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The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D ¼ ð1þ 1Þ is studied using
uniform matrix product states. The equal time two point function in momentum space G2ðkÞ is
approximated as the system is driven through a quantum phase transition at a variety of different quench
rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate
the consistency of the picture that the two point function G2ðkÞ displays two characteristic scales, the
defect density n and the kink width dK . Consequently, G2ðkÞ provides a clear signature for the formation
of defects and a well defined measure of the defect density in the system. These results provide a
benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for
relativistic quantum field theory, providing a promising technique for the future study of high energy
physics and cosmology.
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I. INTRODUCTION: THE KIBBLE ZUREK
MECHANISM AND TENSOR NETWORKS

Classically, topological defects are stable, finite energy
configurations of a system that interpolate in space between
different degenerate choices of vacua (ground state),
appearing like “lumps” of energy with some finite extent
(width). In a quantum field theory (QFT), topological
defects then appear as particles which are unlike other
elementary excitations in that (a) they carry a topological
chargeQ associated not to a symmetry of the system, but to
the topology of the vacuum manifold and (b) they have
some characteristic nonzero size [1,2]. The existence of a
topological charge then separates the theory into different
topological sectors with the vacuum lying in the Q ¼ 0
vacuum sector. Since topological defects lie outside the
vacuum sector, they cannot be studied by standard
perturbation theory from within it and in this sense are
naturally nonperturbative. However, the equilibrium prop-
erties of defects can still be studied semiclassically by
starting in the appropriate Q ≠ 0 sector and nonperturba-
tive equilibrium results can be obtained using lattice
methods [3–5].
A primary mechanism by which defects are formed is

known as the Kibble-Zurek Mechanism (KZM) [6,7] which
states that as a system undergoes a symmetry breaking
phase transition, if the symmetry broken phase allows
topological defects, they will necessarily be formed ran-
domly in the system in a universal manner. The universality

of this process comes from the development of a universal
length scale ξ̂ which is determined in the symmetric phase
by the critical exponents of the transition, along with simple
dynamical scales. Once in the symmetry broken phase, ξ̂
sets the scale of correlated domains between which defects
can occur. The defect density is estimated to scale as

n ≈ ξ̂−Dco ð1Þ

where Dco is the codimension of the defect, i.e. the
difference between the dimension of space and the dimen-
sion of the defect (equal to zero for pointlike defects, one
for linelike defects etc). Since the typical thermalization
timescale of defects is much longer than other excitations,
after some initial relaxation the system will be described by
a random distribution of defects. Details of the phase
transition that were encoded in the universal length scale
ξ̂ will then remain relevant via the defect density n long
after the transition has ended.
The KZM has been confirmed in a number of scenarios

theoretically and experimentally, see the reviews [8,9].
While the bulk of this work concerns the KZM during
classical (thermal) phase transitions there has been a
growing interest in recent years on the KZM during
quantum phase transitions [10–13]. In the classical case,
the process of topological defect formation is easy to
visualise since the configurations of the system can be
seen explicitly. Furthermore, the density of defects can be
established by explicit counting. However, in a quantum
theory, a simple visualisation is not possible and some
suitable observable (operator) must be chosen that captures
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information about defects in the system. While in some
simple quantum lattice theories explicit counting operators
can be constructed [14] counting is generally highly
ultraviolet (UV) sensitive and so is inappropriate for use
in quantum field theory. Of course, one can still study other
quantities such as the correlation length or quasiparticle
excitation density during quantum phase transitions in QFT
but these do not in general provide information about the
density of defects in the system [15] and, since it is the
defects that actually keep the universal physics relevant
after the transition has ended, these quantities alone give a
somewhat incomplete picture of the KZM.
To instead understand the process of defect formation in

QFT it was proposed in [16] that, in the context of a scalar
field theory, the equal time two point function of the field in
momentum space for a state of random defects will
factorise into a contribution coming from the density of
defects n and one coming from the width of the defects d
which provide the two relevant scales in the system. In the
ϕ4 scalar field theory in D ¼ ð1þ 1Þ space-time dimen-
sions, which shall be the focus of this paper, the topological
defects are known as kinks. A system that is driven through
a symmetry breaking phase transition should then, follow-
ing a period of relaxation, be described by a random
distribution of kinks and we can assume that the (non-
equilibrium) equal time two point function G2ðkÞ ¼
hϕð−kÞϕðkÞi will take the form

G2ðkÞ ¼
v2

n
Gcorrðk=nÞGkinkðkdKÞ ð2Þ

where v is the vacuum expectation value, dK is the kink
width, GkinkðkdKÞ is a factor coming from the spatial
profile of the kink and Gcorrðk=nÞ is a factor coming from
the spatial distribution of kinks. If this assumption holds,
then studying the equal time two point function is particu-
larly attractive since (a) the defect density n appears as a
long-distance/infrared (IR) observable which is not sensi-
tive to the UV details and (b) the finite extent of the defects
are clearly manifest through the kink profile term
GkinkðkdKÞ. This means that the two point function could
be used to provide a sensible measure of the defect density
in a QFTwhile also displaying an explicit signature for the
formation of defects through the kink profile term.
To confirm the above picture, we would like to study the

non-equilibrium time evolution of a quantum field theory
as it is driven through a (quantum) phase transition,
calculate the two point function and compare it with the
expected form. While this can be done explicitly in the
classical case, in the case of QFT the essential nonequili-
brium calculation of G2ðkÞ is much more challenging and
standard nonequilibrium techniques such as the 2-particle
irreducible (2PI) effective action fail to capture the
presence of defects [17] requiring more sophisticated
variations [18]. This suggests that a truly nonperturbative,

nonequilibrium method is useful and though far less devel-
oped than the corresponding equilibrium techniques, such
methods do exist e.g. stochastic quantization for real-time
lattices [19] and Hamiltonian truncation techniques [20].
In this paper, we will focus on the application of tensor

network (TN) techniques to this problem. This group of
techniques allows for the representation of states and
observables as tensor networks i.e. as sets of tensors that
must be contracted in a particular pattern to obtain the
desired result. These representations can then be used to
efficiently parametrize a subset of states and observables of
physical interest, allowing for the approximation of a wide
variety of observables without the need for sampling. Since
tensor networks tend to efficiently parametrize certain low
entanglement states and can therefore be used to calculate
low entanglement approximations to observables, they can
be thought of as providing a low entanglement effective
theory. While initially specialised to the ground states of
gapped (spin) systems with open boundary conditions
(OBC) in D ¼ ð1þ 1Þ via the density matrix renormaliza-
tion group (DMRG) algorithm [21], the scope of tensor
network techniques has broadened considerably in recent
years. In particular, they have been applied to the study of
quantum field theories in D ¼ ð1þ 1Þ in the lattice regu-
larized setting [22–24], as well using alternative regulariza-
tions within a continuous representation [25–27]. They have
also been applied to the study ofQFTwith gauge symmetries
with a focus on the Schwinger model [28–33], in addition to
some work on other symmetries such as SUð2Þ [34].
Importantly for our purposes, tensor networks have been
further used to study kinks in equilibrium [23,35] as well as
aspects of the KZM in spin systems [36] and the ϕ4 scalar
field theory [37], though without explicitly discussing defect
formation.
In this paper, our goals are then twofold. On the one hand

we would like to confirm the picture that a QFT undergoing
a symmetry breaking phase transition is described by
topological defect formation via the KZM and on the other
we wish to benchmark the use of tensor network techniques
as a nonperturbative nonequilibrium tool for quantum
field theory and show that they can capture topological
defect formation thus providing a powerful method for
studying QFT.
To achieve this, we use the matrix product state (MPS)

tensor network, specifically the uniform matrix product
state (uMPS) to study topological defect formation in the
relativistic ϕ4 scalar field theory inD ¼ ð1þ 1Þ space-time
dimensions. We approximate the time evolution of a state
jψi using the time dependent variational principle (TDVP)
technique described in [38,39]. Initially, the state is in
approximated in the ground state by within the symmetric
phase by a uMPS using the variational-uMPS (VUMPS)
algorithm [40] before being driven though the (quantum)
phase transition by a time dependent bare mass μ20ðtÞ. In the
symmetry broken phase, the equal time two point function
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can then be calculated G2ðkÞ ¼ hψ jϕðt;−kÞϕðt; kÞjψi,
though we will find it cleaner to instead use the time
averaged quantity Ḡ2ðkÞ with the average taken over some
final “relaxation” period with a time independent bare mass
μ20ðtFÞ. We then compare Ḡ2ðkÞ to the expected form given
by a random distribution of defects formed via the KZM,
which we call the defect ansatzGdefðkÞ. We find that indeed
Ḡ2ðkÞ ≈GdefðkÞ, under a set of assumptions for the form of
GdefðkÞ, and we discuss the nature of these approximations
suggesting possible improvements for the future.
The outline of the paper is as follows: In Sec. II we

review the KZM and explain how it describes the process of
topological defect formation, providing details for the ϕ4

case and describe the form of the defect ansatz GdefðkÞ
which provides the expected form of the equal time two
point function in this case. In Sec. III, we review the idea of
tensor network representations and how they can be used to
calculate low entanglement approximations to a wide set of
time dependent observables, essentially providing a low
entanglement effective theory. In Sec. IV we then present
our results, showing that the obtained form of Ḡ2ðkÞ is
consistent with GdefðkÞ and the KZM, before concluding
in Sec. V.

II. THE KIBBLE-ZUREK MECHANISM IN
THE ϕ4 SCALAR FIELD THEORY

A. The Kibble-Zurek mechanism and
universal defect formation

The equilibrium behavior of a system undergoing a
second order phase transition is well understood. Let us
assume that the system is described by a set of dimension-
less couplings g ¼ fg1; g2…gNg and one of these, e.g.
g ¼ g1 is being changed by some external process. The
relative distance of the system from the critical point can be
parametrized by a reduced coupling (reduced temperature)
ϵ such that

ϵ ¼ ðg − gCÞ
jgCj

ð3Þ

and ϵ ¼ 0 indicates the critical point at g ¼ gC. We will
consider second order phase transitions that are charac-
terised by the breaking of a global symmetry encoded in the
groupG. In this case the equilibrium state of the system can
be characterised by an order parameter φ that is zero in the
symmetric phase ϵ > 0 where the (unique) equilibrium
state is invariant under the symmetry group G but becomes
nonzero in the symmetry broken phase ϵ < 0 where there
are (degenerate) equilibrium states that are no longer
invariant under G. In this scenario, the correlation length
ξ associated to the order parameter (e.g. by the asymptotic
behavior of the order parameter two point function)
diverges such that

ξ ≈ ξ0jϵj−ν; ϵ > 0 ð4Þ

near the critical point and the equilibrium state will be
characterized in the broken symmetry phase by an infinite
correlation length (e.g. by the decay of the order parameter
two point function to a constant).
Let us now consider a scenario where the state of a

system is initially in equilibrium in the symmetric phase
and evolves under some time dependent reduced coupling
ϵðtÞ towards the critical point and into the symmetry broken
phase. We then realize that, since no state can have a
physical correlation length that increases faster than the
speed of light, the state cannot remain in equilibrium all the
way to the critical point. This argument, originally made by
Kibble [6], leads us to conclude that any physical state of a
system, initially in equilibrium, will necessarily become
excited when approaching a second order phase transition.
Moreover, the actual state must have a finite correlation
length when the system is in the broken symmetry phase, in
contrast with the equilibrium state of the system.
In general, once in the symmetry broken phase, the state

can evolve and we can expect that the correlation length ξ
will grow rapidly as the system equilibrates with some
thermalization timescale ttherm. In this way, information
about the nonequilibrium dynamics of the phase transition
can be wiped out. However, Kibble further argued that in a
system whose symmetries allow the presence of topological
defects, the state of a system following a symmetry
breaking phase transition must contain such excitations.
This can again be argued from the requirement of causality.
A topological defect corresponds to an excitation which
interpolates between different symmetry broken vacua.
Therefore, in order to have a state with no defects,
symmetry breaking must occur in a spatially uniform
manner. In general, this cannot happen since perturbations
in causally separated regions must act independently.
Additionally, when defects are formed in a system their
density n is determined by the correlation length in the
system ξ as in Eq. (1) [8]. The defect density then
determines the subsequent correlation length of the state
ξðnÞ such that the evolution of the correlation length is
determined by the evolution of the defects in the system.
Often, the timescales associated to the dynamics of defects
e.g. the annihilation of defect-antidefect pairs, are much
slower than those naturally associated with thermalisation.
As such, information about the dynamics of the phase
transition can remain encoded in the distribution of defects
well after the transition has occurred and for this reason
topological defects are sometimes described as “fossilised
evidence” of the phase transition.
An estimate for the correlation length ξ of the state on

entering the symmetry broken phase can be determined by
causality. However, a better universal estimate is given by
the argument due to Zurek [7]. On approach to the second
order phase transition, in addition to the diverging length
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scale, an equilibrium state can have a timescale τ character-
izing the relaxation time which also diverges such that

τ ≈ τ0jϵj−μ; ϵ > 0 ð5Þ

near the critical point. If the transition rate is finite and
characterized by a (quench) timescale τQ such that
ϵ ¼ −t=τQ, then an equilibrium state is characterised by
both this relaxation timescale τðϵÞ and a timescale asso-
ciated to the rate at which the state is changing due to
the time dependence of ϵ. The latter is given by the relative
rate of change of ϵ i.e. j_ϵ=ϵj. In the linear quench case
ϵ¼−t=τQ we have j_ϵ=ϵj¼ t−1 so that the associated time-
scale is simply the time distance t from the critical point.
When the relaxation timescale of the state τ is much

shorter than the timescale characterizing the rate of change
of the state, the state will remain in equilibrium [i.e. it
evolves adiabatically with the change ϵðtÞ]. However, since
the relaxation timescale diverges when approaching a
critical point, the loss of equilibrium is inevitable and
adiabaticity will breakdown at the time t ¼ t̂ when

t̂ ≈ τðt̂Þ: ð6Þ

If the rate of change _ϵ=ϵ is sufficiently slow, then the
breakdown of adiabaticity will occur sufficiently close to
the critical point such that τ can be approximated by its
universal behavior Eq. (5). The time t̂ at which this
breakdown occurs can then be calculated as

t̂ ≈ −ðτ0τμQÞ
1

1þμ: ð7Þ

Similarly, the correlation length at this time ξ̂ can be
calculated using Eq. (4) to give

ξ̂ ≈ ξ0ðτ−10 τQÞ
ν

1þμ: ð8Þ

This length ξ̂ is then assumed to equal the correlation length
ξ of the state when entering the symmetry broken phase.
This assumption is sometimes called the adiabatic-
impulse-adiabatic (AIA) assumption since ξ̂will be exactly
equal to the correlation length in the case that the state
“freezes out” and does not evolve following the time t̂
before entering the symmetry broken phase. The develop-
ment of this universal length scale is sometimes known as
the “Kibble-Zurek mechanism” in its own right and is
important independent of considerations of defect forma-
tion in the system. However, as mentioned, defect for-
mation when entering the symmetry broken phase is the
primary mechanism by which the universal length scale ξ̂
remains relevant after the phase transition has ended: Since
ξ̂ ≈ ξ determines the defect density n, which should change
only slowly, the universal length scale ξ̂ is preserved via the

physical correlation length ξðnÞ of the state over long
periods of time.

B. Universal defect formation in the ϕ4

scalar field theory in D= ð1 + 1Þ
The KZM as discussed in Sec. II can easily be speci-

alised to the ϕ4 scalar field theory in D ¼ ð1þ 1Þ. The
system (theory) can be defined by the action

S½ϕ� ¼
Z

dxdt

�
1

2
ð∂tϕÞ2−

1

2
ð∂xϕÞ2−

μ20
2
ϕ2−

λ0
4!
ϕ4

�
ð9Þ

which has a single dimensionless bare coupling g0 ¼ λ0=μ20
and a global Z2 symmetry which acts as ϕ → −ϕ. The
theory exhibits a second-order (quantum) phase transition
in the ground state jΩðgÞi. Defining the reduced coupling
ϵ ¼ ðg0 − gCÞ=jgCj, then the ground state is unique and Z2

invariant in the symmetric phase ϵ > 0 but forms a
degenerate eigenspace in the symmetry broken phase
ϵ < 0 which contains states that break the Z2 symmetry.
In the symmetric phase, the characteristic time-scale for

relaxation of the ground state is set by the inverse of the gap
Δ, which is given by the scalar mass mS. Furthermore,
Lorentz invariance implies that the gap not only sets the
temporal correlation length but also the spatial correlation
length such that Δ ¼ mS ¼ ξ−1. The critical exponents μ
and ν are then equal and the correlation length ξ̂ (8) is
given by

ξ̂ ≈ ξ0ðΔ0τQÞ ν
1þν ð10Þ

whereΔ0 is the coefficient determined by the vanishing gap
on approach to the critical point

Δ ¼ mS ≈ Δ0jϵjμ: ð11Þ
Since the phase transition in D ¼ ð1þ 1Þ is a strong-

coupling transition (in the sense that the critical behavior is
not described by a noninteracting theory) mean-field theory
cannot be used and breaks down in the vicinity of the
critical point. Instead, the critical exponents are given by
the universality class for the ϕ4 theory which is that of the
classical D ¼ 2 Ising model. This class has critical expo-
nent ν ¼ 1 such that the state at the breakdown of
adiabaticity is characterized by the quantities

t̂ ≈ −Δ−1
2

0 τ
1
2

Q; ð12Þ

ϵ̂ ≈ −Δ−1
2

0 τ
−1
2

Q ; ð13Þ

ξ̂ ≈ ξ0Δ
1
2

0τ
1
2

Q ð14Þ

which can be contrasted with the scaling obtained using
mean field theory which incorrectly predicts νMF ¼ 1=2 to
give t̂ ∼ τ1=3Q , ϵ̂ ∼ τ−1=3Q and ξ̂ ∼ τ1=3Q .
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Under the “freeze out” or AIA assumption, we will then
estimate that the state has a physical correlation length
ξ ≈ ξ̂ when the system enters the symmetry broken phase.
In practice, the AIA does not hold precisely but we can still
assume that the scaling of ξ̂ will hold so that ξ ∼ ξ̂.
In the symmetric phase, the ϕ4 theory has a single

elementary excitation, the scalar particle (i.e. the lowest
lying energy eigenstate) with mass mS. However, in the
symmetry broken phase there are additional particles
known as kinks that are topological defects with co-
dimension Dco ¼ 1. In the classical theory, the (anti)kink
solutions �ϕKðxÞ to the classical equations of motion are
given by

ϕKðxÞ ¼ v tanh

�
x
dK

�
ð15Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6μ20=λ0

p
is the classical vacuum expectation

value and dK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2=μ20

p
is the classical kink width.

The solutions (15) interpolate between the two classical
vacuum solutions �v and have a nontrivial topological
chargeQ ¼ �1which can be calculated from the boundary
conditions as

Q ¼ 1

2v
ðϕð∞Þ − ϕð−∞ÞÞ: ð16Þ

When entering the symmetry broken phase we can then
estimate the defect density of the state via the KZM and
Eq. (1) to give

n ∼ τ
−1
2

Q : ð17Þ

While this result should hold for sufficiently slow
quenches, if τQ is too small the system will lose equilibrium
before ever reaching the critical region and the scaling
given by the (quantum) critical exponents will be irrelevant.
In this case, mean field theory can be applied and the defect
density scales as

n ∼ τ
−1
3

Q ∶ τQ ≤ τXQ ð18Þ

where the size of τQ at which this quantum-classical
crossover takes place τXQ can be estimated from the
equilibrium data, see [37].

C. Defect ansatz

To study defect formation via the KZM in QFTwe need
to identify observables that capture information about the
defects in the system. In particular, we would like to have
an observable that allows for a simple estimate of the defect
density to be obtained, while also making the presence of
defects manifest, setting them apart from other pointlike
excitations.

Since classically defects in the ϕ4 scalar field theory
correspond to field configurations that interpolate between
different sign vacua�v, one option for extracting the defect
density is to simply “count the zeroes” of the field configu-
rations. However, while this method may be suitable for
lattice theories, it is highly ultraviolet (UV) sensitive and
instead we would like an observable that allows n to be
extracted from long distance data where the UV is irrelevant.
The equal time two point functionG2ðkÞ provides a good

observable to study defects. In the classical theory the form
of G2ðkÞ for a system of random kinks can be constructed
explicitly [16,17]. The central idea to this construction is
that in a system of random kinks there only two relevant
scales in the system, n the defect density and dK the kink
width. When these scales are well separated (and typically
dK ≪ n−1 in KZM scenarios) the two point function
factorises in momentum space into a contribution coming
only from the distribution of kinks Gcorrðk=nÞ and a
contribution coming from the kink profile GkinkðkdKÞ.
The classical two point function for a system of random
kinks can then be written as

GRKðkÞ ¼
v2

n
Gcorrðk=nÞGkinkðkdKÞ: ð19Þ

In the classical theory the kink profile contribution
GkinkðkdKÞ ¼ k2

4v2 jϕKðkÞj2 can be calculated exactly via
the Fourier transform of the kink profile ϕKðxÞ (15) which
gives

ϕKðkÞ ¼
2iv
k

1
2
πkdK

sinh 1
2
πkdK

ð20Þ

such that

GkinkðkdKÞ ¼
� 1

2
πkdK

sinh 1
2
πkdK

�
2

: ð21Þ

Additionally, the form of Gcorrðk=nÞ can also be calcu-
lated explicitly in the case of uniformly random kinks to
give an exponential decay in real space [17]. However, a
better form can be found phenomenologically [16] using
classical simulations to give

Gcorrðk=nÞ ¼ α1e−α2ðk=nÞ
2 þ β1

½1þ β2ðk=nÞ2�
ð22Þ

which in real space is just the sum of a Gaussian part and
the exponential part coming from uniform randomness

GcorrðnrÞ ¼ a1e−a2ðnrÞ
2 þ b1e−b2nr: ð23Þ

The above picture can be confirmed in a classical field
theory by considering the dynamics of an (ensemble) of
scalar fields that are driven through a (classical) phase
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transition before relaxing under some damping term such
that the expectation value of the two point function
G2ðkÞ ¼ hϕð−kÞϕðkÞi can be calculated and compared
to the ansatz for random kinks (19). The ansatz can then
be used by first establishing the form of Gcorrðk=nÞ. This is
achieved by taking a subset of data, explicitly counting the
number of defects n and using this to scale the two point
function. The assumption G2ðkÞ ¼ GRKðkÞ can then be
confirmed by rearranging to give

n
v2

G2ðkÞ
GkinkðkdKÞ

¼ Gcorrðk=nÞ: ð24Þ

If this holds then the left-hand side of (24) should be a
universal function of n only and the functional form of
Gcorrðk=nÞ can be fit to establish the universal parameters
α1, α2, β1, β2. The ansatz (19) can then be used as a
one-parameter fit to measure the defect density n in the
remaining data, which can then be checked against the
values obtained by explicit counting.
When topological defects are formed in a quantum field

theory via the KZM, we can again assume that the only
two relevant scales in the system are n and dK such that the
general factorization of G2ðkÞ follows as in a classical
theory. However, we can expect additional contributions
to G2ðkÞ in the quantum theory coming both from the
vacuum and the excitations generated during the phase
transition: While in a classical theory a damping term can
be added to the action to remove energy from the system
so that the contribution of excitations can be neglected,
in a quantum theory with unitary evolution energy is
conserved and we can expect these contributions to be
important.
These additional contributions can then be included to

provide a suitable defect ansatz for the case of defects
generated by unitary time evolution through a quantum
phase transition. Writing the vacuum two point function as
GΩ

2 ðkÞ and the two point function of the excitations (matter)
as GmatðkÞ the defect ansatz GdefðkÞ for a quantum theory
can then be written as

GdefðkÞ ¼
v2

n
Gcorrðk=nÞGkinkðkdKÞ þ GΩ

2 ðkÞ þ GmatðkÞ
ð25Þ

where the various quantities now take on their full quantum
corrections. In particular, the ground state jΩi determines
the vacuum expectation value v ¼ hΩjϕjΩi along with the
two point function GΩ

2 ðkÞ ¼ hΩjϕð−kÞϕðkÞjΩi. Similarly,
the one-kink particle state jKi determines the kink profile
term GkinkðkdKÞ.
To confirm topological defect formation in the QFT

case, we would like to calculate the full non-equilibrium
two point function G2ðkÞ and check the assumption
that G2ðkÞ ¼ GdefðkÞ by independently calculating

n;GΩ
2 ðkÞ; GkinkðkdKÞ andGmatðkÞ. Similarly to the classical

case, this assumption can then be rewritten as

n
v2

G2ðkÞ − GΩ
2 ðkÞ −GmatðkÞ

GkinkðkdKÞ
¼ Gcorrðk=nÞ ð26Þ

which should be a universal function of the defect density
as before.
However, this not possible in the quantum case in

general since the defect density cannot be calculated
explicitly by counting and the other quantities such as v,
GkinkðkdKÞ and GmatðkÞ are no longer known exactly.
To overcome the first problem, we will use the

assumptionG2ðk ¼ 0Þ ¼ Gdefðk ¼ 0Þ to obtain an estimate
of the defect density from the nonequilibrium data. At
k ¼ 0 the contribution from the kink profile drops out of
GdefðkÞ while the matter contributions should be negligible
such that Gdefðk ¼ 0Þ ≈ v2=nþGΩ

2 ðk ¼ 0Þ and we can
define our estimate of the defect density as

nest ¼ ½G2ðk ¼ 0Þ −GΩ
2 ðk ¼ 0Þ�=v2: ð27Þ

This expression then provides a sensible (long distance)
estimate of the defect density based on a simple observable,
which is highly desirable in its own right. To construct
this estimate of the defect density, we then require an
approximation of the vacuum expectation values v and
GΩ

2 ðkÞ. These can be calculated relatively easily by e.g.
Monte Carlo techniques, though here we will use tensor
network techniques for consistency, see Sec. IV.
With the defect density estimated, we would then like to

obtain the form of GkinkðkdKÞ. While this can in principle
be done using nonperturbative methods, it is more difficult
than the corresponding vacuum calculations and in this
paper we use a semiclassical approximation by combining
the classical kink profile term (21) with the semiclassical
width dK ¼ ffiffiffi

2
p

=mS where mS is the scalar mass which we
can approximate nonperturbatively (see Sec. IV).
Lastly, we would like to compute the matter term

GmatðkÞ. However, this also is also somewhat difficult to
determine and we make further approximations to account
for it. In this case we assume that, given sufficient
relaxation time, the matter excitations will “thermalize”
in the sense that the two point function GmatðkÞ can be
approximated by the two point function of a thermal state
with the vacuum subtracted i.e. GmatðkÞ ≈ ΔGthermðkÞ with
ΔGthermðkÞ ¼ 1

Z tr½ρϕð−kÞϕðkÞ� −GΩ
2 ðkÞ, ρ ¼ 1

Z e
−βH and

Z ¼ tr½ρ�. Under this assumption, the matter contributions
GmatðkÞ are then also given by an equilibrium quantity and
there exist nonperturbative methods to evaluate this.
However, in the present case we will again use a semi-
classical approximation by taking the noninteracting form
such that
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GmatðkÞ ≈
1

ωkðeβωk − 1Þ ð28Þ

where ωk is the noninteracting lattice dispersion relation

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 4 sin

�
p
2

�
2

s
ð29Þ

and the inverse temperature β and mass μ are treated as free
parameters.
Since we do not calculate GmatðkÞ a priori and we only

know the form of GkinkðkdKÞ approximately, we cannot
simply determine the universal part of G2ðkÞ and compare
it with Gcorrðk=nÞ as desired. Instead, we will first focus on
the region k=n ≪ d−1K =n where the contributions from the
kink profile and matter should be negligible. Defining the
observable

GuniðkÞ ¼
nest
v2

½G2ðkÞ −GΩ
2 ðkÞ�

¼ G2ðkÞ −GΩ
2 ðkÞ

G2ðk ¼ 0Þ −GΩ
2 ðk ¼ 0Þ ð30Þ

we should then find that GuniðkÞ ≈Gcorrðk=nÞ under the
assumption that G2ðkÞ ¼ GdefðkÞ such that the nonequili-
brium observable GuniðkÞ should be a universal function of
n for low k and we can attempt to fit it to the functional
form ofGcorrðk=nÞ in this region. We can then compare this
to the behaviour of the observable GuniðkÞ=GkinkðkdKÞ
using the semiclassical approximation of GkinkðkdKÞ.
If the assumption G2ðkÞ ¼ GdefðkÞ holds and the semi-
classical approximation for GkinkðkdKÞ is accurate, then
GuniðkÞ=GkinkðkdKÞ should be a universal function of n
over a larger region up to k ≈ d−1K where we can still neglect
the matter term. The fitGcorrðk=nÞ should then also hold for
this larger region and we can use this to estimate the
universal parameters α1, α2, β1, β2.
The comparison between the two point function G2ðkÞ

and the defect ansatz can then be completed via a two
parameter fit using the ansatz for the matter contribution
(28) and we should then find that G2ðkÞ ≈ GdefðkÞ over the
full range of k and several orders of magnitude in the
observable.

III. TIME EVOLUTION WITH MATRIX
PRODUCT STATES

A. Tensor network representations
and low entanglement observables

It is well known that in general the representation of a
quantum state (or observable) is exponentially expensive in
the number of degrees of freedom in the system being
described. However, the vast majority of states in the
Hilbert space are not of physical interest. Rather, the
physically important states tend to be highly atypical

and are said to form a tiny “physical corner” of the full
Hilbert space.
For example, the ground states of gapped, local

Hamiltonians often have exponentially decaying correla-
tions corresponding in D ¼ ð1þ 1Þ to the fact that they
obey entanglement area laws and are in this sense low
entanglement states [41]. Tensor network (TN) techniques
leverage this atypicality by providing a representation for
states and observables that, while still complete so that all
states and observables can be represented at exponential
cost, are constructed to mimic the real-space quantum
correlations (entanglement) of physical states and thus
provide an efficient (polynomial cost) representation for
this relevant subset of states.
A simple example of a tensor network is the matrix

product state (MPS). The MPS can be used to represent the
states of lattice systems e.g. a system of L sites with basis
jni ¼ jn1ijn2i…jnLi where the local Hilbert-space dimen-
sion is finite such that nx ¼ ð1; 2;…; dÞ. The wave function
ψn can then be represented by the nearest-neighbor con-
traction of L rank-3 tensors Mnx

αx;αxþ1
ðxÞ so that

ψnx
¼

X
α1;α2;…;αL

Mn1
α1;α2ð1ÞMn2

α2;α3ð2Þ…MnL
αL;α1ðLÞ

¼ trðMn1ð1ÞMn1ð1Þ…MnLðLÞÞ: ð31Þ

Denoting the size of the tensors as ðd; χ; χÞ then the
uncontracted (external) index corresponds to the local
Hilbert-space basis while the contracted (internal) indices
of size χ (often called the “bond-dimension”) correspond to
the amount of entanglement in the state. In particular, the
states that can be represented by an MPS with bond-
dimension χ have at most an entanglement entropy bound
by a constant SðρAÞ ¼ Oðlog χÞ. This means that general
states, which have extensive scaling of entanglement
entropy, require an exponentially large bond-dimension
to represent while one-dimensional entanglement area law
states e.g. the ground-state of a gapped local Hamiltonian in
D ¼ ð1þ 1Þ, can be represented by an MPS with only
polynomial cost, see the review [21] for more information
about MPS as well as [42] for more details about their
entanglement.
Observables can then also be represented as TN. This is

typically achieved by contracting together the TN repre-
sentations for states together with the corresponding TN
representations for operators. In particular the matrix
product operator (MPO) representation is the standard
TN representation for operators when using MPS, e.g. see
[21]. A simple observable that can be explicitly represented
as a tensor network is the state overlap hψ̃ jψi. This
representation can be built by contracting together MPS
representations for the states jψi and jψ̃i such that
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hψ̃ jψi ¼
X
nx

ψ̃�
nx
ψnx

¼
X
nx

tr

�Y
x

ðM̃nxÞ�ðxÞ
�
tr

�Y
x

MnxðxÞ
�

¼
X
nx

tr

�Y
x

ðM̃nxÞ�ðxÞ ⊗ MnxðxÞ
�

¼ tr
�Y

x

�X
nx

ðM̃nxÞ�ðxÞ ⊗ MnxðxÞ
��

: ð32Þ

This tensor network has no external indices such that when
fully contracted it produces a single number equal to the
value of the observable as desired.
Depending on the states in question, different tensor

network structures can be chosen such that the appropriate
entanglement structure is captured and there are a handful
of rigorous results in this regard. For example, the ground-
states of one-dimensional gapped lattice systems with local
Hamiltonians can be represented efficiently by MPS [43].
Similarly, higher-dimensional ground-states can be repre-
sented by projected-entangled-pairs-states (PEPS) while
thermal states can be efficiently represented by MPO,
assuming an additional bound in the density of states in
both cases [44].
While these results show rigorously that tensor networks

can be used to represent subsets of the Hilbert space that
contain the various states of interest, it is still necessary to
actually find those states within this subset. In this regard,
there also exist rigorous polynomial-time algorithms in
D ¼ ð1þ 1Þ for finding the MPS representation of the
unique ground-state of a local, gapped system [45] along
with polynomial-time algorithms for degenerate ground-
states and subexponential-time algorithms for low-lying
excited states [46]. However, the power and applicability of
tensor network techniques in practice goes well beyond the
systems for which rigorous results exist and in general
approximations must be used.
Even in cases where an efficient tensor network repre-

sentation is possible, it is in generally not possible to
actually calculate the corresponding observable by fully
contracting the tensor network efficiently. Instead, we are
limited to the full contraction of only the small subset of
observables that can be both efficiently represented and
contracted. However, we can still approximate observables
using approximate representations and approximate con-
traction schemes. Since we know it is the low-entanglement
states/observables that can be computed exactly with
tensor networks we can then view the approximation for
generic observables as low-entanglement approximations.
Recently, this idea has been formalized by constructing
renormalization group transformations on tensor networks.
These methods systematically simplify tensor networks,
removing the high-entanglement degrees of freedom
and producing a low-entanglement approximation to the

observable in question [47–49]. In this way, we can think of
tensor network techniques as providing a low-entanglement
effective theory: while high-entanglement observables will
be poorly approximated and high-entanglement physics
lost, low-entanglement observables and physics can be
well approximated, which is precisely the relevant
physics in many scenarios of interest. Additionally, these
tensor network techniques can be used in real-time and
without sampling making for a powerful nonperturbative
method.

B. Approximation of time dependent observables
with uniform matrix product states

In this paper, we are chiefly interested in using tensor
networks to approximate observables arising from the
KZM scenario in the ϕ4 scalar field theory. In particular,
we would like to approximate the equal time two point
function

G2ðk; tÞ ¼ hΩjϕð−k; tÞϕðk; tÞjΩi
¼ hψðtÞjϕð−kÞϕðkÞjψðtÞi ð33Þ

where the time-dependence is generated by the
Hamiltonian

H½ϕ; t� ¼
Z

dx

�
1

2
π2 þ 1

2
ð∂xϕÞ2 þ

μ20ðtÞ
2

ϕ2 þ λ0
4!
ϕ4

�

μ20ðtÞ ¼ −
t
τQ

þ μ20ðt ¼ 0Þ; t < tF

μ20ðtÞ ¼ μ20ðt ¼ tFÞ; t ≥ tF: ð34Þ

The state is initially in the ground-state jψðt ¼ 0Þi ¼
jΩðμ20ðt ¼ 0ÞÞi and the explicit time-dependence of the
Hamiltonian drives the system from the symmetric phase
into the symmetry broken phase stopping at μ20ðtFÞ where
the state is allowed to “relax” by evolving under the final
time-independent Hamiltonian.
To approximate the observables of interest, we use the

uniform matrix product state (uMPS) tensor network. The
uMPS is a special case of the matrix product state tensor
network which provides a translationally invariant repre-
sentation for the states of a lattice system. To apply the
uMPS to the QFT we first approximate the QFT by a
lattice system with finite dimensional local Hilbert space.
This can be achieved by first discretizing the continuum
Hamiltonian (34). Using first-order finite difference
approximations for the gradient term, an appropriate lattice
theory can be written in lattice units as

H̃½ϕ� ¼
X
x

�
1

2
ðπxÞ2 þ

1

2
ðϕxþa − ϕxÞ2 þ

μ̃20
2
ϕ2
x þ

λ̃0
4!
ϕ4
x

�

ð35Þ
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with H̃¼ aH, μ̃20 ¼ a2μ20, λ̃0 ¼ a2λ0 and πx ¼∂L=∂ð∂tϕÞ¼ að∂tϕÞ such that ½πx;ϕy� ¼ iδx;y. Secondly,
the dimension of the local Hilbert space for a site can be
truncated by considering only a finite subset of a given
basis at a site. This can be done in the field eigenbasis,
which allows for rigorous bounds on the associated
error [50], but it is computationally more useful to
introduce the real-space fock basis via ϕx ¼ 1ffiffi

2
p ða†x þ axÞ

and ½ax; a†y� ¼ δx;y. The eigenbasis fjnxig of the number

operator Nx ¼ a†xax can then be truncated so that only the
subset jnxi ¼ fj1i; j2i;…; jdig is used and the resulting
state space is finite.
Following this truncation, the state jψðtÞi is approxi-

mated as a uMPS. Starting from the MPS representation
(31), a translationally invariant representation can be
obtained by requiring that all the rank-3 tensors are equal
to the same tensor Mnx

αx;βx
ðxÞ ¼ An

α;β for all x ¼ ð1;…; LÞ.
Then, since the uMPS is defined by a single tensor An

α;β, it
can be used easily for infinite size lattices L → ∞, see [39]
for details.
The uMPS has several computational advantages over

the finite lattice MPS. This is mainly due to the fact that,
since the boundaries are irrelevant in the L → ∞ limit, an
open boundary condition (OBC) uMPS representation
can be used freely which offers significant computational
advantages over e.g. periodic boundary conditions (PBC).
The uMPS representation of a state can then be written as

jψ ½A�i ¼
X
nx

v†L

� Yþ∞

x¼−∞
Anx

�
vRjnxi ð36Þ

where the notation jψ ½A�i emphasises the fact that this
state is defined by dχ2 parameters encoded in the single
tensor An

α;β. The boundary tensors vL, vR are of size ðd; χÞ
and act as vectors in the matrix product, encoding the
(irrelevant) OBC.
The uMPS has been used previously to study the ground

state of the ϕ4 theory and has proved highly successful
[23]. This is even the case near the critical point where the
ground state violates the entanglement area law due to its
diverging correlation length. In such situations it is
common to use a tensor network representation such as
the multiscale entanglement renormalisation ansatz
(MERA) that correctly reproduces the logarithmic violation
of the area law SA ∼ logðLAÞ [51]. However, the uMPSwas
shown to correctly capture the contributions of kink-
antikink excitations to the ground state observables in
the vicinity of the critical point, a fact which suggests its
potential for use in the KZM of defect formation [52].
To approximate the state jψðtÞiwith a uMPS, the ground

state is first approximated. This can be achieved by
minimising the energy of the uMPS by varying its dχ2

degrees of freedom encoded in the tensor An
α;β e.g. by

adapting standard techniques such as the conjugate
gradient algorithm [23]. However, in this paper we use
the highly efficient variational-uniform-matrix-product-
state (VUMPS) algorithm [40] which mimics more stan-
dard MPS variational energy minimisation techniques.
The time dependent state jψðtÞi can then be approxi-

mated by evolving the initial ground state uMPS approxi-
mation. Of course, one would like to carry out the full
time evolution corresponding to the application of the
unitary time evolution operator or the solution to the
Schrödinger equation

d
dt

jψðtÞi ¼ −iHjψðtÞi
jψðt ¼ 0Þi ¼ jΩ½A�i: ð37Þ

However, even if we begin from a uMPS with bond-
dimension χ, in general the state obtained by such an
evolution will no longer be a uMPS of size χ but rather
described by some larger bond-dimension χ0. Physically,
this corresponds to the fact that time evolution tends to
increase the entanglement in a state, as found when
studying the time evolution of states under sudden
“quenches” of the Hamiltonian [53]. In the sudden quench
case, the entropy of entanglement can increase linearly
with time SA ∼ t which would require a uMPS of size
logðχÞ ∼ t to represent exactly i.e. one with exponentially
increasing bond-dimension. Therefore, to approximate the
time evolution, one must consider only an evolution
within the subset of states represented by uMPS
with bond-dimension χ. This approximation then throws
out the high entanglement degrees of freedom and we
can expect certain high-entanglement observables to be
poorly approximated while still approximating the low-
entanglement observables.
With MPS, an approximation of time evolution can be

achieved by first breaking up the unitary time-evolution
operator into small time-steps and applying one operator at
a time, allowing the bond-dimension to grow χ → χ0, before
truncating the MPS back down to the starting subset
χ0 → χ. This idea is quite intuitive and implemented in
its most established form by the “time evolving block
decimation” (TEBD) algorithm [54], though a number of
other related methods exist, see e.g. [55].
Another approximation of the time evolution can be

achieved by realising that the subset of states defined by the
MPS in a number of cases (including the infinite size uMPS
case) forms a smooth manifold MMPS [56]. As such, in
order for a time evolution to stay within this subset of
states, only tangent vectors jΦi ∈ T jψðAÞiMMPS to the
current state jψ ½A�i can be used to update the state.
Thus, the full time-evolution of the state can be approxi-
mated by projecting the right-hand side of the Schrödinger
equation (37) down to the tangent space of the state. The
projector to the tangent state at this point can be written as
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P̂T jψðAÞiMMPS
such that the desired evolution is given by the

equation

d
dt

jψðtÞi ¼ −iP̂T jψðAÞiMMPS
½ĤjψðtÞi�: ð38Þ

Such a projection is equivalent to finding the tangent vector
(state) jΦi ∈ T jψðAÞiMMPS which satisfies the minimiza-
tion problem

min
jΦi

kjΦi þ iĤjψðtÞik2: ð39Þ

This can be solved explicitly by finding representations for
the tangent vector jΦi as a tensor network. Since the
tangent space is spanned by the set of dχ2 partial derivatives
∂

∂An
α;β
jψi ¼ j∂iψi, a tangent state can be written as a sum of

these basis elements

jΦ½B�i ¼ Bij∂iψi ð40Þ

and is therefore specified by the coefficient tensor Bi ¼
Bn
α;β of size dχ2. Since jψi is defined by a uMPS (or

MPS) the partial derivative can then be evaluated such
that the tangent vector can then be written as a sum of
states jΞðmÞi which are equal to jψ ½A�i except that the
tensor at site x ¼ m is replaced by the coefficient tensor
Bn
α;β and

Ξnx
ðmÞ ¼

� Ym−1

x¼−∞
Anx

�
Bnm

� Y∞
x¼mþ1

Anx

�
: ð41Þ

The tangent vector is then given by

jΦ½B�i ¼
X
m

jΞðmÞi: ð42Þ

In fact the basis of partial derivatives is overcomplete
corresponding to the well known gauge freedom in MPS
and must be restricted to achieve a useful implementation,
see [57] for details.
The representation of the tangent vectors (42) allows for

an explicit expression of the tangent space projector
P̂T jψðAÞiMMPS

to be found. The evolution equation (38) can
then be written in terms of the update of the tensorAn alone
to give

_An ¼ −iB̃n ð43Þ

where B̃n is constructed such that jΦ½B̃n�i satisfies the
minimization problem (39).
While initially this time evolution procedure looks quite

different to the more familiar MPS time evolution proce-
dures, it is in fact closely related as shown in [57]. It is

also quite attractive since the optimal truncation of
bond-dimension with the time-evolution is encoded auto-
matically in the first-order (highly nonlinear) differential
equation (43).
The time dependent state jψðtÞi can now be approxi-

mated by first finding an approximation to the ground state
as a uMPS and then updating the state according to the
equation (43) which we achieve using a 5th order Runge-
Kutta scheme. We note that the above “geometric picture”
of the time evolution approximation can also be derived
using the “time dependent variational principle” (TDVP)
[38] which, while perhaps less intuitive, can be more
widely applied.

IV. RESULTS

We study the nonequilibrium dynamics of the ϕ4

quantum field theory using tensor network techniques.
In particular, we study the lattice regularized Hamiltonian
(35) with a time-dependent bare mass (where we drop the
tildes for notational convenience)

μ20ðtÞ ¼ −
t
τQ

þ μ20ðt ¼ 0Þ; t < tF

μ20ðtÞ ¼ μ20ðtFÞ; t ≥ tF: ð44Þ

This time-dependence drives a ground state jΩðμ20ðt ¼ 0ÞÞi
from the symmetric phase μ20ðt ¼ 0Þ > m2

C into the broken
symmetry phase μ20ðtFÞ < m2

C where it relaxes under a
time-independent Hamiltonian with bare mass μ20ðtFÞ. The
initial ground-state is approximated by a uMPS using the
VUMPS algorithm while the time-evolution is approxi-
mated by evolving the initial uMPS according to the TDVP
projected Schrödinger equation (38) using a 5th order
Runge-Kutta scheme.
The physics of this nonequilibrium scenario is

described by the Kibble-Zurek mechanism of topological
defect formation and we compare the uMPS approxi-
mation of the equal-time two-point function G2ðkÞ ¼
hψðtÞjϕð−kÞϕðkÞjψðtÞi, obtained via a discrete cosine
transform of G2ðrÞ, to the KZM expectations. In particular,
we assume that the nonequilibrium two point function is
approximated by the defect ansatz (25) such that G2ðkÞ ≈
GdefðkÞ and we check the consistency of this assumption in
several stages. First, we compare the initial evolution of
G2ðk ¼ 0Þ within the symmetric phase, which provides a
measure of the correlation length ξ, to its equilibrium value
GΩ

2 ðk ¼ 0Þ. We confirm that equilibrium is lost at a
distance ϵ̂ ¼ μ̂20 −m2

C from the critical point and that ϵ̂
scales as expected with the quench rate τQ. Secondly, we
study the time averaged equal time two point function
Ḡ2ðk ¼ 0Þ in the broken symmetry phase, confirming that
it also scales as expected and provides a consistent estimate
of the defect density nest (27) under the assumption that
Ḡ2ðk ¼ 0Þ ¼ Gdefðk ¼ 0Þ. Thirdly, we show that the
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observable GuniðkÞ (30) is a universal function of n for low
k and that it is described by the functional form of
Gcorrðk=nÞ (22). Furthermore, by including the contribution
of the kink profile via the semi-classical approximation of
GkinkðkdKÞ, the function GuniðkÞ=GkinkðkdKÞ is also a
universal function of n but now over a larger region of
k. Finally, we show that Ḡ2ðkÞ ≈GdefðkÞ for all k by
including the matter contributions GmatðkÞ (28) to the
defect ansatz via a two-parameter fit.
To justify the explicit set up used to study the KZM (i.e.

the choices of μ20ð0Þ; μ20ðtFÞ and τQ) we can examine the
equilibrium physics of the theory. The important parameter
regions can be identified by fixing the bare coupling and
producing a series of uMPS approximations to the ground-
state jΩ½A�i. The scalar massmS can then be extracted from
these approximations using the one-particle excitation
ansatz described in [58]. The kink mass MK can also be
obtained via a similar ansatz [35], though here we use the
PBCMPS method described in [52]. These approximations
to the scalar mass and kink mass are plotted in Fig. 1 which
demonstrates the various regions of interest.
To approximate the behavior of the quantum field theory

in the lattice regularized setting, we will be interested in
working in the “continuum region” such that ξ > 1
corresponding to mS < 1. In this region, the effects of

the lattice regularisation will be small and we will only
consider evolutions that take place within this region.
Furthermore, we are interested in setting μ20ðtFÞ to lie
outside the “strong coupling” region in the broken sym-
metry phase where mS ¼ 2MK and kink-antikink pairs do
not behave like classical extended objects but as standard
particles. These two considerations then both limit the
potential choices of μ20ðtFÞ and we have indicated the set of
μ20ðtFÞ we use in Fig. 1. The initial μ20ð0Þ is also chosen to
lie outside the strong-coupling region in the symmetric
phase and a set of quench rates τQ are chosen so that it is
possible to maintain equilibrium into the strong-coupling
region such that the scaling arguments from the KZM can
be applied. While increasing the bare coupling λ0 enlarges
the strong-coupling region so that lower τQ are required, it
also shrinks the available continuum region in the broken
symmetry phase that lies outside the strong-coupling
region, and we have found λ0 ¼ 3 to provide a good
balance.
With the parameters for the evolutions fixed and an

approximation of the initial state jΩ½A�0i obtained by
uMPS with bond-dimension χ, the equal-time two function
can be approximated by numerically integrating the evo-
lution equation (43). We do this for a set of χ ¼ 16, 20, 24,
28, 32 using a 5th order Runge-Kutta schemewith time step

FIG. 1. The scalar mass mS (red circles) and twice the kink mass 2MK (blue triangles) as estimated using the tensor network
techniques described in [58] with d ¼ 18, χ ¼ 16 and [52] with d ¼ 18, χ ¼ 14, L ¼ 32 respectively. These quantities map out the
important parameter regions studied by sweeping μ20 for a fixed λ0 ¼ 3. The leftmost shaded region corresponds to the “lattice region”
where mS > 1 such that lattice effects are important and should be excluded to get a good comparison with the KZM. Furthermore,
the initial and final bare masses μ20ðt ¼ 0Þ and μ20ðtFÞ, indicated by the dashed vertical lines, should lie outside the shaded “strong-
coupling region” where, in the broken symmetry phase, mS ≈ 2MK and the kink-antikink excitations behave as standard scalar
excitations.
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τ ¼ 10−2 and local basis truncation d ¼ 18 up to total time
T ¼ 100 with the observable G2ðkÞ being evaluated every
100 steps. The time evolution of G2ðk ¼ 0Þ for the case of
μ20ðtFÞ ¼ −1.1 and τQ ¼ 32, 64, 128 is shown in Fig. 2
which illustrates several features of the evolution and
approximations used.
In the left-hand plot of Fig. 2, the value of G2ðk ¼ 0Þ is

shown for τQ ¼ 64 and χ ¼ 16, 32. Initially, the difference
between the two is small, being almost indistinguishable on
this scale prior to the critical point (dotted vertical line) but
the difference becomes significant during the “relaxation”
portion of the evolution at t > tF (dashed vertical line).
Ideally, we would like to make a set of approximations for
different χ and extrapolate to the χ → ∞ limit where the
evolution of the regularized theory is exact. While this is
possible in some cases where the convergence of observ-
ables is particularly smooth, it is difficult in others
especially at later times when we no longer expect the
state itself to be well described by uMPS with limited bond-
dimension, even if the observable of interest itself can be
reasonably approximated. As such, we instead make a
simple estimate of the error by taking the maximum
absolute difference between the χ ¼ 16, 20, 24, 28 and
highest χ ¼ 32 approximations which we use as an input
when fitting curves and display as error bars in plots (see
Fig. 3 for more discussion of the errors due to χ and d). The
right-hand plot of Figure 2 shows the evolution of the two

τQ ¼ 32 and τQ ¼ 128 quenches along with the error bars.
Once again, the most significant errors occur at later times
t ≫ tF as the system relaxes. In the τQ ¼ 32 cases, there are
then significant errors occurring at much earlier absolute
time t than for the corresponding τQ ¼ 128, as shown in the
inset which gives the error as a percentage of the value of
G2ðk ¼ 0Þ. However, we will not be interested in compar-
ing different τQ quenches at the same absolute time but
rather at the same relaxation time tR ¼ t − tF after the
quench ends. As such we will not be interested in the
regions with the most significant errors far from the point tF
(the dashed black and red vertical lines) such that the errors
in different τQ quenches will be much closer than if taken at
the same absolute time.
In addition to the errors, the plots in Fig. 2 display

temporal oscillations in G2ðk ¼ 0Þ, particularly during the
relaxation period, that are characteristic of the nonequili-
brium dynamics of quenched systems, as often found when
studying instantaneous τQ → 0 quenches [59]. While there
may be some physical damping of these oscillations over
time, the timescale on which this occurs is longer than the
timescales we have approximated. Because of this, rather
than focus on the equal-time two point function directly, we
will instead use the time-averaged two point function Ḡ2ðkÞ
given by averaging over the available data for G2ðkÞ after
the final bare mass μ20ðtFÞ has been reached and relaxation
begins such that

FIG. 2. The evolution of G2ðk ¼ 0Þ is shown for τQ ¼ 32, 64 and 128. The left-hand plot shows the approximation for τQ ¼ 64 with
χ ¼ 16 (blue triangles), χ ¼ 32 (red circles) and an additional χ ¼ 8 (green squares) for comparison. The χ ¼ 8 approximation deviates
significantly from the χ ¼ 16 and χ ¼ 32 approximations following t ≈ tC where tC is the time when μ20ðtÞ ¼ m2

C. Until the start of
relaxation at t ¼ tF (vertical dashed line), the two higher χ approximations are close on this scale, but deviate visibly during the
relaxation period. This is also the case for other τQ as shown in the right-hand plot where the maximum difference between the χ ¼ 16,
20, 24, 28 and χ ¼ 32 approximations is represented by error bars. This difference as a percentage of the value of G2ðk ¼ 0Þ for χ ¼ 32
is shown in the inset where, following tF, it can be seen that the difference becomes significant and the time-evolution has been extended
up to t ¼ 200 to illustrate the increase of errors with time. During the relaxation period, the value of G2ðk ¼ 0Þ displays large
oscillations which can be removed by time averaging as shown in the left-hand plot (solid black line). While the plots show the time-
evolution up to a maximum t ¼ 100 for τQ ¼ 64 and t ¼ 200 for τQ ¼ 32, 128, we will only be interested in comparing different τQ at
the same “relaxation time” i.e. at the same time after tF. The maximum time used for analysis is then different for each τQ and the shaded
regions indicate the data used in subsequent analysis from t ¼ tF to t ¼ tF þ 15.
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G2ðk; tRÞ ¼
1

tR

Z
tFþtR

tF

G2ðk; TÞdT: ð45Þ

This observable can then be used to provide a clean
comparison with the expected KZM behavior and displays
a similar error for different τQ quenches given a fixed
relaxation time tR. The value of Ḡ2ðk ¼ 0Þ for the τQ ¼ 64

case with χ ¼ 32 is shown in the left-hand plot of Fig. 2
with the inset displaying some of the region t > tF where
the averaging can be clearly seen.
To check the initial evolution of the system up to the

critical point, we compare the behavior of G2ðk ¼ 0Þ to the
equilibrium value GΩ

2 ðk ¼ 0Þ. The KZM states that initially
the state should remain in equilibrium such thatG2ðk¼0Þ¼
GΩ

2 ðk¼0Þ before becoming excited at some point ϵ̂ ¼
μ20 −m2

C before the critical point. The KZM further provides
an estimate for the scaling of ϵ̂ with the quench rate τQ
such that ϵ̂ ∼ τ−1=2Q when τQ is sufficiently large to probe
the critical region. Figure 4 illustrates this behaviour
through the evolution of G2ðk ¼ 0Þ (leftmost plot), the
ratioG2ðk ¼ 0Þ=GΩ

2 ðk ¼ 0Þ constructed using interpolating
functions (centre plot) and a comparison of ϵ̂ with τQ,
where ϵ̂ is estimated by the point at which G2ðk ¼ 0Þ=
GΩ

2 ðk ¼ 0Þ ¼ 0.9 (rightmost plot). The scaling of ϵ̂ is
established using a power-law fit to the points shown in
red to give ϵ̂ ∼ τ−0.49�0.01

Q close to the τ−1=2Q predicted by
the KZM.

As the system enters the broken symmetry phase, the
value of G2ðk ¼ 0Þ continues to grow, but the scaling
established at the point ϵ̂ should be retained. Furthermore,
once in the symmetry broken phase and after sufficient
relaxation time, we can interpret the time-average Ḡ2ðk¼ 0Þ
via the defect ansatz Gdefðk ¼ 0Þ such that Ḡ2ðk ¼ 0Þ−
GΩ

2 ðk ¼ 0Þ ≈ v2=n, where the vacuum expectation value
vðμ20Þ is determined from the corresponding uMPS approxi-
mation of the ground-state v ¼ hΩ½A�jϕjΩ½A�i. The value of
Ḡ2ðk ¼ 0Þ −GΩ

2 ðk ¼ 0Þ is shown in Fig. 5 (left-hand plot)
for the μ20ðtFÞ ¼ −1.1 case with tR ¼ 0 and tR ¼ 15. In the
first case, the oscillatory behaviour is clearly visible as
different τQ lie at different phases of their evolution.
However, in the second case this behavior is damped
significantly by the time-averaging. A power-law fit of
the tR ¼ 15 data scales as τ0.46�0.01

Q . This value is some-

where between the classical τ1=3Q and quantum τ1=2Q , though
closer to the latter. The estimate of the defect density nest
(27) is shown in the right-hand plot of Fig. 5 for the cases
μ20ðtFÞ ¼ −1.15 and −1.05. The agreement between the
different μ20ðtFÞ and nest obtained from the power-law fit of
Ḡ2ðk ¼ 0Þ −GΩ

2 ðk ¼ 0Þ is reasonable, consistent with the
interpretation that Ḡ2ðk ¼ 0Þ ≈ v2=n, though the large τQ
data still displays oscillations for this tR and the low τQ data
for μ20ðtFÞ ¼ −1.15 lies somewhat below nfit indicating that
longer relaxation times and slower quenches could improve
the agreement further. Nevertheless, this data suggests that
Ḡ2ðk ¼ 0Þ can indeed provide a simple observable with

FIG. 3. The “relative error” ofG2ðk ¼ 0Þ, defined as the fractional difference between the value ofG2ðk ¼ 0Þ for a given χ or d and the
maximum χ ¼ 32 or d ¼ 24, is shown for τQ ¼ 64, μ20ðtFÞ ¼ −1.1 and four times t ¼ 10, 26, 45, 60. In the left-hand plot, the error
decreases with χ for a fixed time while later times tend to have a higher overall error. However, the convergence is not smooth and, as can
be seen in the t ¼ 45 and t ¼ 60 plots at χ ¼ 24, for some values of χ the error at earlier times may appear greater than at some later
times. This leads to a somewhat noisy error estimate for χ ¼ 32 over time, defined as the maximum error for all χ ≥ 16, as can be seen in
the right-hand inset of Fig. 2. For τQ ¼ 64 the latest time used in subsequent analysis is t ¼ 60. For all t ≤ 60 the fractional error remains
less than 10−1 for all χ ≥ 16. In the right-hand plot, the relative error is shown for the truncation parameter d with fixed χ ¼ 16. At the
times t ≥ tF used for subsequent analysis, the relative errors for d ≥ 16 are all below 10−3 indicating that it is the error due to χ that is
most relevant. As such, we simply fix d ¼ 18 throughout and use the error on χ as our error estimate when performing fits.
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which to estimate the defect density in a quantum field
theory.
With the defect density estimated, the comparison of

Ḡ2ðkÞ and GdefðkÞ can continue by scaling the data using

the estimated nest and examining the observables GuniðkÞ
(30) and GuniðkÞ=GkinkðkdKÞ using the semi-classical
approximation forGkinkðkdKÞ described in Sec. II. If indeed
Ḡ2ðkÞ ¼ GdefðkÞ then GuniðkÞ should be a universal

FIG. 4. Plots of the time evolution ofG2ðk ¼ 0Þ up the critical pointm2
C (vertical solid black line). In the leftmost plot this is compared

with the ground state value (green triangles) with the increasing τQ remaining close to this value for a larger region of μ20. In the
central plot, the ratio of G2ðk ¼ 0Þ to the ground-state value is plotted using interpolating functions, showing the departure from
equilibrium more clearly. This also allows for a criteria for the loss of equilibrium to be established and we used the condition
G2ðk ¼ 0Þ=GΩ

2 ðk ¼ 0Þ ¼ 0.9 to define ϵ̂ ¼ μ̂20 −m2
C as the point where equilibrium is lost. The value of ϵ̂ is shown in the rightmost plot

where the larger τQ data (red circles) are fit to a power-law.

FIG. 5. The value of Ḡ2ðk ¼ 0Þ with the vacuum subtracted is shown (left-hand plot) for tR ¼ 0 and tR ¼ 15. In the former case, there
are large oscillations present in the data as different τQ quenches lie in different phases of their evolution. These oscillations are
significantly damped at tR ¼ 15 by the time-averaging and a power-law fit has been taken. The defect density corresponding to this
power-law fit nfit is shown in the right-hand plot which can be compared to the estimates nest (27) for μ20ðtFÞ ¼ −1.05, −1.15 at tR ¼ 10.
The data lies fairly close to the fit though the larger τQ data still displays clear oscillations.
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function of n up to a scale where the defect width dK is
important and GuniðkÞ ≈ Gcorrðk=nÞ. If additionally the
approximate form of GkinkðkdKÞ is accurate, then we can
further expect the observable GuniðkÞ=GkinkðkdKÞ to be a
universal function of n up to a somewhat higher scale where
the matter contributions GmatðkÞ become important and
GuniðkÞ=GkinkðkdKÞ ≈Gcorrðk=nÞ over this region.
Figure 6 shows the two observables GuniðkÞ (left-hand

plot) and GuniðkÞ=GkinkðkdKÞ (right-hand plot) for τQ ¼
32; 36; 40;…; 128 and μ20ðtFÞ ¼ −1.05, −1.1, −1.15 along
with fits to the functional form of GcorrðkÞ. In the left-hand
plot of Figure 6 the observable GuniðkÞ collapses reason-
ably up to around k=nest ≈ 5 and the functional form of
GcorrðkÞ fits well in this region such that the approximation

Ḡ2ðkÞ ≈
v2

nest
Gcorrðk=nestÞ þ GΩ

2 ðkÞ ð46Þ

holds for these low k=nest. However, for larger k=nest the
data begins to spread out indicating that GuniðkÞ is not a
universal function of n in this region. Furthermore, the fit
sits above the data indicating the need for an additional
term to suppress it and suggesting that there is another
relevant scale missing.
According to the Kibble-Zurek mechanism and the

physical picture provided by the defect ansatz (25), this
missing scale should be given by the width of defects in the

system dK. In the right-hand plot of Fig. 6, the observable
GuniðkÞ=GkinkðkdKÞ collapses well up until k=nest ≈ 10. At
this point the data spreads out and begins to increase due to
the division of GkinkðkdKÞ which becomes small in this
region. Nevertheless, the fit still agrees at k=nest ≈ 20with a
number of curves for which the division by GkinkðkdKÞ has
not yet dominated. Up to this scale, we then have the
approximation that

Ḡ2ðkÞ ≈
v2

nest
Gcorrðk=nestÞGkinkðkdKÞ þGΩ

2 ðkÞ ð47Þ

which is the defect ansatz (25) with the matter contribution
GmatðkÞ neglected.
To further check the consistency of the approximation

Ḡ2ðkÞ ≈GdefðkÞ we would like to account for the matter
contributions. First, we can check the consistency of their
interpretation by comparing the data Ḡ2ðkÞ to the vacuum
explicitly as shown in Fig. 7. As expected, the equal time
two point function tends to the vacuum at high k for all τQ
but has an additional positive contribution that is sup-
pressed with increasing τQ, consistent with the generation
of additional non-vacuum excitations during the phase
transition which provide the contribution GmatðkÞ to the
equal time two point function.

FIG. 6. Plots of GuniðkÞ (30) (left-hand plot) and GuniðkÞ=GkinkðkdKÞ (right-hand plot) for τQ ¼ 32; 36; 40;…; 128 along with fits to
the form functional form GcorrðkÞ (24). In the left-hand plot, the data collapses up to k=nest ≈ 5 indicating a universal function of the
defect density up to this point. With the inclusion of kink profile GkinkðkdKÞ in the right-hand plot the universal region is increased to
k=nest ≈ 10 indicating that the semiclassical approximation for GkinkðkdKÞ is accurate and that the data is consistent with kink formation
in the system. The fitted form agrees well with the data in both cases within the universal regions giving α1, α2, β1, β2 ¼ 0.683, 0.120,
0.329, 0.176 and α1, α2, β1, β2 ¼ 0.723, 0.128, 0.290, 0.130 in the left-hand and right-hand plots respectively.
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We can now account for the remaining contributions to
Ḡ2ðkÞ by using a semiclassical ansatz for the matter
contributions GmatðkÞ (28) as discussed in Sec. II. This
constitutes a two parameter fit and we find that, once
performed, the approximation Ḡ2ðkÞ ≈ GdefðkÞ holds over
several orders of magnitude, as shown in Fig. 8.
Figure 8 displays the defect ansatz fit (25) (solid black

line) with the vacuum subtracted for the τQ ¼ 64, μ20ðtFÞ ¼
−1.1 data (red circles) along with the various components
of the fit (left-hand plot). First, the defect ansatz without the
matter component (47) (dashed black line) decays rapidly
to zero following the scale set by the kink width d−1K ≈ 0.61
(vertical dashed blue line). This is corrected by the matter
contribution shown (dotted-dashed line) which is initially
irrelevant but dominates at high k ≫ d−1K . The full defect
ansatz (solid black line) then approximates the data
reasonably over the full range of k. The right-hand plot
also shows the fits for the case μ20 ¼ −1.05with lower τQ ¼
40 and higher τQ ¼ 116 data (red circles and green
triangles respectively). In this case, the plots behave as
expected with the higher τQ data starting at a larger value
for low k, corresponding to a lower defect density, but
ending up at a lower value since there are fewer non-
vacuum excitations present.
While the defect ansatz provides a reasonable approxi-

mation with the form of GmatðkÞ given by (28), (29) and the
corresponding values of μ and β determined by fitting, we

cannot interpret these parameters as cleanly as we would
like since they display large variations with τQ that mask
any overall trend. This also somewhat obscures the inter-
pretation of the kink profile term since we cannot assess the
impact of the semi-classical approximation cleanly. To
improve this, it would be desirable in the future to have a
nonperturbative approximation for the matter contribution
GmatðkÞ. This can be achieved by assuming, as done in this
paper, that the matter contributions can be described by
thermal effects. The thermal two-point function can then be
estimated by a nonperturbative method such as the min-
imally entangled thermal states (METTS) tensor network
[60], which takes β as an input with a definite interpretation
as the inverse temperature and eliminates the need for the
additional parameter μ. While it is still not clear exactly
what value of β should be used since we do not know how
energy is partitioned in the system, this would still offer a
more rigorous result and we could, e.g. determine β by
fitting to the data at large k where any effect of the kink
profile should be irrelevant. If we are able to establish the
form of GmatðkÞ in this manner, we can then “measure”
GkinkðkdKÞ more directly. In principle, this can then be
compared with a nonperturbative approximation of
GkinkðkdKÞ which e.g. might be obtained though a TN
approximation of the equal time two point function of the
one kink state hKjϕð−kÞϕðkÞjKi.

FIG. 7. The value of Ḡ2ðkÞ for τQ ¼ 32; 36; 40;…; 128 (solid red lines) is plotted along with GΩ
2 ðkÞ (left-hand plot, solid black line)

which agrees closely at large k as illustrated by the difference Ḡ2ðkÞ − GΩ
2 ðkÞ (dashed blue lines). At the maximum momentum k ¼ π

the value of Ḡ2ðk ¼ πÞ still lies above the vacuum value but this positive contribution decreases with τQ (right-hand plot, blue circles)
consistent with the existence of additional nonvacuum contributions to Ḡ2ðkÞ that are suppressed by slower quench rates.
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V. CONCLUSION

We have studied the relativistic ϕ4 scalar field theory in
D ¼ ð1þ 1Þ as the system is driven through a quantum
phase transition and approximated the equal time momen-
tum space two point function G2ðkÞ using uniform matrix
product states.
We have compared the time averaged two point function

within the symmetry broken phase Ḡ2ðkÞ to the ansatz
GdefðkÞ (25) based on the expectation of universal for-
mation of kinks via the Kibble Zurek mechanism. We find
that Ḡ2ðkÞ contains a universal part GuniðkÞ that is a
universal function of the estimate of the defect density
nest (27) for low k and that the functional form agrees with
that of GdefðkÞ using a semiclassical approximation for the
kink profile GkinkðkÞ. The approximation Ḡ2ðkÞ ≈ GdefðkÞ
further holds reasonably for all k with the inclusion of a
semiclassical ansatz GmatðkÞ for the matter contributions to
GdefðkÞ which then constitutes a two parameter fit. These
results indicate the consistency of the picture that the state
of the system following a symmetry breaking phase
transition is indeed described by the Kibble Zurek mecha-
nism along with the defect ansatz (25) and that tensor
network techniques can capture the nonperturbative non-
equilibrium physics of topological defect formation in

relativistic quantum field theories with strong-coupling
quantum phase transitions.
While the approximations used mean that precise

quantitative predictions are challenging, overall, when
considering the difficulty of performing calculations of
topological defect formation in quantum field theory, our
results suggests that the future application of tensor net-
work techniques to the study of nonperturbative, non-
equilibrium effects in QFT is highly promising. We have
suggested some possible improvements that will allow for
more quantitative predictions in the future and, with the
rapid recent developments of tensor network techniques,
are hopeful that these techniques can be applied in the near
future to more realistic models within high energy physics
and cosmology, with nonperturbative nonequilibrium sce-
narios being an area where they can offer particular
advantage over other available techniques.
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FIG. 8. The value of Ḡ2ðkÞ −GΩ
2 ðkÞ for τQ ¼ 64, μ20ðtFÞ ¼ −1.1 (left-hand plot, red circles) and τQ ¼ 40, 116, μ20ðtFÞ ¼ −1.05 (right-

hand plot, red circles and green triangles respectively). All three observables are fitted to GdefðkÞ − GΩ
2 ðkÞ (25) via a two parameter fit

with the values of β, μ indicated. The GmatðkÞ (28) component of GdefðkÞ − GΩ
2 ðkÞ, which contains the free parameters, is shown in both

plots (dotted-dashed line). Initially, this component is irrelevant and the curves are described by a single universal part shown in the left-
hand plot (black dashed line). In the universal part the effect of finite width kinks is clearly seen with the form being exponentially
suppressed after the inverse kink width k ≈ d−1K (vertical blue dashed line), such that the matter component dominates in the higher k
region. In the right-hand plot the curves behave as expected with the higher τQ case having a smaller matter component.
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