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The present article is the follow-up work of Phys. Rev. D 94, 094006 (2016), where we have extended
the study of quarkonia dissociation in (momentum) anisotropic hot QCD medium. As evident by the
experimentally observed collective flow at the RHIC and LHC, the momentum anisotropy is present at
almost all the stages after the collision, and therefore, it is important to include its effects in the analysis.
Employing the in-medium (corrected) potential while considering the anisotropy (both oblate and prolate
cases) in the medium, the thermal widths and the binding energies of the heavy quarkonia states (s-wave
charmonia and s-wave bottomonia specifically, for radial quantum numbers n ¼ 1 and 2) have been
determined. The hot QCD medium effects have been included by employing a quasiparticle description.
The presence of anisotropy has modified the potential and then the thermal widths and binding energies of
these states in a significant manner. The results show a quite visible shift in the values of dissociation
temperatures as compared to the isotropic case. Further, the hot QCD medium interaction effects suppress
the dissociation temperature as compared to the case where we consider the medium as a noninteracting
ultrarelativistic gas of quarks (antiquarks) and gluons.
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I. INTRODUCTION

In the ultrarelativistic heavy-ion collision experiments at
the RHIC and LHC, it has been inferred that the quark-
gluon-plasma (QGP) formed functions more like a perfect
fluid rather than a noninteracting ultrarelativistic gas of
quarks (antiquarks) and gluons [1–3]. This is because of the
fact that the QGP possesses a robust collective property that
could be quantified in terms of the flow harmonics. Among
the other important signatures based on the experimental
observations, quarkonia (QQ̄) suppression has also been
suggested as a clear probe of the QGP formation in the
collider experiments [4,5]. As observed in the experiments,
it accentuates the plasma aspects of the medium, for
example, Landau damping [5], color screening [6], and
the energy loss [7].
After the discovery of J=ψ (a bound state of cc̄) [8,9], in

1974, both the experimental and the theoretical studies of
heavy quarkonia have become interesting topics for
researchers to investigate. A pioneering research, the
dissociation of quarkonia due to the color screening in
the deconfined medium with finite temperature, was first
carried out by Matsui and Satz [10]. Thereafter, a large

number of excellent articles have been published that
envisioned several essential refinements in the study of
quarkonia [11–15].
Quarkonium is the color singlet and the flavorless state

of the heavy quark-antiquark bound together by almost
static gluons [16–18]; it is mainly produced at the very
early stages, just after the collisions of the ultrarelativistic
nuclei, and it acts as an independent degree of freedom.
While traversing through the medium, quarkonia also make
transitions to other quarkonia states with the emission of
light hadrons [19]. Being bound states of QQ̄, heavy
quarkonia also provide a possibility to explore the impor-
tant features of quantum chromodynamics (QCD), the
theory of strong interactions, due to the presence of various
scales [20–22], at high temperatures. Quarkonia production
in the hot QCD medium has been studied in several works.
In this context, the color evaporation model [23–26] is
motivated by the principle of quark-hadron duality; i.e., it
assumes that every cc̄ produced evolves into charmonium if
it has an invariant mass less than the threshold for
producing a pair of open charm mesons. On the other
hand, the quarkonia production in the color singlet mecha-
nism has been studied in Refs. [26–28], whereas the
enhancement in the production or suppression of quarkonia
through coalescence or the recombination of the quarks or
antiquarks has been discussed in Refs. [29,30].
As the heavy quark masses, mc or mb ≫ ΛQCD (QCD

scale), the velocity of the bound states of heavy quarks
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remains small, and hence, the nonrelativistic QCD
(NRQCD) approach [31–34], using nonrelativistic poten-
tial models, has also been exploited in the present context.
In this approach, the potential between heavy quarkonia
must be approximated by the short-distance Coulombic
effects (which satisfy asymptotic freedom) and the large-
distance confinement effects. To that end, the Cornell
potential is one of the first possibilities [35–37] to fulfill
these requirements and describe the interaction between the
heavy quark-antiquark pair. Recently, the properties of
heavy quarkonia have been examined by several authors
[38–40]. In particular, the production or suppression of
quarkonia has been studied either theoretically or exper-
imentally in Refs. [41–57], and the disassociation temper-
ature has been studied in Refs. [58–64].
Following our recent work on dissociation of heavy

quarkonia, within the quasiparticle approach, for the
isotropic medium in Ref. [65], the present analysis accom-
modates the presence of local momentum anisotropy to
estimate the dissociation temperature of heavy quarkonia.
While considering the momentum anisotropy, both the
oblate and the prolate situations have been taken into
account and compared with the isotropic one. The moti-
vation to incorporate the anisotropy in the study of
quarkonia suppression comes from the fact that the QGP
produced in heavy-ion (off-central) collisions does not
possess isotropy. Instead, the momentum anisotropy is
present in all the stages of the heavy-ion collisions, and
hence, the inclusion of the anisotropy is inevitable. There
are many articles [66–71] in which the impact of the
anisotropy in various observables of QGP has been inves-
tigated. In most of these studies, the ideal Bose/Fermi
distributions [72] have been considered in a combination to
define the distribution function in an isotropic medium.
Considering the medium as a hot thermal bath instead of

a noninteracting ideal one, we employ the effective fugacity
quasiparticle distribution functions to incorporate the hot
medium effects, using the effective fugacity quasiparticle
model (EQPM) [73,74] for the isotropic medium. The
anisotropy has been introduced at the level of the distri-
bution function by stretching and squeezing it in one of the
directions, as in Refs. [16,75–77]. The gluon propagator—
and, in turn, the dielectric permittivity in the presence of
anisotropy—in the hot QCD medium has been obtained
using the gluon self-energy. We first calculate the real part
and imaginary part of the in-medium Cornell potential,
modified using dielectric permittivity, in Fourier space. The
thermal width and the binding energy of quarkonia bound
states are then determined by the imaginary and real parts
of the modified potential [18,78–82], respectively. The
dissociation temperatures have been calculated by exploit-
ing the criterion [83–86], which says that, at the dissoci-
ation temperature, the thermal width equals twice the
(real part of the) binding energy. To examine the hot
QCD medium effects using EQPM [73,74], the hot QCD

equations of state (EoSs) have been updated with the recent
lattice [87,88], as well as 3-loop Hard Thermal Loop (HTL)
perturbative [89,90] calculations.
The effects of anisotropy will modify the in-medium

potential and, in turn, significantly revise the values of the
dissociation temperature. In the oblate case, the dissocia-
tion temperature is observed to be higher than the isotropic
case. In the prolate case, it is observed to be the least among
the three cases. The tightly bound ground state has higher
binding energies and is expected to melt later than the
excited state; hence, it must have a sequential suppression
pattern with temperature. The order observed in the present
analysis supports the above fact as ϒ0 (2s-state of bb̄) has
been suppressed at smaller temperatures than the ϒ (1s-
state of bb̄), for all considered EoSs. It can be further seen
that the dissociation temperatures using nonideal EoSs are
smaller than the ideal one for each QQ̄-state studied here.
The paper is organized as follows. In Sec. II, we review

the heavy-quark potential with its real and imaginary parts
in the anisotropic medium. We describe the quasiparticle
model that has been employed in our analysis and discuss
the binding energy and melting of heavy quarkonia states.
Section III includes our results and a discussion. In Sec. IV,
we conclude the present work.

II. HEAVY-QUARK POTENTIAL, THERMAL
WIDTH AND QUARKONIA BINDING ENERGY
IN THE ANISOTROPIC HOT QCD MEDIUM

The crucial role played by the static heavy-quark
potential to understand the physics behind the quarkonia
bound state has been studied by several authors as
mentioned earlier. In the present analysis, we prefer to
work with the Cornell potential [35,36], which contains the
Coulombic as well as the string part, given as

VðrÞ ¼ −
α

r
þ σr; ð1Þ

modifying it in the presence of a dissipative medium using
the dielectric permittivity ϵðkÞ in Fourier space. Here, r is
the effective radius of the corresponding quarkonia state, α
is the strong coupling constant, and σ is the string tension.
The modification of the string part along with the
Coulombic part can be exploited due to the fact that the
transition from the hadronic phase to the QGP is a cross-
over [91], so the string tension does not vanish abruptly at
or near Tc. Let us now briefly discuss the EQPM [73,74]
and then describe the medium modification of the above
potential in the presence of anisotropy. After that, we
address the binding energy and thermal width using the
derived modified potential.

A. EQPM and Debye screening

EQPM maps the hot QCD medium effects with
the effective equilibrium distribution function fg;qðpÞ of
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quasipartons [73,74], which describes the strong interaction
effects in terms of effective fugacities, zg;q. Here, the
quasiparton equilibrium distribution functions for the gluon
and quark/antiquark, respectively, read as

fgðpÞ ¼
1

z−1g eβEp − 1
; fq=q̄ðpÞ ¼

1

z−1q=q̄e
βEp þ 1

: ð2Þ

Using EQPM, the energy dispersion relation is
modified as

ωg=q;q̄ ¼ Ep þ T2∂T lnðzg=q;q̄Þ:

The Debye mass mD can be obtained using the
distribution functions given in Eq. (2) as

m2
D ¼ −4παðTÞ

�
2Nc

Z
d3p
ð2πÞ3 ∂pfgðpÞ

þ 2Nf

Z
d3p
ð2πÞ3 ∂pfqðpÞ

�
; ð3Þ

where αðTÞ is the running coupling at finite temperature (T)
[92]. Note that Nc and Nf are the color degrees of freedom
and the number of flavors, respectively. Applying the
quasiparton equilibrium distribution function from Eq. (2)
in Eq. (3), we have

m2
D
ðEoSðiÞÞ ¼ 4παðTÞT2

�
2Nc

π2
PolyLog½2; zig�

−
2Nf

π2
PolyLog½2;−ziq�

�
; ð4Þ

where the index i denotes the different EoSs, incorporating
the QCD interactions modeled from improved perturbative
3-loop HTLQCD computations by Haque et al. [89,90] and
recent (2þ 1)-flavor lattice QCD simulations [87,88].
The weak perturbative (resummed) computations on the

EoS in hot QCD show nice convergence properties and
agree well with the lattice QCD results. The strong
interaction effects encoded in lattice EoS (LEoS) could
be applied to effective gluonic and quark/antiquark degrees
of freedom and could be utilized to develop effective
transport theory in those regions where weak perturbative
results make sense, and transport theory could lead to
reliable outcomes. The above work is performed in the
above-mentioned spirit. In other words, with EQPM for
LEoS, we cannot go much closer to Tc; the analysis is
reliable beyond Tc (T ≳ Tc). Neither EQPM nor effective
(linearized) transport theory methods will work very close
to Tc. However, in the above-mentioned temperature, these
methods could be used to take care of the interaction in an
effective way. Working at the temperature T ¼ 3Tc, we
have studied the interaction effects which are important and
were not considered in earlier work in this field.

In the limit, zg;q → 1, themD reduces to the leading order
(LO) or ideal case, given as

m2
D
ðLOÞ ¼ 4παðTÞT2

�
Nc

3
þ Nf

6

�
: ð5Þ

Let us now discuss the modification of the potential,
considering the presence of anisotropy in the hot QCD
medium.

B. Medium modified heavy-quark potential
in the presence of anisotropy

Here, the anisotropy is introduced due to the fact that in
the off-central relativistic heavy-ion collisions, the spatial
anisotropy is generated at the very primary stages. As the
system evolves with time, different pressure gradients are
produced in different directions, which maps the spatial
anisotropy to the momentum anisotropy. The anisotropy in
the present formalism has been introduced at the particle
phase-space distribution level. Employing the method used
in Refs. [75–77], the anisotropic distribution function has
been obtained from the isotropic one by rescaling (stretch-
ing and squeezing) it in one of the directions in momentum
space as

fðpÞ → fξðpÞ ¼ Cξf
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ξðp · n̂Þ2
q �

; ð6Þ

where fðpÞ is the effective fugacity quasiparticle distribu-
tion function for the isotropic medium [73,74]. The n̂ is a
unit vector (n̂2 ¼ 1), showing the direction of momentum
anisotropy. The parameter ξ gives the anisotropic strength
in the medium and describes the amount of squeezing
(ξ > 0, or oblate form) and stretching (−1 < ξ < 0, or
prolate form) in the n̂ direction. Since the EoS effects enter
through the Debye mass (mD), we want to make it immune
from the effects of anisotropy present in the medium so that
it remains the same in both mediums (isotropic and
anisotropic), as done in Ref. [76]. In doing so, only the
effects of different EoSs will be carried in the mD, and
hence, the normalization constant Cξ becomes

Cξ ¼

8>><
>>:

ffiffiffiffi
jξj

p
tanh−1

ffiffiffiffi
jξj

p if − 1 ≤ ξ < 0

ffiffi
ξ

p
tan−1

ffiffi
ξ

p if ξ ≥ 0:
ð7Þ

In the small ξ limit, we have

Cξ ¼
(
1 − ξ

3
þOðξ3

2Þ if − 1 ≤ ξ < 0

1þ ξ
3
þOðξ3

2Þ if ξ ≥ 0:
ð8Þ

To modify the potential due to the presence of the
dissipative anisotropic hot QCD medium, the assumption
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given in Ref. [12] has been followed, which says that the
in-medium modification can be obtained in Fourier space
by dividing the heavy-quark potential by the medium
dielectric permittivity ϵðkÞ as

V̀ðkÞ ¼ V̄ðkÞ
ϵðkÞ : ð9Þ

By making the inverse Fourier transform, we can obtain the
modified (or in-medium corrected) potential as

VðrÞ ¼
Z

d3k

ð2πÞ3=2 ðe
ik·r − 1ÞV̀ðkÞ; ð10Þ

where V̄ðkÞ is the Fourier transform of VðrÞ, shown in
Eq. (1), given as

V̄ðkÞ ¼ −
ffiffiffi
2

π

r �
α

k2
þ 2

σ

k4

�
: ð11Þ

Next, to modify the potential, we first need to calculate
the dielectric permittivity, which is obtained from the self-
energy using finite temperature QCD. It is important to
note that the perturbative theory at T > 0 suffers from the
infrared singularities and gauge-dependent results because
the perturbative expansion is incomplete at T > 0. There
are infinitely many higher order diagrams with more and
more loops that can contribute to lower order in the
coupling constant [93]. This problem can be partly
avoided by using the HTL resummation technique [94],
and one can obtain consistent results up to the leading
order. Another equivalent approach to obtain ϵðkÞ is the
many-particle kinetic theory (or the semiclassical transport
theory), which provides the same results up to one-loop
order (or in the Abelian limit) [77,95,96]. Exploiting
any of these two methods, one finds the gluon self-energy
Πμν and then the static gluon propagator that represents
the inelastic scattering of an off-shell gluon to a thermal
gluon,

Δμνðω;kÞ ¼ k2gμν − kμkν þ Πμνðω;kÞ: ð12Þ

Next, the dielectric tensor can be obtained in the static
limit, in Fourier space, from the temporal component of
the propagator, as

ϵ−1ðkÞ ¼ −lim
ω→0

k2Δ00ðω;kÞ: ð13Þ

Now, to obtain the real part of the interquark potential in
the static limit, the temporal component of the real part of
the retarded (or advanced) propagator in Fourier space is
needed, which is given as

Re½Δ00
RðAÞ�ðω ¼ 0;kÞ ¼ −1

k2 þm2
D
− ξ

�
1

3ðk2 þm2
DÞ

−
m2

Dð3 cos 2θn − 1Þ
6ðk2 þm2

DÞ2
�
: ð14Þ

The imaginary part can be derived from the imaginary
part of the temporal component of the symmetric propa-
gator in the static limit:

Im½Δ00
S �ðω ¼ 0;kÞ ¼ πTm2

D

�
−1

kðk2 þm2
DÞ2

þ ξ

�
−1

3kðk2 þm2
DÞ2

þ 3 sin2 θn
4kðk2 þm2

DÞ2

−
2m2

Dð3 sin2ðθnÞ − 1Þ
3kðk2 þm2

DÞ3
��

; ð15Þ

where

cosðθnÞ ¼ cosðθrÞ cosðθprÞ
þ sinðθrÞ sinðθprÞ cosðϕprÞ: ð16Þ

In the above expression, the angle θn is in between the
particle momentum p and the direction of anisotropy, n̂.
The angle between r and n is θr. Note that ϕpr and θpr are,
respectively, the azimuthal and the polar angle between p
and r. Next, to modify the real part of the potential, ϵðkÞ
can be obtained using Eq. (14) in Eq. (13) as

ϵ−1ðkÞ ¼ k2

k2 þm2
D
þ k2ξ

�
1

3ðk2 þm2
DÞ

−
m2

Dð3 cos 2θn − 1Þ
6ðk2 þm2

DÞ2
�
: ð17Þ

Similarly, the imaginary part of the potential can be
modified by using ϵðkÞ, which can be obtained by employ-
ing Eq. (15) in Eq. (13) as

ϵ−1ðkÞ ¼ πTm2
D

�
k2

kðk2 þm2
DÞ2

− ξk2
�

−1
3kðk2 þm2

DÞ2

þ 3 sin2 θn
4kðk2 þm2

DÞ2
−
2m2

Dð3 sin2ðθnÞ − 1Þ
3kðk2 þm2

DÞ3
��

:

ð18Þ

In the limit T → 0, and in the absence of anisotropy, the
real part of ϵ−1ðkÞ goes to unity, while the imaginary part
vanishes; thus, the modified potential simply reduces to the
Cornell form. In the next two subsections, we discuss the
real and imaginary potentials, modified using the above-
defined ϵ−1ðkÞ.
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1. Real part of the potential in the anisotropic medium

Using Eq. (17) in Eq. (10), we can write the real part of the potential as

Re½Vðr; ξ; TÞ� ¼
Z

d3k

ð2πÞ3=2 ðe
ik·r − 1Þ

�
−

ffiffiffi
2

π

r
α

k2
−

4σffiffiffiffiffiffi
2π

p
k4

��
k2

k2 þm2
D
þ k2ξ

�
1

3ðk2 þm2
DÞ

−
m2

Dð3 cos2θn − 1Þ
6ðk2 þm2

DÞ2
��

: ð19Þ

Solving the above integral, we find

Re½Vðr; ξ; TÞ� ¼ αmD

�
−
e−s

s
− 1

�
þ σ

mD

�
2e−s

s
−
2

s
þ 2

�

þ αξmD

�
−
3 cosð2θrÞ

2s3
−

1

2s3
þ 1

6
þ e−s

�
1

2s3
þ 1

2s2
þ
�

3

2s3
þ 3

2s2
þ 3

4s
þ 1

4

�
cosð2θrÞ þ

1

4s
−

1

12

	


þ ξσ

mD

��
6

s3
−

1

2s

�
cosð2θrÞ þ

2

s3
−

5

6s
þ 1

3
þ e−s

�
−

2

s3
−

2

s2
þ
�
−

6

s3
−

6

s2
−

5

2s
−
1

2

�
cosð2θrÞ −

1

6s
þ 1

6

	


ð20Þ

where s ¼ rmD. Considering the limit s ≪ 1 in Eq. (20),
we have

Re½Vðr; ξ; TÞ� ¼ sσ
mD

�
1þ ξ

3

�
−
αmD

s

�
1þ s2

2

þ ξ

�
1

3
þ s2

16

�
1

3
þ cos ð2θrÞ

���
: ð21Þ

Here, in the isotropic limit, one can observe that there is an
additional term in s with α in Eq. (21). This term vanishes
in the limit T → 0, and we end up with the vacuum
potential; however, it contributes as a thermal correction
to the real part of the medium modified potential at T ≠ 0.

2. Imaginary part of the potential
in the anisotropic medium

The imaginary potential, using Eq. (18) in Eq. (10), can
be written as

Im½Vðr;ξ;TÞ� ¼ πTm2
D

Z
d3k

ð2πÞ3=2 ðe
ik·r− 1Þ

�
−

ffiffiffi
2

π

r
α

k2

−
4σffiffiffiffiffiffi
2π

p
k4

��
k

ðk2þm2
DÞ2

− ξ

�
−k

3ðk2þm2
DÞ2

þ 3k sin2 θn
4ðk2þm2

DÞ2
−
2m2

Dkð3sin2ðθnÞ− 1Þ
3ðk2þm2

DÞ3
��

:

ð22Þ

To solve the above equation, we separate the Coulombic
term (containing α) and the string term (having σ) as

Im½Vðr; ξ; TÞ� ¼ ImV1ðr; ξ; TÞ þ ImV2ðr; ξ; TÞ: ð23Þ

ImV1ðr; ξ; TÞ ¼
αTm2

D

2π

Z
d3kðeik·r − 1Þ 1

k

�
−1

ðk2 þm2
DÞ2

þ ξ

�
−1

3ðk2 þm2
DÞ2

þ 3sin2θn
2ðk2 þm2

DÞ2

−
4m2

Dðsin2θn − 1
3
Þ

ðk2 þm2
DÞ3




ð24Þ

and

ImV2ðr; ξ; TÞ ¼
σTm2

D

π

Z
d3kðeik·r − 1Þ 1

k3

�
−1

ðk2 þm2
DÞ2

þ ξ

�
−1

3ðk2 þm2
DÞ2

þ 3sin2θn
2ðk2 þm2

DÞ2

−
4m2

Dðsin2θn − 1
3
Þ

ðk2 þm2
DÞ3




: ð25Þ

The contribution due to the Coulombic part in the imagi-
nary potential considering the limit rmD ≡ s ≪ 1 is found
to be

ImV1ðr; θr; TÞ ¼ −
αs2T
180

fξð9 cos 2θr − 7Þ þ 60g log
�
1

s

�
;

ð26Þ

and from the string part, we obtain

ImV2ðr;θr;TÞ¼−
s4σT

1260m2
D
fξð9cos2θr−4Þþ42g log

�
1

s

�
:

ð27Þ
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Hence, the imaginary part of the modified potential in the
anisotropic medium is given as

Im½Vðr; θr; TÞ� ¼
αs2T
3

�
ξ

60
ð7 − 9 cos 2θrÞ − 1

	
log

�
1

s

�

þ s4σT
m2

D

�
ξ

35

�
1

9
−
1

4
cos 2θr

�
−

1

30

	

× log

�
1

s

�
: ð28Þ

C. Binding energy (Eb) and thermal width (Γ)
While considering the small anisotropy, one can solve

the Schrödinger equation and obtain the real part of the
binding energy (BE or Eb) by just considering the isotropic
part with the first order perturbation in anisotropy param-
eter ξ, as done in [80–82]. In this case, the real part of Eb is

Re½EbðTÞ� ¼
�
mQσ

2

m4
Dn

2
þ αmD þ ξ

3

�
mQσ

2

m4
Dn

2

þ αmD þ 2mQσ
2

m4
Dn

2

��
: ð29Þ

In the small-distance limit, the imaginary part of the
potential can be considered as a perturbation to the vacuum
potential [82], which provides an estimate for the thermal
width for a particular resonance state, given as

ΓðTÞ ¼ −
Z

d3rjΨðrÞj2ImVðrÞ: ð30Þ

The medium potential, at high temperature, has a long-
range Coulombic tail that dominates over all the other
terms. Owing to this fact, one can choose the ΨðrÞ as the
Coulombic wave function. The Coulombic wave function
for the ground state [1s, corresponding to n ¼ 1 (J=ψ and
ϒ)] and the first excited state [2s, corresponding to n ¼ 2
(ψ 0 and ϒ0)], respectively, is given as

Ψ1sðrÞ ¼
1ffiffiffiffiffiffiffiffi
πa30

q e
−r
a0 ; Ψ2sðrÞ ¼

1

4
ffiffiffiffiffiffiffiffiffiffi
2πa30

q
�
2 −

r
a0

�
e

−r
2a0 ;

ð31Þ
where a0 ¼ 2=ðαmQÞ is the Bohr radius of the quarkonia
system. Now, using Eq. (30), we have

Γ1s=2sðTÞ ¼ m2
DT

Z
d3rjΨ1s=2sðrÞj2

×

�
α

3

�
ξ

60
ð7 − 9 cos 2θrÞ − 1

	

þ σr2
�

ξ

35

�
1

9
−
1

4
cos 2θr

�
−

1

30

	


× r2 log

�
1

rmD

�
: ð32Þ

We rewrite the above equation as

Γ1sðTÞ ¼
�
ξ

3
− 2

�
m2

DT½αI1 þ σI2�; ð33Þ

where

I1 ¼
12 log

�
αmQ

mD

�
þ 12γ − 25

6α2m2
Q

ð34Þ

and

I2 ¼
3
�
20 log

�
αmQ

mD

�
þ 20γ − 49

�
10α4m4

Q
: ð35Þ

Ultimately, the thermal width for the 1s-state appears as

Γ1sðTÞ ¼
m2

DTðξ − 6Þ
90α4m4

Q

�
60ðα3m2

Q þ 3σÞ log
�
αmQ

mD

�

þ 5ð12γ − 25Þα3m2
Q þ 9ð20γ − 49Þσ

�
: ð36Þ

It is important to note that in Ref. [82], while considering
up to leading logarithmic order of the imaginary potential,
the authors have taken the width up to leading logarithmic
order as well. Thus, they consider the dissociation width of
the following form for the 1s-state,

Γ1sðTÞ¼T

�
4

αm2
Q
þ 12σ

α4m4
Q

��
1−

ξ

6

�
m2

D log

�
mD

αmQ

�
: ð37Þ

In the present case, it has been observed that additional
terms, other than the leading logarithmic term, also
contribute significantly. Hence, we consider the full expres-
sion of the width given in Eq. (36). Note that the authors in
Ref. [82] have taken the normalization constant Cξ equal to
unity, which is different in our case as it has a remarkable
contribution. Hence, we have modified the expression, as
one can see in Eq. (37) and other places as well.
For the 2s-state, we have

Γ2sðTÞ ¼
Tðξ − 6Þ
45α2m2

Q

�
35ð12γ − 31Þαþ 72ð160γ − 447Þσ

α2m2
Q

þ 60

�
7αþ 192σ

α2m2
Q

�
log

�
αmQ

2mD

��
m2

D; ð38Þ

and the leading logarithmic order for the 2s-state is given as

Γ2sðTÞ ¼
8m2

DT
α4m4

Q

�
1 −

ξ

6

�
ð7α3m2

Q þ 192σÞ log
�
2mD

αmQ

�
:

ð39Þ
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Again, in this case, we follow the solution given in Eq. (38)
to calculate the binding energy.
Now, we have the real parts of the binding energies

EbðTÞ (BE) as well as the thermal width ΓðTÞ for both
states. Exploiting the criteria discussed earlier, we can plot
twice the binding energy along with the thermal width and
obtain the dissociation temperature as the point of their
intersection. In the next section, we discuss the important
results in detail.

III. RESULTS AND DISCUSSION

In the present analysis, various quantities have been
obtained, and the results are plotted while considering
the weak anisotropy in the hot QCD plasma with the fixed
critical temperature Tc ¼ 0.17 GeV. We considered
ξ ¼ −0.3 for prolate and ξ ¼ 0.3 for oblate, whereas for
the isotropic case, we have ξ ¼ 0. The EoSs that are
employed here are symbolized as follows: The 3-loop
HTL perturbative results are denoted with HTLpt, while the
lattice results are shown as LB; LO refers to the leading
order (ideal case or noninteracting case).
In Fig. 1, the real part of the medium modified potential

has been plotted with respect to r, using Eq. (21), at
temperature T ¼ 3Tc GeV. In the LO case, the potential is
seen to be less negative, in contrast to nonideal cases, at
both parallel, θr ¼ 0 (left panel), and perpendicular,
θr ¼ π=2 (right panel), directions. For ξ ¼ 0.3, the num-
bers are slightly larger as compared to ξ ¼ 0. The numbers
for the prolate case, ξ ¼ −0.3, are found to be the smallest
among them. For θr ¼ π=2, as compared to θr ¼ 0, the
results are found to be similar but have slightly larger
separation for different anisotropies. This shows that the
real part of the potential is marginally affected by the
presence of anisotropy, as one traverses from the longi-
tudinal plane to the transverse plane. As mentioned earlier,

we have obtained the Cornell form of the potential from the
modified one in the limit T → 0 and plotted it in the same
figures [Figs. 1(a) and 1(b)] at α¼0.3 and σ¼0.184GeV2.
In a similar way, the imaginary part of the medium

modified potential, within the limit rmD ≪ 1 and consid-
ering the leading order in ξ, has been plotted in Fig. 2, with
the same parameters as discussed in the case of the real part,
using Eq. (28). For the smaller values of r, the imaginary
part of the medium modified potential is found to be
positive. As the effective radius increases, there is a
crossover to the negative values. In both cases, θr ¼ π=2
and θr ¼ 0, the nonideal EoSs follow the same pattern as
the ideal one. The effect of anisotropy is found to have less
impact on the imaginary part of the potential as compared
to the real one.
As discussed earlier, the dissociation temperature has

been obtained by employing the following criterion: The
temperature at which twice the binding energy (real part)
equals the thermal width and causes dissociation of
quarkonia is the dissociation temperature. In Figs. 3–5,
respectively, the thermal width of J=ψ , ϒ andϒ0 have been
plotted, along with twice the real part of their correspond-
ing BE. In each case, LO is shown in the left panel, HTLpt
in the middle panel, and LB in the right panel. To plot them,
the masses for J=ψ ;ϒ and ϒ0 are taken as 3.096 GeV,
9.460 GeV and 10.023 GeV, respectively, as calculated in
[97–99]. In all the plots, for the oblate case, ξ ¼ 0.3, the
intersection points are found to be larger as compared to the
isotropic case, ξ ¼ 0. The numbers for the prolate case,
ξ ¼ −0.3, are observed to be the least among them. The
results for the various EoSs are shown separately in the
tables. The LO results for different anisotropies are
presented in Table I, 3-loop HTL perturbative calculation
results are in Table II, and (2þ 1)-lattice results are shown
in Table III. In the LO case, one can observe that the

FIG. 1. Real part of the medium modified potential for θr ¼ 0 (left panel) and θr ¼ π=2 (right panel) with various EOSs and different ξ
at fixed Tc ¼ 0.17 GeV and T ¼ 3Tc GeV, along with the potential at T ¼ 0.

DISSOCIATION OF HEAVY QUARKONIA IN AN … PHYS. REV. D 97, 094033 (2018)

094033-7



FIG. 2. Imaginary part of the medium modified potential for θr ¼ 0 (left panel) and θr ¼ π=2 (right panel) with various EOSs and
different ξ at fixed Tc ¼ 0.17 GeV and T ¼ 3Tc GeV.

FIG. 3. Γ, 2BE (Eb) vs T=Tc for J=ψ at Tc ¼ 0.17 GeV with different ξ. We have plotted the leading order (noninteracting) results
(left panel) along with the 3-loop HTLpt (middle panel) and lattice (right panel).

FIG. 4. Γ, 2BE (Eb) vs T=Tc for ϒ at Tc ¼ 0.17 GeV with different ξ. We have plotted the leading order (noninteracting) results (left
panel) along with the 3-loop HTLpt (middle panel) and lattice (right panel).
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dissociation temperature is higher for ϒ (1s-state) as
compared to J=ψ (1s-state), while the excited state ϒ0
(2s-state) has the lowest dissociation temperature. This
hierarchy has been observed in all three cases: oblate,
prolate and isotropic.
A similar pattern is observed while taking the hot QCD

medium effects into consideration, either through HTL
perturbative results or lattice simulation results as shown in
Tables II and III, respectively. But the essential point is
that, as one gets closer to the realistic picture by including
the hot QCD medium interaction effects, a decrease in
dissociation temperature is observed. The nonideal EoSs
have almost overlapping numbers, but to be more precise,
the 3-loop HTLpt results are found to be the smallest
among them.

The numbers for dissociation temperatures are found
to be consistent with those given in Refs. [82,84].
Specifically, while implementing the interacting EoSs,
the numbers are observed to be closer. For each state,
we displayed a contrast in Table IV by calculating the
decrease [in percentage (%)] in the dissociation temper-
atures due to the presence of hot QCD medium effects. It is
found that the dissociation temperatures, while incorporat-
ing hot QCD medium effects, have been lowered by around
13% to 31%. The excited stateϒ0 has been reduced twice as
much as the ground state ϒ.

FIG. 5. Γ, 2BE (Eb) vs T=Tc for ϒ0 at Tc ¼ 0.17 GeV with different ξ. We have plotted the leading order (noninteracting) results (left
panel) along with the 3-loop HTLpt (middle panel) and lattice (right panel).

TABLE I. Ideal (noninteracting EoS) results for the three cases:
prolate, isotropic and oblate.

LO results

Temperature (in units of Tc)

States ↓ ξ ¼ −0.3 ξ ¼ 0.0 ξ ¼ 0.3

ϒ 2.861 2.964 3.062
ϒ0 1.447 1.478 1.508
J=ψ 1.487 1.520 1.551

TABLE II. HTL perturbative results for all three cases: prolate,
isotropic and oblate.

3-loop HTLpt

Temperature (in units of Tc)

States ↓ ξ ¼ −0.3 ξ ¼ 0.0 ξ ¼ 0.3

ϒ 2.427 2.540 2.639
ϒ0 1.008 1.067 1.118
J=ψ 1.054 1.119 1.172

TABLE III. Lattice simulation results for all three cases:
prolate, isotropic and oblate.

Lattice, Bazabov (2014)

Temperature (in units of Tc)

States ↓ ξ ¼ −0.3 ξ ¼ 0.0 ξ ¼ 0.3

ϒ 2.451 2.564 2.665
ϒ0 1.023 1.074 1.120
J=ψ 1.063 1.121 1.172

TABLE IV. Drop in the dissociation temperature from LO
results while applying HTLpt and lattice.

Change in percentage (%)

Using HTLpt

States ↓ ξ ¼ −0.3 ξ ¼ 0.0 ξ ¼ 0.3

ϒ 15.2 14.3 13.8
ϒ0 30.3 27.8 25.9
J=ψ 29.1 26.7 24.4

Using lattice
ϒ 14.3 13.5 13.0
ϒ0 29.3 27.3 25.7
J=ψ 28.5 26.6 24.4
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Note that we also tried for ψ 0 (2s-state, whose mass is
3.686 GeV) but did not find any intersection point above
the critical temperature (Tc). Based on the earlier discus-
sion, this behavior is expected because the excited states
decay at lower temperatures than their corresponding
ground state (J=ψ , which is found to decay at very close
to Tc). A similar suppression pattern has already been seen
in the case of ϒ0 and ϒ.

IV. SUMMARY AND CONCLUSION

The dissociation temperatures for the bottonium and the
charmonium [ground (1s) as well as first excited (2s)]
states have been obtained using the medium modified
interquark potential in the anisotropic hot QCD medium.
The real or imaginary part of the heavy-quark potential is
obtained in terms of the real or imaginary part of the
complex permittivity. The real part of the medium modified
potential causes a dynamical screening of color charge
that leads to the temperature-dependent binding energy,
whereas the imaginary part of the same potential leads to
the temperature-dependent thermal dissociation width. It
has been observed that with the increase in temperature, the
binding energy of the heavy quarkonia decreases, while the
thermal dissociation width increases. Exploiting the criteria
employed here, the dissociation temperature for each state
has been calculated, where twice the binding energy equals
the thermal dissociation width.
The hot QCD medium interaction effects have been

incorporated through the Debye mass by employing the
EQPM. Considering the above fact, the Debye mass has
been normalized in both mediums to make it immune from

the effects of the anisotropy so that the impact of various
EoSs can be seen clearly. After incorporating the medium
interaction effects, the results are found to be smaller in
magnitude as compared to the noninteracting or weakly
interacting, ideal one. We further note that the finite
momentum-space anisotropy in the prolate ξ < 0 case
decreases, while in the oblate ξ > 0 case, the dissociation
temperature increases as compared to the isotropic one,
ξ ¼ 0, for all states taken into account. It has also been
observed that in both the charmonium and bottonium cases,
the excited states dissociate earlier (at low temperature)
than their corresponding ground state. Furthermore, we
have not found an intersection point above Tc for the ψ 0-
state. Finally, we observed that both the anisotropy and the
hot QCD medium effects present in EoS play a significant
role in deciding the fate of heavy-quarkonia states in the hot
QCD/QGP medium.
To extend the present work, we aim to incorporate the

viscous effects and study the dissociation of heavy quar-
konia in hydrodynamically expanding viscous QGP. In
addition, the collisional effects on the quarkonia suppres-
sion will be carried out in the near future.
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