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We study massless fermions interacting through a particular four-fermion term in four dimensions. Exact
symmetries prevent the generation of bilinear fermion mass terms. We determine the structure of the low-
energy effective action for the auxiliary field needed to generate the four-fermion term and find it has an
novel structure that admits topologically nontrivial defects with nonzero Hopf invariant. We show that
fermions propagating in such a background pick up a mass without breaking symmetries. Furthermore,
pairs of such defects experience a logarithmic interaction. We argue that a phase transition separates a phase
where these defects proliferate from a broken phase where they are bound tightly. We conjecture that, by
tuning one additional operator, the broken phase can be eliminated with a single BKT-like phase transition
separating the massless from massive phases.
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I. INTRODUCTION

In this paper, we construct a continuum theory of
strongly interacting fermions in four dimensions in which
exact symmetries prohibit the appearance of mass terms.
We argue that the fermions nevertheless acquire masses at
strong coupling by virtue of their interactions with a
nontrivial vacuum corresponding to a symmetric four-
fermion condensate. Our work points out the existence
of new classes of theories of strongly interacting fermions
which may be important in the search for candidate theories
of BSM physics.
Furthermore, we show that the theory when discretized

yields a staggered fermion lattice theory which has been the
focus of several recent studies both in the particle physics
and condensed matter communities [1–7] in both three and
four dimensions. The numerical work in three dimensions
is consistent with the absence of symmetry breaking
bilinear condensates for all values of the four-fermion
coupling. The model nevertheless has a two phase structure
with a continuous phase transition with non-Heisenberg
exponents separating a massless phase from a phase with a
symmetric four-fermion condensate and massive fermions.
Progress in understanding the nature of this phase diagram
was given recently in [8]. In four dimensions, it appears that
a very narrow symmetry broken phase emerges between the
massless and massive phases.

The ingredients of the theory are somewhat unusual; the
fermions appear as components of a (reduced) Kähler-
Dirac field and as a consequence the theory is invariant only
under a diagonal subgroup of the Lorentz and flavor
symmetries together with an additional SOð4Þ symmetry.
It is this reduced symmetry, which is enforced by the
structure of the four-fermion term, that plays a key role in
prohibiting conventional Dirac mass terms.
Our paper offers a way to understand the structure of the

four-dimensional models from a continuum perspective
where we will see that topological features of the con-
tinuum theory can play an important role.

II. FOUR-FERMION THEORY

To start consider a theory comprising four flavors of free
massless Dirac fermion with (Euclidean) action:

S ¼
Z

d4xψ̄aγμ∂μψ
aðxÞ: ð1Þ

This is invariant under the global symmetry SOLorentzð4Þ×
SUflavorð4Þ. To build the model of interest, let us focus on
the diagonal subgroup of the Lorentz symmetry and an
SOð4Þ subgroup of the original SUð4Þ flavor symmetry
which we call T :

T ¼ SO0ð4Þ ¼ diag½SOLorentzð4Þ × SOflavorð4Þ�: ð2Þ
Under this symmetry, we may rewrite the action as

S ¼
Z

d4xTrðΨ̄γμ∂μΨÞ; ð3Þ

where we now treat the fermions as 4 × 4 matrices and the
trace operation Tr occurring here and throughout the paper
acts only on the matrix indices associated with the T
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symmetry. Actually, since the theory is massless we can
decompose these matrices into two independent compo-
nents using the twisted chiral projectors:

Ψ� ¼ 1

2
ðΨ� γ5Ψγ5Þ; ð4Þ

and the fermion action can be reduced to two Dirac flavors
with action

S ¼
Z

d4xTrðΨ̄þγμ∂μΨ−Þ: ð5Þ

Notice that this projection only commutes with the SOð4Þ
subgroup of the original SUð4Þ flavor symmetry. In the
Appendix, we show that this reduction is equivalent to
imposing the reality condition Ψ̄ ¼ Ψ with action

S ¼
Z

d4xTrðΨγμ∂μΨÞ: ð6Þ

The equation of motion that follows from this action can be
interpreted as the (reduced) Kähler-Dirac equation if one
expands the fermion matrices on products of Dirac gamma
matrices [9]. For the model we want to discuss, we will
consider four copies of this system by taking these matrix
fermions to additionally transform in the fundamental
representation of an independent SOð4Þ symmetry S i.e
Ψα → RαβΨβ with R an element of SOð4Þ.
Up to this point, everything we have done merely

corresponds to a change of variables that serves to highlight
a particular subgroup of the global symmetries—the
diagonal subgroup of the Lorentz and flavor symmetries.
The field content of the model still corresponds to eight
flavors of massless Dirac fermions. However, this situation
changes when I add four-fermion interactions of the
following form:

δS ¼ G2

4

Z
d4xϵαβγδTrðΨαΨβÞTrðΨγΨδÞ: ð7Þ

This interaction locks the Lorentz and flavor symmetries
together and ensures that the global symmetries G of the
theory are

G ¼ T × S ¼ SO0ð4Þ × SOð4Þ: ð8Þ
It is of crucial importance to notice that the resultant theory
does not admit any bilinear mass terms since TrΨαΨα ¼ 0
and any terms of the form TrΨαΨβ break the symmetry S.

III. ASIDE: CONNECTION TO (REDUCED)
STAGGERED FERMIONS

The motivation for this work derives in part from
recent numerical investigations of lattice models involving
four reduced staggered fermions interacting through the

corresponding unique four-fermion interaction. In this
section, we will show that the continuum model described
earlier when discretized naturally leads to those lattice
models. One way to discretize the continuum theory is to
expand the fermion matrices on position dependent
products of Dirac gamma matrices [10]. Consider the
original Ψ,

ΨðxÞ ¼
X
b

γxþbχðxþ bÞ; ð9Þ

where the components of the vector bi ¼ 0, 1 label points in
the unit hypercube attached to site x in a four-dimensional
hypercubic lattice and

γb ¼
Y
i

ðγiÞbi : ð10Þ

Plugging this expansion into Eq. (6) and doing the trace
over the gamma matrices yields the free reduced staggered
fermion action comprising one single component lattice
fermion at each lattice site:

X
x;μ

χðxÞημðxÞΔμχðxÞ ð11Þ

with Δμ the symmetric difference operator and ημðxÞ ¼
ð−1Þ

P
μ−1
i¼0

xi the usual staggered fermion phase [11,12].
Equipping each of these fields with an index under the S
symmetry and adding the four-fermion terms one arrives at

Sstag ¼
X
x;μ

χaðxÞημðxÞΔμχ
aðxÞ þG2

4

X
x

ϵabcdχ
aχbχcχd

ð12Þ
which is precisely the action studied in [4,5]. Thus we
expect that the continuum arguments described in this
paper can be applied to understand the numerical results
reported for this staggered fermion system.

IV. AUXILIARY FIELD ACTION

As usual our subsequent analysis requires replacing the
four-fermion term given in Eq. (7) by a Yukawa coupling to
an auxiliary scalar field

S0 ¼
Z

d4x

�
iGϕαβ

þ ðxÞTrðΨαΨβÞ þ 1

4
ðϕαβ

þ Þ2
�

ð13Þ

The auxiliary field is a antisymmetric matrix and satisfies a
self-dual condition ϕþ ¼ Pþϕ where the projector Pþ is
defined as

Pþ
αβγδ ¼

1

2

�
δαγδβδ þ

1

2
ϵαβγδ

�
ð14Þ
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Notice that the original four-fermion interaction can be
written as

½TrΨαΨβ�2þ ¼ 1

4G2
ðϕαβ

þ Þ2 ð15Þ

This structure ensures that ϕþ transforms in the adjoint
representation under a SUþð2Þ subgroup of the S sym-
metry SOð4Þ ¼ SUþð2Þ × SU−ð2Þ. It is a singlet under
both SU−ð2Þ and the internal T symmetries (see the
Appendix for more details). Furthermore, it is easy to
see that the eigenvalues of the resultant fermion operator
come in complex conjugate pairs. In addition, each
eigenvalue is doubly degenerate since the fermion operator
also commutes with SU−ð2Þ. These facts ensure that the
Pfaffian that results from integration over the fermions is in
fact real, positive definite.

V. EFFECTIVE ACTION

Returning to Eq. (13) we now integrate out the fermions
using positivity of the Pfaffian and consider the form of the
one loop effective action.

Seff ¼ −
1

4
Tr ln ð−□þG2μ2 þ Gγμ∂μϕþÞ ð16Þ

where ϕ2þ ¼ μ2I and we have absorbed the explicit factor
of i into the auxiliary field to render ϕþ hermitan. Let us
first consider the Coleman-Weinberg effective potential
obtained by assuming a constant auxiliary field

VeffðμÞ ¼ −
1

4
Tr ln

�
−□þG2μ2

−□

�
þ μ2 ð17Þ

where we have subtracted off the value of Veff atG ¼ 0 and
added in the classical action for ϕþ. If we expand the
remainder in powers of G it should be clear that Veff
develops a minimum away from the origin for sufficiently
large G > Gc. Thus naively one expects the system to enter
a symmetry broken state for some value of the four-fermion
coupling. This is the usual NJL scenario and in this case
will correspond to a breaking pattern SUþð2Þ → Uð1Þ
corresponding to a vacuum manifold with the topology
of S2.
Of course to understand the dynamics of the theory in

more detail we need to compute the leading terms in the
effective action for ϕþ for nonconstant fields. Expanding
the latter on a suitable 4 × 4 basis T (see the Appendix for
more details) we find

ϕþðxÞ ¼
X3
a¼1

ϕaþðxÞTa ¼
X3
a¼1

naðxÞσa ⊗ I ð18Þ

In this basis, the fermion operator has a trivial dependence
on SU−ð2Þ and we will suppress it in our subsequent

analysis. For G > Gc the field naðxÞ obeys the Oð3Þ
constraint nana ¼ 1. The effective action governing
the fluctuations in naðxÞ is now given by a derivative
expansion of

−
1

4
Tr ln

�
I þm

γμ∂μnaσa

−□þm2

�
ð19Þ

where m ¼ Gμ. At leading order, one encounters an Oð3Þ
symmetric term quadratic in the derivatives of naðxÞ (see
the Appendix):

aðGÞ
Z

d4xð∂μnaÞ2: ð20Þ

However, at higher orders in 1=m, one also encounters an
additional quartic term which can play an important role in
understanding the possible phases of the theory:

bðGÞ
Z

d4xðϵabc∂μna∂νnbÞ2: ð21Þ

The combination of these two terms defines the Fadeev-
Skyrme model which is known to possess topologically
stable field configurations which we will argue can play a
role in the current theory.
The analysis of the dynamics is facilitated by a further

change of variables in which theOð3Þ vector na is replaced
by a SUð2Þ matrix field which rotates naσa to a fixed
matrix, say σ3:

naðxÞσa ¼ U†ðxÞσ3UðxÞ: ð22Þ

This has the immediate advantage that the nonlinear
constraint nana ¼ 1 is simply replaced by the unitarity
property of U ¼ eiθ

aσa with the angular variables θ’s
unconstrained. Of course, this mapping cannot be the
whole story since the manifold of SUð2Þ is S3 not S2

and indeed it is easy to see that na is invariant under local
left multiplication of UðxÞ by an element of Uð1Þ:

UðxÞ → eiσ3βðxÞUðxÞ: ð23Þ

The action is also manifestly invariant under right multi-
plication by a global SUð2Þ rotation U → UG. Thus the
final effective action for U should respect both this global
SUð2Þ symmetry and the local Uð1Þ gauge symmetry. We
can make the local invariance explicit if we replace
ordinary derivatives by covariant derivatives with the
leading term now being

Seff ¼ aðGÞ
Z

d4xtr½ðDμUÞ†ðDμUÞ� þ � � � ; ð24Þ

where Dμ ¼ ∂μ þ iAμσ3 and Aμ is an Abelian gauge field
needed to enforce the Uð1Þ symmetry given in Eq. (23).
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This action is classically equivalent to the original one.
However, in this case one would also expect to find a
Maxwell term corresponding to this exact local Uð1Þ
invariance:

δSeff ¼ bðGÞ
Z

d4xFμνFμν: ð25Þ

Indeed, classically, the field strength can be expressed in
terms of Oð3Þ vector n [13] as

Fμν ¼ n:ð∂μn × ∂νnÞ; ð26Þ
and we see that the Maxwell term just represents the higher
order term in Eq. (21).
In this picture, a conventional broken phase for the sigma

model eg na ¼ δa3 leads to U ¼ I up to gauge trans-
formations and corresponds to a Higgs phase with photon
mass

ffiffiffiffiffiffiffiffiffiffi
aðGÞp

. Close to Gc the photon mass is large and the
gauge field decouples from long-distance physics so that
this regime is governed by the usual Oð3Þ sigma model
action.

VI. TOPOLOGICAL DEFECTS

While the uniform phase is always a possible vacuum
solution additional possibilities arise at strong coupling
where the quartic term plays a role. Let us search for
nontrivial field configurations. To try to keep the action
finite forces us to look for solutions where DμU → 0 as
r → ∞ and corresponding to vanishing photon mass. This
implies

∂μU ¼ −iAμσ3U ð27Þ

or

Aμ ¼
i
2
trð∂μUU†σ3Þ: ð28Þ

The long-distance contribution to the action of such a
configuration is then determined by the Maxwell term

bðGÞ
Z

d4x
1

4
ðtr∂μU∂νU†σ3Þ2: ð29Þ

A topological defect must then correspond to a UðxÞ
configuration that maps nontrivially at infinity into the
S2 target space. Such a mapping exists, is termed the Hopf
map, and corresponds to Π3ðS2Þ ¼ Z. If we parametrize a
general U matrix as

U ¼
�
α1 þ iα2 −α3 þ iα4
α3 þ iα4 α1 − iα2

�
ð30Þ

with
P

iα
2
i ¼ 1, then the simplest topological defect

corresponds to setting αi ¼ xi
r where xi are the four-

dimensional coordinates. This parametrization yields a

S3 → S3 map but this is reduced to the Hopf map when
U fields which are gauge equivalent are identified. A
similar topological defect solution was constructed in a
four-dimensional Yang-Mills-Higgs system in [14]. The αi
correspond to trigonometric functions of angles in four-
dimensional polar coordinates and it can easily seen that the
action given in Eq. (29) corresponding to such a defect
diverges logarithmically with system size.1 Furthermore the
topological charge of this object can be obtained from the
theta term corresponding to the Uð1Þ field.

1

32π2

Z
d4xϵμνρλtrð∂μU∂νU†σ3Þtrð∂ρU∂λU†σ3Þ ð31Þ

Unlike the action this term does not diverge logarithmically
since it may be recast as a Chern-Simons term which can be
computed on the boundary sphere at infinity.
While such a background corresponds asymptotically to

a point on the vacuummanifold it clearly does not break the
S symmetry since hPxϕþðxÞi ¼ 0. Of course the key
question is whether such defects can play a role in
determining the phase structure of the model. At first
glance, they should not—the logarithmically divergent
action corresponding to such defects will ensure that a
single defect is completely suppressed in the infinite
volume limit. This situation is analogous to the behavior
of vortices in the two-dimensional XY model which also
possess a log divergent action. In the latter case, a
configuration of finite action can be constructed consisting
of a vortex and anti-vortex. The action for such a configu-
ration depends logarithmically on the separation of the two
vortices which hence bind tightly together at low temper-
atures. However, since the entropy associated with a vortex
also increases logarithmically with system size, a BKT
phase transition develops as the temperature is raised and
vortices unbind and populate the ground state.
We propose that a similar phenomena may occur in this

four-dimensional model—that is, the ground state for G ∼
Gc consists of tightly bound Hopf–anti-Hopf defects. In
such a scenario, the disordering effects of the defects are
suppressed and one expects a conventional symmetry
broken (Higgs) phase to appear as has been observed in
the numerical simulations [4,7]. However, as the coupling
is increased still further, the defects may unbind via another
transition to populate and disorder the ground state. This
condensate of Hopf defects with hϕ2þi ≠ 0 would then
correspond to the four-fermion condensate in the original
four-fermion model consistent with Eq. (15). An estimate
for the critical coupling can be arrived at by comparing
the entropy associated to the location of a single defect
S ∼ lnV with its action E ∼ bðGÞ lnV yielding bðGÞcrit ∼ 1.
It is interesting to compute the fermion propagator in the

background of such a defect. Consider the S-symmetric
correlator

1For a Hopf defect the gauge field corresponds to a large gauge
transformation.
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GFðx;yÞ¼ trhΨðxÞΨðyÞi¼ tr

�
−γμ∂μþmnaσa

ð−∂2
μþm2þmPÞ

�
ð32Þ

where

P ¼ γμð∂μU†ðxÞσ3UðxÞ þ U†ðxÞσ3∂μUðxÞÞ ð33Þ

and the trace is to be carried out over the S-indices. Using
the fact that the covariant derivative vanishes far from the
core of the defect allows us to show that P ¼ 0 and the
propagator in that region simplifies to

GFðx; yÞ ¼
−2γμ∂μ

−□þm2
ð34Þ

Thus the fermion acquires a mass m ¼ μG in the back-
ground of such a defect. This gives a concrete realization of
the mechanism discussed in [15] and is consistent with
strong coupling expansions for staggered fermions [5].

VII. BKT TRANSITION

We have argued that the model possesses a conventional
broken phase (or Higgs phase) which gives way to a
symmetric phase at stronger coupling due to unbinding of
topological defects. Since mechanisms for giving fermions
a mass are quite different in the two regimes one might
expect a discontinuous phase transition separates the
broken phase and the defect phase. To obtain a true
BKT-like transition requires one to pass directly between
the massless and massive symmetric phases. To effect such
a scenario one can generalize the original four-fermion
model to a true Higgs-Yukawa model by the addition of a
kinetic term for the auxiliary field ϕþ. One can then
imagine tuning the coupling of this kinetic operator so
as to cancel out the effects of the leading gradient term
Eq. (24). This sets the photon mass to zero and eliminates
the Higgs phase of the model. We conjecture that in this
limit a true single BKT transition separates the massless
and massive phases.

VIII. SUMMARY

We have argued that a particular four-dimensional
continuum theory possesses an interesting phase structure
as a function of the coupling to a particular four-fermion
interaction. For sufficiently weak four-fermion coupling,
we expect the theory to describe massless noninteracting
fermions. As the coupling is increased, the system should
undergo a NJL-like phase transition to a phase in which the
SOð4Þ symmetry is spontaneously broken via a bilinear
fermion condensate. In the auxiliary field picture, this
phase is characterized by tightly bound pairs of Hopf
defects and a nonzero expectation value for the scalar field.
As the coupling is increased further we argue that these
defects may unbind at a transition to populate and disorder

the vacuum restoring the symmetry. In the background of
such defects, the fermions acquire a mass without breaking
symmetries. This phase is interpreted as a four-fermion
condensate in the original fields. We also argue that by an
additional tuning of the kinetic energy the broken phase can
be eliminated and a single BKT transition would separate
the massless from massive phases.
The continuum theory we describe possesses an unusual

Lorentz symmetry which is locked via the four-fermion
interaction with an internal flavor symmetry. At weak
coupling, we expect the four-fermion term to be irrelevant
and the IR description of the theory will correspond to
sixteen flavors of free Majorana fermion with the symmetry
enhancing to the usual Lorentz and flavor symmetries.
Correspondingly, the beta function for the four-fermion
coupling has an IR attractive fixed point at G ¼ 0. The
transition to a phase of broken symmetry is likely of the
NJL type and hence the corresponding (IR unstable) fixed
point would lie in the universality class of the usual Higgs-
Yukawa theory. However, if an additional continuous
transition were to separate this phase from the four-fermion
condensate phase, this would correspond to a new strongly
coupled IR fixed point. This would be a fascinating
prospect. The BKT limit would correspond to a situation
where the two fixed points bounding the broken phase
merge into a single continuous transition.
We have also argued that this continuum theory

naturally discretizes to yield a theory of strongly interact-
ing reduced staggered fermions. This lattice model has
received some recent attention and the numerical phase
diagram that has been uncovered matches quite closely
with the gross features described in this paper. Indeed, in
the condensed matter literature, there has recently been a
great deal of interest in models which are able to gap
fermions without breaking symmetries using carefully
chosen quartic interactions [16]. This work has even been
used to revive an old approach to lattice chiral gauge
theories due to Eichten and Preskill [17] in which mirror
states of a definite chirality can be gapped out of an
underlying vector like lattice theory using four-fermion
interactions [18]. It will be interesting to see whether the
current model can be generalized to implement such
constructions. Independent of this potential connection,
the possibility of new phases and critical points in strongly
interacting fermion systems in four dimensions is very
interesting in its own right, and we hope the current work
stimulates further work in this area.
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APPENDIX A: OBTAINING THE TWISTED
MAJORANA FORM

Setting Ψ̄þ ¼ C−1ΨTþC where C is the charge conjuga-
tion operator the action can be rewritten

S ¼
Z

d4xTrðC−1ΨTþCγμ∂μΨ−Þ ðA1Þ

Taking the transpose of this equation yields

S ¼
Z

d4xTrðC−1ΨT
−Cγμ∂μΨþÞ ðA2Þ

Adding these two expressions the action can be expressed
entirely in terms of the field Ψ ¼ Ψþ þΨ−.

S ¼
Z

d4xTrðC−1ΨTCγμ∂μΨÞ ðA3Þ

But C−1ΨTC ¼ Ψ if one expresses the matrix Ψ as a sum
over the Clifford algebra formed from the product of Dirac
gamma matrices so that the action in (twisted) Majorana
form is simply

S ¼
Z

d4xTrðΨγμ∂μΨÞ ðA4Þ

APPENDIX B: CHANGING BASIS TO
SUð2Þ × SUð2Þ

We can verify the mapping into theOð3Þ nonlinear sigma
model by starting from an explicit 4 × 4 basis for the
hermitian self-dual field ϕþ ¼ P

3
a¼1 ϕ

aþTa

T1¼
�

0 −iσ1
iσ1 0

�
T2¼

�
0 iσ3

−iσ3 0

�
T3¼

�
σ2 0

0 σ2

�

These matrices clearly obey an SUð2Þ algebra which is part
of the original SOð4Þ S algebra and the self-dual condition
is clearly equivalent to the statement that ϕþ transforms in
the adjoint representation of that SUð2Þ. The other inde-
pendent SUð2Þ contained in S is given the generators

U1¼
�

0 −σ2
−σ2 0

�
U2¼

�
0 iσ1

−iσ1 0

�
U3¼

�
σ2 0

0 −σ2

�

Using the similarity transformation P given by

P ¼ 1ffiffiffi
2

p

0
BBB@

1 0 0 −1
i 0 0 i

0 −1 −1 0

0 −i i 0

1
CCCA ðB1Þ

one can verify that the generators T and U take the form

Ta ¼ σa ⊗ I and Ua ¼ I ⊗ σa ðB2Þ

This makes it clear that Ta (and hence ϕþ) are singlets
under SU−ð2Þ.

APPENDIX C: LARGE MASS EXPANSION

Starting from the expression

Seff ¼ −
1

4
Tr ln ð−□þm2 þmγμ∂μnaσaÞ; ðC1Þ

we first subtract the contribution at m ¼ 0 and write

Seff ¼ −
1

4
Tr ln

��
−□þm2

−□

��
I þmγμ∂μnaσa

−□þm2

��
:

ðC2Þ

The first factor inside the logarithm yields the effective
potential previously described. So we focus on the second
factor. Clearly one can imagine expanding this term in
powers of 1=m. To yield a nonzero result one must arrange
for a nonzero trace over products of Dirac gamma matrices
and Pauli matrices. The leading term clearly arises at
second order in 1=m and is

Z
d4x

Λ4

m2
ð∂μnaÞ2; ðC3Þ

where Λ is a UV cutoff. This term is quite generic and
would arise independent of the structure of the Yukawa
term. The structure of the quartic term depends crucially on
the interplay of the SUð2Þ and Dirac structures:

Z
d4x

Λ4

m4
ð∂μna∂νnbÞ2: ðC4Þ

Since these operators contain the cutoff the coefficients
must be renormalized to yield a finite effective action. We
will not attempt that process here but merely note that the
coefficients of the effective action will have an explicit
dependence on the mass m and hence coupling G and we
write them as aðGÞ and bðGÞ.
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