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We discuss a scenario in which the Pcð4450Þþ heavy pentaquark is a ΣcD̄�-Λcð2595ÞD̄ molecule. The
Λc1D̄ → ΣcD̄� transition is mediated by the exchange of a pion almost on the mass shell that generates a
long-range 1=r2 potential. This is analogous to the effective force that is responsible for the Efimov
spectrum in three-boson systems interacting through short-range forces. The equations describing this
molecule exhibit approximate scale invariance, which is anomalous and broken by the solutions. If the 1=r2

potential is strong enough this symmetry survives in the form of discrete scale invariance, opening the
prospect of an Efimov-like geometrical spectrum in two-hadron systems. For a molecular pentaquark with
quantum numbers 3

2
− the attraction is not enough to exhibit discrete scale invariance, but this prospect might

very well be realized in a 1
2
þ pentaquark or in other hadron molecules involving transitions between particle

channels with opposite intrinsic parity and a pion near the mass shell. A very good candidate is the
Λcð2595ÞΞ̄b − ΣcΞ̄b

0 molecule. Independently of this, the 1=r2 force is expected to play a very important
role in the formation of this type of hadron molecule, which points to the existence of 1

2
þ ΣcD�-Λcð2595ÞD

and 1þ Λcð2595ÞΞb − ΣcΞ0
b molecules and 0þ=1− Λcð2595ÞΞ̄b − ΣcΞ̄b

0 baryonia.

DOI: 10.1103/PhysRevD.97.094036

The onset of scale invariance in two-body systems is a
remarkable property. It connects a series of seemingly
disparate low-energy phenomena in atomic, nuclear and
particle physics under the same theoretical description [1].
When the scattering length a0 of a two-body system is
much larger than any other scale, i.e. a0 → ∞, the system is
invariant under the scale transformation r → λr with
arbitrary λ [2]. The low-energy properties of this two-body
system can be fully explained independently of the under-
lying short-range dynamics. That is, few-body systems
with a large scattering length admit a universal description.
Efimov discovered that three-boson systems exhibit a
characteristic three-body spectrum for a0 → ∞, where
the binding energy of the states is arranged in a geometric
series [3]. The continuous scale invariance of the three-
body equations is anomalous and the spectrum only shows
discrete scale invariance under the transformation r → λ0r
where the value of λ0 is now fixed. Conversely if En is the
binding energy of a three-body state there is another state

with binding Enþ1 ¼ En=λ20, a prediction that was con-
firmed experimentally with Cs atoms a decade ago [4]. This
type of discrete geometrical spectrum also happens in
three-body systems containing at least two identical par-
ticles [5], or when the scattering is resonant in higher partial
waves [6,7]. This mechanism might be responsible for the
binding of the triton [8], 4He [9], a series of halo nuclei
[10–14] and the Hoyle state [15,16].
There is a two-body system that is intimately related to the

Efimov effect, which is the 1=r2 potential.1 At zero energy
the reduced Schrödinger equation for the s-wave becomes

−u00ðrÞ þ g
r2

uðrÞ ¼ 0; ð1Þ

which is obviously scale invariant (for a finite energy
analysis we refer to [18]). The connection with the three-
body system is apparent when one realizes that it also
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1While a two-body system with infinite scattering length is
scale invariant, a two-body system with a 1=r2 potential can
display at most discrete scale invariance, a possibility which will
depend on the strength of the potential. Continuous scale
invariance for 1=r2 is broken by the existence of a fundamental
state with E ≠ 0. Equivalently, as happens in the three-boson
system [17], the renormalization of 1=r2 is nontrivial and requires
the appearance of a new energy scale and henceforth that scale
invariance is broken.
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contains a similar equation with an effective 1=ρ2 potential
in the hyper-radius ρ [19]. For g > −1=4 the equation above
admits power-law solutions of the type

uðrÞ ¼ cþr
1
2
þν þ c−r

1
2
−ν; ð2Þ

with c� constants and ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ g

p
, where scale invari-

ance is lost. For g < −1=4 we have instead solutions of the
type

uðrÞ ¼ cr1=2 sin ðν logΛ2rÞ; ð3Þ

with c a constant, ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=4 − g

p
and Λ2 an energy scale

that depends on the short-range physics (it can be obtained
from the energy of the fundamental state). Λ2 is the reason
why exact scale invariance is broken and its appearance
resembles dimensional transmutation [20,21]. Now the
solutions display discrete scale invariance with r → λ0r,
where λ0 ¼ eπ=ν [22,23]. In turn there is a geometric bound
state spectrum where Enþ1 ¼ En=λ20, with En and Enþ1 the
energy of two consecutive states. Incidentally this is a rare
example of an anomaly in quantummechanics [24]. Herewe
make the observation that the 1=r2 potential can appear in
heavy hadron molecules, for instance the Pcð4450Þþ heavy
pentaquark if it happens to be molecular (the only other
known example of a 1=r2 potential is the atom-dipole
interaction [25]). There might be other two-hadron systems
where the potential might be attractive enough to exhibit
discrete scale invariance. The ideas presented here involve
long-range physics and hence only apply to molecular
hadrons (i.e. nonrelativistic bound states of two-hadrons)
that fulfill a series of conditions, but not to compact hadrons.
The heavy pentaquarks Pcð4380Þþ and Pcð4450Þþ, Pc

and P�
c from now on, were discovered by LHCb [26] and

are a recent and interesting addition to a growing family of
exotic hidden charm (and bottom) hadrons that began with
the Xð3872Þmore than ten years ago [27]. There is still a lot
of discussion regarding the nature of the Pc and P�

c, from
the role of threshold effects [28–31], to baryocharmonia
[32], a compact pentaquark [33–38], a heavy baryon-
antimeson molecule [39–43] and other more exotic pos-
sibilities [44,45]. The P�

c is an interesting molecular
candidate because of the following two reasons: its width
is not particularly big, Γ ¼ 35� 5� 19 MeV, and it is
very close to the ΣcD̄� threshold, see Fig. 1. As a matter of
fact a series of works predicted the possibility of a heavy
baryon-antimeson molecule before the discovery of the P�

c
[46–49]. The probable quantum numbers of the Pc and P�

c

are 3
2
− and 5

2
þ respectively, followed by 5

2
þ and 3

2
−. The

standard molecular explanation for the P�
c heavy penta-

quark is that of a ΣcD̄� bound state, which prefers the
quantum number 3

2
− for the P�

c. Here we discuss the
scenario in which the molecular P�

c also contains a
Λc1D̄ component in addition to ΣcD̄�, where Λc1 denotes

the Λcð2595Þ. Burns [50] proposed this idea on the analogy
between the DD̄� þD�D̄ and the Y�

cD̄þ YcD̄ systems, i.e.
the X(3872) and the P�

c, where Yc, Y�
c are charmed baryons.

He argued that the most natural analog to the DD̄� þD�D̄
system is ΣcD̄� − Λc1D̄ on the basis that the mass differ-
ence of the Λc1 and Σc is very close to the D� and D
splitting. Here we will explore this possibility.
The low-energy dynamics of ΣcD̄� − Λc1D̄ is driven by

one pion exchange (OPE) and is fascinating for two reasons.
First, if the Λc1D̄ pair exchanges a pion to become a ΣcD̄�
pair the pion will be almost on the mass shell, leading to an
unusual long-range potential for strong interactions.
Second, the intrinsic parities of Λc1ð12−Þ and Σcð12þÞ are
different while the ones for theD andD� are the same. As a
consequence OPEwill switch odd (even) waves in theΛc1D̄
channel to even (odd)waves in theΣcD̄� one. That is, there is
a vector force analogous to the tensor, except that it carries
orbital angular momentum L ¼ 1 instead of L ¼ 2. The
tensor force behaves as 1=r3 for mπr < 1, while the vector
force as 1=r2. This short-range property becomes long range
if the pion is near the mass shell.
We can compute the ΣcD̄� → Λc1D̄ potential from the

heavy baryon chiral Lagrangian of Cho [51]

hΛc1D̄jVOPEðr⃗ÞjΣcD̄�i ¼ ωπτϵ⃗ · r̂WEðrÞ; ð4Þ

with ωπ ¼ mðΛc1Þ −mðΣcÞ the energy of the pion, τ an
isospin factor such that τ ¼ ffiffiffi

3
p

for I ¼ 1=2 and τ ¼ 0 for
I ¼ 3=2 and ϵ⃗ the polarization vector of the incoming D̄�
meson. WE reads

WEðrÞ ¼
g1h2μ2π
4π

ffiffiffi
2

p
f2π

e−μπr

μπr

�
1þ 1

μπr

�
; ð5Þ

with g1 the axial coupling for the heavy mesons, h2 the
coupling for the πΛc1Σc vertex, fπ ≃ 130 MeV the pion

FIG. 1. Location of the thresholds for the two scale invariant
molecule candidates considered in this work, the Λc1D̄ − ΣcD̄�

and the Λc1Ξ̄b − ΣcΞ̄b
0. We also show the location of the P�

c for
comparison.
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decay constant and μπ ¼ m2
π − ω2

π is the effective pion
mass. Besides, there is standard-range OPE in the ΣcD̄�

channel while OPE vanishes in the Λc1D̄ channel.
Actually jμπj ≃ 5–35 MeV ≪ mπ depending on whether

we exchange a charged or neutral pion; i.e. the ΣcD̄� →
Λc1D̄ transition potential dominates the long-range dynam-
ics of the system for 1=mπ < r < 1=jμπj (which is also the
region of validity of the equations we will write below). We
stress that scale invariance is only approximate and broken
by two interrelated factors: (i) the pion is not exactly on the
mass shell, and (ii) the ΣcD̄� and Λc1D̄ thresholds are a pair
of MeV away from each other. For the moment we will
assume μπ ¼ 0, which implies overlapping thresholds. In
principle the widths of the Σc and Λc1 baryons are another
factor to consider. Yet the widths can be ignored if the time
required for the formation of the state is shorter than the
lifetime of its components: Γ ≪ m, with Γ the width of the
component and m the mass of the exchanged particle [52].
For the Σc and Λc1 the widths are about a pair of MeVs,
well below mπ ∼ 140 MeV. The potential in the I ¼ 1=2
channel reads

hΛc1D̄jVOPEðr⃗ÞjΣcD̄�i ¼ g1h2ωπ

4πf2π

ffiffiffi
3

2

r
ϵ⃗ · r̂
r2

þOðμ2πr2Þ; ð6Þ

i.e. the μπ ¼ 0 limit of Eqs. (4) and (5). If we consider JP ¼
3
2
− (the standard quantum numbers for a molecular penta-
quark), the partial waves contributing are ΣcD̄�ð2D3=2Þ,
ΣcD̄�ð4S3=2Þ, ΣcD̄�ð4D3=2Þ and Λc1D̄ð2P3=2Þ. In this partial
wave basis the reduced Schrödinger equation at zero energy
reads

−u00 þ
�
2μP�

c
VOPE þ

L2

r2

�
u ¼ 0; ð7Þ

where u is the wave function in vector notation and μP�
c
the

reduced mass of the molecule (actually there is one reduced
mass for each particle channel, but here we can take their
geometric mean). The combination of the vector OPE
potential and the centrifugal barrier reads

2μP�
c
VOPE þ

L2

r2
¼ gð3

2
−Þ

r2

¼ 1

r2

0
BBBBB@

6 0 0 g

0 0 0 g

0 0 6 −g
g g −g 2

1
CCCCCA
: ð8Þ

That is, we have a four channel version of Eq. (1). We can
diagonalize the matrix gð3

2
−Þ, in which case we end up with

four equations of the type

−u00i þ
gi
r2
ui ¼ 0; ð9Þ

where the gi’s (i ¼ 1, 2, 3, 4) are the eigenvalues of gð3
2
−Þ.

There are three positive and one negative eigenvalue

gi ¼ f6; 2; 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3g2

q
; 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3g2

q
g; ð10Þ

where the negative one can trigger discrete scale invariance.
This will happen if jgj > 5=ð4 ffiffiffi

3
p Þ ≃ 0.7217. However the

value of g for the P�
c molecule is g ¼ 0.60þ0.10

−0.10h2, where we
have used g1 ¼ 0.59� 0.01� 0.07 from D� → Dπ and
D� → Dγ decays [53,54]. This requires jh2j > 1.21þ0.25

−0.19 ,
which is well above h2 ¼ 0.60� 0.07 from CDF [55] or
h2 ¼ 0.63� 0.07 from the analysis of Ref. [56], where in
both cases h2 is extracted from ΓðΛc1 → ΣcπÞ. That is,
there is not enough attraction to achieve discrete scale
invariance. For the 1

2
− molecule the matrix is different but

the attractive eigenvalue is still g−ð12−Þ ¼ 3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3g2

p
,

requiring jgj > 5=ð4 ffiffiffi
3

p Þ. The most interesting pentaquark-
like molecule is the 1

2
þ, with partial waves ΣcD̄�ð2P1=2Þ,

ΣcD̄�ð4P1=2Þ and Λc1D̄ð2S1=2Þ, where

g
�
1

2

þ� ¼

0
B@

2 0 g

0 2 −
ffiffiffi
2

p
g

g −
ffiffiffi
2

p
g 0

1
CA: ð11Þ

The attractive eigenvalue is g−ð12þÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3g2

p
,

which requires jgj > ffiffiffi
3

p
=4 ≃ 0.4330 and jh2j >

0.73þ0.11
−0.06 , i.e. overlapping with current estimations of h2.

Finally the 3
2
þ, 5

2
þ and 5

2
− cases require jgj > 7

ffiffiffi
3

p
=4, jgj >

7
ffiffiffi
3

p
=4 and jgj > 15

ffiffiffi
3

p
=4. That is, the strength of the

vector force is in general too weak in the pentaquark-like
molecules to achieve discrete scale invariance, with the
notable exception of 1

2
þ which lies on the limit.

Yet the P�
c is not the only system where this can happen.

The general conditions for a H1H2 −H0
1H

0
2 hadronic

molecule to have scale invariance are (i) the hadrons are
particularly long lived; (ii) the mass difference of the
hadrons in each vertex is similar to that of a pseudo-
Goldstone boson mðH1Þ0 −mðH1Þ ≃mðH2Þ −mðH2Þ0≃
mP; (iii) the intrinsic parity of H2 and H0

2 is the same,
while that of H1 and H0

1 is different; and (iv) H1 and H0
1

have the same spin for the pseudo-Goldstone boson to be
emitted in the s-wave. This applies as well if we substitute
hadrons for antihadrons in one of the vertices: the vector
force will change sign but the eigenvalues of the 1=r2

potential matrix will remain the same. Notice that it is not
strictly necessary to exchange a pion near the mass shell to
have a long-range 1=r2 force. A kaon near the mass shell
will also generate this type of force.
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If we have the Λc1-Σc on the one side, besides the D-D�,
the Ξb − Ξ0

b bottom baryon combination also fulfills the
previous conditions; see Fig. 1 for the threshold location. In
this regard the Λc1Ξ̄b-ΣcΞ̄b

0 system seems to be the best
candidate for a scale invariant molecule in the heavy sector.
The Λc1Ξ̄b → ΣcΞ̄b

0 potential for I ¼ 1=2 reads

hΣcΞ̄b
0jVOPEðr⃗ÞjΛc1Ξ̄bi ¼

g3h2ωπ

8πf2π

σ2 · r̂
r2

þOðμ2πr2Þ; ð12Þ

where g3 is the axial coupling for the Ξ̄b
0Ξ̄bπ vertex and σ2

is the Pauli matrix for that vertex. If we consider states in
which the ΣcΞ̄b

0 is in the s-wave or alternatively in the
p-wave where the tensor force is attractive, we have

0þ ¼ ΣcΞ̄b
0ð3P0Þ − Λc1Ξ̄bð1S0Þ; ð13Þ

0− ¼ ΣcΞ̄b
0ð1S0Þ − Λc1Ξ̄bð3P0Þ; ð14Þ

1− ¼ ΣcΞ̄b
0ð3S1 − 3D1Þ − Λc1Ξ̄bð1P1 − 3P1Þ: ð15Þ

In these partial wave bases the g matrices read

gð0þÞ ¼
�
2 g

g 0

�
; ð16Þ

gð0−Þ ¼
�
0 g

g 2

�
; ð17Þ

gð1−Þ ¼

0
BBBBBBBBB@

0 0 1ffiffi
3

p g −
ffiffi
2
3

q
g

0 6 −
ffiffi
2
3

q
g − 1ffiffi

3
p g

1ffiffi
3

p g −
ffiffi
2
3

q
g 2 0

−
ffiffi
2
3

q
g − 1ffiffi

3
p g 0 2

1
CCCCCCCCCA
: ð18Þ

For jgj > 3=4 the attractive eigenvalue of the matrices
above will trigger discrete scale invariance. The evaluation
of g depends on the axial coupling g3, which can be
extracted from the Σc → Λcπ decay, yielding g3 ¼
0.973þ0.019

−0.042 [56]. This translates into g ¼ 1.12þ0.03
−0.05h2,

requiring jh2j > 0.67þ0.03
−0.02 , which is within the error of h2 ¼

0.63� 0.07 [56].
The approximate scale invariance of the Schrödinger

equation describing these hadronic molecules has long- and
short-range consequences, where the former—the appear-
ance of a geometric spectrum—depends on how far these
systems are from μπ ¼ 0. For μπ ≠ 0 scale invariance holds
for

Rs < r <
1

jμπj
; ð19Þ

with Rs the short-range scale, 1=mπ in this case2 (this also
applies to three-boson systems after the substitution
μπ → 1=a0). The existence of a geometric excited state
requires the relative size of the scale invariant window to be
bigger than the discrete scaling factor. For P�

c-like mole-
cules this window is 1=ðRsμπÞ ∼ 10–20, requiring the
coupling jg−j to be about 1 at least, which is considerably
larger than 1=4. That is, the observation of geometric states
in hadron and atomic physics shares a similar difficulty: the
fine-tuning of the pion mass (hadrons) or the scattering
length (atoms). For atoms near a Feschback resonance this
is solved with a magnetic field [1]. The equivalent for
hadrons will be to fine-tune the pion mass in the lattice.
There is also the possibility of increasing jg−j, for instance
by having a larger reduced mass (i.e. two bottom hadrons)
or if the exchanged particle is a kaon. This can happen
naturally in the heavy sector where there are still plenty of
hadrons to be discovered, of which a few might be
candidates for a long-range vector force.
Concerning the short-range consequences, even if the

vector force is not enough to trigger discrete scale invari-
ance it will still play a remarkable role in binding. This is
indeed analogous to the conjectured importance of Efimov
physics in light nuclei [9] (despite the glaring absence
of Efimov states). If the binding mechanism is s-wave
short-range attraction, a way to see this is the following: for
r ≤ Rs we will assume that OPE is not valid and model the
short-range interaction with a delta shell,

VðrÞ ¼ VOPEðrÞθðr − RsÞ þ
C0ðRsÞ
4πR2

s
δðr − RsÞ; ð20Þ

where Rs is the short-range radius. Then we calculate the
relative strength of the coupling C0 required to have a
bound state at zero energy in the presence/absence of a
vector force. In the one-channel problem of Eq. (1) for
g > −1=4 and in the absence of tensor OPE, the relative
strength of C0 is ð1=2þ νÞ of that required to bind if g ¼ 0
(for μπRs < 1), while for g < −1=4 it always binds (for
μπ ¼ 0). Owing to scale invariance this happens independ-
ently of Rs. Thus if ν → 0 (g → −1=4) the short-range
potential only has to be half the normal strength to be able
to bind the system. If there is standard-range OPE or other
intermediate-range physics this binding enhancement will
change. Taking Rs ¼ 1 fm, μπ ¼ 0 and h2 ¼ 0.63, the
ΣcD̄� − Λc1D̄ P�

cð32−Þ requires 70% of the attraction of a
standard ΣcD̄� P�

c to bind (for the ΣcΣcπ axial coupling we
use g3 ¼ −1.38 [56]). For the heavy baryonium the
numbers are 46% (0−) and 53% (1−) respectively. The
probability of binding is enhanced but dependent on
unknown short-range physics.

2On a related note, a purely imaginary μπ triggers a repulsive
correction at second order perturbation theory. The effect is small
and is suppressed as jμπrj3=3 in the scale invariant region.
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If binding happens for distances in which the present
picture is valid, short-range physics will not be necessary.
The radius below which the P�

cð32−Þ binds is 0.94 fm while
for the 0− (1−) baryonia we have 0.40 fm (0.84 fm)
respectively. For the 1þ ΣcΞ0

b − Λc1Ξb molecule we have
0.87 fm instead. For r < 1=2mπ (∼0.7 fm) two-pion
exchange and hadron finite-size effects dominate, setting
the limits of the OPE description and providing a criterion
for binding. From this we can be confident about the
existence of the 1− baryonium and the 1þ ΣcΞ0

b − Λc1Ξb
molecule, while the 0− baryonium is contingent on the
unknown short-range physics. But the more interesting
cases are those of the ΣcD� ð1

2
þÞ=ΣcΞ̄b

0 ð0þÞ which bind in
p-wave. Here the vector force effectively induces the
existence of a channel behaving much like an s-wave.
For the 1=2þ ΣcD� − ΛcD system binding happens for
0.92 fm while for the 0þ baryonium we have 0.86 fm.
These radii points towards the existence of these states. The
bottom line is that the vector force induces a series of
binding mechanisms which do not require the ratio mπ=μπ
to be particularly large (a factor of 2–3 is probably enough)
and which in a few cases lead to predictions of new
molecules.
Scale invariant hadron molecules are an intriguing

theoretical possibility. They are the two-body realization
of a type of universality that is usually only found in three-
body atomic and nuclear systems. There are clear theo-
retical requirements for a hadron molecule to show scale
invariance at long distances, where the most natural
mechanism is the exchange of a pion almost on the mass
shell between initial and final two-hadron states with
opposite intrinsic parities. If we consider heavy hadrons,
the candidates include Λc1D̄ − ΣcD̄�, i.e. the molecular

interpretation of the recently discovered P�
c pentaquark

state, while the most likely scale invariant molecule is
probably the Λc1Ξ̄b − ΣcΞ̄b

0 baryonium. Discrete scale
invariance requires that the couplings have a minimal
strength, a condition that a 1

2
þ heavy pentaquark and a

Λc1Ξ̄b − ΣcΞ̄b
0 molecule can meet. The same ideas apply to

the Λc1D − ΣcD� and Λc1Ξb − ΣcΞ0
b molecules as the

vector force attraction is independent of whether we have
hadrons or antihadrons. The appearance of a geometrical
spectrum actually requires the effective mass of the pion to
be considerably smaller than the other hadronic scales in
the molecule. This condition is not likely to be met in
nature, but could very well be realized in the lattice. Even if
there is no geometrical spectrum in these molecules, the
long-range attraction provided by the vector force plays an
important role as a binding mechanism, which cannot be
ignored, and in a few cases guarantees binding. The vector
force is indeed a new type of long-range dynamics that has
not been previously considered either in the P�

c pentaquark
or in other hadronic molecules where it is present and can
be relevant. An illustrative example is the enhancement of
P-wave interactions, as happens in the 1

2
þ ΣcD� system after

we include the Λc1D channel. In this type of hadronic
molecule the role of scale invariance is analogous to that in
the triton, 4He, a few halo nuclei and a series of cold atoms
systems, to name a few examples.
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