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Study of molecular ND bound states in the Bethe-Salpeter
equation approach
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We study the A,(2595)* and X.(2800)° states as the ND bound systems in the Bethe-Salpeter
formalism in the ladder and instantaneous approximations. With the kernel induced by p, @ and o
exchanges, we solve the Bethe-Salpeter equations for the ND bound systems numerically and find that the
bound states may exist. We assume that the observed states A.(2595)" and £.(2800)° are S-wave ND
molecular bound states and calculate the decay widths of A,(2595)" — X2z and Z.(2800)° — Afx~.
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I. INTRODUCTION

Before 2000, most hadrons could be easily understood
with the naive quark model, in which mesons are made up
of a quark and an antiquark while baryons consist of three
quarks, only except a few cases, e.g. the lowest lying scalar
nonet, the A(1405), and the Roper resonances [1]. With the
discovery of the X(3872) by the Belle Collaboration [2],
which cannot be easily arranged into standard models of
constituent quarks, this situation changed. Thereafter, many
other so-called XYZ exotic states have been discovered.
Various theoretical interpretations of these resonances have
been proposed, including quark-gluon hybrids, tetraquark
states, molecular states, and so on. The molecular state is
one of the most popular ones to discuss whether the
observed XYZ states can be explained with the molecule
configuration. In recent years, it has been found that,
somehow unexpectedly, not only the exotic states but also
some states long believed to be conventional hadrons,
which can be explained by the constituent quark models,
turn out to contain large hadron-hadron components. Many
studies of these states in various decays and reactions have
been performed, and the results seem to be consistent with
such a molecular picture.

For the A(1405) state which has been unsuccessfully
interpreted by the traditional quark model, people consider
it an exotic configuration such as the NK molecular state
[3,4]. This molecular configuration has been supported by
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recent Lattice QCD results [5]. In the charm sector, the
A.(2595)" as a ND molecular state has also been studied
[6-9]. The A.(2595)" [1(J7) = 0(1/27)] has much resem-
blance to the A(1405) and can be thought of as being
obtained by substituting the strange quark by a c¢ quark.
Then, we expect that the A.(2595)" is a bound state of the
D meson and a nucleon, in a way similar to the A(1405).
On the other hand, there are also two obvious differences
between A(1405) and A.(2595)". One is that the decay
width of A,(2595)" is quite smaller (2.59 MeV) than that
of A(1405) (50.5 MeV). The other one is that the D meson
mass is about twice a nucleon mass, while the mass of K
meson is about only a half of a nucleon mass.

In 2005, the Belle Collaboration [10] observed an
isotriplet of open charmed baryon states, X.(2800),
decaying into A.m, and it was tentatively assigned the
quantum numbers J” = 3/27. The same neutral state
¥.(2800)% was also possibly observed in B decays by
the BABAR Collaboration with the measured mass of
280277 MeV and width of 61778 MeV [11], and it was
pointed out that there was weak evidence that the excited X
they observed had J = 1/2. Because the observed
%.(2800) states are very close to the ND threshold, one
probable explanation of the X.(2800) structure is the ND
molecular bound state. In this picture, the X.(2800) has
been studied in the chiral quark model [12,13], in the
coupled-channel approach [14], in the effective Lagrangian
approach [15] assuming X.(2800) has different quantum
numbers, and in QCD sum rules [16].

The Bethe-Salpeter (BS) equation is a formally exact
equation to describe the relativistic bound state [17—19] and
has been applied to many theoretical studies concerning
heavy mesons and heavy baryons [20-28]. In this paper,
we will work in the BS equation approach, which can
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automatically include relativistic corrections comparing
with the potential model which was applied in Ref. [29]
to investigate the possible states of KK, DK, BK, and K~ p
in the framework of the nonrelativistic Schrodinger
equation with the potential between pseudoscalar mesons
being derived from the relevant Lagrangian. We will try to
investigate the possibilities that the A.(2595) and
¥.(2800)° are composed as the ND molecular states with
quantum numbers J” = 1/2 in the BS equation approach.
We will also study the decays of A,.(2595)" — X, .z and
%.(2800)° - Afz~ in this picture.

The paper is organized as follows. In Sec. II, we establish
the BS equation for the bound state of a D meson and a
nucleon. In Sec. III, we discuss the normalization condition
of the BS wave function and obtain the numerical results
of the BS wave functions. In Sec. IV, the decays of
A.(2595)" — Z. 7z and £,(2800)° — Az~ are discussed,
and we give numerical results. Finally, Sec. V is devoted to
a summary and conclusion.

II. BETHE-SALPETER FORMALISM
FOR THE ND SYSTEM

In this section, we will review the general formalism of
the BS equation and derive the BS equation for the system
composed of a baryon () and a pseudoscalar meson (D).
We will also derive the normalization condition for the BS
wave function. Let us start by defining the BS wave
function for the bound state |P) of a baryon (N) and a
pseudoscalar meson (D) as the following,

x(x1,2, P) = (O] TN (x1)D(x3)[ P), (1)

where N (x;) and D(x,) are the field operators of the baryon
and pseudoscalar meson at space coordinates x; and x,,
respectively, and P denotes the total momentum of the
bound state with mass M and velocity ». In momentum
space, the BS wave function can be defined as

) d4p .
ZP(xlaXZ’P) = e—sz/We—szxP@)’ (2)

where p represents the relative momentum of the two
constituents.

The BS equation for the bound state can be written in the
following form,

4
xp(p) = SN(pl)/éT?;tK<PvP’Q)ZP(Q>SD(p2)v 3)

where Sy (p;) and Sp(p,) are the propagators of the baryon
N and the pseudoscalar meson D, respectively, and
K(P, p,q) is the kernel which contains two-particle-irre-
ducible diagrams. For convenience, we define p;(=p - v)
and p(=p" — p;v") to be the longitudinal and transverse

projections of the relative momentum (p) along the bound
state momentum (P). Then, the propagator of N has the
form

i(MM+p)f+pi+m]
(MM + p;— o, —ie) (M + p;+ o, +ie)’

(4)

Sy(MP+p)=

where w; = /m? — p?.

The propagator of the D meson in the heavy quark limit
can be expressed at the leading order of the 1/my
expansion as follows:

i
2my(py+ M —my + i)

Sp(AP — p) = (5)

In general, for a baryon and a pseudoscalar meson bound
state, considering pu(v, s) = u(v, s) [u(v,s) is the spinor
of the bound state with helicity s], y»(p) can be written as

xp(P) = (91 + 9275 + 93¥5P: + Gabs + 956, D).
(6)

where g; (i = 1,...,5) are Lorentz-scalar functions. After
considering the constraints imposed by #yp(p) = x»(p)
from the heavy quark symmetry and those imposed by
parity and Lorentz transformations, it is easy to prove that
xp(p) can be simplified as

xp(p) = f(p)u(v,s), (7)

in which f(p) is a Lorentz-scalar function of p.

As discussed in the Introduction, we will study the
S-wave bound state of the ND system. The isospin field
doublets N = (N°, N™)" and D = (-D*,D°)" have the
following expansions in momentum space:

dp

Nilx) = / (27)\/2E3

(ay-e'P* + a;we"px),

(aNO e—ipx + a;jo ei]?X) )

_ &p
Na(x) _/ (27)3\/2E%,
_ &p
D) _/ (21)*\/2E;,
dp

Dalx) = / (27)3+/2EY,

(ap:e™iP* + al,_e'rx),
(apoe™P* + alye'Px). (8)

The isospin quantum number of A,(2595)7 is 0, and the
isoscalar bound state of the ND system can be written as

|P) N°D+ — N*DY). (9)

1
o,o—ﬁ|
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The isospin quantum number of .(2800) is 1, correspond-
ing to the following isovector bound state:

1
P), =|NtDY),  |P)y=—=|N"D"+ND"),
1Py = | o Phg ﬁI )

|P>1,—1 = |NODO>~ (10)

Let us now project the bound states on the field operators
Ni(x), N»(x), Dy(x), and D,(x). Then, we have

OITN, () D (x2)IP)yy, = € h(rxa) (1)

where ;(53’) is the common BS wave function for the
bound state with isospin / which depends on I but not
I5 of the state |P), ;.. The isospin coefficients CZ 1) for the

isoscalar state are
12
C(o 0

= _C<2(;0 =— else =0, (12)

.0) .0) ﬁ
and for the isovector states, we have
1 1
n 21 _ 2 _
Cin=b  CGo=75  CoTa
C%lz._l) =1, else = 0. (13)

Now, consider the kernel. The BS equation for the bound
state can be written as

ij d*q ..
C(jlvls))d)(p) = Sy(P + p) / (2n)* Ku’lk(P,P"”
x Clt 1 b (a)Sp(2P = p), (14)

where i(j) and (k) refer to the components of the N(D)
field doublets. Explicitly, we give the isoscalar case as an
example:

xp(p) = Sx(4 P+ p)
d'q o 12.21Y,,0
x| g (K22 4 K220)25(q)Sp (AP = p).
(27)
(15)
In this work, we describe the ND interaction by one-
particle-exchange diagrams as shown in Fig. 1. In order to

perform the calculations, we use the effective Lagrangians
in Refs. [30-34],

) - - K - -
L,yn = gonwN | V7 p, + P oh'T - dupy |N,  (16)
2mN

Lony = ga)NNN}/ﬂwﬂN’ (17)

N(p1)

N(lh)

FIG. 1. The Feynman diagram for one-particle-exchange DN
interaction where V could be p or w.

Loyy = gonyNoN, (18)
L,pp = ig,pp[D7(0,D) - (9,D)7 D] - p*, (19)
Lopp = igopp[D(9,D) = (9,D)D]e’. (20)
Lopp = goppDoD. (21)

In the above equations, 7 is the Pauli spin matrix,
o =£[y*,y"], and p denotes the p meson isospin triplet.
For the coupling constants, we use the empirical values
gonn = 2.6-3.36, k, = 6.1 [30-32,35-37], g,yy = 8.46
[33], 9ypD = YwDD = 2.52-3.69 [38—42], and 9sDD —

9./ 6M p, with g, = 3.73 [34]. For g,y there is consid-
erable uncertainty. In Table I, we list the values of g,yn
from various analyses.

From the above observations, at the tree level, in the ¢
channel, we have the following kernel for the BS equation
in the so-called ladder approximation (see Fig. 1),

Ky (P, p,q) = cigvnn9vop (P2 + @2) 1" A% (k, my),  (22)

Ka(Pvpv (J) = ClgaNNgaDDA(k7 ma)7 (23)

where my, (V =p or w) represents the mass of the
exchanged vector light meson, ¢; is the isospin coefficient
(cg=3.cg=1,c§f=1, and ¢ =-1,c{=1,¢]=1,
respectively), and A#(k,my ) and A(k,m,) represent the
propagators of the vector meson and ¢ meson.

In order to describe the phenomena in the real world, we
should include a form factor at each interacting vertex of
hadrons to include the finite-size effects of these hadrons.
For the meson-exchange case, the form factor is assumed to
take the following form [46],

TABLE I.  Values of the coupling constant g,y from different
approaches: nucleon-nucleon interaction [30], nucleon electro-
magnetic form factors [43], yN — zN interaction [44], NN
collisions [35], and radiative decay @ — eTe™ [45].

References [30] [43] [44] [35] [45]
15.62 20.85+0.24 7-10.5 10.7 9-10.5

9oNN
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A2 — m?

ALK k2 > ki =p: —qs, (24)

F(ky) =

where A and m represent the cutoff parameter and the mass of the exchanged meson, respectively.
To simplify the BS equation, Eq. (3), we impose the so-called covariant instantaneous approximation [21] in the kernel,
p; = q;- Then, from Egs. (4), (5), and (23), Eq. (3) becomes

(MM + p)p+ o, + my]

prpi) = 2my(p; + M —my + ie) (WM + p; + @) — ie) (LM + p; — @ + i€)
dq [, 2(M = p))f =V —d, + T%q) =
[ G s = ar = (k)
p
) 2(0M = p)f = py -, + L
+ €1 YoNNYwDD 2 me(kt)
(Pr=q)*—=m
1
= C79oNNYoDD ﬁF%nd(kt) f(‘ﬁ’ 611>7 (25)
(Pt - Qt) — Mg

where F7, (ky), F;, (k¢), and F;, (k) represent the corresponding form factors for different exchanged mesons.
In the rest frame, performing the integration over p; on both sides through the residue theorem, we have

7 _ 1 d*qq
) = dmy0, (M — @ —m;) / (2n)?

C?QpNngDD (Pt2 - Qtz)(Ptz — Pt Q)

x § — 2P PTE 20 (M 4 @) —pe — Py Qs — F2 (k

{(Pt “q.)? —I—m% [ 1 1) =P — Pt Qe mz ] p( t)

7 9oNN9wDD B (Pe —(It2)(Pt2 Pe - 4¢) )

+m 20((M + @) = p¢” — Pt - Qe — mg} Fm,,,(kt)

Cr9sNN9sDDM1 o =
+ IO, £ 1) ) (26)

(p qt) + mg ‘ ‘

where f p,) fdpzf D1 Py)-

III. NORMALIZATION CONDITION AND NUMERICAL RESULTS OF BS WAVE FUNCTIONS

Following Ref. [19], the normalization condition for the BS wave function can be written as

4 g4
i/d(fﬂcggq;?(p)%[l(ﬂpm+K(P,p,Q)]x(C1) =1, (27)

where P* = E, I(P, p.q) = —(27)*6*(p — q)S§' (1 P + p)Sp' (2P = p).
In the DN bound state rest frame, the normalization condition can be written in the following form:

4
4%Mm/é§@ﬁM—%W@%ﬁ- (28)

According to Eq. (25), we have

094025-4



STUDY OF MOLECULAR ND BOUND STATES IN THE ... PHYS. REV. D 97, 094025 (2018)

f(pip) = i / d’q,
s Pi 2my(p; + M —my + ie) (LM + p; + @, —ie) (LM + p; — w; +ie) ] (2x)*
2 2 2.
2N M + pi) (oM = pi) + P+ Py - g + PAIRRAL
X 1 C19,NNYpDD “(pe - (lt)z p; F2 (kt)
P

2.2 2 .
2(MM + p) (oM = p)) + p + Py - q¢ + 29U RCPed) ),f}z’ Prd) )
+ C19oNNYwDD (p q )2 m2 Fma,(kt)
Wt —4t) Mo

m

~ €196NN9sDD (P —q)? —m2 Fr, (k) f(@). (29)

Then, one can recast the normalization condition for the BS wave function into the form

d? —AM 3
/11M/ p[3 (/12M—m2—a)1) 32 +m2+ ! 3
(27) 2mywq (=M + my + o))

2 .2 2.
{/ $q, [ 2w (M + o) + P +peqe+ (P=a) (B —Ped) )rfg‘ LA = k,)
X "~ 4 | C19pNNY9pDD (K¢
(2m)* PR —(pe—q¢)* —m; "
2 2 2.
_za)l(M + 601) + ptZ +Pe-q + (P—a )n(:%t Piq0) )
+ C19wNN9wDD (Po—a,) — 2 Fr. (ky)
—Pt —d¢)” — My
my o ~ 2
— C196NNY9sDD (P—q )2 2 Fm,,<kt)f(pt) =1L (30)
—(Pt —q¢)” —m;
15f ]
?‘% 1.0} E ]
<) <)
x-sa' 05 l'S:L
0.0 . . . . : } 0.0 . . . :
00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0
P(GeV)

Pi(GeV)
(a) The dashed and solid lines correspond to (b) The dashed and solid lines correspond to

A =578 MeV and 1450 MeV, respectively. A =597 MeV and 2037 MeV, respectively.

T T T T T

T

<

'S

T
.

p(pr) MeV—7)
o o
o (%)

o

e
=3

o
o

0.5 1.0 1.5 2.0 2.5 3.0
pi(MeV)

(¢) The dashed and solid lines correspond to
A =613 MeV and 2515 MeV, respectively.

FIG. 2. Numerical results for the BS wave function ¢p(p,) for the bound state of A.(2595)" corresponding to (a) gonn = 2.60,

9JoNN = 700, ngD = 90DD = 252, (b) gpNN = 298, JoNN — 1400, g/IDD = JwbD = 311’ and (C) g/}NN = 336, JdoNN — 210900,
9ppD = Gopp = 3.69, Tespectively.
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1.0 T T T T T T

0.5
08 0.4
L osf > 03
i3 i3
8 8
g:_ 0.4} :’5- 02
Ly L
LSS LSS
0.2l 0.1
0.0 L L L L T F 0.0 L L L
00 05 1.0 1.5 20 25 3.0 00 05 1.0 1.5 20 25 3.0

P:1(GeV) P(GeV)

(a) The dashed and solid lines correspond to (b) The dashed and solid lines correspond to

A =586 MeV and 1767 MeV, respectively. A =670 MeV and 2347 MeV, respectively.

o < I
— ) )
[ S G

T T

e
=

,(p) MeV—2)

0.05F

0.00 . . , r :
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pi(MeV)

(¢) The dashed and solid lines correspond to
A =785 MeV and 2463 MeV, respectively.

FIG. 3. Numerical results for the BS wave function ¢p(p,) for the bound state of X.(2800)° corresponding to (a) Gonn = 2.60,
JoNN = 7.00, ngD = 9wDD = 252, (b) g/)NN = 2.98, JoNN = 1400, ngD = 9wDD = 311; and (C) gpNN = 336, JoNN = 21.0900,

9ppD = Gupp = 3.69, respectively.

It can be seen from Eq. (26) that there is only one free
parameter in our model, the cutoff A, which contains the
information about the nonpoint interaction due to the
structure of hadrons at the interaction vertices. Although
the value of A cannot be exactly determined and depends on
the specific process, it should be typically the scale of low-
energy physics, which is about 1 GeV. In Ref. [9], the authors
found there existed A.(2593) resonance in the isospin zero
DN channel with A = 727 and 787 MeV. In Ref. [14], the
authors found that the A.(2595) could be better reproduced
by the nonlocal model with A = 903 MeV. Dong et al. [15]
fixed A with amean value 1 GeV in the study of £.(2800) as a
DN hadronic molecule. The authors of Ref. [47] studied the
ND interaction from the meson exchange and found that A
varies from 0.8 to 3.5 GeV for different processes. In this
work, we treat the cutoff A in the form factor as a parameter
varying in a reasonable range 0.5—4.8 GeV, in which we will
try to search for possible solutions of the ND bound states.
The BS wave function in Eq. (26) satisfies a homogeneous
integral equation, and we can discretize the integration region
(0, c0) into n pieces (n is large enough) by the n-point Gauss
quadrature rule. The BS equation then becomes an eigen-
value equation. In the calculation, we choose to work in the
rest frame of the bound state in which P = (M, 0). We use

M 2595+ = 2592.25 MeV, My (55000 = 2802.00 MeV,
My = 938.92 MeV, and M, = 1867.21 MeV [1]. From
our calculations, we find there exist bound states correspond-
ing to A.(2595)" and £.(2800)°. The numerical results for
the BS wave function ¢p(p,) for the bound states of ND,
A.(2595)* and £.(2800)°, are plotted in Figs. 2 and 3,
respectively, for some different values of the coupling
constants.

IV. DECAYS OF A,(2595)* AND X, (2800)0
A. Decay A,(2595)* — X0+

After obtaining the BS wave function, we can calculate
some physical properties of the molecular bound state
which can be measured in experiments. One of the
most important properties is the decay width. The bound
state A.(2595)% can decay to X0z" via the Feynman
diagram in Fig. 4. In the following, we will write down
the decay amplitude and calculate the decay width using the
solution of the one-dimensional BS equation obtained in
the previous section. From the formalism described in
Refs. [31,32], the effective Lagrangians for the decay
DN — 2.z are

094025-6



STUDY OF MOLECULAR ND BOUND STATES IN THE ...

PHYS. REV. D 97, 094025 (2018)

Lppz = igp pD;;7 - (DT — D7) + H.e.,
Lpns, = gpns, (N7 - E.Dj; + D7 - £.7#N), (31)

where gp:p, and gy, are coupling constants and we will
use the empirical value g¢gp-p, =5.56 and the value
gp+nz, = —3.23 obtained using SU(4) relations [31,32].

In the rest frame, we define p| = (E,—p’) and p} =
(E), —p') to be the momenta of 7 and X, respectively. The
masses of 7 and X, are m/ and m), respectively. According
to the kinematics in the rest frame of the two-body decay,
one has

M?—m'3+m'? M?—m'? +m'3

E = E, = 2
! M T2 2M - (32
|p,|:\/[MZ—(m’l+m’2)2][M2—(m’1—n1’2)2] (33)
oM ’
and

1 |
dr = 2210, 34
32ﬂ2|M| 2 (34)

where |p’| is the norm of the 3-momentum of the particles
in the final state in the rest frame of the initial bound state
and M is the Lorentz-invariant decay amplitude of the
process.

From Fig. 4, we can write down the amplitude as

9p*Nz. 9D Dr
2

X /éﬂl)lﬁx,]/”(pl + p/l)DA/w(k, mD*)Fz(k))( (p)

M =

(35)

In the calculation, we use the following input parameters:
My, = 245376 MeV, M, =139.57 MeV, and M) =
2006.96 MeV. Using the numerical solution for the BS
wave function, we calculate the decay width of the decay
A.(2595)" — Z072" and obtain the following result in the
ranges of the parameters in our model:

I' =0.103 —44.038 KeV. (36)
m(p})
D(p2) g
A (2595)F
D*
N(p
#) So(ph)

FIG. 4. The Feynman diagram for the DN bound state
A,(2595)" decaying into X, 7.

B. Decay X,(2800)° - A} 7z~

The bound state X.(2800)° can decay to Az~ via the
Feynman diagrams in Fig. 5. In the following, we will write
down the decay amplitude and calculate the decay width
using the solution of the one-dimensional BS equation
obtained in Sec. III. From the formalism described in
Refs. [31,32], the effective Lagrangians for the radiative
decay X.(2800)° — Az~ are

Lony = _ignNNN}/S?N -7
Lpna, = igpna, (NysA.D + DA ysN),
Eﬂ,’DD* = l.gﬂDD*D*M'?' (Daﬂ;[ - 8ﬂD7_l:> + H.C.,
Lp-ya, = 9pna, (N7 A D™ + D*”/_\cmN)7 (37)

where g,nyn, 9pna,s 9zpp+> and gp-ya, are coupling con-
stants and from empirical values and SU(4) relations
gxny = 13.5, 9DNA, = 13.5, gpp = 5.56, and 9D*NA, =
-5.6 [31,32].

According to the above interactions, the decay X, —
Afz~ induced by N and D* exchanges is shown in Fig. 5.
We can write down the amplitudes as the following for
Figs. 5(a) and 5(b), respectively:

9rNNYIDNA, d4p _
M, = = [ SR S(km)ea(p). 69
M, — _ 9zpD*9D*NA,

2

4
X/ (ZZTP)“”AC(M+p’1)uA””(k,mD*)mP(p)- (39)

In the calculation, we use the following input parameters:
M,, = 2286.46 MeV, M, = 139.57 MeV, and Mp.o =
2006.96 MeV. We use the numerical solution for the BS
wave function to calculate the decay width of the decay
>.(2800)° — Az~ and obtain the following numerical
result in the ranges of the parameters in our model:

I'=15.568-219.473 KeV. (40)
m(p}) m(p)
N(pl) ........................ D(pg) ........................
2. Z
N D*
D(ps) N(p1)
Ac(ph) Ac(pb)
(@ (b)
FIG. 5. Diagrams contributing to the X.(2800)° - Afz~
decay.

094025-7
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V. SUMMARY AND CONCLUSION

In this paper, we derive the BS equation for the S-wave
DN bound state system, study the possibility that
A.(2595)" and £.(2800)° are DN bound states with the
quantum numbers J© = 1/27, and calculate their decay
widths in the BS formalism. Considering the interaction
kernel based on p, w, and o mesons-exchange diagrams, we
study the BS equation for the DN system in the ladder and
instantaneous approximations. Since the constituent par-
ticles and the exchanged particles in the DN system are not
pointlike, we introduce a form factor including a cutoff A
which reflects the effects of the structure of these particles.
Since A is controlled by nonperturbative QCD and cannot
be determined at present, we let it vary in a reasonable
range within which we examine whether A.(2595)" and
2.(2800)° could be the DN bound states by solving the BS
equations. From the numerical results, we find that there
exist DN bound states which can be attributed to
A.(2595)* and £,.(2800)°, respectively.

We apply the numerical solutions for the BS wave
functions to calculate the decay widths of A.(2595)" —
Xzt and £.(2800)° — Az~ induced by D* exchange

and N and D* exchanges, respectively. We obtain that
the decay width of A.(2595)" — X0z* is in the range
0.103—44.038 KeV (the experimental data are 2.59 MeV)
and that of £.(2800)° — Afz~ is in the range 15.568—
219.473 KeV (the experimental data are 61’_“%3 MeV) in the
ranges of our model parameters. From these decay widths,
we can see that the uncertainties of the coupling constants
and the value of A lead to large uncertainties in our results.
Since the decay widths obtained from our model are much
smaller than the experimental data, we conclude that
the ND molecular structure should contribute to the
A.(2595)" and X.(2800)° states, but there should be other
structures besides the ND molecule in A.(2595)% and
~.(2800)° states. Obviously, to resolve this problem,
further investigations are required.
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