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Using the local hidden gauge approach, we study the possibility of the existence of bottom strange
molecular states with isospin 0. We find three bound states with spin parity 0þ, 1þ, and 2þ generated by the
K̄�B� and ωB�

s interaction, among which the state with spin 2 can be identified as B�
s2ð5840Þ. In addition,

we also study the K̄�B and ωBs interaction and find a bound state which can be associated to Bs1ð5830Þ. In
addition, the K̄B�, ηB�

s , K̄B, and ηBs systems are studied, and two bound states are predicted. We expect
that further experiments can confirm our predictions.

DOI: 10.1103/PhysRevD.97.094031

I. INTRODUCTION

The local hidden gauge symmetry was introduced in
Refs. [1–4] which regards vector mesons as the gauge
bosons and pseudoscalar mesons as the Goldstone bosons.
Considering this symmetry together with the global chiral
symmetry, one can construct the Lagrangian describing
interactions involving vector and pseudoscalar mesons. On
the other hand, the Bethe-Salpeter equation is a powerful
tool to deal with nonperturbative physics while restoring
two-body unitarity in coupled channels. The theory incor-
porating the above two points has been instrumental in
explaining many properties of hadronic resonances. In
Ref. [5], the f0ð1370Þ and f2ð1270Þ were explained as
resonances generated from the ρρ interaction. Later, in
Ref. [6] the work of Ref. [5] was extended to SU(3), and
five of the generated states were identified with the
observed f0ð1370Þ, f2ð1270Þ, f0ð1710Þ, f02ð1525Þ, and
K�

2ð1430Þ. In the spin-1 sector, a resonance was also found
in Ref. [6] with a mass and width around 1800 and 80 MeV,
respectively. This state, h1ð1800Þ, is dynamically generated
from the K�K̄� interaction, and it was investigated in the
process J=ψ → ηK�0K̄�0 in Ref. [7] and in the process
ηc → ϕK�K̄� in Ref. [8]. In Ref. [9], the authors studied the
interactions of ρ, ω, and D�, and three states with spin

J ¼ 0, 1, 2 were predicted, among which the second and
third ones were identified with D�ð2640Þ and D�

2ð2460Þ,
respectively. The third state predicted, Dð2600Þ, was found
later in Ref. [10] and has been reconfirmed [11,12]. This
work was extended to the case of the ρðωÞB�ðBÞ interaction
in Ref. [13], where B1ð5721Þ and B�

2ð5747Þ were explained
as ρðωÞB� and ρB molecules.
The first evidence for at least one of the bottom strange

states was found by the OPAL experiment [14]. Evidence
for a single state interpreted as B�

s2 was seen by the Delphi
Collaboration [15]. B�

s2ð5840Þ was observed by both the
CDF and D0 collaborations in the BþK− channel [16–18].
In the CDF experiment, there is another peak in the BþK−

invariant mass spectrum corresponding to Bs1ð5830Þ.
However, Bs1ð5830Þ → BþK− is not allowed. The inter-
pretation is that this peak comes from the channel B�þK−

and B�þ decays to Bþγ where the photon is not detected. As
a consequence, the peak is shifted by the B� − B mass
difference due to the missing momentum of the photon.
Recently, the LHCb Collaboration first measured the mass
and width of B�

s2ð5840Þ in the B�þK− channel. In addition,

the ratio B�
s2ð5840Þ→B�þK−

B�
s2ð5840Þ→BþK− was measured and the decay of

Bs1ð5830Þ → B�þK− was observed as well [19]. In
Refs. [20–22], the B�

s0 and Bs1 mesons were explained
as BK̄ and B�K̄ molecular states, respectively.
In addition, the D0 Collaboration reported the narrow

structure Xð5568Þ in the B0
sπ

� invariant mass spectrum,
whose mass and width are 5567.8� 2.9þ0.9

−1.9 and
21.9� 0.6þ5.0

−2.5 MeV, respectively [23]. However, the
LHCb Collaboration [24], CMS Collaboration [25], and
CDF Collaboration [26] claimed that no such decay mode
was detected. Recently, the D0 Collaboration made further
claims for the Xð5568Þ from the decay Xð5568Þ → Bsπ

�
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and the result is consistent with the previous measurement
by the D0 Collaboration [27]. Within various models, many
theoretical groups have studied possible ways to explain
Xð5568Þ as a tetraquark state, a molecular state, etc.
[28–60] (see also the review [61]). In a previous paper
[51] we dealt with this problem, concluding that this state
could not be interpreted as a molecular state of Bsπ, BK̄ and
we do not further discuss this issue here.
In this work, we extrapolate the local hidden gauge

approach to the systems containing bottom and strange
quarks. The paper is organized as follows. After this
Introduction, in Sec. II we show the local hidden gauge
Lagrangian from which the potentials are obtained. Then,
we construct the T matrix by solving the Bethe-Salpeter
equation. In Sec. III we present our results. Finally, we
conclude with a short summary.

II. FORMALISM

A. Lagrangian

In order to describe the interaction of bottom and strange
mesons, we need to use the local hidden gauge approach,
under which vector mesons are treated as gauge bosons.
The covariant derivative is defined as

DμξL;R ¼ ∂μξL;R − iVμξL;R; ð1Þ
and the gauge field strength as

Vμν ¼ ∂μVν − ∂νVμ − ig½Vμ; Vν�: ð2Þ
Here, g is given by g ¼ mV

2fπ
with the pion decay constant

fπ ¼ 93 MeV, and mV are the masses of vector mesons.
ξL;R are defined as

ξL ¼ eiσ=fσe−i
1ffiffi
2

p P=fπ ; ð3Þ

ξR ¼ eiσ=fσei
1ffiffi
2

p P=fπ : ð4Þ

In this paper, we take the unitary gauge, i.e., σ ¼ 0. In the
above equations, the matrices Vμ and P have the following
form:

Vμ¼

0
BBBBB@

ωffiffi
2

p þ ρ0ffiffi
2

p ρþ K�þ B�þ

ρ− ωffiffi
2

p − ρ0ffiffi
2

p K�0 B�0

K�− K̄�0 ϕ B�0
s

B�− B̄�0 B̄�0
s ϒ

1
CCCCCA

μ

;

P¼

0
BBBBBB@

ηffiffi
3

p þ η0ffiffi
6

p þ π0ffiffi
2

p πþ Kþ Bþ

π− ηffiffi
3

p þ η0ffiffi
6

p − π0ffiffi
2

p K0 B0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0 B0

s

B− B̄0 B̄0
s ηb

1
CCCCCCA
: ð5Þ

After defining the blocks

α̂⊥μ ¼
1

2i
ðDμξR · ξ†R −DμξL · ξ†LÞ;

α̂kμ ¼
1

2i
ðDμξR · ξ†R þDμξL · ξ†LÞ; ð6Þ

one can construct the Lagrangian [4]

L ¼ LA þ aLV þ LIII; ð7Þ

where

LA ¼ f2πhα̂⊥μα̂
μ
⊥i;

aLV ¼ f2σhα̂kμα̂μki;

LIII ¼ −
1

4
hVμνVμνi; ð8Þ

with f2σ ¼ af2π , and we take a ¼ 2 as in Ref. [4].
After expanding the Lagrangians in Eq. (7), we get the

terms needed in our calculation, i.e., the three-vector vertex

LVVV ¼ ighð∂μVν − ∂νVμÞVμVνi; ð9Þ

four-vector vertex

LVVVV ¼ g2

2
hVμVνVμVν − VνVμVμVνi; ð10Þ

four-pseudoscalar vertex

LPPPP ¼ −
1

24f2π
h½P; ∂μP�½P; ∂μP�i: ð11Þ

and vector-pseudoscalar-pseudoscalar vertex

LVPP ¼ −ighVμ½P; ∂μP�i: ð12Þ

Note that there is no vector-vector-pseudoscalar-
pseudoscalar (VVPP) contact term under the hidden local
symmetry. Moreover, since the vector-vector-pseudoscalar
interaction is anomalous with a comparatively small con-
tribution, we do not take it into account. In this work, we
will study the interaction between bottom and strange
mesons, so we extend the SU(3) flavor symmetry to
SU(4). Next, we change the form of the three-vector
Lagrangian in Eq. (9) through some short calculations,

L ¼ ighð∂μVν − ∂νVμÞVμVνi
¼ ighVμVν∂μVν − Vμ∂μVνVνi
¼ ighVμ½Vν; ∂μVν�i; ð13Þ

from which we see that this Lagrangian has a similar form
as that in Eq. (12) except for the minus sign.
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As noted in Ref. [62], for small three-momenta of the
vector mesons compared to their mass, the ϵ0 component of
the external vectors can be neglected. Vμ in the last line of
Eq. (13) cannot correspond to an external vector. If this
were the case, ν would be spatial and ∂i (i ¼ 1, 2, 3) would
lead to negligible three-momenta of vector mesons. Then,
the Lagrangian in Eq. (13) would give zero contribution.
Henceforth, we conclude that Vμ in Eq. (13) corresponds to
the exchange vector. Similarly, in Eq. (12), Vμ corresponds
to the exchanged vector too. So Eqs. (13) and (12) are
formally identical, except for an additional factor ϵ⃗ · ϵ⃗
which comes from VνVν (note that ϵμϵμ gives −ϵ⃗ · ϵ⃗).
It should be noted that the local hidden gauge approach is

constructed within SU(2) or SU(3) [63,64]. In the heavy-
quark sector one cannot invoke heavy mesons as Goldstone
bosons. Yet, the extension to the heavy-quark sector is
possible because the dominant terms of the interaction
correspond to the exchange of light vectors (ρ, ω, ϕ) and
the heavy quarks of the hadrons are just spectators. In this
case it is possible to make a mapping of the interaction in
the heavy-light hadron sector to the one in the heavy hadron
sector. For practical purposes one can use the local hidden
gauge Lagrangians extrapolated to SU(4) as in Eq. (5),
since for the exchange of light vectors one is only making
use of the relevant SU(3) subgroup. Discussions on this
issue and the proof of this property can be seen in Sec. II of
Ref. [65] and Sec. II and the Appendix of Ref. [66].

B. B� and K̄� interaction

The interaction terms of K̄�B� andωB�
s are depicted by the

diagrams in Fig. 1, including contact terms and t-channel
diagrams. Here, we neglect the bottom-meson-exchange
diagrams, which have a much smaller contribution due to
the heavy mass of bottom mesons. Besides, the amplitude of
ωB�

s → ωB�
s is zero, because of the Okubo-Zweig-Iizuka

(OZI) rule [67–69].Recalling the isospin doublet ðK�þ; K�0Þ,
ðK̄�0;−K�−Þ, ðB�þ; B�0Þ, ðB̄�0;−B�−Þ, and the isospin triplet
ð−ρþ; ρ0; ρ−Þ, we have the flavor wave functions

jK̄�B�; I ¼ 0i ¼ K�−B�þ þ K̄�0B�0ffiffiffi
2

p ; ð14Þ

jωB�
s ; I ¼ 0i ¼ ωB�

s : ð15Þ

Here the channel ϕB�
s is not considered, since its threshold

is much higher than those of the other two.With the structure
of Eqs. (12) and (13), all of the amplitudes have the structure
ðk1 þ k3Þ · ðk2 þ k4Þϵμ1ϵμ3ϵν2ϵν4. As mentioned above,
since the three-momenta of the external particles are
much smaller than the masses, the ϵ0 component of the
external vector mesons can be neglected. So we have
ϵμ1ϵν2ϵ

μ
3ϵ

ν
4∼ϵi1ϵj2ϵi3ϵ

j
4, ϵμ1ϵ

μ
2ϵν3ϵ

ν
4∼ϵi1ϵi2ϵj3ϵ

j
4, ϵμ1ϵν2ϵ

ν
3ϵ

μ
4∼

ϵi1ϵj2ϵ
j
3ϵ

i
4, with i ¼ 1, 2, 3. After writing the amplitudes

using Feynman rules, we project the polarization vector
products into different spin states:

Pð0Þ ¼ 1

3
ϵiϵiϵjϵj; ð16Þ

Pð1Þ ¼ 1

2
ðϵiϵjϵiϵj − ϵiϵjϵjϵiÞ; ð17Þ

Pð2Þ ¼ 1

2
ðϵiϵjϵiϵj þ ϵiϵjϵjϵiÞ − 1

3
ϵiϵiϵjϵj; ð18Þ

where the order of the ϵ’s is 1, 2, 3, 4 for the reaction
1þ 2 → 3þ 4. Hence, the amplitudes of different spins for
K̄�B� → K̄�B� (with I ¼ 0) are

tS¼0
cont ¼ 4g2; ð19Þ

tS¼1
cont ¼ 6g2; ð20Þ

tS¼2
cont ¼ −2g2; ð21Þ

tS¼0;1;2
ex ¼ −

g2

2

�
3

m2
ρ
þ 1

m2
ω

�
ðs − uÞ; ð22Þ

and those for K̄�B� → ωB�
s are

tS¼0
cont ¼ −4g2; ð23Þ

tS¼1
cont ¼ 0; ð24Þ

tS¼2
cont ¼ 2g2; ð25Þ

tS¼0;1;2
ex ¼ g2

m2
K�

ðs − uÞ: ð26Þ

In the above equations, the Mandelstam variables s and u are
defined as

s ¼ ðk1 þ k2Þ2; ð27Þ

(a)

(e) (f) (g)

(b) (c) (d)

FIG. 1. Feynman diagrams describing the K̄�B� and ωB�
s

interaction. (a), (b), (c) and (d) correspond to contact terms,
and (e), (f) and (g) are t-channel diagrams.
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u ¼ðk1 − k4Þ2: ð28Þ

C. BK̄� and B�K̄ interactions

In Fig. 2, we show the diagrams for the K̄�B and ωBs
interaction. Note that under hidden local symmetry, there is
no contact term for vector-pseudoscalar scattering. The
amplitude of ωBs → ωBs is zero, because of the OZI rules.
For K̄�B → K̄�B with I ¼ 0 we need the exchange of ρ

and ω, and we obtain

tS¼1
ex ¼ −

g2

2

�
3

m2
ρ
þ 1

m2
ω

�
ðs − uÞ ð29Þ

and for K̄�B → ωBs

tS¼1
ex ¼ g2

m2
K�

ðs − uÞ: ð30Þ

Similarly, we can also get the amplitudes for the K̄B� →
K̄B� process with I ¼ 0 as follows:

tS¼1
ex ¼ −

g2

2

�
3

m2
ρ
þ 1

m2
ω

�
ðs − uÞ: ð31Þ

However, according to the diagrams shown in Fig. 3, the
calculation for K̄B� → ηB�

s with I ¼ 0 is a little bit
different. Using the Feynman rules and considering the
flavor wave function, we obtain

tS¼1
ex ¼ −

2
ffiffiffi
6

p
g2

3m2
K�

ðs − uÞ: ð32Þ

D. B and K̄ interaction

In Fig. 4, we show the diagrams depicting the interaction
of pseudoscalar and pseudoscalar mesons. The amplitude
of the contact terms corresponding to Eq. (11) for the
K̄B → K̄B process with I ¼ 0 are

tS¼0
cont ¼ −

1

6f2
ð2u − t − sÞ; ð33Þ

those for the K̄B → ηBs process are

tS¼0
cont ¼ −

ffiffiffi
6

p

12f2
ðs − uÞ; ð34Þ

and those for the ηBs → ηBs process are

tS¼0
cont ¼ −

1

36f2
ð−2tþ uþ sÞ; ð35Þ

with t ¼ ðk1 − k3Þ2. The amplitudes of t-channel diagrams
for K̄B → K̄B are

tS¼0
ex ¼ −

g2

2

�
3

m2
ρ
þ 1

m2
ω

�
ðs − uÞ; ð36Þ

and those for K̄B → ηBs are

tS¼1
ex ¼ −

2
ffiffiffi
6

p
g2

3m2
K�

ðs − uÞ: ð37Þ

The t-channel diagrams for ηBs → ηBs give zero
contribution.

(a) (b) (c)

FIG. 2. Feynman diagrams describing the K̄�B and ωBs

interaction. (a), (b) and (c) correspond to ρ=ω, K� and K̄�
exchange, respectively.

(a) (b) (c)

FIG. 3. Feynman diagrams describing the K̄B� and ηB�
s

interaction. (a), (b) and (c) correspond to ρ=ω, K� and K̄�
exchange, respectively.

(a)

(e) (f) (g)

(b) (c) (d)

FIG. 4. Feynman diagrams describing the K̄B and ηBs
interaction. (a), (b), (c) and (d) correspond to contact terms,
and (e), (f) and (g) are t-channel diagrams.
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E. T matrix

With the preparation above, using the Bethe-Salpeter
equation in its on-shell factorized form, we obtain the T
matrix

T ¼ ðI − VGÞ−1V; ð38Þ

where V corresponds to the transition amplitudes shown
above, but projected to the s wave. So we neglect the
product k⃗1 · k⃗3 in the Mandelstam variables u and t which
corresponds to the p-wave contribution, i.e.,

u ≈
m2

1 þm2
2 þm2

3 þm2
4

2
−
ðm2

4 −m2
3Þðm2

1 −m2
2Þ

2s
;

t ≈
m2

1 þm2
2 þm2

3 þm2
4

2
þ ðm2

4 −m2
3Þðm2

1 −m2
2Þ

2s
: ð39Þ

G is the two-meson loop function

G ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
1 þ iϵ

1

ðP − qÞ2 −m2
2 þ iϵ

: ð40Þ

Using a cutoff for the three-momentum, we have

G ¼
Z

qmax

0

q2dq
ð2πÞ2

ω1 þ ω2

ω1ω2½ðP0Þ2 − ðω1 þ ω2Þ2 þ iϵ� : ð41Þ

This integral was already done (see Ref. [70]), and we show
it as follows:

G ¼ 1

32π2

2
64ν
s

8<
:log

s − Δþ ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

q
−sþ Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

q þ log
sþ Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

q
−s − Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

q
9=
; −

Δ
s
log

m2
1

m2
2

þ 2
Δ
s
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

2

q2max

q þ log
m2

1m
2
2

q2max
−2 log

2
64
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

1

q2max

s ! 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

2

q2max

s !375
3
75: ð42Þ

In Eqs. (40)–(42), P is the total four-momentum of the
two mesons in the loop, m1 and m2 are the masses, qmax

stands for the cutoff, ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2i þm2

i

p
, P0 is nothing

but the center-of-mass energy
ffiffiffi
s

p
, Δ ¼ m2

2 − m2
1, and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1 þ m2Þ2�½s − ðm1 − m2Þ2�

p
.

III. RESULTS

A. Discussion of the couplings under SU(4) symmetry

In this subsection, we follow Refs. [13,65,71] and
discuss the couplings in the Lagrangian. As an example,
we consider the vertex of B�B�ρ. In order to estimate the
corresponding coupling, we need to compare this vertex
with that of K�K�ρ, since their topology is the same if the s̄

and b̄ quarks are seen as spectators. Figure 5 shows the
diagrams for these two vertices at the quark level, in which
case the corresponding S matrices should be the same, i.e.,

Smic ¼ 1 − it

ffiffiffiffiffiffiffiffiffi
2mL

2EL

s ffiffiffiffiffiffiffiffiffi
2m0

L

2E0
L

s ffiffiffiffiffiffiffiffi
1

2ωρ

s
1

V3=2 ð2πÞ4δðPin − PoutÞ:

ð43Þ

On the other hand, at the hadronic level, the S matrices are
written as

Smac
B� ¼1− itB�

1ffiffiffiffiffiffiffiffiffiffi
2ωB�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωB�

p 1ffiffiffiffiffiffiffiffi
2ωρ

p 1

V3=2 ð2πÞ4δðPin−PoutÞ;

ð44Þ

Smac
K� ¼1−itK�

1ffiffiffiffiffiffiffiffiffiffi
2ωK�

p 1ffiffiffiffiffiffiffiffiffiffi
2ωK�

p 1ffiffiffiffiffiffiffiffi
2ωρ

p 1

V3=2ð2πÞ4δðPin−PoutÞ:

ð45Þ

As discussed above, we should have Smac
B� ¼ Smac

K� which
tells us that the corresponding T matrices obey the
following relation at the threshold:

(a) (b)

FIG. 5. The vertexes of B�B�ρ and K�K�ρ at the quark level,
which correspond to (a) and (b), respectively.
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tB�

tK�
¼ mB�

mK�
: ð46Þ

If we use the Lagrangian in Eq. (9) and calculate the T
matrices of the processes in Fig. 5, we find that Eq. (46)
holds automatically when the ρ is the exchanged (virtual)
vector meson, because the amplitude has the ∂μ ≅ ∂0

operator acting on the external vectors. The coupling of
B�B�ρ in Eq. (9) correctly implements the field correction
factor of Eq. (46). Since in this case the b quark acts as a
spectator in the vertex, this amplitude is automatically
consistent with heavy-quark spin symmetry [72]. Similar
discussions can be applied to the BBρ vertex with respect to
KKρ, and we have

tB
tK

¼ mB

mK
; ð47Þ

but this is what we obtain from Eq. (12) using SU(4) flavor
symmetry. Effectively one is using SU(3) when the heavy
quark is considered as a spectator. In summary, we apply
the Lagrangians of Sec. II A, and this automatically takes
into account all the elements discussed above.

B. The K̄�B� system

With the potentials given in the previous section, we
solve the Bethe-Salpeter equation considering the K̄�B�,
ωB�

s , and ϕB�
s coupled channels. We also obtain three

bound states with J ¼ 0, 1, 2, using the cutoff qmax
around 1055–1085 MeV. The obtained mass is 5847.8–
5831.7 MeV for the spin-2 state which is consistent with
that of B�

s2ð5840Þ. With this qmax, we predict that the bound
state with J ¼ 0 has a mass of 5908.5–5894.4 MeV, and
the one with J ¼ 1 has a mass of 5912.1–5898.2 MeV. In
Fig. 6, we plot the line shape of the mass distribution of
these three states. The Particle Data Group (PDG) [73]
reports that the mass of Bs1ð5830Þ with spin 1 is smaller
than that of B�

s2ð5840Þ. However, the generated bound state
with spin 1 has a mass about 65 MeV larger than that of the
bound state with spin 2. Henceforth, it is difficult to explain
the Bs1ð5830Þ as the K̄�B� bound state. In the next
subsection, we will come back to this problem.
The T matrix close to a pole behaves like

Tij ≈
gigj
z − zR

; ð48Þ

where i, j ¼ K̄�B�, ωB�
s , ϕB�

s , gi is the coupling to the
channel i, ReðzRÞ gives the mass of the bound state, ImðzRÞ

FIG. 6. Squared amplitude for K̄�B�=ωB�
s=ϕB�

s systems with spin 0, 1, and 2, respectively.
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gives the half width, and z is the complex value of the
Mandelstam variable s. The coupling for a certain channel
is obtained as

g2i ¼ lim
z→zR

Tiiðz − zRÞ: ð49Þ

The sign of the coupling to the B�K̄� channel is chosen as
positive, and those for the other channels are then deter-
mined by the following formula:

gi
gj

¼ lim
z→zR

Tii

Tij
: ð50Þ

The value of the couplings are listed in Table I, from
which we can see that the K̄�B� component is dominant for
all of the states.

C. The K̄�B system

As mentioned in the previous subsection, the Bs1ð5830Þ
cannot be explained as the K̄�B� bound state with spin 1,
since in the PDG the mass of Bs1ð5830Þ is smaller than that
of B�

s2ð5840Þ, which is contrary to our results. Now we will
try to explain the Bs1ð5830Þ under the K̄�B=ωBs system.
Under hidden local symmetry there are no contact terms

for the VVPP vertex, so only vector-exchange diagrams are
involved. For the vector-exchange terms, the interactions
we study in this subsection have the same form as that of
the K̄�B=ωBs=ϕBs interactions. So here we expect to find a
bound state like in the case of the K̄�B� system. We use
qmax ¼ 1055–1085 MeV fixed in the case of the K̄�B�
bound state with spin 2. Then we obtain a pole position in
the range 5822.3–5806.9 MeV, which is consistent with the
mass of Bs1ð5830Þ in the PDG. In Fig. 7, we plot the line
shape of jTj2 depending on the center-of-mass energy

ffiffiffi
s

p
.

We also calculate the couplings, which have the values
gK̄�B ¼ 47 654, gωBs

¼ −13 388, and gϕBs
¼ 18 855 with

the cutoff qmax ¼ 1070 MeV.

D. Other predictions

In this subsection, we will show the results correspond-
ing to K̄B�=ηB�

s and K̄B=ηBs interactions.
Like the case of the K̄�B=ωBs=ϕBs system, there are no

contact terms for the K̄B�=ηB�
s interaction. Only the vector-

meson exchange diagrams are considered. In Fig. 8, we plot
the squared amplitude depending on the center-of-mass
energy

ffiffiffi
s

p
. Here, we also use the cutoff qmax ¼

1055–1085 MeV as before. The pole position is located
at 5671.2–5663.6 MeV. The couplings of B�K̄ and B�

sη are
30 637 and −13 919 MeV, respectively, where we choose
the cutoff as 1070 MeV.

TABLE I. The couplings for K̄�B� systems mixing with ωB�
s ,

ϕB�
s channels. Here we chose the typical value of the cutoff as

1070 MeV. All values are given in units of MeV.

Channel J ¼ 0 J ¼ 1 J ¼ 2

K̄�B� 45 955 45 070 49 633
ωB�

s −10 696 −14 810 −15 017
ϕB�

s 18 614 15 702 19 409

FIG. 7. Squared amplitude for the K̄�B=ωBs=ϕBs sector
depending on the center-of-mass energy.

5450

FIG. 8. Squared amplitude for the K̄B=ηBs and K̄B�=ηB�
s sector.
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For the K̄B=ηBs system, we predict a bound state with a
mass of 5475.4–5457.5 MeV, and the couplings gK̄B ¼
53 577 MeV and gηBs

¼ −3689 MeV, with a cutoff
qmax ¼ 1070 MeV.
We list our results for all of the systems in Table II.

IV. SUMMARY

In this work, we have studied the systems containing
bottom and strange quarks using the chiral unitary
approach. Considering K̄�B� and ωB�

s coupled channels
and solving the Bethe-Salpeter equation, we found three
states with masses 5908.5–5894.4, 5912.1–5898.2, and
5847.8–5831.7 MeV, with the cutoff qmax chosen as 1055–
1085 MeV. The state with spin 2 can be identified with
B�
s2ð5840Þ. From the couplings that we obtained, we can

see that the K̄�B� component is dominant. However, the
Bs1ð5830Þ cannot be explained as the state with spin 1,
since its mass is smaller than that of B�

s2ð5840Þ. So we
studied another system, i.e., the K̄�B=ωBs system, and we
found a bound state with a mass 5822.3–5806.9 MeV
which agrees with the mass of Bs1ð5830Þ. In addition, we

also studied K̄B�=ηB�
s and K̄B=ηBs interactions, and

predicted two bound states with masses 5671.2–5663.6
and 5475.4–5457.5 MeV, respectively. We expect further
experiments to confirm our predictions.
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