain classes of supersymmetric
field theories can be formulated on a spacetime lattice by
preserving a subset of the supersymmetry charges. These
approaches are based on the methods of topological
twisting [1] and orbifolding [2], and they can be used to
formulate lattice theories with extended supersymmetries.
Supersymmetric lattices have been constructed for several

classes of theories in various spacetime dimensions [3–18],
including the well-known N ¼ 4 supersymmetric Yang-
Mills (SYM) theory in four spacetime dimensions [3,4,19].
In this work, we provide the lattice construction of a very

interesting theory, which is known as the four-dimensional
N ¼ 2� supersymmetric Yang-Mills theory [20]. This
nonconformal field theory is obtained by giving mass to
the hypermultiplet of four-dimensional N ¼ 4 SYM
theory. The N ¼ 2� SYM theory also takes part in the
AdS/CFT correspondence. Its gravitational dual has been
constructed by Pilch and Warner [21].

In the recent past, supersymmetric lattice constructions
have been used to test and validate the gauge-gravity
duality conjecture in various dimensions [22–30]. Those
lattice studies gave consistent results with other approaches
[31–33]. See also Refs. [34,35] for computer codes
developed for simulating SYM theories with 4 and 16
supercharges in spacetime dimensions d ≤ 4.
We use the method of topological twisting to construct

N ¼ 2� SYM on a Euclidean spacetime lattice. The
continuum twisted N ¼ 2� SYM theory is obtained by
introducing mass deformation terms to the Vafa-Witten
twisted N ¼ 4 SYM theory [36]. Once we have a twisted
version of N ¼ 2� SYM theory in the continuum, it is
straightforward to implement the theory on the lattice. We
use the discretization prescription provided by Sugino [3].
The lattice formulation preserves one supersymmetry
charge at finite lattice spacing. The lattice construction is
also local, gauge invariant and free from the problem of
fermion doublers. The mass deformation, however, intro-
duces terms in the action that are not twisted Lorentz
invariant. This is related to the fact that the R-symmetry
group of N ¼ 2� SYM theory, SUð2Þ ×Uð1Þ, is smaller
than its Euclidean Lorentz rotation symmetry group,
SOð4Þ. The presence of twisted Lorentz noninvariant terms
does not lead to any inconsistencies in the theory since the
twisted theory is still Lorentz invariant due to the fact that
twisting is just an exotic change of variables in flat
Euclidean spacetime.
One could use the lattice construction of N ¼ 2� SYM

presented here to explore the nonperturbative sectors of the
theory, including its thermodynamic properties, and com-
pare with the existing results from the dual gravitational
theory.
The paper is organized as follows. In Sec. II, we briefly

review the four-dimensional N ¼ 4 SYM in flat Euclidean
spacetime. We also review how the mass deformation of
N ¼2 hypermultiplet gives rise toN ¼2� SYM. In Sec. III,
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we review the Vafa-Witten twist of N ¼ 4 SYM, which is
relevant for the lattice formulation of the N ¼ 2� SYM.
Although there exist two more inequivalent twists of
N ¼ 4 SYM, we believe that they are not suitable for
the construction of lattice regularized N ¼ 2� SYM. After
these warm-up and review sections, we move on to
constructing the twisted version of N ¼ 2� SYM in the
continuum in Sec. IV. This is the first time such a
continuum twisted formulation of N ¼ 2� SYM is pre-
sented according to our knowledge. In Sec. V, we introduce
the lattice formulation of this theory. It is convenient to
write down the twisted theory in a form known as the
balanced topological field theory form (BTFT) before
lattice regularization. After expressing the theory in a
BTFT form, we move on to the details of the lattice
formulation. We use the lattice discretization prescription
given by Sugino. The lattice action can be expressed as a
twisted scalar supersymmetry variation of a gauge fermion.
The lattice construction is gauge invariant, local and
doubler free and preserves one supersymmetry charge at
finite lattice spacing. We end with conclusions and future
directions in Sec. VI.

II. N = 4 SYM AND MASS DEFORMATION
TO N = 2� SYM

We briefly review the N ¼ 4 SYM on flat R4. In the
language of N ¼ 1 superfields, N ¼ 4 SYM theory con-
tains one vector multiplet and three adjoint chiral multiplets.
We denote them as superfields V and Φs, with s ¼ 1, 2, 3.
The physical component fields of the superfields are

V → Aμ; λ4α; λ̄4_α;

Φs;Φ†s → ϕs; λsα;ϕ†s; λ̄s_α: ð1Þ

The theory has global symmetry group

SUð2ÞL × SUð2ÞR × SUð4Þ; ð2Þ

where SUð2ÞL × SUð2ÞR ≃ SOð4Þ is the Euclidean
Lorentz rotation group and SUð4Þ ≃ SOð6Þ denotes the
R-symmetry group.
The gauge field Aμ is a scalar under SUð4Þ. The gauginos

λsα, λ̄s_α and the six scalars ϕs, ϕ†s transform as 4 ⊕ 4̄ and 6,
respectively, under SUð4Þ internal rotation symmetry. The
scalars can be packaged into an antisymmetric and self-
conjugate tensor ϕuv with u; v ¼ 1, 2, 3, 4 representing the
indices of the fundamental representation of SUð4Þ. In this
notation, the gauginos of vector and chiral multiplets can be
combined: λuα, λ̄u_α. All fields of the theory take values in the
adjoint representation of the gauge group. Here, we take the
gauge group to be SUðNÞ. We use the anti-Hermitian basis
for the generators of the gauge group, with the normali-
zation TrðTaTbÞ ¼ −δab.

We can combine the superfield V and one of the adjoint
chiral superfields, say, Φ3 to form an N ¼ 2 vector
multiplet. The chiral superfields Φ1 and Φ2 can be
combined to form an N ¼2 hypermultiplet. The N ¼ 2�
SYM theory is a one-parameter (real) mass deformation of
N ¼ 4 SYM obtained by giving mass to the fields of the
N ¼ 2 hypermultiplet. The mass terms softly break super-
symmetry from N ¼ 4 to N ¼ 2. The N ¼ 2� SYM
theory has a fixed point in the far UV, which is the
conformal N ¼ 4 SYM theory. The mass deformation is
relevant, and it induces running in the coupling, so that the
theory becomes pure N ¼ 2 SYM in the deep IR.
On flat R4, the mass deformation takes the following

form in terms of the component fields [37,38],

Sm ¼ 1

g2

Z
d4xTrð−mλα1λ2α −mλ̄1_αλ̄

2_αþm2ϕ1ϕ
†
1þm2ϕ2ϕ

†
2

−
ffiffiffi
2

p
mϕ3½ϕ1;ϕ

†
1�−

ffiffiffi
2

p
mϕ3½ϕ2;ϕ

†
2�

−
ffiffiffi
2

p
mϕ†

3½ϕ1;ϕ
†
1�−

ffiffiffi
2

p
mϕ†

3½ϕ2;ϕ
†
2�Þ; ð3Þ

where m is the mass parameter and g is the coupling
constant of the theory. The deformation gives conventional
mass terms for two Weyl fermions and two complex scalars
and also trilinear couplings between the N ¼ 2 hyper-
multiplet scalars and the vector multiplet scalar ϕ3.
Motivated by the supergravity dual geometry of N ¼ 2�

Yang-Mills theory,1 it is convenient to write the mass
deformation in terms of relevant operators in irreducible
representations of the N ¼ 4 R-symmetry group,
SOð6Þ ≃ SUð4Þ. There are two contributions that corre-
spond to scalars in the gravitational dual.
First, there is a dimension-2 bosonic operator O2:

O2 ¼
1

3
ðϕ1ϕ

†
1 þ ϕ2ϕ

†
2 − 2ϕ3ϕ

†
3Þ: ð4Þ

This operator is an element of the 200 of SOð6Þ. It
contributes the usual positive bosonic mass terms for the
hypermultiplet scalars ϕ1 and ϕ2. But it also destabilizes
the scalar ϕ3 belonging to the vector multiplet.
The second contribution O3 is a dimension-3 fermionic

operator. It introduces mass terms for the Weyl fermions in
the hypermultiplet, in addition to trilinear scalar terms and
scalar mass terms. The operator O3 is

O3 ¼ 2ð−λα1λ2α − λ̄1_αλ̄
2_α −

ffiffiffi
2

p
ϕ3½ϕ1;ϕ

†
1� −

ffiffiffi
2

p
ϕ3½ϕ2;ϕ

†
2�

−
ffiffiffi
2

p
ϕ†
3½ϕ1;ϕ

†
1� −

ffiffiffi
2

p
ϕ†
3½ϕ2;ϕ

†
2�Þ

þ 2

3
mðϕ1ϕ

†
1 þ ϕ2ϕ

†
2 þ ϕ3ϕ

†
3Þ: ð5Þ

We also note that O3 contains the Konishi operator,
which is an SOð6Þ singlet,

1In Appendix A, we briefly review the gravitational dual of
N ¼ 2� SYM.
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OK ¼
X3
i¼1

ϕiϕ
†
i : ð6Þ

This term is crucial since it cancels the negative potential
energy for ϕ3 introduced by operator O2.
Thus, the action of the N ¼ 2� SYM can be expressed

as [38,39]

SN¼2� ¼ SN¼4 −
1

2g2

Z
d4xm2TrO2 −

1

2g2

Z
d4xmTrO3:

ð7Þ

In general, one could consider the case where the mass
parameter is unequal for the two operators. In Ref. [40], the
authors have explored the thermodynamics of the N ¼ 2�
Yang-Mills plasma for a wide range of temperatures
and for different mass deformations ðmbosonic; mfermionicÞ.
Supersymmetry is softly broken by the temperature and
unequal values of mass parameters in such cases.
We note that the N ¼ 2� SYM theory has an SUð2Þ ×

Uð1Þ R-symmetry. The symmetry breaking gives equal
masses to two of the four Weyl fermions. The SUð2Þ acts
on the two massless fermions, and theUð1Þ ≃ SOð2Þmixes
the two massive fermions. As m → 0, we recover N ¼ 4
SYM theory. When m → ∞, the massive fields decouple
from the theory, and we end up with four-dimensional
Yang-Mills with N ¼ 2 supersymmetry.

III. VAFA-WITTEN TWIST OF N = 4 SYM

In this section, we briefly review the Vafa-Witten twist
of N ¼ 4 SYM, which is crucial for the supersymmetric
lattice formulation of N ¼ 2� SYM. Since we are inter-
ested in formulating N ¼ 2� SYM on a Euclidean space-
time lattice, we begin with N ¼ 4 SYM on flat R4.
Four-dimensional N ¼ 4 SYM can be twisted in three

inequivalent ways, giving rise to (i) half-twisted theory
[41], ðiiÞ Vafa-Witten theory (gauged four-dimensional A
model) [36] and ðiiiÞ geometric Langlands twisted theory
(gauged four-dimensional B model or Marcus twisted
theory) [41,42]. When the theory is formulated on a flat
manifold or in general on a hyper-Kahler manifold, the
twisted theories coincide with the untwisted N ¼ 4 SYM
theory [36].
For the Vafa-Witten twist of N ¼ 4 SYM, the internal

symmetry group SUð4Þ is decomposed as SUð2ÞF ×
SUð2ÞI such that the twisted global symmetry group is

SUð2Þ0L × SUð2ÞR × SUð2ÞF; ð8Þ

where

SUð2Þ0L ¼ diagðSUð2ÞL × SUð2ÞIÞ; ð9Þ

and SUð2ÞF remains as a residual internal symmetry group.
The fields and supercharges of the untwisted theory are
rewritten in terms of the twisted fields.
After performing the twist, the fields of N ¼ 4 SYM

decompose in the following way [43],

Aμ → Aμ; λuα → ηi; χiμν;

λ̄u_α → ψ i
μ; ϕuv → Bμν;φij; ð10Þ

with i; j ¼ 1, 2 representing the indices of the residual
internal rotation group SUð2ÞF and φij a symmetric tensor.
The fields χiμν and Bμν are self-dual with respect to the
Euclidean Lorentz indices.
We can further split the fields with SUð2ÞF indices in the

following way:

ψ i
μ → ψμ; χμ; ηi → η; ζ;

χiμν → χμν;ψμν; φij → ðϕ; ϕ̄; CÞ: ð11Þ

The gauge field Aμ is a singlet, the fermions ðη; ζÞ,
ðψμ; χμÞ and ðχμν;ψμνÞ form doublets, and the scalars
ðϕ; ϕ̄; CÞ form a triplet under SUð2ÞF.
The theory exhibits flat directions along which the fields

ϕ; ϕ̄; C commute with each other. Such configurations are
given by diagonal matrices up to gauge transformations, in
general.
The subset of the twisted fields ðAμ;ϕ; ϕ̄; η;ψμ; χμνÞ can

be readily recognized as the twisted vector multiplet of the
four-dimensional N ¼ 2 SYM theory (Donaldson-Witten
theory) [1]. The twisted theory contains an N ¼ 2 hyper-
multiplet with the field content ðC;Bμν; ζ; χμ;ψμνÞ. We
make this hypermultiplet massive when we construct
the twisted N ¼ 2� SYM theory. A mass deformed
version of Vafa-Witten twisted theory was constructed in
Ref. [44], but this does not correspond to theN ¼ 2� SYM
theory.
The twisting procedure gives rise to the following

twisted supercharges: two scalars (Q; Q̃), two vectors
(Qμ; Q̃μ) and two self-dual tensors (Qμν; Q̃μν). All twisted
supercharges leave the twisted N ¼ 4 SYM action
invariant.
We are interested in the scalar supercharges Q

and Q̃. The twisted theory is invariant under the Cartan
subgroup of SUð2ÞF. We can define a conserved
charge in the theory. We call it the Uð1ÞR charge. In the
topological field theory language, it is known as the ghost
number.
The scalar supercharges Q and Q̃ have opposite Uð1ÞR

charges. In Table I, we provide the Uð1ÞR charges,
canonical dimensions and nature (even or odd) of the
twisted fields of the N ¼ 4 Yang Mills.
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The action of scalar supercharge Q on twisted fields has
the following form,

QAμ ¼ −ψμ; QC¼
ffiffiffi
2

p
ζ; Qψμ ¼ −2

ffiffiffi
2

p
Dμϕ;

Qζ ¼ −2½ϕ;C�; Qϕ¼ 0; Qϕ̄¼
ffiffiffi
2

p
η;

Qχμ ¼ 2Hμ; Qη¼ −2½ϕ; ϕ̄�; QHμ ¼ −
ffiffiffi
2

p
½ϕ; χμ�;

Qχμν ¼ 2Hμν; QBμν ¼
ffiffiffi
2

p
ψμν;

QHμν ¼ −
ffiffiffi
2

p
½ϕ; χμν�; Qψμν ¼ −2½ϕ;Bμν�; ð12Þ

where we have introduced two auxiliary fields, a vector
field Hμ and a self-dual tensor Hμν. We have also defined
the field strength Fμν and covariant derivative Dμ the
following way:

Fμν ≡ ½Dμ; Dν�; Dμ ≡ ∂μ þ ½Aμ; �: ð13Þ

We note that the Q supercharge satisfies the following
algebra,

Q2Aμ ¼ 2
ffiffiffi
2

p
Dμϕ; Q2X ¼ 2

ffiffiffi
2

p
½X;ϕ�; ð14Þ

for a generic field X. Q is nilpotent up to infinitesimal
gauge transformations with parameter ϕ.
The Q̃ supercharge acts on the twisted fields in the

following way:

Q̃Aμ ¼−χμ; Q̃C¼−
ffiffiffi
2

p
η;

Q̃χμ ¼ 2
ffiffiffi
2

p
Dμϕ̄; Q̃η¼−2½ϕ̄;C�;

Q̃ ϕ̄¼ 0; Q̃ψμ ¼−2Hμþ 2
ffiffiffi
2

p
DμC;

Q̃ϕ¼
ffiffiffi
2

p
ζ; Q̃Hμ ¼−

ffiffiffi
2

p
½ϕ̄;ψμ�−

ffiffiffi
2

p
½χμ;C�− 2Dμη;

Q̃ζ¼ 2½ϕ̄;ϕ�; Q̃Bμν ¼−
ffiffiffi
2

p
χμν;

Q̃ψμν ¼ 2Hμνþ 2½C;Bμν�; Q̃χμν ¼−2½ϕ̄;Bμν�;
Q̃Hμν ¼

ffiffiffi
2

p
½ϕ̄;ψμν� þ

ffiffiffi
2

p
½η;Bμν� þ

ffiffiffi
2

p
½C;χμν�: ð15Þ

The Q̃ supercharge satisfies the following algebra,

Q̃2Aμ ¼ −2
ffiffiffi
2

p
Dμϕ̄; Q̃2X ¼ −2

ffiffiffi
2

p
½X; ϕ̄�; ð16Þ

for a generic field X. Q̃ is nilpotent up to infinitesimal
gauge transformations with parameter ϕ̄.
We can obtain the twisted action of the N ¼ 4 SYM

theory through successive variations of Q and Q̃ on a
functional F known as the action potential [37,43]. We
have the twisted action

SN¼4 ¼ QQ̃
1

g2

Z
d4xF ; ð17Þ

where

F ¼ Tr

�
−

1

2
ffiffiffi
2

p BμνFμν −
1

24
ffiffiffi
2

p Bμν½Bμρ; Bνρ�

−
1

8
χμνψμν −

1

8
ψμχμ −

1

8
ηζ

�
: ð18Þ

The Vafa-Witten twisted action can be written as the Q
variation of a gauge fermion Ψ (which in turn is the Q̃
variation of F )

SN¼4 ¼ Q
1

g2

Z
d4xΨ; ð19Þ

with Ψ taking the form

Ψ¼ Tr

�
χμν

�
1

2
Fμν þ

1

4
Hμν þ

1

8
½Bμρ;Bνρ� þ

1

4
½C;Bμν�

�

þ 1

2
ffiffiffi
2

p ψμðDμϕ̄Þ−
1

4
η½ϕ; ϕ̄�− 1

4
ζ½C; ϕ̄�− 1

4
ψμν½Bμν; ϕ̄�

þ χμ

�
1

4
Hμ −

1

2
ffiffiffi
2

p ðDμCÞ−
1

2
ffiffiffi
2

p ðDνBνμÞ
��

: ð20Þ

ApplyingQ variation on the gauge fermion, Eq. (20), we
obtain the twisted N ¼ 4 SYM action

TABLE I. TheUð1ÞR charges, canonical dimensions and nature
(even or odd) of the twisted fields of the N ¼ 4 SYM theory.

Field Uð1ÞR charge Dimension Nature

Aμ 0 1 Even
ϕ 2 1 Even
ϕ̄ −2 1 Even
C 0 1 Even
Bμν 0 1 Even
Hμ 0 2 Even
Hμν 0 2 Even
η −1 3=2 Odd
ζ 1 3=2 Odd
ψμ 1 3=2 Odd
χμ −1 3=2 Odd
χμν −1 3=2 Odd
ψμν 1 3=2 Odd
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SN¼4 ¼
1

g2

Z
d4xTr

�
Hμν

�
Fμνþ

1

2
Hμνþ

1

4
½Bμρ;Bνρ� þ

1

2
½C;Bμν�

�
− ðDμϕÞðDμϕ̄Þþ

1

2
½ϕ; ϕ̄�2− 1

2
½ϕ̄;C�½ϕ;C�

−
1

2
½ϕ;Bμν�½ϕ̄;Bμν� þHμ

�
1

2
Hμ−

1ffiffiffi
2

p ðDμCÞ−
1ffiffiffi
2

p ðDνBνμÞ
�
þ 1

2
χμνðDμψνÞþ

1

2
ψμνðDμχνÞ−

1

2
ψμðDμηÞþ

1

2
χμðDμζÞ

þ 1

2
ffiffiffi
2

p η½ϕ;η� þ 1

2
ffiffiffi
2

p χμ½ϕ;χμ� þ
1

2
ffiffiffi
2

p χμν½ϕ;χμν�−
1

2
ffiffiffi
2

p ζ½ϕ̄;ζ�− 1

2
ffiffiffi
2

p ψμ½ϕ̄;ψμ�−
1

2
ffiffiffi
2

p ψμν½ϕ̄;ψμν�

−
1

2
ffiffiffi
2

p η½ζ;C�− 1

2
ffiffiffi
2

p χμ½ψμ;C� þ
1

2
ffiffiffi
2

p χμν½ψμν;C�−
1

2
ffiffiffi
2

p ψμ½χν;Bμν�−
1

2
ffiffiffi
2

p χμν½ψμρ;Bνρ�

−
1

2
ffiffiffi
2

p χμν½ζ;Bμν�−
1

2
ffiffiffi
2

p ψμν½η;Bμν�
�
: ð21Þ

The twisted action given above has net Uð1ÞR charge
zero.

IV. N = 2� SYM USING TWISTED FIELDS

After reviewing the existing literature on Vafa-Witten
twisted N ¼ 4 SYM, we are at a point to write down the
twisted action of N ¼ 2� SYM. Once we know the
transformations from the untwisted fields to twisted fields,
it is straightforward to write down the action of theN ¼ 2�
SYM theory in the twisted language. The N ¼ 2� SYM
theory is obtained by giving masses to the N ¼ 2 hyper-
multiplet fields ðC;Bμν; ζ; χμ;ψμνÞ.
We can rewrite the mass terms given in Eq. (3) using the

twisted fields. In the bosonic sector, the components of the

untwisted fields are related to that of the twisted fields the
following way [37,43] [note that we use the anti-Hermitian
basis for SUðNÞ generators]:

ϕ1 ¼
1ffiffiffi
2

p ðB13 þ iCÞ; ϕ†
1 ¼

1ffiffiffi
2

p ð−B13 þ iCÞ;

ϕ2 ¼
1ffiffiffi
2

p ðB12 þ iB23Þ; ϕ†
2 ¼

1ffiffiffi
2

p ð−B12 þ iB23Þ;

ϕ3 ¼ −
1ffiffiffi
2

p ϕ̄; ϕ†
3 ¼ −

1ffiffiffi
2

p ϕ: ð22Þ

Substituting the twisted field variables, we obtain the
bosonic mass terms and the trilinear coupling terms

m2ϕ1ϕ
†
1 þm2ϕ2ϕ

†
2 ¼ −

1

2
m2B2

μν −
1

2
m2C2;

−
ffiffiffi
2

p
mϕ3½ϕ1;ϕ

†
1� −

ffiffiffi
2

p
mϕ3½ϕ2;ϕ

†
2� ¼ −

1

2
mϕ̄½Bμν; Bμν� −

1

2
mϕ̄½C;C� þ imϕ̄ð½B12; B23� þ ½B13; C�Þ;

−
ffiffiffi
2

p
mϕ†

3½ϕ1;ϕ
†
1� −

ffiffiffi
2

p
mϕ†

3½ϕ2;ϕ
†
2� ¼ −

1

2
mϕ½Bμν; Bμν� −

1

2
mϕ½C;C� þ imϕð½B12; B23� þ ½B13; C�Þ: ð23Þ

In the fermionic sector, we have the following relations
between the twisted and untwisted field variables [37,43]
(we use the conventions given in Ref. [45] for Euclidean
spinors):

λ11 ¼ ψ12 þ
i

2
ffiffiffi
2

p ψ23; λ21 ¼ ψ12 −
i

2
ffiffiffi
2

p ψ23;

λ21 ¼ ψ13 þ
i

2
ffiffiffi
2

p ζ; λ22 ¼ ψ13 −
i

2
ffiffiffi
2

p ζ;

λ̄ _α1 ¼ χ2_α; λ̄2_α ¼ −
1

2
ffiffiffi
2

p χ1_α: ð24Þ

From the above relations, we can write down the
fermionic mass terms in the language of twisted fields.
(In Appendix B, we derive the fermion mass terms in
twisted form.)

The mass terms take the form

−mTrλα1λ2α ¼
imffiffiffi
2

p Trðψ12ψ23 þ ψ13ζÞ; ð25Þ

−mTrðλ̄1_αλ̄2_αÞ ¼ −
imffiffiffi
2

p Trðχ1χ2 − χ3χ4Þ: ð26Þ

Having expressed the mass deformation terms using
twisted variables, it is now straightforward to write down
the twisted action of the N ¼ 2� SYM. We have

SN¼2� ¼ SN¼4 þ Sm; ð27Þ

where SN¼4 is given in Eq. (21) and Sm has the form
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Sm¼
1

g2

Z
d4xTr

�
−
1

2
m2B2

μν−
1

2
m2C2

−
1

2
mϕð½Bμν;Bμν�þ½C;C�Þ−1

2
mϕ̄ð½Bμν;Bμν�þ½C;C�Þ

þimϕð½B12;B23�þ½B13;C�Þþimϕ̄ð½B12;B23�þ½B13;C�Þ

þ imffiffiffi
2

p ðψ12ψ23þψ13ζÞ−
imffiffiffi
2

p ðχ1χ2−χ3χ4Þ
�
: ð28Þ

We note that the above form of the twistedN ¼ 2� SYM
action exhibits the following interesting properties:
(1) There are terms in Sm with nonzero Uð1ÞR charges.

We note that Sm contains terms with Uð1ÞR charge
−2, 0 and þ2, while the N ¼ 4 SYM part of the
action contains only terms with Uð1ÞR charge 0.

(2) There exist mass terms that are not invariant under
twisted Lorentz symmetry. We note that there are
terms in Sm that contain uncontracted twisted
Lorentz indices. The presence of such terms is
expected from the fact that the mass deformation
of N ¼ 4 SYM breaks R-symmetry from SUð4Þ to
SUð2Þ ×Uð1Þ. However, we note that the presence
of twisted Lorentz symmetry breaking terms does
not lead to any inconsistencies in the formulation.
The theory is still Lorentz invariant. A consequence
of twisted Lorentz symmetry breaking would be the
appearance of additional counterterms in the lattice
version of the theory.

It would be interesting to ask if we could write down the
twisted action of N ¼ 2� SYM in a Q-exact form, with an
appropriate gauge fermion. In order to achieve this, we
need to modify the Q and Q̃ transformations on the twisted
fields. Let us define QðmÞ, Q̃ðmÞ and ΨðmÞ as the modified
scalar supercharges and gauge fermion, respectively.
The action of Q̃ðmÞ on twisted fields is the same as

Eq. (15) except for the fields η, Hμ and χμν. We have

Q̃ðmÞη ¼ −2½ϕ̄; C� þ 2mC;

Q̃ðmÞHμ ¼ −
ffiffiffi
2

p
½ϕ̄;ψμ� −

ffiffiffi
2

p
½χμ; C� − 2Dμηþ

ffiffiffi
2

p
mψμ;

Q̃ðmÞχμν ¼ −2½ϕ̄; Bμν� − 2mBμν: ð29Þ
We can show that the Q̃ðmÞ transformations respect the

following modified algebra,

ðQ̃ðmÞÞ2Aμ ¼ −2
ffiffiffi
2

p
Dμϕ̄;

ðQ̃ðmÞÞ2X ¼ −2
ffiffiffi
2

p
½X; ϕ̄� − 2

ffiffiffi
2

p
mαX; ð30Þ

for a generic field X; with α¼1 for the fields ðη;ψμ; C;HμÞ,
α ¼ −1 for the fields ðχμν; BμνÞ, and α ¼ 0 for the rest of
the fields.
The QðmÞ transformations on the twisted fields are the

same as the ones given in Eq. (12) except for the fields ζ,
Hμ and ψμν. The transformations on these fields are
modified in the following way:

QðmÞζ ¼ −2½ϕ; C� þ 2mC;

QðmÞHμ ¼ −
ffiffiffi
2

p
½ϕ; χμ� þ

ffiffiffi
2

p
mχμ;

QðmÞψμν ¼ −2½ϕ; Bμν� þ 2mBμν: ð31Þ

We can show that the QðmÞ supercharge satisfies the
following algebra,

ðQðmÞÞ2Aμ ¼ 2
ffiffiffi
2

p
Dμϕ;

ðQðmÞÞ2X ¼ 2
ffiffiffi
2

p
½X;ϕ� þ 2

ffiffiffi
2

p
mαX; ð32Þ

for a generic field X, with α ¼ 1 for the fields ζ; χμ;
ψμν; C;Hμ; Bμν and α ¼ 0 for the rest of the fields.
It would be interesting to see if the deformation part of

the algebra represents rotation by an R-symmetry gener-
ator. Similar topics were considered in Ref. [46] by Hanada
et al., and they were extended to various cases by Kato
et al. in Ref. [44]. It would be interesting to find the
structure of the mass deformed supersymmetry algebra
shown above.
In order to derive the twisted Lorentz noninvariant part of

the N ¼ 2� SYM action, let us consider linear combina-
tions of the massive fields. The QðmÞ transformations give

QðmÞðχ1þ iχ2Þ¼ 2ðH1þ iH2Þ;
QðmÞðχ3þ iχ4Þ¼ 2ðH3þ iH4Þ;

QðmÞðH1þ iH2Þ¼−
ffiffiffi
2

p
½ϕ;ðχ1þ iχ2Þ�þ

ffiffiffi
2

p
mðχ1þ iχ2Þ;

QðmÞðH3þ iH4Þ¼−
ffiffiffi
2

p
½ϕ;ðχ3þ iχ4Þ�þ

ffiffiffi
2

p
mðχ3þ iχ4Þ;

QðmÞðB12þ iB23Þ¼
ffiffiffi
2

p
ðψ12þ iψ23Þ;

QðmÞðB13þ iCÞ¼
ffiffiffi
2

p
ðψ13þ iζÞ;

QðmÞðψ12þ iψ23Þ¼−2½ϕ;ðB12þ iB23Þ�þ2mðB12þ iB23Þ;
QðmÞðψ13þ iζÞ¼−2½ϕ;ðB13þ iCÞ�þ2mðB13þ iCÞ:

ð33Þ

We can now obtain the N ¼ 2� SYM action as a QðmÞ
variation of the following modified gauge fermion,

ΨðmÞ ¼ Tr

�
χμν

�
1

2
Fμν −

1

4
Hμν −

1

8
½Bμρ; Bνρ� −

1

4
½C;Bμν�

�

þ 1

2
ffiffiffi
2

p ψμðDμϕ̄Þ −
1

4
η½ϕ; ϕ̄� þ ðV þW þ YÞ

−
1

4
ζ½C; ϕ̄� − 1

4
ψμν½Bμν; ϕ̄� þ T

þ χμ

�
−

1

2
ffiffiffi
2

p ðDμCÞ −
1

2
ffiffiffi
2

p ðDνBνμÞ
��

; ð34Þ

where
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V ¼ −
1

4
mððψ12 − iψ23ÞðB12 þ iB23Þ

þ ðψ13 − iζÞðB13 þ iCÞÞ; ð35Þ

W ¼ i
4
ð−ψ12½ϕ̄; B23� þ ψ23½ϕ̄; B12� þ η½B12; B23�Þ; ð36Þ

Y ¼ i
4
ð−ψ13½ϕ̄; C� þ ζ½ϕ̄; B13� þ η½B13; C�Þ; ð37Þ

T ¼ 1

4
ððχ1 − iχ2ÞðH1 þ iH2Þ þ ðχ3 þ iχ4ÞðH3 − iH4ÞÞ:

ð38Þ

We derive theQðmÞ transformations of the gauge fermion
components V, W, Y and T in Appendix C. We also note
that the terms W, Y and T contain the rotated fields that
give appropriate twisted Lorentz noninvariant mass terms
of the theory.
It is straightforward to show that QðmÞ variation of ΨðmÞ

will produce the twisted action of N ¼ 2� SYM given in
Eq. (27). Thus, we have

SN¼2� ¼
1

g2

Z
d4xQðmÞΨðmÞ: ð39Þ

We note that we are unable to express the twisted action
of N ¼ 2� SYM as successive variations of QðmÞ and Q̃ðmÞ

on an action functional, say, F ðmÞ. This could be due to the
fact that we are interested in giving mass to the N ¼ 2

multiplet associated with the supercharge QðmÞ, that is, for
the multiplet with the twisted fields ðC;Bμν; ζ; χμ;ψμνÞ,
where the fermions ζ, χμ and ψμν are originally associated
with the twisted supercharges Q, Qμ and Qμν, respectively.

V. LATTICE FORMULATION

A. Balanced topological field theory form

We can rewrite the Vafa-Witten twisted N ¼ 4 SYM
theory in a form known as the balanced topological field
theory form. The existence of two scalar supercharges Q
and Q̃ would allow us to express theN ¼ 4 SYM theory in
this form. In Ref. [47], Dijkgraf and Moore wrote down the
BTFT form of the Vafa-Witten twisted theory. Sugino used
this approach to formulate four-dimensional N ¼ 4 and
N ¼ 2 SYM theories on the lattice [3].
We can define a three-component vector Φ⃗, which is a

function of the field strength. The components of this
vector take the form

ΦA ≡ 2

�
FA4 þ

1

2
ϵABCFBC

�
; ð40Þ

with A;B;C ¼ 1; 2; 3. Similarly, we introduce three-
component vector fields B⃗, H⃗, ψ⃗ and χ⃗.

The action potential takes the following form in the
BTFT notation:

F ¼
�
−

1

2
ffiffiffi
2

p BAΦA −
1

24
ffiffiffi
2

p ϵABCBA½BB; BC� −
1

8
χAψA

−
1

8
ψμχμ −

1

8
ηζ

�
: ð41Þ

It is straightforward to write down the Q̃ðmÞ and QðmÞ
transformations on the twisted fields in BTFT form. In
particular, the QðmÞ transformations take the form

QðmÞAμ ¼ −ψμ; QðmÞψμ ¼ −2
ffiffiffi
2

p
Dμϕ;

QðmÞϕ ¼ 0; QðmÞϕ̄ ¼
ffiffiffi
2

p
η; QðmÞη ¼ −2½ϕ; ϕ̄�;

QðmÞC ¼
ffiffiffi
2

p
ζ; QðmÞζ ¼ −2½ϕ; C� þ 2mC;

QðmÞχμ ¼ 2Hμ; QðmÞHμ ¼ −
ffiffiffi
2

p
½ϕ; χμ� þ

ffiffiffi
2

p
mχμ;

QðmÞBA ¼
ffiffiffi
2

p
ψA; QðmÞψA ¼ −2½ϕ; BA� þ 2mBA;

QðmÞχA ¼ 2HA; QðmÞHA ¼ −
ffiffiffi
2

p
½ϕ; χA�: ð42Þ

The gauge fermion has the following BTFT form,

ΨðmÞ
BTFT ¼ Tr

�
χA

�
1

2
FA −

1

4
HA −

1

8
ϵABC½BB; BC� −

1

4
½C;BA�

�

þ 1

2
ffiffiffi
2

p ψμðDμϕ̄Þ −
1

4
η½ϕ; ϕ̄� þ ðV þW þ YÞ

−
1

4
ζ½C; ϕ̄� − 1

4
ψA½BA; ϕ̄� þ T

−
1

2
ffiffiffi
2

p χμðDμCÞ þ
1

2
ffiffiffi
2

p BAðDχÞA
�
; ð43Þ

where

V ¼ −
1

4
mððψ3 − iψ1ÞðB3 þ iB1Þ þ ðψ2 − iζÞðB2 þ iCÞÞ;

ð44Þ

W ¼ i
4
ð−ψ3½ϕ̄; B1� þ ψ1½ϕ̄; B3� þ η½B3; B1�Þ; ð45Þ

Y ¼ i
4
ð−ψ2½ϕ̄; C� þ ζ½ϕ̄; B2� þ η½B2; C�Þ; ð46Þ

T ¼ 1

4
ððχ1 − iχ2ÞðH1 þ iH2Þ þ ðχ3 þ iχ4ÞðH3 − iH4ÞÞ;

ð47Þ
and

ðDχÞA ≡ 2

�
DA χA þ

1

2
ϵABCDB χC

�
: ð48Þ

The action of twistedN ¼ 2� SYM can again be written
as a QðmÞ variation of gauge fermion expressed in BTFT
form:
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SN¼2� ¼
1

g2

Z
d4xTrQðmÞΨðmÞ

BTFT: ð49Þ

B. Lattice regularized theory

We formulate the theory on a four-dimensional hyper-
cubic lattice by distributing the degrees of freedom of the
theory appropriately on the unit cell of the lattice. It is
important that the resulting lattice theory is gauge invariant
as we map the continuum fields to corresponding lattice
fields. We need to choose an appropriate discretization
procedure. We closely follow the discretization prescription
given by Sugino in Ref. [3]. There exists another discre-
tization prescription, known as the geometric discretization.
However, it is not appropriate for the theory we have, since
the lattice theory would contain terms that are not gauge
invariant if we use the geometric discretization scheme.
This is also the reason we did not choose the B-model twist
for constructing twisted N ¼ 2� SYM. It is impossible to
construct gauge invariant mass terms of twisted N ¼ 2�
SYM on the lattice using the geometric discretization
prescription.
We begin by promoting the gauge fields Aμ to compact

unitary variables on the lattice,

UμðnÞ≡Uðn;nþ μÞ ¼ eAμðnÞ; ð50Þ

U†
μðn − μÞ≡Uðn;n − μÞ ¼ e−AμðnÞ; ð51Þ

living on the oriented links connecting from site n to site
nþ μ and form site n to site n − μ, respectively. All other
field variables are distributed on the sites under this
discretization prescription.
Upon using the language of the BTFT form, we have the

QðmÞ transformations on the lattice, which are almost the
same as their continuum cousins

QðmÞUμðnÞ ¼ −ψμUμðnÞ;
QðmÞψμðnÞ ¼ ψμðnÞψμðnÞ − 2

ffiffiffi
2

p
DðþÞ

μ ϕðnÞ;
QðmÞϕðnÞ ¼ 0; QðmÞϕ̄ðnÞ ¼

ffiffiffi
2

p
ηðnÞ;

QðmÞηðnÞ ¼ −2½ϕðnÞ; ϕ̄ðnÞ�; QðmÞCðnÞ ¼
ffiffiffi
2

p
ζðnÞ;

QðmÞζðnÞ ¼ −2½ϕðnÞ; CðnÞ� þ 2mCðnÞ;
QðmÞχμðnÞ ¼ 2HμðnÞ;
QðmÞHμðnÞ ¼ −

ffiffiffi
2

p
½ϕðnÞ; χμðnÞ� þ

ffiffiffi
2

p
mχμðnÞ;

QðmÞBAðnÞ ¼
ffiffiffi
2

p
ψAðnÞ;

QðmÞψAðnÞ ¼ −2½ϕðnÞ; BAðnÞ� þ 2mBAðnÞ;
QðmÞχAðnÞ ¼ 2HAðnÞ;
QðmÞHAðnÞ ¼ −

ffiffiffi
2

p
½ϕðnÞ; χAðnÞ�: ð52Þ

These transformations were originally proposed by
Sugino in Ref. [3] while formulating the N ¼ 4 and
N ¼ 2 SYM theories on the lattice.
In the above transformations, DðþÞ

μ is the forward
covariant difference operator

DðþÞ
μ fðnÞ ¼ UμðnÞfðnþ μÞU†

μðnÞ − fðnÞ; ð53Þ

and Dð−Þ
μ represents the backward difference operator

Dð−Þ
μ gμðnÞ¼ gμðnÞ−U†

μðn−μÞgμðn−μÞUμðn−μÞ: ð54Þ

The QðmÞ transformations reduce to their continuum
counterparts in the limit of vanishing lattice spacing. The
term quadratic in ψμ is suppressed by additional power of
the lattice spacing. ðQðmÞÞ2 on the lattice obeys a relation
similar to the one given in the continuum.
Oncewe have theQðmÞ transformation rule closed among

lattice variables, it is almost straightforward to construct the
lattice action.
The functional ΦA takes the following form on the

lattice [3]:

ΦAðnÞ ¼ −
�
UA4ðnÞ − U4AðnÞ

þ 1

2

X3
B;C¼1

ϵABCðUBCðnÞ −UCBðnÞÞ
�
: ð55Þ

The plaquette variables UμνðxÞ are defined as

UμνðnÞ≡UμðnÞUνðnþ μÞUμðnþ νÞ†UνðnÞ†: ð56Þ

We can integrate out the auxiliary field H⃗ðnÞ so that the
Φ⃗ðnÞ2 term gives the gauge kinetic term on the lattice,

1

2g20

X
n

X
μ<ν

Tr½−ðUμνðnÞ −UνμðnÞÞ2�: ð57Þ

We note that there are also additional terms appearing in
Φ⃗ðnÞ2 as cross terms. They become topological (total
derivative) terms in the continuum limit; however, we
should keep them at the lattice level. The gauge terms in
the continuum are ðFμν þ F̃μνÞ2 rather than conventional
F2
μν. The vacua in the continuum theory are instanton

solutions (anti-self-dual field strengths) corresponding
to ΦA ¼ 0.
We note that the above term (57) contains double

winding plaquette terms. On the other hand, the standard
Wilson action has the form
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1

2g20

X
n

X
μ<ν

Tr½2 −UμνðnÞ −UνμðnÞ�; ð58Þ

which has a unique minimum Uμν ¼ I.
The action obtained through discretizing the twisted

theory this way has many classical vacua

Uμν ¼ diagð�1;…;�1Þ; ð59Þ
up to gauge transformations, where any combinations of
�1, with −1 appearing even times, are allowed in the
diagonal entries.
We also note that in the case of G ¼ SUðNÞ, in addition

to Eq. (59), there also appear the center elements

Uμν ¼ zkIN ¼ expð2πik=NÞdiagð1; 1;…; 1Þ
ðk ¼ 1; 2;…; N − 1Þ ð60Þ

as the minima.
The existence of many classical vacua has some serious

consequences. Since the diagonal entries can be taken freely
for each plaquette, it results in a huge degeneracy of vacua
with the number growing as exponential of the number of
plaquettes. We need to add up contributions from all the
minima in order to see the dynamics of the model. In this
case, the ordinary weak field expansion around a single
vacuumUμν ¼ I cannot be justified. That is, we are unable to
say anything about the continuum limit of the lattice theory
without its nonperturbative investigations.
We could add a term proportional to the standard Wilson

action to the lattice action in order to resolve the degeneracy

ΔS ¼ ρ

2g20

X
n

X
μ<ν

Tr½2 −UμνðnÞ −UνμðnÞ�; ð61Þ

where ρ is a parameter to be tuned. This term resolves the
degeneracy with the split 4ρ=g20 [3].
We note that this breaks the supersymmetry QðmÞ, even

though it justifies the expansion around thevacuumUμν ¼ I.
On the lattice, we have a lattice version of the anti-self-

dual equations for the minima. A discussion about lattice
anti-self-dual equations is lacking in the literature. Thus,
we are not completely sure about the vacuum structure of
the theory. In particular, we note that the answer to the
following question has not been established: Is it enough to
remove the unwanted vacua in Eqs. (59) and (60) in the
four-dimensional theory? For additional degeneracy, due to
the instantons that are already in the continuum, we do not
have to remove such degeneracy on the lattice because it is
physical. If any degeneracy of ΦA ¼ 0 that has no counter-
part in the continuum other than the type of Eqs. (59) and
(60), we should care about that.
In any event, if we introduce the supersymmetry break-

ing term Eq. (61), the trivial vacuum is singled out, and we
can proceed.
We can write down the N ¼ 2� SYM action on the

lattice in the following QðmÞ-exact form,

SN¼2� ¼ βL
X
n

QðmÞΨðmÞ
L ðnÞ; ð62Þ

with βL denoting the lattice coupling, and the lattice gauge
fermion has the form

ΨðmÞ
L ðnÞ ¼ Tr

�
χAðnÞ

�
1

2
ΦAðnÞ −

1

4
HAðnÞ −

1

8
ϵABC½BBðnÞ; BCðnÞ� −

1

4
½CðnÞ; BAðnÞ�

�

þ 1

2
ffiffiffi
2

p ψμðDðþÞ
μ ϕ̄ÞðnÞ − 1

4
ηðnÞ½ϕðnÞ; ϕ̄ðnÞ� þ ðVðnÞ þWðnÞ þ YðnÞÞ

−
1

4
ζðnÞ½CðnÞ; ϕ̄ðnÞ� − 1

4
ψAðnÞ½BAðnÞ; ϕ̄ðnÞ� þ T ðnÞ

−
1

2
ffiffiffi
2

p χμðnÞðDðþÞ
μ CðnÞÞ þ 1

2
ffiffiffi
2

p BAðnÞðDχÞAðnÞ
�
; ð63Þ

where

VðnÞ ¼ −
1

4
mððψ3ðnÞ − iψ1ðnÞÞðB3ðnÞ þ iB1ðnÞÞ þ ðψ2ðnÞ − iζðnÞÞðB2ðnÞ þ iCðnÞÞÞ; ð64Þ

WðnÞ ¼ i
4
ð−ψ3ðnÞ½ϕ̄ðnÞ; B1ðnÞ� þ ψ1ðnÞ½ϕ̄ðnÞ; B3ðnÞ� þ ηðnÞ½B3ðnÞ; B1ðnÞ�Þ; ð65Þ

YðnÞ ¼ i
4
ð−ψ2ðnÞ½ϕ̄ðnÞ; CðnÞ� þ ζðnÞ½ϕ̄ðnÞ; B2ðnÞ� þ ηðnÞ½B2ðnÞ; CðnÞ�Þ; ð66Þ

T ðnÞ ¼ 1

4
ððχ1ðnÞ − iχ2ðnÞÞðH1ðnÞ þ iH2ðnÞÞ þ ðχ3ðnÞ þ iχ4ðnÞÞðH3ðnÞ − iH4ðnÞÞÞ; ð67Þ
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and

ðDχÞAðnÞ≡ 2

�
DðþÞ

A χAðnÞ þ
1

2
ϵABCD

ðþÞ
B χCðnÞ

�
: ð68Þ

It is straightforward to show that the lattice theory
constructed here has no fermion doubling problem. The
fermionic kinetic term of the theory is exactly the same as the
one considered in Ref. [3], where the case of lattice N ¼ 4
SYM was discussed. There, it was shown that the fermion
doubling problem does not occur in the latticeN ¼ 4 SYM
theory based on Sugino discretization prescription.
We note that the lattice action of N ¼ 2� SYM for-

mulated here is gauge invariant, local, doubler free and
exactly supersymmetric under one supersymmetry charge.
However, the lattice theory is not twisted Lorentz invariant.
Some of the mass terms of the theory contain twisted
Lorentz indices that are uncontracted. The reason for
twisted Lorentz symmetry breaking is the reduced
R-symmetry of the N ¼ 2� SYM compared to that of
the N ¼ 4 SYM. Although both theories are Lorentz
invariant in their untwisted forms, one of them become
twisted Lorentz noninvariant. We note that this does not
lead to any inconsistency in the lattice formulation of
N ¼ 2� SYM. The lattice theory is still Lorentz invariant.
The continuum twisted theory is obtained by an exotic
change of variables of the original Lorentz invariant theory.
However, there are consequences for having twisted
Lorentz symmetry breaking terms in the lattice theory. It
will reduce the number of discrete symmetries of the lattice
theory, and this in turn increase the number of unwanted
operators that are allowed on the lattice. A careful listing of
such operators and appropriate fine-tuning are needed
before simulating the theory on the lattice.
We also note that it would be possible to impose the

admissibility condition [48]

jj1 − Uμνjj < ϵ ð69Þ

on each plaquette variable in order to solve the issues with
vacuum degeneracy. We note that Eq. (69) resolves the
degeneracy (59) and (60) with keeping supersymmetry
because the admissibility condition is imposed on the
gauge fermion ΨðmÞ of the QðmÞ-exact action and it does
not affect the QðmÞ-exact structure. Reference [49] dis-
cusses another method to avoid the vacuum degeneracy
while keeping supersymmetry.
Although yet more vacua appear as discussed in

Ref. [48], it is irrelevant to the discussion for the admis-
sibility condition (69).
We do not know which value should be chosen for ϵ in

Eq. (69) because we do not know the vacuum structure of
ΦA ¼ 0. The value of ϵ in the admissibility condition
should be determined so as to exclude the unphysical vacua
from Eqs. (59) and (60).

For the case that the gauge field has no topologically
nontrivial structure (zero Pontryagin index), we think that it
would be enough to remove the degeneracy (59) and (60)
even in four dimensions and Eq. (69) would be available
since the nontriviality from the lattice version of the
instantons could be irrelevant. In the numerical simulations,
it would be a good starting point to try to simulate the
lattice action with the boundary conditions of topologically
trivial gauge fields and with the use of Eq. (61) or the
supersymmetry preserving Eq. (69).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have provided a Euclidean lattice
formulation of four-dimensional N ¼ 2� SYM. The lattice
formulation is gauge invariant, local, supersymmetric under
one scalar supercharge and free from fermion doublers. We
have also provided the continuum twisted formulation of
N ¼ 2� SYM starting from the Vafa-Witten twist of the
N ¼ 4 SYM theory. According to our knowledge, this is
the first time such a continuum twisted formulation of
N ¼ 2� SYM is presented. The lattice theory is obtained
by transporting the twisted N ¼ 2� SYM theory on to the
lattice. The gauge field is placed on an oriented link, and all
other fields are placed on the sites of the hypercubic unit
cell. The covariant derivative operators are mapped to
covariant difference operators on the lattice. The advantage
of twisting is that we can preserve a part of the supersym-
metry algebra, involving one of the scalar supercharges that
results from twisting, on the lattice.
We note that the lattice theory constructed here contains

terms that are not twisted Lorentz invariant. We emphasize
that this does not lead to any inconsistencies in the
formulation. The twisted theory is still Euclidean Lorentz
invariant since twisting is an exotic change of variables and
the original untwisted N ¼ 2� SYM is Lorentz invariant.
The presence of twisted Lorentz noninvariant terms is
due to the reduced R-symmetry in the theory, which is
SUð2Þ × Uð1Þ. There will be more counterterms generated
on the lattice due to less symmetry, and one has to count the
number of such terms and fine tune them before embarking
on lattice simulations. A careful analysis about the amount
of symmetries present in the lattice theory is still needed. The
theory is invariant under eight supercharges in the con-
tinuum, and on the lattice, it is invariant under only one
supercharge. A careful study is needed to see how these
broken supercharges emerge as the continuum limit is taken.
We save these investigations for future work. One should
also check that the theory does not suffer from the sign
problem.
At present, there exist computer codes that can simulate

four-dimensional N ¼ 4 SYM. However, this code is
based on the B-model (geometric Langlands) twist of
N ¼ 4 SYM and employs geometric discretization, in
which fermions live on sites and oriented links of the unit
cell of the lattice. The work presented here utilizes the
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A-model twist of N ¼ 4 SYM, and the discretization
prescription is the one given by Sugino. According to our
knowledge, a computer code forN ¼ 4 lattice SYM based
on Sugino lattice action does not exist. However, there exist
computer codes in one and two dimensions that can simulate
maximally supersymmetric Yang-Mills based on the Sugino
lattice prescription. See Refs. [25,50–52] for some interest-
ing physics results produced based on this code.
The nonperturbative construction of four-dimensional

N ¼ 2� SYM discussed here can be used to simulate the
theory at any finite value of the gauge coupling, mass
parameter and number of colors. It would be interesting to
simulate the lattice N ¼ 2� SYM theory and study the
observables related to the AdS=CFT correspondence.
We note that there are many aspects of N ¼ 2� SYM

which would be interesting to study on the lattice. In
Ref. [39], it was discussed that the N → ∞ theory, which
has a holographic dual, evidently has no thermal phase
transition at any nonzero temperature. But for finite values
of N, there should be a distinct low temperature phase.
Seeing evidence of this from lattice gauge theory simu-
lations and gaining information about the N dependence of
the transition would be interesting.
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APPENDIX A: GRAVITATIONAL DUAL
OF N = 2� SYM

In this section, we give a brief review of the gravitational
dual ofN ¼ 2� SYM theory, at zero and finite temperatures.

1. Zero temperature

The holographic dual of N ¼ 2� SYM theory at zero
temperature was constructed by Pilch and Warner [21]. The
dual geometry is a warped product of a deformed AdS5 and
a deformed 5-sphere. The deformed 5-sphere is foliated by
elongated 3-spheres, the SUð2Þ × Uð1Þ isometry of which
realizes geometrically the R-symmetry of the dual N ¼ 2�
SYM theory. The “uplift” of the five-dimensional super-
gravity to ten dimensions was also successfully con-
structed by Pilch and Warner. In the full ten-dimensional
type IIB supergravity, the two scalars are Kaluza-Klein
modes, which deform the AdS5 × S5 geometry dual to the
N ¼ 4 SYM theory. We can consider the dual theory as
Einstein gravity coupled to two real supergravity scalars,

which we denote as α and χ, in five dimensions. The
holographic dual ofN ¼ 2� SYM theory was well explored
in Refs. [21,53–55].
We can also interpret the above-mentioned gravitational

background as a dual description of N ¼ 4 SYM theory
perturbed by two relevant operators: a bosonic operator O2

and a fermionioc operator O3. The supergravity scalars can
be interpreted as bosonic and fermionic deformations of the
D3-brane geometry. According to the general framework of
holographic renormalization group flows [56,57], the
asymptotic boundary behavior of scalars α and χ contains
information about the couplings and expectation values of
the dual operatorsO2 andO3 in the boundary gauge theory.
The appropriate terms in the five-dimensional supergrav-

ity action, including the scalars α and χ, can be written as

I5 ¼
1

4πG5

Z
M5

dξ5
ffiffiffiffiffiffi
−g

p �
1

4
R − Lmatter

�
; ðA1Þ

where the matter Lagrangian is

Lmatter ¼ −3ð∂αÞ2 − ð∂χÞ2 − P; ðA2Þ

with the potential

P ¼ ĝ2
�
1

16

�
1

3

�∂W
∂α

�
2

þ
�∂W
∂χ

�
2
�
−
1

3
W2

�
ðA3Þ

determined by the superpotential

W ¼ −e2α −
1

2
e4α coshð2χÞ: ðA4Þ

The dimensionful gauged supergravity coupling is

ĝ2 ¼
�
2

L

�
2

; ðA5Þ

where L is the radius of the 5-sphere and the 5-dimensional
Newton’s constant is

G5 ≡ G10

25volS5
¼ πL3

2N2
: ðA6Þ

From the action Eq. (A1), we have Einstein’s equations

Rμν ¼ 12∂μα∂ναþ 4∂μ χ∂ν χ þ
4

3
gμνP ðA7Þ

and the equations for the scalars

□α ¼ 1

6

∂P
∂α ; □χ ¼ 1

2

∂P
∂χ : ðA8Þ
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2. Finite temperature

The supergravity background geometry dual to finite
temperature N ¼ 2� SYM theory was constructed by
Buchel and Liu in Ref. [58]. When the temperature goes
to zero, this geometry becomes the Pilch-Warner geometry
[21]. One can construct a map between finite temperature
N ¼ 2� SYM theory parameters and the parameters of the
dual nonextremal geometry [54,58].
There are three supergravity parameters uniquely deter-

mining a nonsingular renormalization group flow in the
dual nonconformal gauge theory [40]. They are unambig-
uously related to the three physical parameters of the
N ¼ 2� SYM theory: the temperature T, the bosonic mass
mb and the fermionic mass mf. (Note that for the case of
N ¼ 2� SYM theory we have strictly m≡mb ¼ mf. It is
still possible to consider the theory with unequal mb and
mf. The resulting theory will of course break supersym-
metry further.)
In Ref. [40], the thermal Pilch-Warner flow was inves-

tigated near the boundary of the supergravity geometry.
From the asymptotic expansions near the boundary, it is
possible to identify the conformal weight-2 supergravity
scalar, defined as α≡ log ρ, as dual to turning on a mass for
the bosonic components of theN ¼ 2� hypermultiplet. The
asymptotic expansion of ρ contains parameters ρ11 and ρ10
[40], which can be interpreted as the coefficients of its non-
normalizable and normalizable modes, respectively. The
conformal weight-1 supergravity scalar χ can be identified
as dual to turning on a mass for the fermionic components
of the N ¼ 2� hypermultiplet [40].
Once the potential P and the superpotentialW are given,

it is possible to consistently truncate the finite temperature
supergravity system to a purely bosonic deformation. This
corresponds to the choice χ ¼ 0. However, it is incon-
sistent, beyond the linear approximation, to set the bosonic
deformation to zero, that is, setting α ¼ 0 while keeping a
fermionic deformation.

3. Relating supergravity and gauge
theory parameters

The relation between N ¼ 2� SYM theory and the
supergravity parameters of the thermal Pilch-Warner geom-
etry was established by Buchel et al. in Ref. [54] and later
by Buchel and Liu in Ref. [58].
Finite temperature softly breaks supersymmetry. Thus,

we could generalize the thermal N ¼ 2� SYM theory by
allowing different masses, mb and mf, for the bosonic and
fermionic components of the N ¼ 2� hypermultiplet. Note
that it is only when mb ¼ mf ≡m and T ¼ 0 that we have
N ¼ 2 supersymmetry.
Turning on the bosonic and fermionic masses for the

components of the N ¼ 2 hypermultiplet sets a strong
coupling scale Λ in the theory. In this case, we could expect
two qualitatively different thermal phases of the gauge

theory. It depends on whether T ≫ Λ or T ≪ Λ. When
T ≫ Λ, we expect the thermodynamics to be qualitatively
(and quantitatively when T=Λ → ∞) similar to that of the
N ¼ 4 SYM theory plasma. When T ∼ Λ and mf ¼ 0, we
expect an instability in the system. Turning on only the
supergravity scalar α, that is, setting mb ≠ 0 and mf ¼ 0,
corresponds to giving positive mass squared to fourN ¼ 4

SYM scalars (the bosonic components of the N ¼ 2
hypermultiplet). At the same time, the remaining two
N ¼ 4 SYM scalars acquire a negative mass squared.
That is, they are the tachyons at zero temperature. However,
at high enough temperatures, the thermal corrections would
come into effect and stabilize these tachyons. As the
temperature is lowered, we expect the reemergence of
these tachyons. This is due to the fact that dynamical
instabilities in thermal systems can manifest as thermody-
namic instabilities. (See Ref. [59] for arguments leading to
this.) It was argued in Ref. [60] that, in general, thermo-
dynamic instabilities are reflected to developing c2s < 0,
where cs is the speed of sound waves in the thermal gauge
theory plasma.

APPENDIX B: EUCLIDEAN SPINOR
CONVENTIONS AND MASS TERMS

Following the conventions given in Ref. [45], we define
the Euclidean Dirac spinors λ, λ̄ using Weyl spinors λiα; λ̄i _α,
with i ¼ 1, 2 denoting the internal symmetry index and
α; _α ¼ 1, 2 denoting the spinor indices

λ ¼
�
λ1α

λ̄2_α

�
; λ̄ ¼ λ†γ0 ¼

�
λα2 λ̄1_α

�
: ðB1Þ

We also have ðλiαÞ� ¼ −λ̄i _α and ðλ̄i _αÞ� ¼ λi _α.
With these conventions, it is straightforward to show that

the fermion mass terms

Trð−mλ1
αλ2α −mλ̄1 _αλ̄

2_αÞ

are Hermitian.
Upon using the relations between the twisted and

untwisted fermionic field variables

λ1
1 ¼ ψ12 þ

i

2
ffiffiffi
2

p ψ23; λ21 ¼ ψ12 −
i

2
ffiffiffi
2

p ψ23;

λ1
2 ¼ ψ13 þ

i

2
ffiffiffi
2

p ζ; λ22 ¼ ψ13 −
i

2
ffiffiffi
2

p ζ;

λ̄1
_α ¼ χ2_α; λ̄2 _α ¼ −

1

2
ffiffiffi
2

p χ1_α;

we have the mass term
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−mTrλ1αλ2α¼−mTrðλ11λ21þλ1
2λ22Þ

¼−mTr

��
ψ12þ

i

2
ffiffiffi
2

p ψ23

��
ψ12−

i

2
ffiffiffi
2

p ψ23

�

þ
�
ψ13þ

i

2
ffiffiffi
2

p ζ

��
ψ13−

i

2
ffiffiffi
2

p ζ

��

¼−
im

2
ffiffiffi
2

p Trð−ψ12ψ23þψ23ψ12−ψ13ζþζψ13Þ

¼ iffiffiffi
2

p mTrðψ12ψ23þψ13ζÞ: ðB2Þ

Let us look at the following mass term:

−mTrðλ̄1_αλ̄2_αÞ: ðB3Þ

Upon expanding the indices and using the conventions

ϵ12 ¼ ϵ_1 _2 ¼ ϵ21 ¼ ϵ_2 _1 ¼ þ1; ðB4Þ

ϵ21 ¼ ϵ_2 _1 ¼ ϵ12 ¼ ϵ_1 _2 ¼ −1; ðB5Þ

we have

−mTrðλ̄1 _αλ̄2_αÞ ¼ −mTrðλ̄1 _1λ̄2 _2 − λ̄1 _2λ̄
2
_1Þ: ðB6Þ

Using the relations between the untwisted and twisted
spinors in Eq. (B6), we have

−mTrðλ̄1 _αλ̄2_αÞ ¼
m

2
ffiffiffi
2

p Trðχ2_1χ1_2 − χ2_2χ1_1Þ: ðB7Þ

Upon using

χi _α ¼ σμi _α χμ; ðB8Þ

with the Euclidean convention σμ ≡ ðσ⃗; iIÞ, the fermion
mass term becomes

−mTrðλ̄1_αλ̄2_αÞ ¼
m

2
ffiffiffi
2

p Trð χ2_1χ1_2 − χ2_2χ1_1Þ

¼ m

2
ffiffiffi
2

p Trðð χ1 þ iχ2Þð χ1 − iχ2Þ

− ð−χ3 þ iχ4Þð χ3 þ iχ4ÞÞ
¼ m

2
ffiffiffi
2

p Trð−2iχ1χ2 þ 2iχ3χ4Þ

¼ −
imffiffiffi
2

p Trð χ1χ2 − χ3χ4Þ: ðB9Þ

APPENDIX C: DERIVING THE MASS TERMS
OF TWISTED N = 2� SYM

The QðmÞ variations on the linear combinations of the
fields have the form

QðmÞðχ1þ iχ2Þ ¼ 2ðH1þ iH2Þ;
QðmÞðχ3þ iχ4Þ ¼ 2ðH3þ iH4Þ;

QðmÞðH1þ iH2Þ ¼−
ffiffiffi
2

p
½ϕ;ðχ1þ iχ2Þ�þ

ffiffiffi
2

p
mðχ1þ iχ2Þ;

QðmÞðH3þ iH4Þ ¼−
ffiffiffi
2

p
½ϕ;ðχ3þ iχ4Þ�þ

ffiffiffi
2

p
mðχ3þ iχ4Þ;

QðmÞðB12þ iB23Þ ¼
ffiffiffi
2

p
ðψ12þ iψ23Þ;

QðmÞðB13þ iCÞ ¼
ffiffiffi
2

p
ðψ13þ iζÞ;

QðmÞðψ12þ iψ23Þ ¼−2½ϕ;ðB12þ iB23Þ�þ 2mðB12þ iB23Þ;
QðmÞðψ13þ iζÞ ¼−2½ϕ;ðB13þ iCÞ�þ 2mðB13þ iCÞ:

ðC1Þ

TheQðmÞ variation of the quantityP≡Trðχ1− iχ2ÞðH1þ
iH2Þ will contain the mass term −ðim=

ffiffiffi
2

p ÞTrðχ1χ2Þ.
We have

QðmÞP ¼ Tr½ð χ1 − iχ2ÞðH1 þ iH2Þ�
¼ Tr½ð2ðH1 − iH2ÞðH1 þ iH2Þ þ

ffiffiffi
2

p
ð χ1 − iχ2Þ½ϕ; ð χ1 þ iχ2Þ�Þ −

ffiffiffi
2

p
mð χ1 − iχ2Þð χ1 þ iχ2Þ�

¼ Tr½2ðH2
1 þH2

2Þ þ
ffiffiffi
2

p
ð χ1½ϕ; χ1� þ χ2½ϕ; χ2�Þ − 2

ffiffiffi
2

p
imχ1χ2�: ðC2Þ

Similarly, the linear combination R≡ Trðχ3 þ iχ4ÞðH3 − iH4Þ will contain the mass term ðim=
ffiffiffi
2

p ÞTrðχ3χ4Þ.
We have

QðmÞR ¼ Tr½ðχ3 þ iχ4ÞðH3 − iH4Þ�
¼ Tr½ð2ðH3 þ iH4ÞðH3 − iH4Þ þ

ffiffiffi
2

p
ðχ3 þ iχ4Þ½ϕ; ðχ3 − iχ4Þ�Þ −

ffiffiffi
2

p
mðχ3 þ iχ4Þðχ3 − iχ4Þ�

¼ Trð2ðH2
3 þH2

4Þ þ
ffiffiffi
2

p
ðχ3½ϕ; χ3� þ χ4½ϕ; χ4�Þ þ 2

ffiffiffi
2

p
imχ3χ4Þ: ðC3Þ
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Defining T ≡ 1
4
ðPþ RÞ, we have

QðmÞT ¼ 1

2
H2

μ þ
1

2
ffiffiffi
2

p χμ½ϕ; χμ� −
iffiffiffi
2

p mðχ1χ2 − χ3χ4Þ: ðC4Þ

This reproduces two of the terms in the N ¼ 4 twisted SYM action and also two of the mass terms that appear in the
N ¼ 2� SYM action.
Let us now consider the QðmÞ variation of the product of the terms A≡ ðψ12 − iψ23Þ and B≡ ðB12 þ iB23Þ.
We have

QðmÞTrð−ABÞ ¼ Tr½ð2½ϕ; ðB12 − iB23Þ� − 2mðB12 − iB23ÞÞðB12 þ iB23Þ þ
ffiffiffi
2

p
ðψ12 − iψ23Þðψ12 þ iψ23Þ�

¼ Tr½ð2½ϕ; B12� − 2i½ϕ; B23�ÞðB12 þ iB23Þ − 2mB2
12 − 2mB2

23 þ 2
ffiffiffi
2

p
iψ12ψ23�

¼ Trð−2ϕ½B12; B12� − 2ϕ½B23; B23� − 2mB2
12 − 2mB2

23 þ 4iϕ½B12; B23� þ 2
ffiffiffi
2

p
iψ12ψ23Þ: ðC5Þ

Let us compute the QðmÞ variation of the product of the terms D≡ ðψ13 − iζÞ and E≡ ðB13 þ iCÞ.
We have

QðmÞTrð−DEÞ ¼ Tr½−ð−2½ϕ; ðB13 − iCÞ� þ 2mðB13 − iCÞÞðB13 þ iCÞ − ðψ13 − iζÞ
ffiffiffi
2

p
ðψ13 þ iζÞ�

¼ Trð2½ϕ; B13�B13 þ 2i½ϕ; B13�C − 2i½ϕ; C�B13 þ 2½ϕ; C�C − 2mB2
13 − 2mC2 þ 2

ffiffiffi
2

p
iψ13ζÞ

¼ Trð−2ϕ½B13; B13� − 2ϕ½C;C� þ 4iϕ½B13; C� − 2mB2
13 − 2mC2 þ 2

ffiffiffi
2

p
iψ13ζÞ: ðC6Þ

Simplifying the terms,

QðmÞTrð−DEÞ ¼ Trð−2mB2
13 − 2mC2 − 2ϕ½B13; B13� − 2ϕ½C;C� þ 4iϕ½B13; C� þ 2

ffiffiffi
2

p
iψ13ζÞ: ðC7Þ

Let us combine the terms

QðmÞTr − ðABþDEÞ ¼ Tr½−2mB2
μν − 2mC2 − 2ϕ½Bμν; Bμν� − 2ϕ½C;C�

þ 4iϕð½B12; B23� þ ½B13; C�Þ þ 2
ffiffiffi
2

p
iðψ12ψ23 þ ψ13ζÞ�: ðC8Þ

Defining

V ≡ −
1

4
mðABþDEÞ

¼ −
1

4
mððψ12 − iψ23ÞðB12 þ iB23Þ þ ðψ13 − iζÞðB13 þ iCÞÞ; ðC9Þ

we have

QðmÞTrV ¼ Tr

�
−
1

2
m2B2

μν −
1

2
m2C2 −

1

2
mϕ½Bμν; Bμν� −

1

2
mϕ½C;C� þ imϕð½B12; B23� þ ½B13; C�Þ

þ iffiffiffi
2

p mðψ12ψ23 þ ψ13ζÞ
�
: ðC10Þ

Let us consider the QðmÞ variation of the term

W ≡ i
4
Trð−ψ12½ϕ̄; B23� þ ψ23½ϕ̄; B12� þ η½B12; B23�Þ: ðC11Þ
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We have

QðmÞW ¼ i
4
TrQðmÞð−ψ12½ϕ̄; B23� þ ψ23½ϕ̄; B12� þ η½B12; B23�Þ

¼ i
4
ð2½ϕ; B12�½ϕ̄; B23� − 2mB12½ϕ̄; B23� þ

ffiffiffi
2

p
ψ12½η; B23� þ

ffiffiffi
2

p
ψ12½ϕ̄;ψ23�

− 2½ϕ; B23�½ϕ̄; B12� þ 2mB23½ϕ̄; B12� −
ffiffiffi
2

p
ψ23½η; B12� −

ffiffiffi
2

p
ψ23½ϕ̄;ψ12�

− 2½ϕ; ϕ̄�½B12; B23� −
ffiffiffi
2

p
η½ψ12; B23� −

ffiffiffi
2

p
η½B12;ψ23�Þ: ðC12Þ

The terms involving fermions cancel among each other under the trace. Upon using the identity

Trð½ϕ; B12�½ϕ̄; B23� − ½ϕ; B23�½ϕ̄; B12� − ½B12; B23�½ϕ; ϕ̄�Þ ¼ 0; ðC13Þ

we obtain

QðmÞW ¼ imϕ̄½B12; B23�: ðC14Þ

Similarly, the QðmÞ variation of the term

Y ≡ i
4
Trð−ψ13½ϕ̄; C� þ ζ½ϕ̄; B13� þ η½B13; C�Þ ðC15Þ

gives the mass term

QðmÞY ¼ imϕ̄½B13; C�: ðC16Þ
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