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We have investigated Ωc states that are dynamically generated from the meson-baryon interaction. We
use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons.
We show that the dominant terms come from the exchange of light vectors, where the heavy quarks are
spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in
the (1=mQ) counting, and also that the interaction in this case can be obtained from the SU(3) chiral
Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with
JP ¼ 1=2− and two more with JP ¼ 3=2−, three of them in remarkable agreement with three experimental
states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.
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I. INTRODUCTION

In Ref. [1] the LHCb collaboration reported five new
narrow Ω0

c states studying the Ξþ
c K− mass spectrum

produced in high energy pp collisions: Ωcð3000Þ,
Ωcð3050Þ, Ωcð3066Þ, Ωcð3090Þ, and Ωcð3119Þ.
Predictions for such states and related ones had been done
within quark model in Refs. [2–14]. Molecular states had
also been used to make predictions in Refs. [15,16] studying
the interaction of coupled channels, one of them being the
Ξþ
c K− where the recent LHCb states were found. A more

updated study along these lines was done in Ref. [17], where
predictions for charmed and strange baryons are done using
an interaction based on SU(6) flavor-spin symmetry in the
light quark sector and SU(2) spin symmetry in the heavy
quark sector, extending the SU(3) Weinberg-Tomozawa
interaction. All these works take the coupled channels of
meson baryon that couple to the desired baryon quantum
numbers and use a unitary scheme to obtain the scattering
matrix between the channels, looking for poles of this
matrix. The differences come from the input interaction
and the way that loops are regularized.

The experimental findings of Ref. [1] have brought a
new wave of theoretical activity with many suggestions to
explain the new states. Different versions of quark models
have been proposed in Refs. [18–21]. Pentaquark options
have been suggested in Refs. [22–27]. QCD sum rules were
used to describe these states in Refs. [28–35]. Lattice QCD
has also shed some light onto the problem [36]. Some
works have emphasized the value of decay properties to
obtain information on the nature of these states [37–39] and
a discussion on the possible quantum numbers was done
in Ref. [40].
In the molecular picture, an update of the work of

Ref. [16] was done in Ref. [41] using some information
from the experimental spectrum to regularize the loops and
then giving a description of the mass and width of two
states of Ref. [1] as JP ¼ 1=2− meson-baryon molecular
states.
In the present work we follow Refs. [17,41] for the

coupled channels and the unitarization procedure. We differ
in the input for the interaction, which in our case is based
on the local hidden gauge approach, exchanging vector
mesons [42–46].
We must clarify this concept. The local hidden gauge

approach [42–45] works with pseudoscalar and vector
mesons in the light sector and chiral symmetry is one of
its assets, showing up in the limit of small mass of the
pseudoscalar mesons (Goldstone bosons). In Refs. [42–47],
and particularly in Refs. [45,47], one can see that the terms
of the chiral Lagrangians can be obtained from the
exchange of vector mesons in the local hidden gauge.
Reference [47] also shows that the consideration of vector
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mesons is necessary to implement vector meson domi-
nance. Both in Refs. [47] and [45] it is also shown that the
formalisms using antisymmetric tensors for the vector
mesons, and the use of ordinary vector fields in the local
hidden gauge are equivalent. If one specifies to the meson-
baryon Lagrangians [48], it is easy to show that the
exchange of vector mesons gives rise exactly to the lowest
order chiral Lagrangian in the limit of small momentum
transfer compared to the vector meson mass. All this occurs
within SU(3), involving u, d, s quarks. The local hidden
gauge in the unitary gauge in SU(3) can be found in
Ref. [47] and with more detail in Ref. [46]. The extrapo-
lation to SU(4) to incorporate c quarks, or even higher with
b quarks, is not straightforward, as one cannot invoke the
Goldstone boson character for D or B mesons. Yet, what
one does is the following: think of the DN interaction for
instance. In the D0p → D0p transition we have cū in the
D0 and uud quarks in the p; then we can only exchange ρ0,
ω vector mesons and the c quark of theD0 is a spectator. In
this case the situation is the same as in K̄0p → K̄0p. The s
quark of the K̄0 (sd̄) is also a spectator and only ρ, ω vector
mesons are exchanged. In as much as the c quark inD0p →
D0p is a spectator, the dynamics is the same as in the
K̄0p → K̄0p transition, and for this we can use the local
hidden gauge approach. We find thus a way to obtain the
D0p → D0p interaction using the dynamics of the light
quark sector, since only these quarks are also involved in
this case. Hence, in the diagonal channels the interaction is
well controlled.
However, assume the coupled channel πΣc; then in the

transition D0p → π0Σþ
c , if we extrapolate the local hidden

gauge approach to SU(4), we would be exchanging a D�
and the c quarks are now involved. This is an extrapolation
of the local hidden gauge approach, which is model
dependent. Fortunately, the exchange of D� is penalized
with respect to the exchange of light vector mesons by a
factor of ð mρ

mD� Þ2, which is a small factor and then one is

only introducing uncertainties in some nondiagonal terms,
which are very small. Formally one can use the SU(4)
extrapolation of the local hidden gauge approach and for
the diagonal terms the framework automatically filters the
exchange of light vectors, providing the results that one
obtains from the mapping explained before. This is what is
done in Ref. [41].
In the present work the diagonal terms that we evaluate

coincide with those of Ref. [41] where the model of
Ref. [15] is used implementing also the exchange of vector
mesons and SU(4) symmetry for mesons and baryons. We,
instead, use explicit wave functions for the baryon states
imposing flavor-spin symmetry on the light quark sector
and singling out the heavy quarks. Hence, in the baryon
sector we are not using SU(4) symmetry. For the diagonal
terms we also show that one is exchanging light vectors and
the heavy quarks are spectators. In this case we obtain the

same matrix elements as in Ref. [41], but there are
differences in the nondiagonal ones. Since in the dominant
terms we are exchanging only light vectors and the heavy
quarks are spectators, the interaction automatically respects
heavy quark symmetry [49–51]. The nondiagonal terms
that exchange heavy vectors do not fulfill heavy quark
symmetry, but neither should they since these are terms of
order Oðm−2

Q Þ in the heavy quark mass counting. In
addition to the work of Ref. [41] we also include
pseudoscalar-baryonð3=2þÞ components and we obtain
two more states. We can identify two states of JP ¼
1=2− and one of JP ¼ 3=2− with the states found in
Ref. [1]. We also look for vector-baryon states and find
three states at higher energies.

II. FORMALISM

Following Ref. [17] we distinguish the cases with
JP ¼ 1=2− and JP ¼ 3=2− and write the coupled channels.
In Ref. [17] 12 coupled channels are used ranging from
thresholds 2965 to 3655 MeV. The experimental states of
Ref. [1] range from 3000 to about 3120 MeV. Hence we
restrict our space of meson-baryon states up to the Ωcω
with mass 3478 MeV. Yet, the diagonal matrix element in
this channel is zero and we can also eliminate it. The energy
ranged by the channels chosen widely covers the range of
energies of Ref. [1] and it is a sufficiently general basis of
states. We show in Tables I and II these states together with
their threshold masses.
The meson-baryon interaction in the SU(3) sector is

given by the chiral Lagrangian [48,52]

LB ¼ 1

4f2π
hB̄iγμ½ðΦ∂μΦ− ∂μΦΦÞB−BðΦ∂μΦ− ∂μΦΦÞ�i;

ð1Þ

whereΦ, B are the SU(3) matrices for pseudoscalar mesons
and baryons,

Φ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA; ð2Þ

TABLE I. J ¼ 1=2 states chosen and threshold mass in MeV.

States ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD� ΞcK̄� Ξ0

cK̄�

Threshold 2965 3074 3185 3243 3327 3363 3472

TABLE II. J ¼ 3=2 states chosen and threshold mass in MeV.

States Ξ�
cK̄ Ω�

cη ΞD� ΞcK̄� Ξ�D Ξ0
cK̄�

Threshold 3142 3314 3327 3363 3401 3472
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B ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA: ð3Þ

The symbol hi stands for the SU(3) trace and fπ ¼
93 MeV is the pion decay constant. At energies close
to threshold one can consider only the dominant con-
tribution coming from ∂0 and γ0 [53], such that the
interaction is given by

Vij ¼ −Cij
1

4f2π
ðk0 þ k00Þ; ð4Þ

where k0, k00 are the energies of the incoming and
outgoing mesons, respectively,

k0 ¼ sþm2
mi

−M2
Bi

2
ffiffiffi
s

p ; k00 ¼
sþm2

mj
−M2

Bj

2
ffiffiffi
s

p ; ð5Þ

where mmi
, MBi

(mmj
, MBj

) are the masses of the initial
(final) meson and baryon, respectively, and Cij are
coefficients calculated earlier, which are tabulated in
Ref. [52] for the case of K−p and coupled channels.
The extension of Eq. (4) to the charm sector is
complicated particularly in the baryon sector. Yet, using
the local hidden gauge approach [42–46] the task is
notably simplified and clarified simultaneously. In the
hidden gauge approach the meson-baryon interaction in
SU(3) is obtained exchanging vector mesons as
in Fig. 1.
The ingredients needed are the vector(V)-pseudoscalar

(P)-pseudoscalar(P) Lagrangian

LVPP ¼ −igh½Φ; ∂μΦ�Vμi; ð6Þ

with

Vμ ¼

0
BB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0

K�− K̄�0 ϕ

1
CCA

μ

; ð7Þ

and the vector(V)-baryon(B)-baryon(B) Lagrangian

LVBB ¼ gðhB̄γμ½Vμ; B�i þ hB̄γμBihVμiÞ; ð8Þ

with g ¼ mV=2fπ and mV being the mass of the vector
mesons (we take an average of about 800 MeV).

It is easy to prove that the picture of the vector meson
exchange with these Lagrangians gives rise to the same
interaction as Eq. (4) taking q2=m2

V → 0 in the propa-
gator of the exchanged vector, which is quite good at low
energies. One can even keep this term in the propagator,
as done in Ref. [54], since in the meson-meson sector
this is shown to generate higher order terms of the
Lagrangian [45,47]. Yet, if one takes a regulator of the
loops integrating to a value jq⃗maxj and fitting this to data,
the consideration of the q2=m2

V terms in the vector
propagator is unnecessary.
Extending Eqs. (6) and (8) to the charm sector is easy for

the VPP Lagrangian but not for the VBB Lagrangian [15],
but we introduce here a procedure that renders it very easy.
For this, let us look at the quark structure of the ρ0, ω, and ϕ
(which can be extended to K�, ρ�),

ρ0 ¼ 1ffiffiffi
2

p ðuū − dd̄Þ;

ω ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ;

ϕ ¼ ss̄: ð9Þ

In the approximation of taking γμ → γ0 the spin depend-
ence disappears, and we can consider an operator at the
quark level as in Eq. (9). We can take for instance

hpjgρ0jpi≡ 1ffiffiffi
2

p 1ffiffiffi
2

p hϕMSχMS þ ϕMAχMAjg
1ffiffiffi
2

p ðuū − dd̄Þj

× ϕMSχMS þ ϕMAχMAi; ð10Þ

where ϕMS, ϕMA, χMS, χMA are the flavor and spin
mixed symmetric and mixed antisymmetric wave func-
tions for the proton [55]. Then, we can see that one gets
the same result as using Eq. (8), and this is also the
case for all transitions. Therefore we use this method to
obtain the VBB vertex in the charm sector. The
extension of the Lagrangian LVPP to the charm sector
is easier. We take the same structure as in Eq. (6) but
now P and V are

(c)(b)(a)

FIG. 1. Vector exchange in the meson-baryon interaction.
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P ¼

0
BBBBBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 πþ Kþ D̄0

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 K0 D−

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
; ð11Þ

where we include the mixing between η and η0 [56], and

V¼

0
BBBBB@

1ffiffi
2

p ρ0þ 1ffiffi
2

p ω ρþ K�þ D̄�0

ρ− − 1ffiffi
2

p ρ0þ 1ffiffi
2

p ω K�0 D̄�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA: ð12Þ

It has been shown in Ref. [57] (see Sec. IIA of that
reference), using similar arguments at the quark level as in
Eq. (10), that in the heavy sector the coupling of the light
vectors to the charmed mesons leaves the heavy quark as a
spectator. Then, one can map the matrix elements with light
quarks to the equivalent ones in SU(3), with the result that
usingEq. (6) inSU(4),with thematrices ofEqs. (11) and (12),
the result obtained is the same as using this quark model with
the heavy quarks as spectators. In other words, one is making
use of the SU(3) content of SU(4). Furthermore, the fact that
the heavy quarks are spectators has immediately as a
consequence that the interaction complies with the rules of
heavy quark spin symmetry (HQSS). However, if we have
nondiagonal transitions likeΞcK̄ → ΞD onemust exchangea
D�

s and the heavy quarks are involved.Here SU(4) is used and
the result is more model dependent, apart from not satisfying
the rules ofHQSS.However, in this case HQSS should not be
satisfied, because the heavy quark propagator goes as
ð1=mD�

s
Þ2 and those terms are subleading in the (1=mQ)

counting (mQ is the mass of the heavy quarks).

III. BARYON WAVE FUNCTIONS

We need the baryon states of JP ¼ 1=2þ.
(1) Ξþ

c : 1ffiffi
2

p cðus − suÞ, and the spin wave function is the
mixed antisymmetric, χMA, for the two light quarks.
Thus, the spin reads χc

1ffiffi
2

p ð↑↓ − ↓↑Þ, with χc ¼
↑or↓ for Sz ¼ 1=2 or −1=2.

(2) Ξ0
c: the same as Ξþ

c , changing ðus − suÞ →
ðds − sdÞ.

(3) Ξ0þ
c : 1ffiffi

2
p cðusþ suÞ, and now the spin wave function

for the three quarks is the mixed symmetric, χMS, in
the last two quarks,

χMS¼
( 1ffiffi

6
p ð↑↑↓þ↑↓↑−2↓↑↑Þ; for Sz¼1=2;

− 1ffiffi
6

p ð↓↑↓þ↓↓↑−2↑↓↓Þ; for Sz¼−1=2:

ð13Þ

(4) Ξ00
c : the same as Ξ0

c, changing ðusþ suÞ →
ðdsþ sdÞ.

(5) Ω0
c: css, and the spin wave function χMS in the last

two quarks, like that for Ξ0
c.

(6) Ξ0: to be consistent with the chiral Lagrangians one
has to use a different phase convention with respect
to Ref. [55], where the Σþ, Ξ0, and Λ change sign
with respect to Ref. [55]. The correct assignment for
the ϕMA is given in Table III of Ref. [58] (the same
assignment is also used in Ref. [59]). Thus

Ξ0 ≡ 1ffiffiffi
2

p ðϕMSχMS þ ϕMA χMAÞ; ð14Þ

with

ϕMS ¼
1ffiffiffi
6

p ½sðusþ suÞ − 2uss�; ð15Þ

ϕMA ¼ −
1ffiffiffi
2

p ½sðus − suÞ�; ð16Þ

and χMS is given in Eq. (13), while χMA is given by

χMA ¼
( 1ffiffi

2
p ↑ð↑↓ − ↓↑Þ; for Sz ¼ 1=2;

1ffiffi
2

p ↓ð↑↓ − ↓↑Þ; for Sz ¼ −1=2:
ð17Þ

(7) Ξ−: as in Eq. (14) with

ϕMS ¼ −
1ffiffiffi
6

p ½sðdsþ sdÞ − 2dss�; ð18Þ

ϕMA ¼ 1ffiffiffi
2

p ½sðds − sdÞ�: ð19Þ

For the baryon states of spin JP ¼ 3=2þ we have
(8) Ξ�þ

c : 1ffiffi
2

p cðusþ suÞ, and the symmetric spin wave
function, χS ¼ ↑↑↑;….

(9) Ξ�0
c : 1ffiffi

2
p cðdsþ sdÞ, and χS.

(10) Ω�
c: css, and χS.

(11) Ξ�0: 1ffiffi
3

p ðsusþ ssuþ ussÞ, and χS.

(12) Ξ�−: 1ffiffi
3

p ðsdsþ ssdþ dssÞ, and χS.
We have to construct states with I ¼ 0 to match the Ωc.

For that recall that our isospin multiplets are
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K̄ ¼
�

K̄0

−K−

�
; D ¼

�
Dþ

−D0

�
;

Ξ ¼
�

Ξ0

−Ξ−

�
; Ξ� ¼

�
Ξ�0

Ξ�−

�
;

Ξc ¼
�
Ξþ
c

Ξ0
c

�
; Ξ0

c ¼
�
Ξ0þ
c

Ξ00
c

�
; Ξ�

c ¼
�
Ξ�þ
c

Ξ�0
c

�
;

ð20Þ

and thus

jΞcK̄; I ¼ 0i ¼ −
1ffiffiffi
2

p jΞþ
c K− þ Ξ0

cK̄0i;

jΞD; I ¼ 0i ¼ −
1ffiffiffi
2

p jΞ0D0 − Ξ−Dþi;

jΞ�
cK̄; I ¼ 0i ¼ −

1ffiffiffi
2

p jΞ�þ
c K− þ Ξ�0

c K̄0i;

jΞ�D; I ¼ 0i ¼ −
1ffiffiffi
2

p jΞ�0D0 þ Ξ�−Dþi: ð21Þ

With these wave functions and the prescription to calculate
the VPP and VBB vertices we can construct the matrix
elements of the transition potential between the states of
Table I. Some examples are shown in Appendix.
Following the steps of the Appendix it becomes easy and

systematic to evaluate all the matrix elements and we find

Vij ¼ Dij
1

4f2π
ðp0 þ p00Þ: ð22Þ

Alternatively, we can use another expression, which
includes relativistic correction in s-wave [60]

Vij ¼ Dij

2
ffiffiffi
s

p
−MBi

−MBj

4f2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBi

þ EBi

2MBi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBj

þ EBj

2MBj

s
;

ð23Þ

where MBi;Bj
and EBi;Bj

stand for the mass and the center-
of-mass energy of the baryons, respectively, and the matrix
Dij is given in Table III.
In Table III we have the parameter λ in some nondiagonal

matrix elements, which involve transitions from one meson
without charm to one with charm, like K̄ → D. In this case
we have for the propagator of the exchanged vector

1

ðq0Þ2 − jqj2 −m2
D�

s

≈
1

ðmD −mKÞ2 −m2
D�

s

; ð24Þ

and the ratio to the propagator of the light vectors is

λ≡ −m2
V

ðmD −mKÞ2 −m2
D�

s

≈ 0.25: ð25Þ

We take λ ¼ 1=4 in all these matrix elements, as it was done
in Ref. [52].
The diagonal matrix elements of Table III coincide with

those of Ref. [41], but not all the nondiagonal. This is not
surprising. SU(4) symmetry is used in Ref. [41], but only
SU(3) is effectively used in the diagonal terms, as we have
argued. Then we should note that the heavy baryons that we
have constructed are not eigenstates of SU(4) since we have
singled out the heavy quarks and used symmetrized wave
functions for the light quarks. This induces a spin-flavor
dependence different from the one of pure SU(4) symmetry.
With respect to Ref. [17], we have some equal diagonal

matrix elements but not all of them, and there are also
differences in the nondiagonal terms. These matrix ele-
ments are also different from those of Ref. [41].
To calculate the matrix elements for the states that couple

to JP ¼ 3=2− of Table II we proceed in the same way as in
the Appendix. We must take into account that the VVVex
are like those of PPVex under the approximation of
neglecting ðp=mVÞ2, where p is the momentum of the
external vector. In addition one has the factor ϵ⃗ · ϵ⃗0 for the
vector polarization, which makes these terms contribute to
J ¼ 1=2 and J ¼ 3=2 with degeneracy. The terms con-
necting P and V like Ξ�

cK̄ → ΞD� require exchange of
pseudoscalars, which go with the momentum and are small
compared to the exchange of vectors [61]. In the
Ξ�
cK̄ → ΞD� one would have to exchange a Ds and it

would be doubly suppressed. In the Ξ�
cK̄ → ΞK� onewould

exchange a pion, but theK andK� states are quite separated

TABLE III. Dij coefficients of Eq. (23) for the meson-baryon
states coupling to JP ¼ 1=2− in s-wave.

J ¼ 1=2 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD� ΞcK̄� Ξ0

cK̄�

ΞcK̄ −1 0 − 1ffiffi
2

p λ 0 0 0 0

Ξ0
cK̄ −1 1ffiffi

6
p λ − 4ffiffi

3
p 0 0 0

ΞD −2
ffiffi
2

p
3
λ 0 0 0

Ωcη 0 0 0 0
ΞD� −2 − 1ffiffi

2
p λ 1ffiffi

6
p λ

ΞcK̄� −1 0

Ξ0
cK̄� −1

TABLE IV. Dij coefficients of Eq. (23) for the meson-baryon
states coupling to JP ¼ 3=2−.

J ¼ 3=2 Ξ�
cK̄ Ω�

cη ΞD� ΞcK̄� Ξ�D Ξ0
cK̄�

Ξ�
cK̄ −1 − 4ffiffi

3
p 0 0 2ffiffi

6
p λ 0

Ω�
cη 0 0 0 −

ffiffi
2

p
3
λ 0

ΞD� −2 − 1ffiffi
2

p λ 0 1ffiffi
6

p λ

ΞcK̄� −1 0 0

Ξ�D −2 0
Ξ0
cK̄� −1
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in energy and the transition is also not important. In the
DΞ → D�Ξ transitions one has the πΞΞYukawa vertex that
goes like D − F compared to Dþ F for πPP, with
F ¼ 0.51, D ¼ 0.75 [62], which is highly suppressed.
Therefore, we neglect all terms that involve transition of
a pseudoscalar to a vector and then the matrix elements are
again given by Eq. (23) with the Dij coefficients given in
Table IV.
In order to see the relevance of the π exchange discussed

above, we take the DΞ → D�Ξ transition and we evaluate
the effect in the DΞ → DΞ interaction going through the
intermediate D�Ξ state. For this we follow Ref. [63] and
consider the diagrams of Fig. 2.
As discussed in Ref. [63], in addition to the π exchange

there is a contact term called Kroll-Ruderman in the
γN → πN (or ρN → πN) transition; then the four diagrams
of Fig. 2 must be evaluated. They provide a δV potential for
DΞ → DΞ that can be evaluated by means of Eq. (40) of
Ref. [63], simply changing the masses of B, B� to D, D�
and N to Ξ. We have performed the calculation and,
compared to the potential Vij from Eq. (23) and
Table III we find δV=V ≈ 0.012 for the ΞD channel
calculated at the energy of the pole around 3090 MeV
(which is dominated by this channel, as shown in Table VI
of the results section), a correction of order 1%, which we
safely neglect.

IV. RESULTS

We use the potential of Eq. (23) and the on-shell
factorized Bethe-Salpeter equation [64,65]

T ¼ ½1 − VG�−1V; ð26Þ

with G being the meson-baryon loop function. We choose
to regularize it with the cutoff method to avoid potential
pathologies of the dimensional regularization in the charm
sector, where G can become positive below threshold (and
eventually produce bound states with a repulsive potential)
[66]. There is another reason, because in order to respect
the rules of heavy quark symmetry in bound states, it was

shown in Refs. [54,67] that the same cutoff has to be used
in all cases. Alternatively one can use a special G function
defined in Ref. [68].
The G function for the meson-baryon loop with the

cutoff method is given by

Gl ¼ i
Z

d4q
ð2πÞ4

Ml

ElðqÞ
1

k0 þ p0 − q0 − ElðqÞ þ iϵ

×
1

q2 −m2
l þ iϵ

¼
Z
jqj<qmax

d3q
ð2πÞ3

1

2ωlðqÞ
Ml

ElðqÞ

×
1

k0 þ p0 − ωlðqÞ − ElðqÞ þ iϵ
; ð27Þ

where k0 þ p0 ¼ ffiffiffi
s

p
and ωl, El, are the energies of the

meson and baryon respectively and ml, Ml the meson and
baryon masses.
We evaluate Eq. (26) and look for poles in the second

Riemann sheet, where we define GII
l for Reð ffiffiffi

s
p Þ bigger

than the threshold of the l channel as

GII
l ¼ GI

l þ i
2Mlq
4π

ffiffiffi
s

p ; ð28Þ

with q given by

q ¼ λ1=2ðs;m2
l ;M

2
l Þ

2
ffiffiffi
s

p ; and ImðqÞ > 0: ð29Þ

In addition, we evaluate the couplings gi of the states
obtained to the different channels defined such that, close to
the pole zR, we have

Tij ¼
gigjffiffiffi
s

p
− zR

; ð30Þ

and we also evaluate giGi, which for s-wave gives the
strength of the wave function at the origin [69].
In Table V we show the poles that we obtain for the

JP ¼ 1=2− sector for different values of the cutoff qmax. We

FIG. 2. Box diagrams accounting for DΞ → D�Ξ → DΞ.

TABLE V. Poles in the JP ¼ 1=2− sector from pseudoscalar-baryonð1=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3065.40þ i0.10 3054.05þ i0.44 3038.13þ i1.78 3016.21þ i6.02 2989.69þ i16.24
3114.22þ i3.75 3091.28þ i5.12 3067.71þ i4.12 3046.24þ i3.83 3027.75þ i2.19
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only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8� 0.2� 0.1
and 8.7� 1.0� 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ�

cK̄, Ω�
cη, Ξ�D and ΞD�, ΞcK̄�, Ξ0

cK̄�. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1� 0.8� 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ�

cK̄ andΩ�
cη, more strongly

to Ξ�
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ�D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD� while the second and third ones have very
small widths and couple mostly to ΞcK̄� and Ξ0

cK̄�,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD� ΞcK̄� Ξ0

cK̄�

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD� ΞcK̄� Ξ0

cK̄�

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3134.39 3124.84 3112.83 3099.2 3084.52
3316.48þ i0.14 3290.31þ i0.03 3260.42þ i0.08 3227.34þ i0.15 3191.13þ i0.22
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In Ref. [41] the compositeness magnitude−g2∂G=∂ ffiffiffi
s

p
is

evaluated for all channels. This magnitude provides
the probability to find bound channels [69,72,73] and for
the case of open channels it gives the integral of the wave
functions squared with a given prescription of the phase [74].
The magnitude gG that we calculate gives the
strength of each channel to produce the resonance (up to
coefficients appearing in the primary steps of a reaction prior
to final state interaction). Yet, there is a correspondence in
these two magnitudes, and we find that when −g2∂G=∂ ffiffiffi

s
p

is large for some channel in Ref. [41], so is gG in our case.

The pseudoscalar-baryonð3=2þÞ states are not consid-
ered in Ref. [41] and, thus, the states that we get in
Table VII are new. As to the vector-baryonð1=2þÞ states we
obtain three new states, two of them in qualitative agree-
ment with Ref. [41]. In Ref. [41] two states were found
at 3231 and 3419 MeV that couple mostly to ΞD� and
Ξ0
cK̄�, respectively. We also find two states, at 3222 and

3465 MeV, which also couple mostly to ΞD� and Ξ0
cK̄�,

respectively, as in Ref. [41], plus a new intermediate state at
3360 MeV that couples mostly to ΞcK̄�.
As for the results of Ref. [17], the bindings obtained

there, in the absence of any experimental data, gave rise to
bound Ωc states with more binding than here. It would be
interesting to have a new look in that framework under the
light of the new experimental information.
The basic input of our calculations is the Vij transition

potential of Eq. (23), and the coupling that we have is 1
f2π
.

We estimate uncertainties in the following way. We
increase f2π by 10% and readjust the cutoff to obtain the
same energy of the first state (going from qmax ¼ 650 to
694 MeV), and then we get the results of Table X. As we
can see, the changes in the masses and widths are small.
The difference in the masses is always smaller than 5 MeV,
and for the three states that we compare with experiment the
changes are even smaller. The widths also change a bit, but
the width of the widest state only changes from 10.24 to
11.82 MeV, and the others are still very small and
compatible with experiment within errors.

TABLE VIII. The coupling constants to various channels for the poles in the JP ¼ 3=2− sector, with
qmax ¼ 650 MeV, and giGII

i in MeV.

3124.84 Ξ�
cK̄ Ω�

cη ΞD� ΞcK̄� Ξ�D Ξ0
cK̄�

gi 1.95 1.98 0 0 −0.65 0
giGII

i −35.65 −16.83 0 0 1.93 0

3290.31þ i0.03 Ξ�
cK̄ Ω�

cη ΞD� ΞcK̄� Ξ�D Ξ0
cK̄�

gi 0.01þ i0.02 0.31þ i0.01 0 0 6.22 − i0.04 0
giGII

i −0.62 − i0.18 −5.25 − i0.18 0 0 −31.08þ i0.20 0

TABLE IX. The coupling constants to various channels for the
poles with JP ¼ 1=2−, 3=2− stemming from vector-baryon
interaction with qmax ¼ 650 MeV, and giGII

i in MeV.

3221.98 ΞD� ΞcK̄� Ξ0
cK̄�

gi 6.37 0.59 −0.28
giGII

i −29.29 −4.66 1.62

3360.37þ i0.20 ΞD� ΞcK̄� Ξ0
cK̄�

gi −0.11 − i0.12 1.31 − i0.03 0.03þ i0.01
giGII

i 2.12þ i0.48 −26.04þ i0.36 −0.26 − i0.06

3465.17þ i0.09 ΞD� ΞcK̄� Ξ0
cK̄�

gi −0.01þ i0.06 0.01 − i0.01 1.75þ i0.01
giGII

i −0.84 − i0.23 0.17þ i0.24 −32.29 − i0.08

TABLE X. Dependence of the results on the value of fπ .

J ¼ 1=2 fπ ¼ 93 MeV and qmax ¼ 650 MeV fπ ¼ 97.6 MeV and qmax ¼ 694 MeV

Pole 1 3054.05þ i0.44 3054.05þ i0.70
Pole 2 3091.28þ i5.12 3087.24þ i5.91

J ¼ 3=2 fπ ¼ 93 MeV and qmax ¼ 650 MeV fπ ¼ 97.6 MeV and qmax ¼ 694 MeV

Pole 1 3124.84 3125.71
Pole 2 3290.31þ i0.03 3284.73þ i0.05

J ¼ 1=2; 3=2 fπ ¼ 93 MeV and qmax ¼ 650 MeV fπ ¼ 97.6 MeV and qmax ¼ 694 MeV

Pole 1 3221.98 3216.98
Pole 2 3360.37þ i0.20 3361.28þ i0.18
Pole 3 3465.17þ i0.09 3469.04þ i0.07
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V. CONCLUSIONS

We have studied Ωc states, which are dynamically
generated from the interaction of meson baryon in the
charm sector. The interaction is obtained using an extension
of the local hidden gauge approach with the exchange of
vector mesons. We show that the dominant terms come
from exchange of light vector mesons, leaving the heavy
quarks as spectators. This has two good consequences: first
we can map the interaction to what happens in SU(3) using
chiral Lagrangians, and second, the fact that the heavy
quarks are spectators in the interaction guarantees that the
dominant terms in the (1=mQ) counting fulfill the rules of
heavy quark symmetry.
We obtain two states with JP ¼ 1=2− that are remarkably

close in mass and width to the experimental states
Ωcð3050Þ, Ωcð3090Þ. In addition, we also obtain a 3=2−

state with zero width at 3125 MeV, which can be associated
to the experimental Ωcð3119Þ that also has a width of the
order of or smaller than 1 MeV.
The agreement of the results with experiment is remark-

able. It would be very interesting to see the next exper-
imental steps to determine the spin and parity of these
states, which could serve to discriminate between present
models where there are large discrepancies concerning the
spin-parity assignment.
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APPENDIX: EVALUATION OF THE
TRANSITION MATRIX ELEMENTS

OF K̄Ξc → K̄Ξc

We need to evaluate the diagrams of Fig. 3. The
upper vertices are readily evaluated using Eq. (6), and
we get

−itK−→K−

0
BB@

ρ0

ω

ϕ

1
CCA ¼ gVμð−ipμ − ip0μÞ

0
BB@

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

−1

1
CCA;

−itK−→K̄0ρ− ¼ gρþμð−ipμ − ip0μÞ; ðA1Þ

with p, p0 being the momenta of the incoming and outgoing
kaons. We also have

−itK̄0→K−ρþ ¼ gρ−μð−ipμ − ip0μÞ;

−itK0→K̄0

0
B@

ρ0

ω

ϕ

1
CA ¼ gVμð−ipμ − ip0μÞ

0
B@

−1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

−1

1
CA: ðA2Þ

The lower vertices are readily calculated as seen in
Fig. 4.
For Fig. 4(a) we have the matrix elements

1ffiffiffi
2

p hðus − suÞj

0
B@

g 1ffiffi
2

p ðuū − dd̄Þ
g 1ffiffi

2
p ðuūþ dd̄Þ

gss̄

1
CAj 1ffiffiffi

2
p ðus − suÞi

¼

0
BB@

1ffiffi
2

p g

1ffiffi
2

p g

g

1
CCA: ðA3Þ

FIG. 3. Diagrams in the K̄Ξc → K̄Ξc transition.
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For Fig. 4(b) we have

1ffiffiffi
2

p hðds − sdÞj

0
BB@

g 1ffiffi
2

p ðuū − dd̄Þ
g 1ffiffi

2
p ðuūþ dd̄Þ

gss̄

1
CCAj 1ffiffiffi

2
p ðds − sdÞi

¼

0
BB@

− 1ffiffi
2

p g

1ffiffi
2

p g

g

1
CCA: ðA4Þ

The vertices of Fig. 4(c) can be equally evaluated using
the operator gdū, or one can simply use Clebsch-Gordan
coefficients to relate to ρ0Ξþ

c Ξ0
c and we find the matrix

element with the value g.
Altogether, the matrix element for Fig. 3 is given by

−it¼1

2
g2

2
64ð−ipμ− ip0μÞð−gμ0Þ

i
−m2

V

0
B@
1=

ffiffiffi
2

p

1=
ffiffiffi
2

p

−1

1
CAi

0
B@
1=

ffiffiffi
2

p

1=
ffiffiffi
2

p

1

1
CA

þ2ð−ipμ− ip0μÞð−gμ0Þ
i

−m2
V
i

þð−ipμ− ip0μÞð−gμ0Þ
i

−m2
V

0
B@
−1=

ffiffiffi
2

p

1=
ffiffiffi
2

p

−1

1
CAi

0
B@
−1=

ffiffiffi
2

p

1=
ffiffiffi
2

p

1

1
CA
3
75

¼−1
1

4f2π
ðp0þp00Þ≡D

1

4f2π
ðp0þp00Þ; ðA5Þ

with D ¼ −1.
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