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with nonuniversal couplings in the Drell-Yan process
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We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard
Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum
chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large
Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge
invariant operators with different coupling strengths has been considered. These operators not being
conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the
colliders. We find that our results using the higher order quantum corrections stabilize the predictions with
respect to renormalization and factorization scales. We also find that corrections are appreciable which need
to be taken into account in such searches at the colliders.
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I. INTRODUCTION

With the absence of any signal of new physics at the
Large Hadron Collider (LHC) at present energies, searches
of physics beyond the Standard Model (BSM) are based on
the ability to make very precise theoretical predictions
within the Standard Model (SM) and to look for possible
deviations between experimental observations and theoreti-
cal predictions, as a hint of new physics, within estimated
uncertainties. In order to constrain the new physics
model parameters, one needs to also compute the BSM
signals to the same level of theoretical precision as the SM
and compare with the observations made at the LHC.
Quantum chromodynamics (QCD) corrections are large at
the LHC and the inclusion of higher order terms reduces the
theoretical uncertainties substantially. Many SM processes
have been measured at the LHC and have cross sections that
are in excellent agreement with higher order QCD predic-
tions. This has helped in the discovery of theHiggs boson by

ATLAS [1] and CMS [2] Collaborations at the LHC and
hence the measurement of the important fundamental
parameter of the SM, the Higgs mass mH (see [3–5]).
Precise measurement of the Higgs mass is essential for the
understanding of the stability of electroweak vacuum [6].
In spite of the fact that the SM is in excellent agreement

with experimental observations, we know that there are
compelling reasons to go beyond the SM. In the context of
the discovery of a boson at 125 GeV in the diphoton
channel, models with spin-2 were also necessary to
ascertain the spin and parity of the discovered boson. In
the meanwhile the bounds on conventional models such as
the Randall-Sundrum models with warped extra dimen-
sions [7], where the spin-2 couples universally to the SM
energy momentum tensor was much higher. A universally
coupled spin-2 particle is heavily constrained [8,9]. Models
with nonuniversal coupling of a spin-2 to SM was hence a
suitable alternative. In this model, the spin-2 couples to two
sets of gauge invariant SM tensorial operators with different
coupling strengths, but are not individually conserved. The
universal coupling would correspond to the coupling
strength being equal and the tensorial operators adding
up to the conserved energy momentum tensor. Models with
nonuniversal coupling were incorporated in tools such as
Higgs characterization [10] to next-to-leading order (NLO)
in QCD. Nonuniversal coupling leads to additional chal-
lenges: (a) additional UV renormalizations were needed;
(b) in the IR sector, additional double and single pole terms
had to be canceled with the counterparts from the real
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emission process and the mass factorization counterterms,
thus demonstrating the IR factorization to NLO for non-
universal coupling [10]. Note that we take this for granted
in perturbative QCD and for universal coupling it is
guaranteed by the conserved energy-momentum tensor.
Recently, the UV structure of nonuniversal coupling up

to three-loop order in QCD was investigated [11] where in
the spin-2 fields couple to two sets of gauge invariant
tensorial operators constructed out of the SM fields (with
different coupling strengths). These rank-2 operators are
unfortunately not conserved, unlike the energy-momentum
tensor of QCD [12]. Consequently, both these operators as
well as the couplings get additional UV renormalization
order by order in perturbation theory. Exploiting the
universal IR structure of QCD amplitudes even in the case
of a nonuniversal spin-2 coupling, on-shell form factors of
these operators between quark and gluon states have been
computed. These are important ingredients for observables
at the LHC, to study models with such interactions.
For universal coupling, depending on the geometry of extra

dimensions, viz. large extra dimensions or warped extra
dimension models, studies have been extensively carried
out up to higher orders in QCD in various channels that are
relevant for the LHC. In these models, the Drell-Yan (DY)
process has been studied to NLO [13–15] for various
observables. Divector boson final states have been studied
to the NLO level in [16–21]. To NLOþ parton showerðPSÞ
accuracy all the noncolor, difinal states have been studied
[22–24] in the aMC@NLO framework. Production of a
generic spin-2 particle in association with colored particles,
vector bosons, and the Higgs boson have been studied in [25]
to NLOþ PS accuracy. To the next higher order in QCD the
form factor of a spin-2 universally coupled to quarks and
gluons up to two loops was computed in [26]. Subsequently
the next-to-next-to-leading order (NNLO) computation in the
threshold limit was done in [27] and finally the full NNLO
computation in [28]. Production of a spin-2 in associationwith
a jet to full two-loopQCDcorrections has also been completed
recently with the evaluation of generic spin-2 decaying to ggg
[29] and qq̄g [30].
The dilepton final state is themost studied and a very clean

process at the LHC. In BSM scenarios the dilepton signal
could be enhanced due to additional contributions fromBSM
intermediate states that could couple to a dilepton. For the
universal spin-2 coupling the DY process has been evaluated
up to NNLO in QCD. This involved various steps: to begin
with NLO corrections were evaluated [13], followed by the
two-loop quark and gluon form factors [26],which lead to the
computation of NNLO QCD corrections to the graviton
production in models of TeV-scale gravity, within the soft-
virtual approximation [27]. Finally the complete NNLO
QCD corrections to the production of dileptons at hadron
colliders in large extra dimension models with spin-2
particles are reported in [28].

The nonuniversal coupling of spin-2 to SM has been
actively considered by the ATLAS Collaboration [31,32] to
provide exclusion of several non-SM spin hypotheses. This
analysis has been done in the Higgs characterization
framework [10,25] to NLOþ PS accuracy. With the recent
results [11] up to three-loop form factors of a massive spin-2
particle with nonuniversal coupling, NNLO computation is
now possible. In this article we look at the phenomenologi-
cal implications of these models to NNLO at the LHC.
The paper is organized as follows. We discuss the

effective action that describes how a spin-2 particle couples
to those of the SM through two gauge invariant operators
with renormalizable coupling. Using this action, we com-
pute QCD radiative correction to the production of a pair of
leptons, in particular their invariant mass distribution up to
the NNLO level. A detailed phenomenological study on the
impact of our results is presented for the LHC. Finally we
conclude. The relevant form factors are presented in the
Appendix, and mass factorized partonic cross sections are
given as an electronically readable version.

II. THEORETICAL FRAMEWORK

A. Effective action

The interaction part of the effective action describes the
nonuniversal coupling of the spin-2 fields denoted by hμν
with those of QCD, consists of two gauge invariant
operators, namely ÔG

μν and ÔQ
μν, and is given by

S ¼ −
1

2

Z
d4xhμνðxÞðκ̂GÔG

μνðxÞ þ κ̂QÔ
Q
μνðxÞÞ; ð2:1Þ

where κ̂G;Q are dimension full couplings, the pure gauge
sector is denoted byG, whileQ denotes the fermionic sector
and its gauge interaction. This decomposition is not unique
as one can adjust gauge invariant terms between them. The
gauge invariant operators ÔG

μν and ÔQ
μν are as follows:

ÔG
μν ¼

1

4
gμνF̂

a
αβF̂

aαβ− F̂a
μρF̂

aρ
ν −

1

ξ̂
gμν∂ρðÂa

ρ∂σÂa
σÞ

−
1

2ξ̂
gμν∂αÂ

aα∂βÂ
aβþ1

ξ̂
ðÂa

ν∂μð∂σÂa
σÞþ Âa

μ∂νð∂σÂa
σÞÞ

þ∂μω̂
að∂νω̂

a− ĝsfabcÂ
c
νω̂

bÞ
þ∂νω̂

að∂μω̂
a− ĝsfabcÂ

c
μω̂

bÞ
−gμν∂αω̂

að∂αω̂a− ĝsfabcÂ
cαω̂bÞ; ð2:2Þ

ÔQ
μν ¼

i
4
½ ¯̂ψγμð∂⃗ν − iĝsTaÂa

νÞψ̂ − ¯̂ψð∂⃖ν þ iĝsTaÂa
νÞγμψ̂

þ ¯̂ψγνð∂⃗μ − iĝsTaÂa
μÞψ̂ − ¯̂ψð∂⃖μ þ iĝsTaÂa

μÞγνψ̂ �
− igμν ¯̂ψγαð∂⃗α − iĝsTaÂa

αÞψ̂ ; ð2:3Þ
and in the above equations the unrenormalized quantities are
denoted by a hat ð^Þ. ĝs is the strong coupling constant, ξ̂ the
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gauge fixing parameter, Âc
ν the gauge field, ψ̂ the quark field,

and ω̂a the ghost fields. The structure constants of theSUðNÞ
gauge group are denoted by fabc and the Gell-Mann
matrices by Ta. The sum of ÔG and ÔQ is the energy
momentum tensor of the QCD part and is protected by
radiative corrections to all orders, thanks to the fact that it is
conserved. The Feynman rules for the nonuniversal case in
contrast to the universal case [33,34] would have a prefactor
κQ for the coupling for a spin-2 to a pair of fermions or any
fermionic SM vertex, while a spin-2 coupling to gluons,
ghosts, or any SM gauge or ghost vertex would have a
prefactor κG. The individual gauge OG and fermionic OQ

operators are not conserved in QCD and hence require
additional ultraviolet (UV) counterterms in order to renorm-
alize them. In [11], we determined these additional UV
renormalization constants up to the three-loop level in QCD.
We obtained them by exploiting the universal infrared
properties of on-shell amplitudes involving these composite

operators. Since we have two operators at our disposal, they
mix under renormalization as follows:

�
OG

OQ

�
¼

�
ZGG ZGQ

ZQG ZQQ

��
ÔG

ÔQ

�
; ð2:4Þ

where the renormalization constants ZIJ in terms of the

anomalous dimensions γIJ ¼
P∞

n¼1 a
n
sγ

ðnÞ
IJ are given by

ZIJ ¼ δIJ þ as

�
2

ϵ
γð1ÞIJ

�

þ a2s

�
1

ϵ2
f2β0γð1ÞIJ þ 2γð1ÞIK γ

ð1Þ
KJg þ

1

ϵ
fγð2ÞIJ g

�
; ð2:5Þ

where I; J ¼ G, Q, as ≡ g2s=16π2, and the space-time
dimension is taken to be d ¼ 4þ ϵ. The renormalization
constants ZIJ computed in [11] are given below up to a2s for
completeness:

ZGG ¼ 1þ as

�
−

4

3ϵ
nf

�
þ a2s

�
1

ϵ2

�
−
44

9
CAnf þ

32

9
CFnf þ

16

9
n2f

�
þ 1

ϵ

�
−
35

27
CAnf −

74

27
CFnf

��
;

ZGQ ¼ as

�
16

3ϵ
CF

�
þ a2s

�
1

ϵ2

�
176

9
CACF −

64

9
CFnf −

128

9
C2
F

�
þ 1

ϵ

�
376

27
CACF −

104

27
CFnf −

112

27
C2
F

��
;

ZQG ¼ as

�
4

3ϵ
nf

�
þ a2s

�
1

ϵ2

�
44

9
CAnf −

32

9
CFnf −

16

9
n2f

�
þ 1

ϵ

�
35

27
CAnf þ

74

27
CFnf

��
;

ZQQ ¼ 1þ as

�
−
16

3ϵ

�
þ a2s

�
1

ϵ2

�
−
176

9
CACF þ 64

9
CFnf þ

128

9
C2
F

�
þ 1

ϵ

�
−
376

27
CACF þ 104

27
CFnf þ

112

27
C2
F

��
; ð2:6Þ

where CA ¼ N and CF ¼ ðN2 − 1Þ=2N are the quadratic
Casimirs of the SUðNÞ group and nf is the number of quark

flavors. The fact that the energy momentum tensor Tμν ¼
OG

μν þOQ
μν is conserved leads to γðnÞQG ¼ −γðnÞGG and γðnÞQQ¼

−γðnÞGQ or equivalently ZGG ¼ 1−ZQG and ZQQ ¼ 1 − ZGQ,

which is expected to be true to all orders in as. All γ
ðnÞ
GG are

proportional to nf which is consistent with the expectation
that the conserved property of OG

μν breaks down beyond
tree level due to the presence of quark loops. For pure
gauge theory ðnf ¼ 0Þ and the energy momentum tensor of
the pure gauge theory OG

μν is hence conserved by itself.
Defining the renormalized κI in terms of bare ones

through κ̂I ¼
P

J¼G;QZIJκJ with I; J ¼ G, Q, we find that
the action takes the following form:

S ¼ −
1

2

Z
d4xhμνðκGOG;μν þ κQOQ;μνÞ; ð2:7Þ

the resulting interaction terms expressed in terms of
renormalized operators and renormalized couplings are
guaranteed to predict UV finite quantities to all orders in

strong coupling. In the rest of the paper, we will use this
version of the Lagrangian to study the phenomenology.

B. Lepton pair invariant mass distribution dσ=dQ2

Our next task is to use the effective action expressed in
terms of renormalized operatorsOI and couplings κI to obtain
the production cross section for a pair of leptons ðlþ; l−Þ,
through the scattering of two protons H1, H2 at the LHC,

H1ðP1Þ þH2ðP2Þ → lþðl1Þ þ l−ðl2Þ þ XðPXÞ; ð2:8Þ
where the 4-momenta of the corresponding particles are
denoted in the parentheses and the final inclusive state is
denoted by X. The hadronic cross section is related to the
partonic subprocess cross sections in the QCD improved
parton model as

2S
dσH1H2

dQ2
ðτ;Q2Þ¼

X
ab¼q;q̄;g

Z
1

0

dx1

Z
1

0

dx2f̂
H1
a ðx1Þf̂H2

b ðx2Þ

×
Z

1

0

dz2s
dσ̂ab

dQ2
ðz;Q2Þδðτ−zx1x2Þ;

ð2:9Þ
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where Q2 is the invariant mass square of the final state
leptonic pair and S is the square of the hadronic center
of mass energy which is related to the partonic one,
s, through s ¼ x1x2S, and similarly τ≡Q2=S, z≡Q2=s,
and τ ¼ x1x2z. The unrenormalized partonic distribution
functions of the partons a and b are f̂a and f̂b, respectively.
The partonic subprocess corresponding to the hadronic
process is

aðp1Þ þ bðp2Þ → jðqÞ þ
Xm
i¼1

XiðqiÞ;

where the summation over i corresponds to all the real
QCD final state partons that could contribute to a
particular order in perturbative QCD. The initial state
partons ab → j, a neutral state j which could be a photon
(γ�), Z-boson (Z�), or spin-2 particle and further decays to a
pair of leptons j → lþl−.
At the partonic level, one encounters amplitudes involv-

ing both SM vector bosons and spin-2 particles as propa-
gators, and hence, at the cross section level, the squared
amplitudes contain in addition to contributions from SM
and spin-2 separately those from interference of SM and
spin-2 amplitudes. Interestingly, for the invariant mass
distributions, the later one identically vanishes for the
universal case, which was earlier noted at both NLO and
NNLO levels in [13,28]. Hence, at the cross section level,
the SM and spin-2 contributions simply add up as

2S
dσH1H2

dQ2
ðτ;Q2Þ¼ 2S

dσH1H2

SM

dQ2
ðτ;Q2Þþ2S

dσH1H2

spin-2

dQ2
ðτ;Q2Þ;

ð2:10Þ
where the SM results are known exactly up to the NNLO
level for a long time (see [35–38]) and the result at N3LO
in the soft gluon approximation is also available; see [39].
For the spin-2 case with universal coupling, namely
κG ¼ κQ ¼ κ, the results up to the NNLO level can be
found in [13,28]. In this article, we have extended this
computation to NNLO QCD for the case of nonuniversal
couplings, i.e., when κG and κQ are different. We briefly
describe the methodology that we use to obtain the mass
factorized partonic cross sections up to the NNLO level.
Unlike the SM, for the spin-2 exchange, at leading order
(LO) we can have a gluon initiated subprocess in addition
to the quark initiated one:

qþ q̄ → lþl−; gþ g → lþl−: ð2:11Þ

At NLO in QCD, we have

qþ q̄ → lþl− þ g; qþ q̄ → lþl− þ one loop;

gþ g → lþl− þ g; gþ g → lþl− þ one loop;

gþ q → lþl− þ q; gþ q̄ → lþl− þ q̄: ð2:12Þ

At NNLO level, we have double real emission,

qþ q̄→ lþl−þqþ q̄; q1þ q̄2→ lþl−þq1þ q̄2;

gþg→ lþl−þgþg; q1þ q̄1→ lþl−þq2þ q̄2;

gþq→ lþl−þgþq; qþ q̄→ lþl−þgþg;

qþq→ lþl−þqþq; gþg→ lþl−þqþ q̄;

gþ q̄→ lþl−þgþ q̄; q1þq2→ lþl−þq1þq2; ð2:13Þ

single real emission at one loop,

qþ q̄ → lþl− þ gþ one loop;

gþ g → lþl− þ gþ one loop;

gþ q → lþl− þ qþ one loop;

gþ q̄ → lþl− þ q̄þ one loop; ð2:14Þ

and the pure double virtual diagrams,

qþ q̄ → lþl− þ two loop;

gþ g → lþl− þ two loop: ð2:15Þ

The virtual corrections at one- and two-loop levels are
straightforward for this process, and the phase space
integrals are often hard to evaluate. In the first compu-
tation of the NNLO QCD correction to the DY pair
production [38], the phase space integrals were performed
in three different frames to achieve the final result. This
method was successfully applied in [5] to obtain inclusive
cross section for the Higgs production at NNLO. In [3],
using a systematic expansion around threshold, all the
phase space integrals were performed to obtain the
partonic cross sections for both DY and Higgs produc-
tions at the NNLO level. Later on, in [4], an elegant
formalism was developed to compute both real emissions
as well as virtual corrections applying integration by parts
[40,41] and Lorentz invariance [42] identities. This
approach is famously called the method of reverse
unitarity. The resulting master integrals were computed
using the technique of differential equations. The state-
of-the-art result, namely, the N3LO QCD corrections to
the inclusive Higgs boson production [43–45], uses the
method of reverse unitarity. We have systematically used
this approach [4] to calculate the partonic cross section of
the DY pair production through the intermediate spin-2
particle at NNLO QCD.
Ultraviolet, soft, and collinear (IR) divergences do show

up beyond leading order, and they are regularized in
dimensional regularization where the space-time dimen-
sions d are chosen to be equal to 4þ ϵ. The soft divergences
cancel among virtual and real subprocesses and processes
thanks to the Kinoshita-Lee-Nauenberg theorem [46,47],
and the remaining UV divergences as well as the initial state
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collinear divergences are removed in the M̄S scheme using
UV renormalization constants and mass factorization ker-
nels denoted by ΓabðμFÞ, respectively. Here, μF is the
factorization scale. For the UV renormalization, we need
to perform renormalization for strong coupling constant
as ¼ g2s=16π2 through Zas as well as renormalization
of κI through ZIJ listed in the previous section. For the
former, we have

âsSϵ ¼
�
μ2

μ2R

�
ϵ=2

Zasas; ð2:16Þ

where

Zas ¼ 1þ as

�
2

ϵ
β0

�
þ a2s

�
4

ϵ2
β20 þ

1

ϵ
β1

�
þ � � � ; ð2:17Þ

as ≡ asðμ2RÞ, Sϵ ¼ exp ½ðγE − ln 4πÞϵ=2�; γE ¼ 0.5772…,
and the scale μ is introduced to keep the unrenormalized
strong coupling constant âs dimensionless in n dimen-
sions. The renormalization scale is denoted by μR. βi’s
are the coefficients of the QCD β-function [48–52]. The
mass factorized finite cross section can be obtained
using

2s
dσ̂ab
dQ2

ðz;Q2; 1=ϵÞ

¼
X

c;d¼q;q̄;g

Γcaðz; μ2F; 1=ϵÞ ⊗ Γdbðz; μ2F; 1=ϵÞ

⊗ 2s
dσab
dQ2

ðz;Q2; μ2FÞ; ð2:18Þ

where ⊗ are nothing but Mellin convolution. The mass
factorization kernels take the following form:

Γabðz; μ2F; 1=ϵÞ ¼ δabδð1 − zÞ þ asðμ2FÞ
1

ϵ
Pð0Þ
ab ðzÞ

þ a2sðμ2FÞ
�
1

ϵ2

�
1

2
Pð0Þ
ac ⊗ Pð0Þ

cb þ β0P
ð0Þ
ab

�

þ 1

ϵ

�
1

2
Pð1Þ
ab

��
þ � � � ; ð2:19Þ

where PðiÞ
ab are the Altarelli-Parisi splitting functions

[53–58]. After the mass factorization, the finite partonic
cross sections denoted by 2sdσab=dQ2 can be expressed
in terms Δh

abðz; asðμ2RÞ; Q2=μ2R; μ
2
F=μ

2
RÞ by factoring out

some overall constants. In terms of these Δh
ab, the

hadronic cross section can be written as

2S
dσH1H2

spin-2

dQ2
ðτ; Q2Þ ¼

X
q;q̄;g

F h

Z
1

0

dx1

Z
1

0

dx2

Z
1

0

dzδðτ − zx1x2Þ ×
�
Hqq̄

X2
k¼0

aksΔ
h;ðkÞ
qq̄ þHgg

X2
k¼0

aksΔ
h;ðkÞ
gg

þ ðHgq þHqgÞ
X2
k¼1

aksΔ
h;ðkÞ
gq þHqq

X2
k¼2

aksΔ
h;ðkÞ
qq þHq1q2

X2
k¼2

aksΔ
h;ðkÞ
q1q2

�
; ð2:20Þ

where

F h ¼
κ2QQ

6

320π2
jDðQ2Þj2; Δh;ðkÞ

ab ¼ Δh;ðkÞ
ab

�
z;
Q2

μ2R
;
μ2F
μ2R

�
: ð2:21Þ

κQ in F h corresponds to the leptonic coupling to the spin-2, while the couplings to quarks and gluons are taken in Δh;ðkÞ
ab .

DðQ2Þ is the propagator of the massive spin-2 particle, with a decay width that has to be estimated considering its decay to
SM particles. Hab are the combinations of the mass factorized partonic distribution functions:

Hqq̄ðx1; x2; μ2FÞ ¼ fH1
q ðx1; μ2FÞfH2

q̄ ðx2; μ2FÞ þ fH1
q̄ ðx1; μ2FÞfH2

q ðx2; μ2FÞ;
Hqqðx1; x2; μ2FÞ ¼ fH1

q ðx1; μ2FÞfH2
q ðx2; μ2FÞ þ fH1

q̄ ðx1; μ2FÞfH2
q̄ ðx2; μ2FÞ;

Hq1q2ðx1; x2; μ2FÞ ¼ fH1
q1 ðx1; μ2FÞðfH2

q2 ðx2; μ2FÞ þ fH2
q̄2 ðx2; μ2FÞÞ þ fH1

q̄1 ðx1; μ2FÞðfH2
q2 ðx2; μ2FÞ þ fH2

q̄2 ðx2; μ2FÞÞ;
Hgqðx1; x2; μ2FÞ ¼ fH1

g ðx1; μ2FÞðfH2
q ðx2; μ2FÞ þ fH2

q̄ ðx2; μ2FÞÞ;
Hqgðx1; x2; μ2FÞ ¼ Hgqðx2; x1; μ2FÞ;
Hggðx1; x2; μ2FÞ ¼ fH1

g ðx1; μ2FÞfH2
g ðx2; μ2FÞ: ð2:22Þ

In the next section, we study the numerical implication of NNLO QCD corrections to a spin-2 coupling nonuniversally to
the SM in the DY process.
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III. NUMERICAL RESULTS

In this section, we present the numerical impact of our
NNLO results on the production of dileptons at the LHC.
We considered a minimal scenario of nonuniversal cou-
plings of a spin-2 particle with SM fields, where the spin-2
particle couples to all SM fermions with coupling κQ ¼ffiffiffi
2

p
kq=Λ and to all SM gauge bosons with a coupling

strength of κG ¼ ffiffiffi
2

p
kg=Λ. Numerical results presented in

this section are for the default choice of model parameters,
namely, the spin-2 particle of mass mG ¼ 500 GeV, the
scale Λ ¼ 2 TeV, and the couplings ðkq; kgÞ ¼ ð0.5; 1.0Þ.
Both the renormalization and factorization scales are set
equal to the invariant mass of the dilepton, i.e.,
μR ¼ μF ¼ Q. Throughout, we use MSTW2008nnlo par-
ton distribution functions (PDFs) with the corresponding as

provided from LHAPDF unless otherwise stated. They
chose

ffiffiffi
S

p ¼ 13 TeV, the center of mass energy of the
incoming hadrons at the LHC.
In our analysis, we restricted ourselves to the situation

where the spin-2 particle decays only to SM fields. The
spin-2 particle decay widths for nonuniversal couplings are
the same as those given in [33]. For the scenario taken up
here, where in all spin-2 coupling to all bosons are taken to
be identical, we note that the spin-2 particle decaying to Zγ
vanishes identically Γðh → ZγÞ ¼ 0 [59]. In Fig. 1, we
present the NLO corrections (only at order as) from various
subprocess contributions to the dilepton production. For
our default choice of model parameters, we find that the gg
subprocess contribution dominates over the rest. In general,
the total NLO correction is smaller than the gg contribution
because of the negative contribution from the qg subpro-
cess. We also note that the gg has a dominant contribution
to the total decay width for couplings (0.5, 1.0).
To estimate the impact of QCD corrections, we define

the K-factors as follows:

K1 ¼
dσNLO=dQ
dσLO=dQ

and K2 ¼
dσNNLO=dQ
dσLO=dQ

: ð3:1Þ

In the left panel of Fig. 2, we present dilepton invariant
mass distributions to NLO for different choices of non-
universal couplings ðkq; kgÞ ¼ ð1.0; 0.5Þ; ð1.0; 0.1Þ, and
(0.5,0.1). It is expected for universal couplings that at
the resonance region, the cross sections, i.e., the height of
the peak, will be the same simply because the couplings
at the matrix element level will cancel with those from the
decay width of the spin-2 particle. However, for nonuni-
versal couplings this is not the case and hence cross
sections at the resonance for different nonuniversal cou-
plings will be different. Thus, the precision as well as the
phenomenological studies of the spin-2 particle production

SM at αs
GR qqb

(-1)*GR qg
GR gg

GR at αs

dσ/dQ (pb/GeV) (Sub processes at αs) LHC 13 TeV

Λ = 2 TeV
(kq, kg) = (0.5, 1.0)

Q (GeV)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

400 500 600 700 800 900 1000

FIG. 1. First order QCD corrections from different subpro-
cesses to dilepton production. The choice of the model param-
eters is as mentioned in the text.
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FIG. 2. Dilepton invariant mass distributions are presented to NLO QCD for different choices of couplings (kq, kg) in the left panel.
The corresponding K-factors are presented in the right panel.
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in this model will be different from those of thewarped extra
dimension models. The NLO K-factor (K1) is present in the
right panel for various choices of ðkq; kgÞ, and we observe
that the K-factor crucially depends on the choice of
nonuniversal couplings. In particular we notice that
the K-factors are larger for the choice of couplings
(1.0,0.1). To understand this behavior better, it is helpful
to study the percentage contribution of various subprocesses
to the total correction at the NLO level, particularly from
the qg subprocess due to its large flux at LHC energies.
In particular we define the percentage of the contribution

of a given subprocess ab as RðiÞ
ab¼ðdσH1H2;ðiÞ

ab =dQ2Þ=
ðdσH1H2;ðiÞ=dQ2Þ×100, where the numerator is obtained

by using a contribution fromΔh;ðiÞ
ab , and for the denominator,

we include all the partonic channels.
In Fig. 3, we plot Rð1Þ

qg for different choices of nonuni-
versal couplings, and we observe that the sign of the qg
subprocess crucially depends on the choice of couplings.

Moreover, we find that Rð1Þ
qg is positive and is as large as

70% for the couplings (1.0,0.1), which explains the reason
for the large K-factor at the resonance region. However, the
sign of the contribution from other subprocesses qq̄ and gg
is found to be positive for various couplings.
In Fig. 4, we present the second order QCD correc-

tions [at ða2sÞ] from various subprocesses to the
dilepton production for the default choice of couplings
ðkq; kgÞ ¼ ð0.5; 1.0Þ. Similar to the first order QCD cor-
rections, the gg subprocess has the dominant contribution
over the rest while qg has a negative contribution but is
comparable in magnitude to that of gg. Because of this large
qg subprocess contribution which can flip its sign for
certain couplings, it is necessary to study the percentage of

its relative contribution Rð2Þ
qg to the total second order

correction. In Fig. 5, we present Rð2Þ
qg for different choices

of couplings. As can be seen from the figure, the qg

contribution varies from about −70% to about 35% for the
choice of couplings considered here. In particular, for the
couplings (1.0,0.1) and (0.5,0.1) the qg contribution is
positive while it is negative for the rest of the couplings as
well as in the SM. This implies large K-factors for the
choice of (1.0,0.1) couplings for a wide range of the
invariant mass distribution. It is worth mentioning here
that in general the qg subprocess has a negative contribu-
tion both in the SM and in the case of universal couplings,
irrespective of the value of the latter.
We then present the dilepton invariant mass distribution

to various orders in QCD for a particular choice of
couplings (1.0,0.5) in Fig. 6. In this case, the NLO
QCD corrections for the signal (SMþ spin-2) are as large
as 60% while those at NNLO are about 80% at the
resonance. Similar results are presented but for our default
choice of model parameters in Fig. 7. Here, the
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FIG. 3. Percentage of qg subprocess contribution Rð1Þ
qg as

defined in the text for different choices of nonuniversal couplings.
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FIG. 4. Second order QCD corrections from various subpro-
cesses to the dilepton invariant mass distribution.
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FIG. 5. Percentage of qg contribution Rð2Þ
qg as defined in the text.
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corresponding NLO corrections to the signal are about 45%
while those of NNLO are about 55%.
Next, we will study the invariant mass distributions of

both the SM and the signal, in particular the impact of QCD
corrections for different couplings. In Figs. 8, 9, and 10, we
present these distributions in the left panel and the
corresponding NNLO K-factors (K2) in the right panel
for nine different sets of nonuniversal couplings. The
respective K-factors for the signal at the resonance region
are found to vary from about 1.5 to about as large as 3.0,
owing to different contributions from the qg subprocess to
the signal as explained before.
Further, we depict the dependence of invariant mass

distributions to NNLO in QCD on the center of mass
energy Ecm of the protons at the LHC. We present our
results for Ecm ¼ 7, 8, 13, and 14 TeV energies for two
different sets of couplings. In Fig. 11, we present the

invariant mass distributions and the corresponding
K-factors for the universal couplings of (1.0,1.0). For the
default choice of nonuniversal couplings (0.5,1.0), similar
results are presented in Fig. 12. In both the cases, the
K-factors at the resonance region are found to be larger for
the 7 TeV case and are about 1.6.
In what follows, we study the renormalization scale

μR and the factorization scale μF uncertainties in our
predictions. For this, we define the ratios RðμR; μFÞ of
the invariant mass distributions computed at arbitrary scale
to those computed at the fixed scale. These are defined as

RðμR; μFÞ ¼
dσðμR; μFÞ=dQ
dσðQ0; Q0Þ=dQ

:

For a systematic study of these scale uncertainties, we use
LO (NLO and NNLO) PDFs for LO (NLO and NNLO)

SM LO
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FIG. 6. Cross sections at different orders (left panel) and the corresponding K-factors K1 and K2 (right panel) are presented for
different couplings.
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FIG. 7. Same as Fig. 6 but for a different set of couplings.
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FIG. 8. Dilepton invariant mass distributions to NNLO for different choices of couplings (left panel) and the corresponding K-factors
(right panel) are presented.
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FIG. 9. Same as Fig. 8 but for a different set of couplings.
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FIG. 10. Same as Fig. 8 but for a different set of couplings.
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FIG. 11. Dependence of cross sections on the dilepton invariant mass distribution for universal couplings (1.0,1.0).
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FIG. 12. Same as Fig. 11 but for the default choice of nonuniversal couplings (0.5,1.0).
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FIG. 13. Renormalization (left) and factorization (right) scale dependence of the dilepton invariant mass distribution at LO, NLO,
and NNLO.
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cross sections respectively. For convenience, we will study
at the resonance region, i.e.,Q ¼ M ¼ 500 GeV. The fixed
scale is set equal toQ0 ¼ M. In the left panel of Fig. 13, we
present RðμR;Q0Þ by varying μR from 0.1Q to 10Q and
keeping μF ¼ Q0 fixed. At LO, there is no scale μR entering
the cross section. The corresponding scale uncertainties at
NLO and NNLO are, respectively, about 19% and 5%.
In the right panel of Fig. 13, we present RðQ0; μFÞ by

varying μF from 0.1Q to 10Q and keeping μR ¼ Q0 fixed.
For this range of factorization scale variation, the uncer-
tainties in the distributions at LO, NLO, and NNLO are,
respectively, about 49%, 31%, and 26%.
Finally, we present Rðμ; μÞ where (μR ¼ μF ¼ μ) in

Fig. 14 by varying μ from 0.1Q to 10Q. The corresponding
scale uncertainties at LO, NLO, and NNLO are, respec-
tively, about 49%, 52%, and 30%.
Before we summarize, we also study the uncertainties in

our predictions due to different choices of PDFs used in the

calculation. For this analysis, we make predictions using
MSTW2008, CT10, NNPDF3.0, and ABM12 PDFs. The
results for the invariant mass distributions for the signal at
NNLO are presented in the left panel of Fig. 15 and the
corresponding K-factors are presented in the right panel of
Fig. 15. The K-factors here are found to vary from 1.18 at
Q ¼ 400 GeV to about 1.28 at Q ¼ 1000 GeV, while at
the resonance they are about 1.54.

IV. CONCLUSION

In this article, we have studied for the first time to our
knowledge the impact of NNLO QCD corrections to the
production of a pair of leptons in the presence of a massive
spin-2 particle at the LHC. This is done in a minimal
scenario where spin-2 particles couple differently to SM
fermions and SM bosons. This task has been achieved by
using the universal IR structure of QCD amplitudes and the
additional UV renormalization that is particularly required
for the case of nonuniversal couplings, thanks to the recent
computations of the form factors in QCD beyond leading
order with nonuniversal couplings.
Unlike the models with universal couplings, here the

phenomenology is rich and different. For collider phenom-
enology at the LHC, we present the results for the dilepton
production via spin-2 particle in particular for the invariant
mass distribution of a pair of leptons for LHC energies.
Even at LO, one can notice that the signal has different
cross sections at the resonance region in contrast to the
gravity mediated models where the signal has the same
cross section for different universal couplings. At higher
orders in QCD, say NLO onwards, the spin-2 exploits its
freedom of being produced with different coupling
strengths even for a given subprocess. This particular
aspect here makes the QCD radiative corrections crucially
dependent on the choice of the spin-2 coupling strength.
Hence the impact of QCD corrections here is very much
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FIG. 14. Same as Fig. 13 but with μR ¼ μF ¼ μ.
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FIG. 15. Dilepton invariant mass distributions for different choices of PDFs.

NNLO QCD CORRECTIONS TO PRODUCTION OF A SPIN-2 … PHYS. REV. D 97, 094028 (2018)

094028-11



different from those of dilepton or Higgs production in
the SM.
We find from our numerical results that the QCD

corrections for ðkq; kgÞ ¼ ð1.0; 0.1Þ are dominant over
the rest of the choice of couplings, making the K-factors
as large as 2.5 or more. For this choice of couplings, the LO
gluon fusion contribution is very small although gluon
fluxes are high for the kinematic region of producing a
500 GeV particle. But at higher orders where the spin-2 can
be emitted from a quark line with large coupling strength,
the large quark-gluon fluxes at LHC energies can poten-
tially enhance the spin-2 production rate, as is evident from
the numerical results. For dilepton production the “sign”
of the qg subprocess is usually negative both in the SM and
in the models of universal couplings. But here we note that
the sign of the qg subprocess contribution changes with the
nonuniversal couplings and for the above choice it is
positive.
We also gave predictions for different center of mass

energies of the incoming protons at the LHC and found that
the K-factors are larger for the 7 TeV case. We further
quantified the renormalization and factorization scale
uncertainties. For the variation of the scales μR and μF
between 0.1Q and 10Q, the uncertainties are found to get
reduced from about 50% at LO to about 30% at NNLO. For
completeness, we also quantified the uncertainty in our
predictions due to different choice of the PDFs.
These NNLO QCD predictions for the hadroproduction

of a massive spin-2 with nonuniversal couplings will
augment the similar results previously computed at the
NLO level and complement the earlier results for NNLO
QCD corrections in models with spin-2/graviton universal
couplings.
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APPENDIX: RENORMALIZED
FORM FACTORS

We present here the results for the renormalized form
factors [11] that are used in the present computation. In the
color space, the UV renormalized matrix elements of
composite operators OI; I ¼ G, Q between a pair of on-
shell partonic states i ¼ q, g and the vacuum state are
expanded in powers of coupling constant as as

jMI
ii ¼

X∞
n¼0

ans jMI;ðnÞ
i i; ðA1Þ

where i ¼ q; q̄; g. The on-shell form factor of ÔI; I ¼ G,Q
is defined by taking the overlap of jMI

ii with its leading
order amplitude normalized with respect to the leading
order contribution. We find that there are four independent
form factors:

F I;g;ðnÞ ¼ hMG;ð0Þ
g jMI;ðnÞ

g i
hMG;ð0Þ

g jMG;ð0Þ
g i

;

F I;q;ðnÞ ¼ hMQ;ð0Þ
q jMI;ðnÞ

q i
hMQ;ð0Þ

q jMQ;ð0Þ
q i

; I ¼ G;Q: ðA2Þ

Note that the nondiagonal amplitudes, i.e., jMQ;ðnÞ
g i and

jMG;ðnÞ
q i, start at the one-loop level, and hence, the

corresponding form factors start at OðasÞ. The relevant
UV renormalized form factors at the two-loop level are
given below:
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