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We revisit the line of nonunitary theories that interpolate between the Virasoro minimal models.
Numerical bootstrap applications have brought about interest in the four-point function involving the scalar
primary of lowest dimension. Using recent progress in harmonic analysis on the conformal group, we prove
the conjecture that global conformal blocks in this correlator appear with positive coefficients. We also
compute many such coefficients in the simplest mixed correlator system. Finally, we comment on the status
of using global conformal blocks to isolate the truly unitary points on this line.
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I. INTRODUCTION

Conformal field theories (CFTs) in two dimensions
enjoy invariance under two copies of the Virasoro
algebra—an algebra defined by

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm − 1Þðmþ 1Þδmþn;0;

ð1:1Þ

where c is the central charge. The power of this infinite-
dimensional symmetry was perhaps most famously dem-
onstrated in [1] with the discovery of the minimal models.
In addition to providing an exact solution, representation
theory of the Virasoro algebra enabled the authors of
Refs. [2–5] to show that these models are the only unitary
CFTs in two dimensions with c < 1. However, it has
become known more recently that one can see hints of
the special role played by minimal models without exploit-
ing Virasoro symmetry at all [6–13]. The method in
question is the numerical bootstrap, which uses only the
global conformal transformations—two copies of slð2Þ in
this case. Exclusion plots, based on crossing symmetry and
unitarity, are shown in Fig. 1 where a straight line
containing the minimal models is clearly visible.1 A kink
is present at the Ising point ðΔσ;ΔϵÞ ¼ ð1

8
; 1Þ but, unlike in

the three-dimensional case [14–16], this kink does not
sharpen into an island when three correlators are used to
restrict the number of relevant operators. Following [17], it

is worthwhile to see which features of the 1
8
≤ Δσ ≤ 1

2

solution can be predicted analytically. The goal of this work
is to put the one-correlator upper bound on a more rigorous
footing and to explain why the three-correlator upper
bound is unchanged.
In order to have a unitary two-dimensional (2D) CFT

with c < 1, it is necessary that all primary operators have
conformal weights equal to Kac’s formula hr;sðcÞ for some
ðr; sÞ. The Kac table of degenerate weights is given by

c ¼ 1 −
6

mðmþ 1Þ m > 2;

hr;s ¼
½ðmþ 1Þr −ms�2 − 1

4mðmþ 1Þ r; s ∈ Z>0: ð1:2Þ

Each of these Verma modules has a null state at level rs. In
the operator product expansion (OPE) of primary operators
ϕr;s and ϕr0;s0 , the new conformal families that appear are
captured in the fusion rule

ϕr;s × ϕr0;s0 ¼
Xbrþr0−jr−r0 j−2

2
c

k¼0

Xbsþs0−js−s0 j−2
2

c

l¼0

ϕjr−r0jþ2kþ1;js−s0jþ2lþ1:

ð1:3Þ

For generic values of m, this leads to an infinite discrete
spectrum. All OPEs are finite, but as we raise the values of r
and s, these sums become arbitrarily long. A special
situation occurs when m is an integer. This precisely des-
cribes a central charge for which hr;sðcÞ ¼ hm−r;mþ1−sðcÞ.
The Kac table for these doubly degenerate weights can be
shown to truncate, allowing us to consider only 0 < r < m
and 0 < s < mþ 1. This leads to a finite number of
primary operators and, as it turns out, a unitary theory.
This theory, called a (unitary) minimal model, is often
denoted Mðmþ 1; mÞ. Since Fig. 1 only shows a kink for
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1The algorithm used to generate Fig. 1 will become important
in Sec. IV. These details are summarized in Appendix B.
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m ¼ 3, it is evident that noninteger values of m are still
important for the bootstrap. Analytically continuing the
unitary minimal models in this way is not new. In [18,19],
the generic Mðmþ 1; mÞ was found to be a solvable
consistent theory and referred to as a generalized minimal
model.2 It obeys the 2D CFT axioms of associativity and
Virasoro symmetry but not unitary [20]. The upper bound
from the bootstrap

Δϵ ¼
1

3
ð8Δσ þ 2Þ ð1:4Þ

is realized by the generalized minimal model four-point
function hσσσσi if we identify σ ≡ ϕ1;2 and ϵ≡ ϕ1;3.

3 The
authors of [17] observed squared OPE coefficients of
quasiprimaries in this correlator that were all positive. If
this conjecture is correct, we must conclude that in an
arbitrary Mðmþ 1; mÞ theory, the nonunitarity is mild
enough that it cannot be diagnosed from the correlator of
four σ operators. What this means is that for a non-
degenerate O appearing in the σ × σ OPE, the state
Oðx1Þσðx2Þσðx3Þj0i on the cylinder will have a positive
norm. Similarly, within a degenerate subspace, all such
norms will sum to a positive number. We use the terminol-
ogy that hσσσσi comprises a unitary subsector of the theory
since other OPEs, e.g. σ × ϵ, are needed to construct
negative norms. As we will show, the conjecture can indeed
be proven with the help of a new formalism in [21,22] for
deriving slð2Þ block expansions. This proof, along with a
systematic look at the other two correlators, forms the main

result of this work.4 The summary of results in Table I
shows that for 3 < m < 4, hσσσσi is the only unitary
subsector we have found in the sense described above.
However, it appears that the generalized minimal models
with m > 4 have larger unitary subsectors that include the
other two four-point functions. The last line shows a
surprising tension with Fig. 1. Despite the fact that
hϵϵϵϵi displays significant unitarity violation for m < 4,
the line (1.4) in the three-correlator exclusion plot is
uninterrupted. The numerics are telling us that there is a
partial solution to crossing, other than Mðmþ 1; mÞ,
which fills in this region. Using the properties of minimal
models, we will show that the existence of this solution can
be concluded from a simpler numerical setup. It would be
nice to eventually find a fully analytic construction.
Before deriving the results in Table I, it is instructive to

consider the lower bound

Δϵ ¼
4

3
Δσ; ð1:5Þ

which appears on the left side of Fig. 1. This gives us a
more straightforward opportunity to use the techniques in
[21,22]. The explicit solution for hσσσσi along this line was
found in [23], which focused on its special role in the
nonunitary (severe truncation) bootstrap of [24–26].5 This

FIG. 1. Allowed regions for the dimensions of σ and ϵ—the Z2-odd scalar of smallest dimension and the Z2-even scalar of smallest
dimension, respectively. In both cases, all OPEs are restricted to contain only one relevant scalar. (a) The constraints of crossing
symmetry and unitarity on the four-point function hσσσσi. (b) The constraints of crossing symmetry and unitarity on hσσσσi, hσσϵϵi,
and hϵϵϵϵi.

2This should not be confused with the nonunitary minimal
model, which describes a nonunitary c < 1 theory with finitely
many primaries. This discrete set is denoted Mðp; qÞ with p and
q relatively prime.

3This notation differs from the statistical physics literature in
which it is natural to regard ϕ2;2 as the spin field.

4Looking ahead, the decompositions (3.11) and (3.10) are
essential for the positivity proof. We have learned that they
were previously obtained, through a slightly different method,
in unpublished work by Mikhail Isachenkov and Volker
Schomerus.

5The fact that it also appears in the unitary bootstrap has not
received much attention. In [27], it was mentioned that the lower
bound at Δσ ¼ 1

8
was somewhat close to Δϵ ¼ 1

6
. Interestingly,

the region below the bound coincides with the region where
standard OPE maximization techniques cannot constrain the
central charge [28].
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solution exhibits Virasoro symmetry with a central charge
given by

c ¼ 1þ 16Δσ ð1:6Þ

but no Virasoro identity block. To find an analytic explan-
ation for why this four-point function appears in the unitary
bootstrap, one must be able to show that this vacuum
decoupling is the only sign of nonunitarity that appears at
the level of a single correlator. In other words, one must be
able to repeat the logic of [17] and find positive squared
OPE coefficients for all of the quasiprimaries that do
appear. These will be seen as very large coefficients by
the numerics because the algorithm used for Fig. 1 fixes
λσσI ¼ 1. This is indeed what we find from the extremal
functional method of [29].
This paper is organized as follows. In Sec. II, we study the

lower bound (1.5) as a warm-up. In this case, it is particularly
easy to invert the OPE and find that all slð2Þ block
coefficients are positive. The methods involved prepare us
for our main interest, which is the upper bound (1.4).
Turning to this upper bound in Sec. III, we calculate the
global block coefficients summarized in Table I. In the case
of hσσσσi, we find closed-form expressions. In showing that
they are positive, we prove the conjecture made in the
appendix of [17]. For the other two correlators, we expand
them to high order recursively and conjecture that the slð2Þ
block coefficients are positive again when 4 < m < ∞.
Even though the Virasoro blocks in hϵϵϵϵi appear to have
positive slð2Þ expansions everywhere, the unitarity violation
for 3 < m < 4 arises because of the coefficients multiplying
the Virasoro blocks themselves. In Sec. IV, we go back to the
bootstrap and discuss what these patterns in the OPE
coefficients mean for the results in Fig. 1. In particular,
we perform a semianalytic treatment of the problematic
correlator. The result is that one does not need to perform a
three-correlator bootstrap to predict that (1.4) survives—the
search for an upper bound may be reduced to a one-
correlator problem. Before concluding, in Sec. V, we discuss
other 2D theories which might be possible to study using
more correlators or more assumptions on the spectrum.

II. THE LOWER LINE: A WARM-UP

The four-point function along the line (1.5) consists of a
single Virasoro block Vðhi; h; c; zÞ. It was found in [23] via

the Coulomb gas formalism which writes the central charge
as c ¼ 1–24α20 and places a background charge of 2α0 at
infinity. This allows a number of four-point functions to be
realized as correlators of vertex operators with additional
insertions of screening charges. The simplest of these is a
correlator of four scalars that all have charge α0

2
. Since the

neutrality condition for this is satisfied without any screen-
ing charges, one finds the manifestly crossing symmetric

hσð0Þσðz; z̄Þσð1Þσð∞Þi

¼V

�
−
3

4
α20;−α20;1−24α20;z

�
V

�
−
3

4
α20;−α20;1−24α20; z̄

�

¼jzð1−zÞjα20 ; ð2:1Þ

where we have used h ¼ αðα − 2α0Þ. Expressing (2.1) in
terms of Δσ,

hσð0Þσðz; z̄Þσð1Þσð∞Þi ¼ gðzÞgðz̄Þ
jzj2Δσ

;

gðzÞ ¼ z
2
3
Δσ ð1 − zÞ−1

3
Δσ : ð2:2Þ

Our task now is to expand gðzÞ into slð2Þ blocks:

gðzÞ ¼
X∞
n¼0

cnK2
3
ΔσþnðzÞ;

KhðzÞ≡ zh2F1ðh; h; 2h; zÞ: ð2:3Þ

This is guaranteed to be an expansion in even integers due
to the Bose symmetry of the σ × σ OPE. To proceed by the
brute-force approach, we expand the hypergeometric func-
tion and switch the order of two sums.

gðzÞ ¼
X∞
n¼0

X∞
m¼0

cn
ð2
3
Δσ þ nÞ2m

ð4
3
Δσ þ 2nÞm

z
2
3
Δσþnþm

m!

¼
X∞
k¼0

Xk
n¼0

cn
ð2
3
Δσ þ nÞ2k−n

ð4
3
Δσ þ 2nÞk−n

z
2
3
Δσþk

ðk − nÞ! : ð2:4Þ

We may now compare the inner finite sums to the Taylor

coefficients of (2.2), given by bk ¼ ð1
3
ΔσÞk
k! . Since the lower

triangular system for cn yields to back-substitution,

TABLE I. The status of three-correlator slð2Þ block coefficients in the generalized minimal models. Statements
about hσσσσi apply rigorously to the full set of coefficients. For the other two correlators, we have manually
decomposed them up to order 15.

Correlator 3 < m < 4 4 < m < ∞

hσσσσi All coefficients ≥ 0 All coefficients ≥ 0
hσσϵϵi One checked coefficient < 0 All checked coefficients ≥ 0
hϵϵϵϵi Infinitelymany coefficients < 0 All checked coefficients ≥ 0
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c2k ¼ b2k −
Xk−1
n¼0

c2n
ð2
3
Δσ þ 2nÞ2

2ðk−nÞ
ð4
3
Δσ þ 4nÞ

2ðk−nÞ

1

ð2k − 2nÞ! : ð2:5Þ

Rather than using this recursive procedure, we will now
review a method for computing the cn directly. The blocks,
defined in (2.3), are eigenfunctions of the conformal
Casimir

DKhðzÞ ¼ hðh − 1ÞKhðzÞ;

D ¼ z2ð1 − zÞ ∂2

∂z2 − z2
∂
∂z : ð2:6Þ

It is well known that D is self-adjoint on [0, 1] with respect
to the measure z−2. The authors of [21] used this fact to
develop the Sturm-Liouville theory of this operator and
construct the orthogonal eigenfunctions

ΨhðzÞ ¼
Γð1 − 2hÞ
Γð1 − hÞ2 KhðzÞ þ ðh ↔ 1 − hÞ: ð2:7Þ

It is convenient to set h ¼ 1
2
þ α in which case (2.7)

becomes a function ΨαðzÞ which is even in α. In order
for it to have a finite norm, α cannot be real. We must go to
imaginary dimension space and take α ∈ iR.6 The result is
that with any four-point function fðzÞ, we may associate a
density f̂ðαÞ ¼ f̂ð−αÞ via the invertible transform

fðzÞ ¼ 1

2πi

Z
i∞

−i∞
f̂ðαÞΨαðzÞ

dα
NðαÞ ;

NðαÞ≡ ΓðαÞΓð−αÞ
2πΓð1

2
þ αÞΓð1

2
− αÞ : ð2:8Þ

It is now clear that OPE coefficients may be read off from
the residues of f̂ðαÞ whenever its poles are on the real axis.
A formula that [21,22] derived using this method is

zpð1 − zÞ−q ¼
X∞
n¼0

ðpÞ2n
ð2pþ n − 1Þnn! 3

F2

×

�−n; 2pþ n − 1; p − q

p; p
; 1

�
KpþnðzÞ:

ð2:9Þ

We will use this in the current section and the next one.
Specializing (2.9) to the four-point function (2.2), we

immediately find

cn ¼
ð2
3
ΔσÞ2n

ð4
3
Δσ þ n − 1Þnn! 3

F2

�−n; 4
3
Δσ þ n − 1; 1

3
Δσ

2
3
Δσ; 23Δσ

; 1

�
:

ð2:10Þ
There are two ways to assess the positivity of (2.10). The
first is to recall the definition of a continuous Hahn
polynomial [30],

P̃nða; b; c; d; xÞ

¼ 3F2

�−n; nþ aþ bþ cþ d − 1; aþ x

aþ c; aþ d
; 1

�
: ð2:11Þ

Clearly,

cn ¼
ð2
3
ΔσÞ2n

ð4
3
Δσ þ n − 1Þnn!

P̃n

�
2

3
Δσ;

2

3
Δσ; 0; 0;−

1

3
Δσ

�

ð2:12Þ

is a valid rewriting of (2.10).7 Suppressing their parameters,
the polynomials P̃nða; b; c; d; xÞ satisfy the following
recurrence relation:

ðxþ aÞP̃nðxÞ ¼ AnP̃nþ1ðxÞ − ðAn þ BnÞP̃nðxÞ þ BnP̃n−1ðxÞ;

An ≡ −
ðnþ aþ bþ cþ d − 1Þðnþ aþ cÞðnþ aþ dÞ
ð2nþ aþ bþ cþ d − 1Þð2nþ aþ bþ cþ dÞ ;

Bn ≡ nðnþ bþ c − 1Þðnþ bþ d − 1Þ
ð2nþ aþ bþ cþ d − 2Þð2nþ aþ bþ cþ d − 1Þ : ð2:13Þ

For our parameters, we may easily check that An þ Bn þ aþ x ¼ 0. It then follows by induction that all c2kþ1 vanish. Once
we know this, Eq. (2.13) is effectively a two-term recursion. Seeing a positive constant of proportionality in

P̃2k

�
−
1

3
Δσ

�
¼ −

B2k−1

A2k−1
P̃2k−2

�
−
1

3
Δσ

�

¼ 3ð2k − 1ÞðΔσ þ 3k − 3Þ
ð2Δσ þ 3k − 3Þð2Δσ þ 6k − 3Þ P̃2k−2

�
−
1

3
Δσ

�
; ð2:14Þ

6There is another name for this space as evidenced by the title of [21].
7In the notation of [31], we would write cn ¼ 2−n

n! Q
4
3
Δσþn
n;0 ð− 1

3
ΔσÞ.
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we conclude that the sequence c2k decays to zero mono-
tonically from above. It is therefore imperative that the
bootstrap single out a region that includes (1.5). To derive
this without referring to continuous Hahn polynomials, one
may instead express cn in terms of gamma functions. This
is possible because Watson’s theorem [32],

3F2

�
a; b; c

aþbþ1
2

; 2c
; 1

�
¼ Γð1

2
ÞΓð1þaþb

2
ÞΓð1

2
þ cÞΓð1−a−b

2
þ cÞ

Γð1þa
2
ÞΓð1þb

2
ÞΓð1−a

2
þ cÞΓð1−b

2
þ cÞ ;

ð2:15Þ

applies whenever p ¼ 2q in (2.9). Although
ℜða þ b − 2cÞ < 1 is usually needed for convergence, we
may drop this requirement for a hypergeometric function
that terminates.
This analysis does not explain why (1.5) saturates the

lower bound in the one-correlator result of Fig. 1. However,
it is encouraging that bounds of this form in one dimension
have been proven in [33]. The Coulomb gas formalism
does not yield an obvious way to solve for the correlators
hσσϵϵi, hϵϵϵϵi or even to verify that they exist. Because the
three-correlator plot in Fig. 1 excludes this line, any theory
to which hσσσσi could extend would have to be highly
nonunitary.
In this section, we have seen two methods for proving

that global block coefficients in (2.2) are positive. One uses
Watson’s theorem and the other uses a recurrence relation
for orthogonal polynomials. We will need both of these

methods when we prove positivity in the generalized
minimal models. Before moving on, there is an interesting
way to check our results in a spacetime with Minkowski
signature. Even though (2.2) is not strictly a correlation
function in a unitary theory, it is still bounded in the Regge
limit. Its slð2Þ block expansion should therefore be
calculable with the conformal Froissart-Gribov formula
[34] which in our case reads

cðΔ;lÞ ¼ κΔþl

Z
1

0

Z
1

0

KΔþl
2
ðzÞKl−Δþ2

2
ðz̄ÞdDisc½jzj2Δσ

< σð0Þσðz; z̄Þσð1Þσð∞Þ >� dz
z2

dz̄
z̄2

;

κβ ≡ Γðβ
2
Þ4

2π2Γðβ − 1ÞΓðβÞ : ð2:16Þ

To define the double discontinuity, we must treat z, z̄ as
independent variables and rotate around the z̄ ¼ 1 branch
point. Since this can be done in two ways, we subtract the
average from our four-point function to find

dDisc½gðzÞgðz̄Þ� ¼ 2sin2
�
πΔσ

3

�
ðzz̄Þ23Δσ ½ð1 − zÞð1 − z̄Þ�−1

3
Δσ :

ð2:17Þ

Performing the factored integrals yields a spectral density
given by

cðΔ;lÞΓð1 − 1
3
ΔσÞ−2

2sin2ðπΔσ
3
ÞκΔþl

¼ Γð2
3
Δσ þ l−Δ

2
Þ

Γð1
3
Δσ þ l−Δþ2

2
Þ 3F2

� l−Δþ2
2

; l−Δþ2
2

; 2
3
Δσ þ l−Δ

2

l − Δþ 2; 1
3
Δσ þ l−Δþ2

2

; 1

�

×
Γð2

3
Δσ þ Δþl−2

2
Þ

Γð1
3
Δσ þ Δþl

2
Þ 3F2

� Δþl
2

; Δþl
2

; 2
3
Δσ þ Δþl−2

2

Δþ l; 1
3
Δσ þ Δþl

2

; 1

�
ð2:18Þ

with poles at Δ − l ¼ 4
3
Δσ þ 2n. As none of these are integers, the correct prescription for finding OPE coefficients is to

simply take the residue [34],

−ResðcðΔ;lÞ; nÞ ¼ ð−1Þn
n!

8sin2ðπΔσ
3
Þκ4

3
Δσþ2lþ2nΓð1 − 1

3
ΔσÞ2Γð43Δσ þ nþ l − 1Þ

ΓðΔσ þ lþ nÞΓð1 − 1
3
Δσ − nÞ

× 3F2

� 4
3
Δσ þ lþ n − 1; 2

3
Δσ þ lþ n; 2

3
Δσ þ lþ n

Δσ þ lþ n; 4
3
Δσ þ 2lþ 2n

; 1

�

× 3F2

�−n; 1 − n − 2
3
Δσ; 1 − n − 2

3
Δσ

1 − n − 1
3
Δσ; 2 − 2n − 4

3
Δσ

; 1

�
: ð2:19Þ

Although it is not obvious, we have checked that (2.19) is equal to cncnþl by using Watson’s theorem twice.

III. THE UPPER LINE: ONE AND THREE CORRELATORS

Each state jhr;si dual to a degenerate operator in a generalized minimal model has a null descendant jχr;si at level rs
called a singular vector. Four-point functions may be calculated once the necessary singular vectors are known. We simply
convert χr;s to a differential operator with the Ward identities
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L−n ↦ L−n ¼
X
i≠1

hiðn − 1Þ
ðzi − z1Þn

−
∂i

ðzi − z1Þn−1
;

L−1 ↦ L−1 ¼ ∂1; ð3:1Þ
and use the fact that this operator must annihilate any
correlation function involving ϕr;s in the first position.
The resulting equation, known as a Belavin-Polyakov-
Zamolodchikov (BPZ) differential equation [1], has rs
linearly independent solutions representing the exchanged
multiplets. One may read off their dimensions by looking at
theOðzhÞ behavior as z → 0. While expressions for singular
vectors are generally nontrivial, with some appearing only
recently [35–37], the ones we need are relatively simple:

jχ1;si ¼
X

p1þ���þpk¼s

ð−tÞs−k½ðs − 1Þ!�2Q
k−1
i¼1ðp1 þ � � � þ piÞðs − p1 − � � � − piÞ

× L−p1 � � �L−pk
jh1;si;

t≡ m
mþ 1

: ð3:2Þ

It is clear that we may confine ourselves to the border of
the Kac table when studying correlators of σ ≡ ϕ1;2 and
ϵ≡ ϕ1;3. The set of operatorsϕ1;s which closes under fusion

is called the Verlinde subalgebra. We will continue to
parametrize the generalized minimal model by Δσ—the
horizontal axis of Fig. 1. For convenience, Table II summa-
rizes the OPEs that are important for the simplest mixed
correlator system.

A. All global block coefficients in the simplest correlator

Wewill now derive new expressions for the squared OPE
coefficients in hσσσσi along (1.4). Positivity, as predicted
by [17], will then follow from methods analogous to those
in the last section. Since this correlator solves a second-
order BPZ equation, we may write it as

hσðz1; z̄1Þσðz2; z̄2Þσðz3; z̄3Þσðz4; z̄4Þi ¼
Gðz; z̄Þ

jz12z34j2Δσ
;

Gðz; z̄Þ ¼ Gσσσσ
ð1;1Þ ðzÞGσσσσ

ð1;1Þ ðz̄Þ þ Cð1;3Þ
ð1;2Þð1;2ÞG

σσσσ
ð1;3Þ ðzÞGσσσσ

ð1;3Þ ðz̄Þ;
ð3:3Þ

where the functions of z are Virasoro blocks.8 The specific
operator, read off from (3.2), is

3

2ðΔσ þ 1ÞL
2
−1 − L−2: ð3:4Þ

Acting on (3.3) with (3.4), we arrive at a PDE in terms of
ðz1; z2; z3; z4Þ. To reduce it to an Ordinary differential
equation (ODE), we map these points to ð0; z; 1;∞Þ by
a global conformal transformation:

3

2
zðz − 1Þ2 ∂

2G
∂z2 þ ðz − 1Þ½ð2 − ΔσÞzþ 2Δσ − 1� ∂G∂z

−
1

2
ΔσðΔσ þ 1ÞzG ¼ 0: ð3:5Þ

Well known solutions, which have the expected asymptotic
behavior, are

Gσσσσ
ð1;1Þ ðzÞ ¼ ð1 − zÞ−Δσ

2F1

�
−2Δσ;

1 − 2Δσ

3
;
2 − 4Δσ

3
; z

�
;

Gσσσσ
ð1;3Þ ðzÞ ¼ z

1þ4Δσ
3 ð1 − zÞ−Δσ

2F1

�
1 − 2Δσ

3
;
2þ 2Δσ

3
;
4þ 4Δσ

3
; z
�
: ð3:6Þ

First, let us look at the identity block. After a quadratic transformation, the hypergeometric function becomes a series in
z2

4z−4. This makes the formula (2.9) applicable if we set p ¼ 2n and q ¼ n.

Gσσσσ
ð1;1Þ ðzÞ ¼ 2F1

�
−Δσ;

1þ Δσ

3
;
5 − 4Δσ

6
;
1

4

z2

z − 1

�

¼
X∞
n¼0

�
−
1

4

�
n ð−ΔσÞnð1þΔσ

3
Þn

ð5−4Δσ
6

Þnn!
X∞
m¼0

ð2nÞ2m
ð4nþm − 1Þmm! 3

F2

�−m; 4nþm − 1; n

2n; 2n
; 1

�
K2nþmðzÞ: ð3:7Þ

TABLE II. Operators that can appear in hσσσσi, hσσϵϵi, hϵϵϵϵi,
and their holomorphic weights. The fusion rules would shorten
e.g. in the Ising model m ¼ 3 and tricritical Ising model m ¼ 4,
but we are interested in Mðmþ 1; mÞ for real m.

Fusion rules Weights

ϕ1;2 × ϕ1;2 ¼ ϕ1;1 þ ϕ1;3 h1;1 ¼ 0

ϕ1;2 × ϕ1;3 ¼ ϕ1;2 þ ϕ1;4 h1;2 ¼ Δσ
2

ϕ1;3 × ϕ1;3 ¼ ϕ1;1 þ ϕ1;3 þ ϕ1;5 h1;3 ¼ 4Δσþ1
3

≡ Δϵ
2

h1;4 ¼ 5Δσþ2
2

h1;5 ¼ 4Δσ þ 2

8For the moment, we will be concerned with the global OPE coefficients contained within each one. The overall coefficients
Cðr3;s3Þ
ðr1;s1Þðr2;s2Þ are the generalized minimal model structure constants that were obtained with the Coulomb gas formalism in [38–40].
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Exchanging the two sums, we find

c2k ¼
Xk
n¼0

�
−
1

4

�
n ð−ΔσÞnð1þΔσ

3
Þn

ð5−4Δσ
6

Þnn!
ð2nÞ22k−2n

ð2nþ 2k − 1Þ2k−2nð2k − 2nÞ! 3F2

�
2n − 2k; 2nþ 2k − 1; n

2n; 2n
; 1

�
ð3:8Þ

for the nonvanishing global block coefficients.9 Since p ¼ 2q, this hypergeometric is in a form that can be treated with
Watson’s theorem. When we apply this to the c2k, one pole in the numerator cancels another in the denominator,10

3F2

�
2n − 2k; 2nþ 2k − 1; n

2n; 2n
; 1

�
¼ ð−1ÞnþkΓð1

2
ÞΓðnþ 1

2
ÞΓð2nÞ

ΓðnÞΓðn − kþ 1
2
ÞΓð2nþ 2k − 1Þ

ðk − 1Þ!
ðn − 1Þ!

¼ ð−1ÞnþkΓð2nÞ2
Γð2nþ 2k − 1Þ

Γðnþ k − 1
2
ÞΓð1

2
Þ

Γðn − kþ 1
2
ÞΓðkþ 1

2
Þ limδ→0

22k−1ðk − 1Þ!
½ΓðδÞðδÞn�2

: ð3:9Þ

Above, we can easily see three gamma functions that will cancel when we multiply by
ð2nÞ2

2k−2n
ð2nþ2k−1Þ2k−2nð2k−2nÞ!. We have also

written 1
ΓðnÞ2 in a limiting form for later convenience. After substituting (3.9), one must use the identities

Γðxþ nÞ ¼ ΓðxÞðxÞn; Γðx − nÞ ¼ ð−1Þn ΓðxÞ
ð1 − xÞn

ð3:10Þ

until each term of (3.8) only depends on n through the Pochhammer symbol. This leads to

c2k ¼
�
4k − 2

2k − 1

�−1
lim
δ→0

1

kð2k − 1ÞΓðδÞ2 4F3

�−k; k − 1
2
;−Δσ;

1þΔσ
3

δ; δ; 5−4Δσ
6

; 1

�

¼
�
4k − 2

2k − 1

�−1 Δσð1þ ΔσÞ
5 − 4Δσ

4F3

�
1 − k; kþ 1

2
; 1 − Δσ;

4þΔσ
3

1; 2; 11−4Δσ
6

; 1

�
: ð3:11Þ

The ϵ block can be analyzed in the same way. Doing so will in fact be easier since we will not have to pass to the δ → 0
limit. Starting from

Gσσσσ
ð1;3Þ ðzÞ ¼ z

1þ4Δσ
3 ð1 − zÞ−1þ4Δσ

6
2F1

�
1þ 2Δσ

2
;
1 − 2Δσ

6
;
7þ 4Δσ

6
;
1

4

z2

z − 1

�
; ð3:12Þ

we may use (2.9) with p ¼ 1þ4Δσ
3

þ 2n and q ¼ 1þ4Δσ
6

þ n. This leads to

c2k ¼
Xk
n¼0

�
−
1

4

�
n ð1þ2Δσ

6
Þnð1þ2Δσ

2
Þn

ð7þ4Δσ
6

Þnn!
ð1þ4Δσ

3
þ 2nÞ2

2k−2n

ð2þ8Δσ
3

þ 2nþ 2k − 1Þ
2k−2nð2k − 2nÞ!

× 3F2

�
2n − 2k; 2þ8Δσ

3
þ 2nþ 2k − 1; 1þ4Δσ

6
þ n

1þ4Δσ
3

þ 2n; 1þ4Δσ
3

þ 2n
; 1

�
; ð3:13Þ

which again allows us to use Watson’s theorem. Employing (3.10) to perform the sum, we arrive at

c2k ¼
1

4kk!

ð1þ4Δσ
6

Þ2k
ð1þ4Δσ

3
þ k − 1

2
Þk

4F3

 
−k; 1þ4Δσ

3
þ k − 1

2
;Δσ þ 1

2
; 1−2Δσ

6
;

1þ4Δσ
6

; 1þ4Δσ
6

; 7þ4Δσ
6

; 1

!
: ð3:14Þ

A useful observation about the hypergeometric functions in (3.17) and (3.14) is that they both have a parameter excess of
1. This means that they are Wilson polynomials [30],11

9We derived this by applying a quadratic transformation to (3.6) which makes the Bose symmetry manifest. By leaving the function in
its original form, or by applying Euler/Pfaff transformations, we can derive other sums that are nontrivially equivalent to (3.8).

10Because we have not allowed for other poles, our expression for c2k will not be correct for k ¼ 0. There is no need to treat this case
separately as it is already clear that c0 ¼ 1.

11Note that we are using the normalization in [41]. There is another common normalization that makes the Wilson polynomial
symmetric in ða; b; c; dÞ.
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Pnða; b; c; d; xÞ ¼ 4F3

�−n; nþ aþ bþ cþ d − 1; aþ x; a − x

aþ b; aþ c; aþ d
; 1

�
: ð3:15Þ

Invoking this notation, our results are

cσσð1;1Þσσ2n ¼
�
4n − 2

2n − 1

�−1Δσð1þ ΔσÞ
5 − 4Δσ

Pn−1

�
7 − 2Δσ

6
;
4 − 2Δσ

6
;−

1 − 2Δσ

6
;
5þ 2Δσ

6
;
1þ 4Δσ

6

�
;

cσσð1;3Þσσ2n ¼ 1

4nn!

ð1þ4Δσ
6

Þ2n
ð1þ4Δσ

3
þ n − 1

2
Þn
Pn

�
2þ 2Δσ

3
;
1

2
;−

1

2
;−

1

2
;
1þ 4Δσ

6

�
: ð3:16Þ

As with continuous Hahn polynomials, there is a recurrence relation that the Wilson polynomials satisfy,

ðx2 − a2ÞPnðxÞ ¼ AnPnþ1ðxÞ − ðAn þ BnÞPnðxÞ þ BnPn−1ðxÞ;

An ≡ ðnþ aþ bþ cþ d − 1Þðnþ aþ bÞðnþ aþ cÞðnþ aþ dÞ
ð2nþ aþ bþ cþ d − 1Þð2nþ aþ bþ cþ dÞ ;

Bn ≡ nðnþ bþ c − 1Þðnþ bþ d − 1Þðnþ cþ d − 1Þ
ð2nþ aþ bþ cþ d − 2Þð2nþ aþ bþ cþ d − 1Þ : ð3:17Þ

Appendix A uses this recursion to solve for the asymptotic behavior of Wilson polynomials and prove that the ones in (3.16)
are positive.

B. Some global block coefficients in the other correlators

Given our success at explaining the one-correlator results, the next logical step is to find the global block decompositions
applicable to three correlators. We will start with hϵϵϵϵi. Although this is another four-point function of identical scalars, the
main difference compared to hσσσσi is the lack of a closed-form Virasoro block. Because a generic ϵ only has a null
descendant at level 3, wewill have to work with a third-order BPZ equation which does not have simple solutions analogous to
(3.6). This makes the formula (2.5) important for finding low-lying OPE coefficients. The singular vector that must annihilate

hϵðz1; z̄1Þϵðz2; z̄2Þϵðz3; z̄3Þϵðz4; z̄4Þi ¼
Gðz; z̄Þ

jz12z34j2Δϵ
;

Gðz; z̄Þ ¼ Gϵϵϵϵ
ð1;1ÞðzÞGϵϵϵϵ

ð1;1Þðz̄Þ þ Cð1;3Þ
ð1;3Þð1;3ÞG

ϵϵϵϵ
ð1;3ÞðzÞGϵϵϵϵ

ð1;3Þðz̄Þ þ Cð1;5Þ
ð1;3Þð1;3ÞG

ϵϵϵϵ
ð1;5ÞðzÞGϵϵϵϵ

ð1;5Þðz̄Þ ð3:18Þ

has four terms that can be read off from (3.2). The Virasoro commutation relations reduce it to the three term expression

4

ΔϵðΔϵ þ 2ÞL
3
−1 −

4

Δϵ
L−2L−1 þ L−3: ð3:19Þ

The null state condition that follows from (3.18) and (3.19) is

4z2ðz − 1Þ3 ∂
3G
∂z3 þ 4zðz − 1Þ2½ð4 − ΔϵÞzþ 2Δϵ − 2� ∂

2G
∂z2

− ðz − 1Þ½ðΔ2
ϵ þ 10Δϵ − 8Þz2 þ ð3Δ2

ϵ − 14Δϵ þ 8Þz − 3ΔϵðΔϵ − 2Þ� ∂G∂z
þ Δ2

ϵðΔϵ þ 2Þzðz − 2ÞG ¼ 0: ð3:20Þ

To approximate the Virasoro blocks that solve this, it will be helpful to use the Frobenius method.12 Inserting the ansatz
GðzÞ ¼P∞

k¼−∞ bkzrþk, we may reindex the sum so that all terms carry the same power of z. This gives a recurrence relation
for the coefficients.

12Even though they describe exchanged weights of h1;1 and h1;3, we cannot reuse either of the expressions in (3.6). Unlike global
blocks which only see dimension differences, Virasoro blocks depend on the external weights individually [42].
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½−4ðkþ rÞðkþ r − 1Þ þ 8ðΔϵ − 1Þðkþ rÞ þ 3Δϵð2 − ΔϵÞ�ðkþ rþ 1Þbkþ1

þ 2½6ðkþ r − 1Þðkþ r − 2Þ þ 2ð8 − 5ΔϵÞðkþ r − 1Þ þ 3Δ2
ϵ − 10Δϵ þ 4�ðkþ rÞbk

− 2½6ðkþ r − 1Þðkþ r − 2Þðkþ r − 3Þ − 4ð2Δϵ − 5Þðkþ r − 1Þðkþ r − 2Þ
þ ðΔ2

ϵ − 12Δϵ þ 8Þðkþ r − 1Þ þ Δ2
ϵðΔϵ þ 2Þ�bk−1

þ ½4ðkþ r − 2Þðkþ r − 3Þðkþ r − 4Þ þ 4ð4 − ΔϵÞðkþ r − 2Þðkþ r − 3Þ
− ðΔ2

ϵ þ 10Δϵ − 8Þðkþ r − 2Þ þ Δ2
ϵðΔϵ þ 2Þ�bk−2 ¼ 0: ð3:21Þ

We will set b0 ¼ 1 and bk ¼ 0 for all k < 0. The values of r that make this consistent (called roots of the indicial equation)
are h1;1, h1;3, and h1;5 as expected. We find them by demanding that b0 drop out of (3.21) when k ¼ −1. For each value of r,
it is straightforward to iterate (3.21) and then feed the results into (2.5). Some of the OPE coefficients that follow from this
are written in Table III. Due to the appearance of the upper bound (1.4) in the three-correlator bootstrap, we expect the
coefficients to be positive when 1 ≤ Δϵ ≤ 2, at least up to some high order. Figure 2 shows that this is indeed the case.
We should also be able to find positive squared OPE coefficients in the mixed correlator. The four-point function

hσðz1; z̄1Þϵðz2; z̄2Þσðz3; z̄3Þϵðz4; z̄4Þi ¼
�jz24j
jz13j

�
Δσϵ Gðz; z̄Þ

jz12jΔσþΔϵ jz34jΔσþΔϵ
;

Gðz; z̄Þ ¼ Cð1;2Þ
ð1;2Þð1;3ÞG

σϵσϵ
ð1;2ÞðzÞGσϵσϵ

ð1;2Þðz̄Þ þ Cð1;4Þ
ð1;2Þð1;3ÞG

σϵσϵ
ð1;4ÞðzÞGσϵσϵ

ð1;4Þðz̄Þ ð3:22Þ

satisfies second-order and third-order BPZ equations.
For simplicity, we will consider the second-order equation

3

2
z2ðz − 1Þ2 ∂

2G
∂z2 þ 1

2
zðz − 1Þ½ð2 − 7ΔσÞzþ 9Δσ�

∂G
∂z

þ 1

24
½3Δσð11Δσ þ 2Þz2 − 2ð5Δσ þ 2Þð11Δσ þ 2Þzþ 9Δσð5Δσ þ 2Þ�G ¼ 0; ð3:23Þ

which has the recurrence relation

9½4ðkþ rþ 1Þðkþ rÞ − 12Δσðkþ rþ 1Þ þ Δσð5Δσ þ 2Þ�bkþ1

− 2½36ðkþ rÞðkþ r − 1Þ − 12ð8Δσ − 1Þðkþ rÞ þ ð5Δσ þ 2Þð11Δσ þ 2Þ�bk
þ 3½12ðkþ r − 1Þðkþ r − 2Þ þ 4ð2 − 7ΔσÞðkþ r − 1Þ þ Δσð11Δσ þ 2Þ�bk−1 ¼ 0: ð3:24Þ

It is easily seen that r ∈ fh1;2; h1;4g is the solution of the indicial equation for (3.32). Because the product σ × ϵ no longer
has Bose symmetry, the procedure by which we extract the conformal block expansion this time is somewhat different. We
must include dimension differences in the hypergeometric function and sum over all integers whether even or odd,

GðzÞ ¼
X∞
n¼0

ð−1Þncnzrþn
2F1

�
rþ n −

1

2
Δσϵ; rþ nþ 1

2
Δσϵ; 2ðrþ nÞ; z

�

¼
X∞
n¼0

X∞
m¼0

ð−1Þncn
ðrþ n − 1

2
ΔσϵÞmðrþ nþ 1

2
ΔσϵÞm

ð2rþ 2nÞm
zrþnþm

m!

¼
X∞
k¼0

Xk
n¼0

ð−1Þncn
ðrþ n − 1

2
ΔσϵÞk−nðrþ nþ 1

2
ΔσϵÞk−n

ð2rþ 2nÞk−n
zrþk

ðk − nÞ! : ð3:25Þ

The lower triangular system from this leads to the recursion

ð−1Þkck ¼ bk −
Xk−1
n¼0

ð−1Þncn
ðrþ n − 1

2
ΔσϵÞk−nðrþ nþ 1

2
ΔσϵÞk−n

ð2rþ 2nÞk−nðk − nÞ! : ð3:26Þ

Some low-lying global block coefficients found with (3.26) are listed in Table IV. While all of them are non-negative above
the tricritical Ising value Δσ ¼ 1

5
, there is actually one that takes on negative values for 1

8
< Δσ < 1

5
as shown in Fig. 3. We
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TABLE III. The first three global block coefficients in the (1,1),
(1,3), and (1,5) contributions found by taking the ϵ × ϵ OPE
twice.

n cϵϵð1;1Þϵϵ2n

0 1
1 − Δ2

ϵ ðΔϵþ2Þ
ðΔϵ−4Þð3Δϵ−2Þ

2 Δ2
ϵ ðΔϵþ2Þ2½5Δϵþ2�

30ðΔϵ−8ÞðΔϵ−4Þð3Δϵ−2Þ
n cϵϵð3;1Þϵϵ2n

0 1
1 Δ2

ϵ ðΔϵþ2Þ½5Δϵþ2�
16ðΔϵ−1ÞðΔϵþ1ÞðΔϵþ4Þ

2 Δ2
ϵ ðΔϵþ2Þ½25Δ5

ϵþ167Δ4
ϵ−66Δ3

ϵ−1904Δ2
ϵ−2752Δϵ−384�

512ðΔϵ−3ÞðΔϵ−1ÞðΔϵþ3ÞðΔϵþ4ÞðΔϵþ5ÞðΔϵþ8Þ
n cϵϵð5;1Þϵϵ2n

0 1
1 ΔϵðΔϵþ2Þ½7Δϵþ6�

48ðΔϵþ1ÞðΔϵþ3Þ
2 ΔϵðΔϵþ2Þ½441Δ5

ϵþ5121Δ4
ϵþ20732Δ3

ϵþ37796Δ2
ϵþ31056Δϵþ8640�

1536ðΔϵþ3ÞðΔϵþ5Þð3Δϵþ5Þð3Δϵþ7Þð3Δϵþ10Þ

FIG. 2. Log-scale plots of cϵϵð1;sÞϵϵ2n showing that the first five are all positive on the interval 1
8
≤ Δσ ≤ 1

2
.

TABLE IV. The first five global block coefficients in the (1,2)
and (1,4) contributions found by taking the σ × ϵ OPE twice.

n cσϵð1;2Þσϵn

0 1
1 0
2 0
3 − ðΔσþ1Þð4Δσþ1Þ2

729ΔσðΔσ−1ÞðΔσþ2Þ ð5Δσ þ 2Þ
4 − 4ðΔσþ1Þ2ð4Δσþ1Þ2

729ΔσðΔσþ3ÞðΔσþ6Þð2Δσ−3Þ ð8Δσ − 1Þ
n cσϵð1;4Þσϵn

0 1
1 0
2 Δσþ1

9ð2Δσþ3Þð5Δσþ3Þ ð2Δσ þ 1Þð10Δσ þ 1Þ
3 4ðΔσþ1Þð5Δσþ2Þ

729ðΔσþ2Þð5Δσþ4Þð5Δσþ6Þ ð5Δσ − 1Þð7Δσ þ 4Þ
4 ðΔσþ1Þ2ð5Δσþ2Þ

81ð5Δσþ7Þð5Δσþ8Þ ð10Δσ þ 1Þ
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may explain this by noticing that ϕ1;4 is also ϕ3;1 in the
minimal model Mð5; 4Þ. This field has exactly one
quasiprimary descendant at level 3. The presence of a null

state is therefore enough to conclude that cσϵð1;4Þσϵ3 ¼ 0.
Alternatively, we can take the OPE in the other channel

by permuting operator positions in (3.22). This yields the
global block coefficients in Table V which are related to the
λσσOλϵϵO CFT data. There is no reason for these numbers to
be positive, but we expect

cσσð1;sÞσσ2n cϵϵð1;sÞϵϵ2n ≥ ðcσσð1;sÞϵϵ2n Þ2 ð3:27Þ

to be obeyed.13 When σ × σ and ϵ × ϵ share a set of
operators S with the same quantum numbers, the left-hand
side is a product of sums. The right-hand side is a sum of
products and therefore smaller by the arithmetic-geometric
mean inequality. A departure from (3.27) would be a
violation of unitarity since the matrix

X
O∈S

½ λσσO λϵϵO �
�
λσσO

λϵϵO

�
¼
"
cσσð1;sÞσσ2n cσσð1;sÞϵϵ2n

cσσð1;sÞϵϵ2n cϵϵð1;sÞϵϵ2n

#

ð3:28Þ

would not be positive definite.

C. Virasoro block coefficients

Our analysis so far has been focused on cσσð1;sÞσσ2n ,

cϵϵð1;sÞϵϵ2n , and cσϵð1;sÞσϵn , which encode the decomposition
of a Virasoro block into slð2Þ blocks. With the sole

exception of cσϵð1;4Þσϵ3 , which we could imagine to have
a small effect, we have found that these coefficients are
non-negative when 1

8
≤ Δσ ≤ 1

2
. However, this is only

meaningful if the same property holds for the structure
constants that unite holomorphic and antiholomorphic

halves of a four-point function. A single Cðr3;s3Þ
ðr1;s1Þðr2;s2Þ < 0

for instance would give rise to an infinite number of
negative contributions in hϕr1;s1ϕr2;s2ϕr1;s1ϕr2;s2i, severely
complicating the interpretation of Fig. 1.
In a given correlation function, the Virasoro block

coefficients that appear must be compatible with crossing
symmetry and single valuedness. By briefly reviewing the
method of [38–40], we will show that this condition is
enough to fix them uniquely. For definiteness, consider the
hϵϵϵϵi correlator in the generalized minimal model with
central charge 13

21
. The holomorphic part of this function

comes from the kernel of the operator (3.19), which is three
dimensional. Solving (3.21) has given us a basis for this
kernel in which each function vanishes at z ¼ 0. We could
equally well have chosen any of the regular singular points
0, 1, and ∞, corresponding to the s, t, and u channels for
Virasoro blocks. When going from z ¼ 0 to z ¼ 1, there is a
specialmatrixF called the crossingmatrix (or fusionmatrix)
that accomplishes GaðzÞ ¼ Fa

bGbð1 − zÞ. It is a special
case of the crossing kernel which applies to theories with a

FIG. 3. Log-scale plots of the cσϵð1;sÞσϵn that are nonzero. The legend is the same as that of Fig. 2.

TABLE V. The first three global block coefficients in the (1,1)
and (1,3) contributions found by taking the σ × σ and ϵ × ϵOPEs.

n cσσð1;1Þϵϵ2n

0 1
1 ðΔσþ1Þð4Δσþ1Þ

3ð5−4ΔσÞ
2 2ðΔσþ1Þ2ð4Δσþ1Þ½5Δσþ2�

45ð5−4ΔσÞð11−4ΔσÞ
n cσσð1;3Þϵϵ2n
0 1
1 2ðΔσþ1Þð4Δσþ1Þ½5Δσþ2�

3ð7þ4ΔσÞð5þ8ΔσÞ
2 ðΔσþ1Þ2ð4Δσþ1Þ½400Δ3

σþ1548Δ2
σþ1644Δσþ361�

18ð7þ4ΔσÞð13þ4ΔσÞð11þ8ΔσÞð17þ8ΔσÞ
13For another quick check of our results,Δ2

ϵc
σσð1;1Þσσ
0 cσσð1;1Þσσ2 ¼

Δ2
σc

ϵϵð1;1Þϵϵ
0 cϵϵð1;1Þϵϵ2 holds as it must by the Ward identity.
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continuous spectrum.14 Since it represents a change of basis,
the expression for F is unique. In this case, it is given by

F ¼

2
64
0.7422 0.3124 −0.1563
2.3762 −1.8795 1.4405

1.8760 −2.2733 2.1372

3
75; ð3:29Þ

which was obtained in [43] via the Coulomb gas formalism.
Later reviews are [23,44]. In the following, we will use G1,
G2, and G3 to denote Gϵϵϵϵ

ð1;1Þ, G
ϵϵϵϵ
ð1;3Þ, and G

ϵϵϵϵ
ð1;5Þ, respectively.

The constraints from (3.29) are best phrased in
terms of a metric on the space of conformal blocks;
Gðz; z̄Þ ¼ WabGaðzÞGbðz̄Þ. We have three conditions that
Wab must satisfy:
(1) W11 ¼ 1
(2) Wcd ¼ WabFa

cFb
d

(3) Wab ¼ 0 for a ≠ b
The first of these is an obvious consequence of having unit-
normalized operators. The second comes from writing
Gð1 − z; 1 − z̄Þ ¼ WabGað1 − zÞGbð1 − z̄Þ in terms of s-
channel blocks and setting it equal to Gðz; z̄Þ. The third
ensures that the four-point function has trivial monodromy
under z ↦ e2πiz, z̄ ↦ e−2πiz̄. This rules out a nondiagonal
metric since we only find hr;s weights that differ by integers
at special values of m.15 We build solutions out of the left
eigenvectors of F,

v1¼

2
64

0.9537

−0.1157
0.2776

3
75; v2¼

2
64

0.9805

0.1758

−0.0879

3
75; v3¼

2
64

0.5938

−0.7196
0.3600

3
75;

ð3:30Þ
which have eigenvalues of 1, 1, and −1, respectively.
Clearly F2 ¼ 1, which follows from z ↔ 1 − z being an
involution, requires all eigenvalues to be�1. The following
form is invariant under two multiplications by F:

Wab ¼ c11v1av1b þ c12v1av2b þ c21v2av1b þ c22v2av2b þ c33v3av3b:

ð3:31Þ

There are six off-diagonal components of W that need to
vanish. If we set c21 ¼ c12, Eq. (3.31) becomes manifestly
symmetric and we can use three more parameters, c11, c12,
and c22, to make W diagonal. As the single remaining

parameter, c33 is used to rescale W so that its leading
component is 1.
We may summarize this discussion by stating that there

is no freedom in the three-correlator bootstrap equations
once the Virasoro blocks involving σ and ϵ are specified.
Knowledge of these blocks fully determines hσσσσi,
hσσϵϵi, and hϵϵϵϵi, whether or not we demand consistency
conditions for other correlators. This means that the
generalized minimal model structure constants are the only
valid choices for the coefficients in (3.3), (3.25), and (3.22).
Defining γðxÞ ¼ ΓðxÞ=Γð1 − xÞ and t ¼ m

mþ1
, the expres-

sions we need are

Cð1;3Þ
ð1;3Þð1;3Þ ¼ γðtÞ3γð4t − 1Þ2γð1 − 2tÞ3γð2 − 2tÞγð2 − 3tÞ;

Cð1;5Þ
ð1;3Þð1;3Þ ¼ γðtÞγð2tÞγð4t − 1Þγð5t − 1Þγð1 − 3tÞγð1 − 4tÞ

× γð2 − 2tÞγð2 − 3tÞ;
Cð1;4Þ
ð1;2Þð1;3Þ ¼ γðtÞγð4t − 1Þγð1 − 3tÞγð2 − 2tÞ;

Cð1;2Þ
ð1;2Þð1;3Þ ¼ Cð1;3Þ

ð1;2Þð1;2Þ ¼ γðtÞγð3t − 1Þγð1 − 2tÞγð2 − 2tÞ:
ð3:32Þ

The last coefficient in (3.32) is clearly the one that was
rederived in [17]. Plotting these in Fig. 4, we see that

Cð1;5Þ
ð1;3Þð1;3Þ < 0 for the generalized minimal models between

Mð4; 3Þ and Mð5; 4Þ. This reveals a problem with our
strategy for proving that the allowed region in Fig. 1 must
be large enough to include (1.4). Constructing the gener-
alized minimal model solution to crossing symmetry only
accomplishes this in the one-correlator case. We must
therefore conclude that there is at least one other way to
extend the unitary subsector hσσσσi into a consistent three-
correlator system. This solution to crossing should have
positive squared OPE coefficients wherever it exists, not

FIG. 4. Low-lying squared OPE coefficients for Virasoro
primaries in the generalized minimal models. Between the Ising
model at m ¼ 3 (Δσ ¼ 1

8
) and the tricritical Ising model at m ¼ 4

(Δσ ¼ 1
5
), there is one that becomes negative.

14Several interchangeable terms have proliferated over the
years. When replacing the z ↦ 1 − z map with z ↦ 1

z, the words
crossing and fusion become exchange and braiding. Outside the
CFT context, one says that a linear ODE has amonodromy matrix
or connection matrix. For ODEs that have less structure than a
BPZ equation, finding this matrix is often a difficult problem.

15It is well known that this happens in discrete minimal
models. Some of the nondiagonal theories so constructed also
satisfy the stronger requirement of modular invariance.

CONNOR BEHAN PHYS. REV. D 97, 094020 (2018)

094020-12



just in 1
5
≤ Δσ ≤ 1

2
. As the solution might be very different

from the theories discussed above, it is worth using the
numerical bootstrap to see what else can be learned about it.

IV. LESSONS FOR THE BOOTSTRAP

We saw in the last section that above central charge 7
10
,

the generalized minimal models exhibit the restricted
notion of unitarity that allows them to appear in Fig. 1.
On the other hand, for 1

2
< c < 7

10
, they are highly non-

unitary at the level of three correlators; the global coef-

ficient cσϵð1;4Þσϵ3 and the Virasoro coefficient Cð1;5Þ
ð1;3Þð1;3Þ both

become negative in this region. Working around this
problem, the machinery of the bootstrap has filled in this
region with another solution whose σ × σ OPE agrees with
that of a generalized minimal model. In this section, we will
give an intuitive argument for why this should be possible.
Beyond this, we will discuss two issues related to the
replacement solution.
This first is whether it can be found uniquely. A

technique called the extremal functional method is often
used to extract a unique solution to crossing symmetry and
unitarity whenever a dimension gap or OPE coefficient is
extremized [29,45–50]. Based on this, we might expect to
find a single line of exotic solutions that smoothly joins the
Mðmþ 1; mÞ line at Δσ ¼ 1

5
. We will actually find the

opposite—a boundary of Fig. 1 that has many possible
choices for the local CFT data outside σ × σ. To reconcile
this with the standard lore about extremality, one has to
remember that the bootstrap equations take on a more
intricate form when there are multiple correlators.
The second is the prospect of excluding the above

solution with further numerics. One reason for doing this
with global conformal blocks is simply the technical
challenge posed by Virasoro conformal blocks. There
has indeed been recent progress in using the full
Virasoro symmetry to carve out c > 1 CFTs [51].
However, tractable four-point functions with extended
supersymmetry appear to be limited to those of BPS
operators [52,53]. Global blocks were therefore a necessary
ingredient of [54], a program which aims to constrain the
space of superconformal theories using external operators
in long multiplets. There has also been recent interest in
conformal theories that have no locality and therefore no
Virasoro algebra [55–57]. These provide a different moti-
vation for shrinking the regions in Fig. 1.

A. Reduction to one correlator

The well known bootstrap constraints for three corre-
lators with Z2 symmetry take the form of five crossing
equations. As reviewed in Appendix B, the vector of
equations has one component for hσσσσi, one component
for hϵϵϵϵi, and three components for hσσϵϵi. Given a
generic solution to crossing, it is easy to see that four

(three) sum rules will break when an even (odd) operator
is removed from the theory. However, there is a pleasing
nongeneric property that holds for generalized minimal
models; ϵ × ϵ contains more operators than σ × σ.
Because of this, only one crossing equation is disturbed
when we remove the ϕ1;5 conformal family. This is the
source of almost all unitarity violation in the system built

from ϕ1;2 and ϕ1;3. Since negativity of cσϵð1;4Þσϵ3 only
affects spinning operators with Δ > 45

8
, it is possible that

the numerics are largely insensitive to it [58]. Assuming
that problems with the mixed correlator are negligible, we
will focus on

X
O

λ2ϵϵOF
ϵϵ;ϵϵ
−;O ðu; vÞ ¼ 0;

Fϵϵ;ϵϵ
−;Δ;lðu; vÞ≡ vΔϵg0;0Δ;lðu; vÞ − uΔϵg0;0Δ;lðv; uÞ ð4:1Þ

as the single condition that needs to be restored. Once a
solution to (4.1) is found, one can incorporate it into the
three-correlator problem by choosing λσσO ¼ 0 for new
operators.16

Checking the solvability of (4.1) for real λϵϵO is the
simplest numerical bootstrap problem. Emphasizing the
contributions of operators that are already present, we may
write

X
O

λ2ϵϵOF
ϵϵ;ϵϵ
−;O ðu;vÞ ¼ −F1;1ðu;vÞ−Cð1;3Þ

ð1;3Þð1;3ÞF1;3ðu;vÞ;

F1;1ðu;vÞ≡
X
n;n̄

cϵϵð1;1Þϵϵn cϵϵð1;1Þϵϵn̄ Fϵϵ;ϵϵ
−;nþn̄;jn−n̄jðu;vÞ;

F1;3ðu;vÞ≡
X
n;n̄

cϵϵð1;3Þϵϵn cϵϵð1;3Þϵϵn̄

×Fϵϵ;ϵϵ
−;Δϵþnþn̄;jn−n̄jðu;vÞ: ð4:2Þ

Keeping operators withΔ ≤ 30, we have used the results of
the last section to approximate the right-hand side of (4.2).
In the sum over operators, there will be a continuum of
irrelevant scalars not in ϕ1;1 ∪ ϕ1;3 which begins at some
gap Δ� > 2. If this is the only set of scalars on the left-hand
side of (4.2), we are dealing with the set S ¼ fΔ > Δ�g.
Alternatively, we could allow the dimension Δϵ to appear
again and enlarge it to S ¼ fΔ > Δ�g ∪ fΔ ¼ Δϵg. The
second choice is the one applicable to Fig. 1. However, in
Fig. 5, we consider the first choice as well. This is because
it is possible to rederive Fig. 1 under the requirement that ϵ
is nondegenerate [16]. As numerical accuracy is improved,

16We are using four crossing equations to derive (1.4)
analytically and then claiming that the fifth crossing equation
can be satisfied for free. This is different from what happens in
three dimensions. We have checked that the island in [14] merges
with the rest of the allowed region once the fifth crossing equation
is dropped.
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we expect the blue line to precisely meet the dotted line
at m ¼ 4.17

In Fig. 5, the red curve tells us that (1.4) is admissible
whenever we treat ðΔσ;ΔϵÞ as allowed dimensions and
perform a two-parameter scan. The blue curve tells us that
(1.4) will still be admissible when we fix ϵ as a single
operator at angle θ ¼ arctanðλσσϵλϵϵϵ

Þ and scan over ðΔσ;Δϵ; θÞ.
Finally, one may contemplate the effect of imposing θ ¼ π

2

which is one consequence of Kramers-Wannier duality in
the Ising model. Although this question cannot be
answered with Fig. 5, we have found that (1.4) persists
yet again. In all three cases, Eq. (1.4) is not just an allowed
line—it is the maximal allowed line. From this, we must
conclude that many solutions to crossing, labeled by values
ofΔ� between the red and blue lines, lie along the bound on
the left side of Fig. 1. This signals the presence of a flat
direction, e.g. a bound in ðΔσ;Δϵ; θÞ space which is
independent of θ. A flat direction in the modular bootstrap
was previously seen in [59]. The main argument for unique
extremal functionals comes from [46], in which the multi-
correlator bootstrap equations were augmented with angles
for each operator in OPE space. To extract a spectrum in
this formulation, one would have to look for zeros of these
functionals on the entire ðΔ; θÞ plane. We suspect that the
flat direction here corresponds to a zero being achieved on a
codimension-one locus.
Because the generalized minimal model line (1.4) is

allowed by the bootstrap, there are several lines in the
interior of Fig. 1 that must be allowed as well. These can be
constructed through one or more tensor products. If we
multiply two generalized minimal models for instance, the
only nontrivial operator whose dimension lies to the left of
Δσ ¼ 1

2
is σ ⊗ σ. Writing its OPE schematically,

ðσ ⊗ σÞ × ðσ ⊗ σÞ ¼ ðI ⊗ IÞ þ ðI ⊗ ϵÞ þ ðϵ ⊗ IÞ
þ ðϵ ⊗ ϵÞ þ � � � ð4:3Þ

includes two relevant operators. In order for these to have
the same scaling dimension, theMðmþ 1; mÞ ⊗ Mðm0 þ
1; m0Þ product must have m ¼ m0. Expanding the search to
include free theories and generalized free theories, it is a
simple exercise to check that the lines in Fig. 6 all have
one relevant Z2-odd scaling dimension and one relevant
Z2-even scaling dimension.
Evidently, it is not possible to isolate particular minimal

models in a three-correlator bootstrap by specifying the
number of relevant operators. One has to consider more
stringent assumptions or add more correlators. The former
approach was discussed already in [60], where it was found
that the one-correlator Ising kink sharpens considerably
when scalars are restricted to lie in S ¼ fΔ > 3g ∪
fΔ ¼ Δϵg. This kink becomes an island when a similar
restriction is made for a three-correlator system. Following
[61], it is likely that one can obtain this island from a
single correlator by imposing large gaps in the spin-0 and
spin-2 sectors.
A more ambitious goal is to produce islands under

minimal assumptions by introducing a third external scalar.
Taking this external scalar to be odd, plots along the lines of
Fig. 4 offer some preliminary insight.18 Regions where all

Cðr3;s3Þ
ðr1;s1Þðr2;s2Þ > 0 are likely to survive, but as Table VI

shows, there can be several negative structure constants
with more than three correlators. We have seen that the

negative constant Cð1;5Þ
ð1;3Þð1;3Þ in the three-correlator system

was innocuous because it did not appear in any mixed

FIG. 6. Tensor product theories that are allowed in both sides of
Fig. 1. Since we must have Δϵ ≥ 1, all other tensor products
involving the free field vertex operators necessarily lie to
the right.

FIG. 5. Dimension bounds for irrelevant operators in (4.2). The
dotted line shows the dimension of the primary scalar ϕ1;5 whose
multiplet needs to be replaced for 3 < m < 4.

17Varying the spatial dimension provides one indication
that numerical errors have a large effect. Evaluating conformal
blocks at d ¼ 2.01 instead of d ¼ 2 results in a much smaller
bound on Δ�.

18The lightest Z2-odd scalar after σ is σ0 ≡ ϕ1;4. The lightest
Z2-even scalar after ϵ is ϵ0 ≡ ½L−2L̄−2;ϕ1;1�. We have made the
choice in which all operator fusions are between Virasoro
primaries.
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correlators. It is therefore encouraging that the coefficients

Cð1;5Þ
ð1;2Þð1;4Þ and Cð1;6Þ

ð1;3Þð1;4Þ, which have first-order zeros,
participate in hσσσ0σ0i and hϵϵσ0σ0i, respectively. Lest
we become too encouraged, it is important to note that
Δσ0 is defined as the starting point for a continuum of
irrelevant operators. This represents a fundamental differ-
ence as compared to the one-correlator and three-correlator
analysis. It remains to be seen whether we can still derive
strong bounds from a scan over two isolated scaling
dimensions and one nonisolated scaling dimension.

B. Conformal manifolds

Even though the tensor product lines above all have
Δσ >

1
4
, there could be other CFTs in 1

8
< Δσ <

1
5
with

sufficiently few relevant operators to survive the constraints
of σ, ϵ, and σ0. An interesting possibility that would
complicate the search for islands is a continuous line of
theories ending somewhere close to the Ising model. We
may search for an example by using the extremal functional
method on solutions to crossing that involve a scalar Φ of
dimension 2.19 This provides another opportunity to predict
a mixed correlator result without actually bootstrapping
more than one correlator.
The first step is to maximize λ2σσΦ in the range 1

8
< Δσ <

1
2
with the constraint that all scalar dimensions are above

2Δσ . Each point saturating the bound yields a spectrum
with the marginal deformation Φ. To see that this set of
solutions is not a conformal manifold, we may check that
the central charge varies with Δσ . Specifically, it reaches a
minimum value of c ≈ 1.12. It is then straightforward to
force our putative theories to have this central charge (or
any larger value) by taking

Fσσ;σσ
−;0;0 ðu; vÞ ↦ Fσσ;σσ

−;0;0 ðu; vÞ þ
Δ2

σ

c
Fσσ;σσ
−;2;2 ðu; vÞ ð4:4Þ

in the usual one-correlator crossing equation. To prevent
(4.4) from being undone by a second copy of the stress
tensor, we have imposed the gap ΔT > 2.1 on spin-2
operators. Performing a second pass in this way, we have
found low-lying dimensions and OPE coefficients with
examples plotted in Fig. 7. With constant c and ΔΦ, these
CFT data appear to satisfy all constraints of a conformal
manifold that are directly accessible to hσσσσi. Despite
this, there is a method from [29] that can be revived to gain
indirect information about the next four-point function,
which we will call hϵϵϵϵi.
The key is that the dimensions in σ × σ are also the

dimensions in any OPE between identical scalars. Given a
sufficiently long list of scaling dimensions, there is no
reason why a search for optimal OPE coefficients has to be
done for σ × σ rather than ϵ × ϵ. We confirm this in
Appendix B, by taking an approximate Ising model
spectrum and performing the same type of fit that was
done in [29]. Our results show that the estimation of λ2σσO
could have been extended to λ2ϵϵO without the three-
correlator crossing equations. The fitting procedure there-
fore differs from the primal method of [45], which is more
accurate but limited to the direct correlators under study.
Assuming that the method can be trusted, at least for 2D
theories, we now have access to ϵ × ϵ coefficients including
λϵϵΦ. This allows another property of conformal manifolds
to be tested.
When CFTs are parametrized by an exactly marginal

operator with coupling g, there is a complicated set of
differential equations that their local data must satisfy
[64,65]. The simplest of these is dΔi

dg ¼ −Sd−1λiiΦ which

reads dΔi
dg ¼ −2πλiiΦ in two dimensions. The constraint

dΔϵ

dΔσ
¼ λϵϵΦ

λσσΦ
ð4:5Þ

immediately follows. The two sides of this equation have
been plotted in Fig. 8. Even though λϵϵΦ is not known with
high precision, the noise in the data seems much too small
to explain the violation of (4.5). We must conclude that if a
conformal manifold in 1

8
< Δσ < 1

2
allowed by Fig. 1 exists,

it is not privileged enough to be found by this one-
correlator exercise.
It would be very interesting to find other applications for

the dual method in [29]. Unfortunately, Appendix B shows
that results become much less reliable above d ¼ 2. A
possible reason for this was given in [47] which noticed a
surprising preference for double-twist operators in the
three-dimensional (3D) numerical bootstrap. To review,
double-twist families have the following schematic form
for l → ∞:

TABLE VI. Virasoro block coefficients (other than the ones in
Fig. 4) appearing in four-point functions made from σ, ϵ, and σ0.
Only one is non-negative for all m ≥ 3.

Coefficients Signs

Cð1;3Þ
ð1;4Þð1;4Þ

Positive

Cð1;5Þ
ð1;4Þð1;4Þ

Negative for m < 4

Cð1;7Þ
ð1;4Þð1;4Þ

Negative for m < 6

Cð1;6Þ
ð1;3Þð1;4Þ

Negative for m < 5

Cð1;5Þ
ð1;2Þð1;4Þ

Negative for m < 4

19The idea of building up a previously unknown conformal
manifold was discussed in [62]. Their method uses large-N
perturbation theory to construct the holographic dual of a bulk
action with shift-symmetric couplings. For a recent bootstrap
study of a known conformal manifold, see [63].
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½ϕϕ�n ¼ ϕ∂μ1 � � � ∂μl□nϕ;

τ ¼ 2τϕ þ 2nþOðl−1Þ: ð4:6Þ

The light-cone bootstrap requires them to appear in any
CFT with a twist gap [66,67]. When d > 2, every operator
except the identity has positive twist and the extremal
functional method is able to find spectra dominated by
(4.6). The absence of other operators interferes with our
ability to fit OPE coefficients. Conversely, 2D theories have
no need for double-twist operators as the identity, stress
tensor, and higher-spin currents all have τ ¼ 0. The quality
of our fit suggests that this resolves the main source of bias
in the extremal spectrum.

C. Supersymmetric minimal models

So far, we have been concerned with finding the
necessary correlators to single out theories that are minimal
with respect to the Virasoro algebra. However, the unitary
representations of the N ¼ 1 super-Virasoro algebra also
admit a discrete series for central charges below that of the
free field. In analogy with Mðmþ 1; mÞ, we can continue
them to SMðmþ 2; mÞ where noninteger m breaks uni-
tarity but preserves crossing symmetry. Studying these
solved theories offers another route toward understanding
the systematics of the bootstrap. It could also be interesting
to compare results for the tricritical Ising model since this is
the lowest model of SMðmþ 2; mÞ but the second lowest
model of Mðmþ 1; mÞ.
The super-Virasoro graded commutation relations

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm − 1Þðmþ 1Þδmþn;0;

½Lm;Gr� ¼
�
m
2
− r

�
Gmþr;

fGr;Gsg ¼ 2Lrþs þ
c
3

�
r −

1

2

��
rþ 1

2

�
δrþs;0 ð4:7Þ

actually describe two algebras since fermions do not have
to be periodic in radial quantization. When the indices on
Gr are integers, Eq. (4.7) is the Ramond superalgebra;
otherwise it is the Neveu-Schwarz superalgebra. The super-
Virasoro minimal models, which contain representations of
each, have a Kac formula given by

c ¼ 3

2
−

12

mðmþ 2Þ m > 2;

hr;s ¼
½ðmþ 2Þr −ms�2 − 4

8mðmþ 2Þ þ 1

32
½1 − ð−1Þr−s�

r; s ∈ Z>0: ð4:8Þ

FIG. 8. The slope of Δϵ as one goes through the artificial
spectra parametrized by Δσ. The points, predicted by (4.5), would
have to match if these operators were to come from a genuine
theory with a dimensionless coupling. (a) Comparison for
coefficients in the σ × σ OPE. (b) Comparison for coefficients
in the ε × ε OPE.

FIG. 7. Dimensions and OPE coefficients for scalars in the spectrum maximizing λ2σσΦ. The green and blue lines are ϵ and Φ,
respectively.(a) Spectrum as a function of Δσ which parametrizes the solution to crossing. (b) Three point couplings as a function of Δσ

which parametrizes the solution to crossing.
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If r − s is even (odd), this is a Neveu-Schwarz (Ramond)
degenerate weight [68]. In either case, it is degenerate at
level rs=2. It is clear by inspection that G�1

2
generate a

subalgebra of (4.7) that is independent of c. For integer
indices, on the other hand, no global subalgebra exists. A
numerical bootstrap approach is therefore most readily
accessible for the Neveu-Schwarz sectors of N ¼ ð1; 1Þ
theories.
In the global algebra, which is ospð2j1Þ, primary

operators may be written as superfields; Φðz; θÞ ¼
ϕðzÞ þ θψðzÞ. The superspace distance, which enters in
correlation functions, is Zij ≡ zi − zj − θiθj. Even though
cross ratios in Rd all involve at least four points, invariant
combinations in superspace may be built using three points
as well. The quantity

η ¼ θ1Z23 þ θ2Z31 þ θ3Z12 þ θ1θ2θ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z12Z23Z31

p ð4:9Þ

is invariant under ospð2j1Þ [69]. As a result, the three-point
function depends on more than just an OPE coefficient. The
general expression for the chiral half is

hΦ1ðz1; θ1ÞΦ2ðz2; θ2ÞΦ3ðz3; θ3Þi

¼ λ123ð1þ ζηÞ
Zh1þh2−h3
12 Zh2þh3−h1

23 Zh3þh1−h2
31

; ð4:10Þ

where ζ is an arbitrary Grassman number. Until recently,
such extra parameters were eliminated by restricting the
superconformal bootstrap to correlators of BPS operators
[12,13]. We may indeed impose shortening conditions on
(4.10), but due to the small amount of supersymmetry, this
would require us to give up a lot. To be annihilated by a
supercharge, each external operator would have to be the
identity in at least one of the ospð2j1Þ factors. It is therefore
preferable to leave (4.10) in its most general form and use
superconformal blocks that include unknown coefficients
reflecting the presence of ζ.
The authors of [54] computed some of the necessary

blocks and introduced a framework that still allows the
bootstrap to proceed. Their idea is to consider an entire
multiplet at once, with the external correlators involving all
combinations of a primary and its superdescendants. When
this is carried out for N ¼ ð1; 1Þ, the allowed regions will
have to include all points corresponding to the
SMðmþ 2; mÞ. The strongest statement we can make
from this is that the line

Δϵ ¼
8

3
Δσ ð4:11Þ

must be inside the bound for Δσ < 1
8
. This comes from

choosing the Neveu-Schwarz fields σ ≡ ϕ2;2 and ϵ≡ ϕ3;3.
Right at Δσ ¼ 1

8
, we find ourselves in the c ¼ 1 model

where ϕ3;3 ¼ ϕ1;3 and the entire level-3
2
subspace decou-

ples. To see this, we may check that

jχi ¼
�
G−3

2
−

2

2hþ 1
L−1G−1

2

�
jhi ð4:12Þ

is the unique quasiprimary state. Computing the norm and
setting h ↦ h3;3, we find

hχjχi ¼ 2ð2chþ cþ 6h2 − 9hÞ
3ð2hþ 1Þ

↦
ðm − 4Þðmþ 6Þ
m2 þ 2mþ 8

ð4:13Þ

with a first-order zero. This is the behavior that we saw for
m ¼ 3 in the bosonic case, but now it occurs for m ¼ 4.
The tricritical Ising model, which has no ϕ3;3 operator, lives
at the point ðΔσ;ΔϵÞ ¼ ð 1

10
; 1
10
Þ.

The above calculation shows that a global block coef-
ficient in the supersymmetric generalized minimal model
line becomes negative for m < 4. If we are to see an
associated kink, this line must saturate the bound on
operator dimensions from the long multiplet bootstrap.
This brings us to a crucial difference between Mðmþ
1; mÞ and the Neveu-Schwarz sector of SMðmþ 2; mÞ. In
the former case, we saw the correct saturation with (1.4).
The same cannot hold for (4.11) because it is strictly below
the line for vertex operators. Writing a CFT vertex operator
as eiqϕðzÞ and an Superconformal field theory vertex
operator as eiqΦðz;θÞ, the two important properties are Δ ∝
q2 and additivity of q. These lead to Δϵ ¼ 4Δσ which is
allowed by the one-correlator region of Fig. 1. Due to the
restriction on the number of relevant operators, the three-
correlator region omits this line until Δσ ¼ 2

9
. It is therefore

clear that treating four copies of the same multiplet with the
methods of [54] is not enough. If our goal is to see a
minimal model kink, the N ¼ ð1; 1Þ bootstrap will require
multiple correlators at the superspace level. Since each of
these must separately expand to a mixed correlator system,
the resulting problem is likely to be numerically intensive.

V. CONCLUSION

Through a combination of analytic techniques and one-
correlator numerics, we have explained an important aspect
of Fig. 1—we have shown that the constraints on four-point
functions of relevant operators are not strong enough to
exclude the generalized minimal models. Constraints that
are strong enough may be used in the conformal or
superconformal bootstrap, but only when the number of
four-point functions exceeds the maximum system size that
has been tested to date.
Our analysis proceeded correlator by correlator. For

hσσσσi, the results were exact. The expressions (3.17)
and (3.14) ensured that the global block coefficients
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involved were all positive. For hσσϵϵi, all but one coef-
ficient appeared to be positive upon using the approach of
[17]—we simply expanded in slð2Þ blocks to high order
and conjectured that the pattern continues to hold. For
hϵϵϵϵi, two pieces of the Mðmþ 1; mÞ line had to be
treated separately. In 4<m<∞, it was enough to compute
coefficients again and see that there were no obvious signs
of unitarity violation. However, 3 < m < 4 required an
exotic solution having only partial overlap with the CFT
data of a generalized minimal model. It was possible to see
evidence of this in the one-correlator bootstrap because of a
special property of ϕ1;5 operators, namely their absence
from the superselection sector σ × σ. This had interesting
implications for the uniqueness results in [46].
A possible future endeavor is to put all correlators on the

same footing as hσσσσi. In order to do this, one does not

necessarily have to solve for cϵϵð1;sÞϵϵ2n as a known special

function. The cσσð1;sÞσσ2n were ultimately shown to be
positive using only the recursion for Wilson polynomials.
Instead, the main challenge in extending the positivity
proof is expressing global block coefficients as solutions of
one recurrence relation instead of two. Our current
approach, based on the BPZ equation, is awkward in this
respect. It uses the Frobenius method to evaluate Taylor
coefficients and then feeds these into a second recursion to
obtain global block coefficients. It is worth checking if
hypergeometric identities can be used to derive a recursion
that operates on global block coefficients directly. It would
also be interesting to take a closer look at super-BPZ
equations. Our discussion surrounding the vanishing norm
(4.13) can be made more systematic if we also check how
other ospð2j1Þ blocks appear. BPZ differential equations in
superspace have been studied in [68,69] and some of them
are second-order. This is exactly what we need to go
beyond recurrence relations and apply the decompositions
in [21,22]. Additionally, these methods could be applicable
to the Knizhnik-Zamolodchikov equations associated with
extended chiral algebras. A realistic hope is using them to
explain a numerical bound in [70] which interpolates
between W3-minimal models.
The last possibility we have discussed is an extension of

the extremal functional method—reviving the fit in [29] to
estimate more OPE coefficients than the ones that are
known to high precision. While we only used this to
demonstrate a null result, it would be interesting to find a
further use for it in two dimensions. Complications in
higher dimensions arise due to the privileged role of
double-twist operators in the numerical bootstrap, a result
that is not fully understood [47]. One should be able to get a
sense of how robust it is by studying alternative bootstrap
algorithms such as the one in [71].
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APPENDIX A: LINEAR DIFFERENCE
EQUATIONS

We have regularly encountered linear recursions with
three terms such as (2.13) and (3.17). Asymptotic analysis
of sequences obeying these relations is a well understood
subject, going by the name Birkhoff-Trjitzinsky theory. The
following theorem summarizes a number of results from
it [72].
Theorem 1. Let y1ðnÞ and y2ðnÞ be the two linearly

independent solutions of the difference equation

yðnþ 2Þ þ aðnÞyðnþ 1Þ þ bðnÞyðnÞ ¼ 0; ðA1Þ

where the coefficients have asymptotic expansions aðnÞ ∼P∞
s¼0

as
ns and bðnÞ ∼P∞

s¼0
bs
ns.

(1) If the characteristic equation ρ2 þ a0ρþ b0 ¼ 0 has
two distinct roots ρ1 and ρ2, the solutions satisfy

yjðnÞ ∼ ρnj n
αj
P∞

s¼0

cs;j
ns where αj ¼ a1ρjþb1

a0ρjþ2b0
.

(2) Otherwise, consider the double root ρ. If the auxiliary
equation a1ρþ b1 ¼ 0 is not satisfied, the solutions
satisfy yjðnÞ∼ρneð−1Þjβ

ffiffi
n

p
nα
P∞

s¼0ð−1Þjs cs
ns=2

where

α ¼ 1
4
þ b1

2b0
and β ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0a1−2b1

2b0

q
.

(3) Otherwise, consider the roots α1 and α2 of the
indicial equation αðα−1Þρ2þða1αþa2Þρþb2¼0,
ordered according to ℜα2 ≥ ℜα1. If α2 − α1 ∉ Z≥0,
the solutions satisfy yjðnÞ ∼ ρnnαj

P∞
s¼0

cs;j
ns .

(4) Otherwise, let m ¼ α2 − α1. The asymptotic expan-
sion for the first solution is unchanged from the
previous case but for the second solution we must
use y2ðnÞ ∼ ρnnα2ðP∞

s¼0
ds
ns −

dm
nmÞ þ c logðnÞy1ðnÞ.

Taking (A1) to be the recurrence relation for Wilson
polynomials, we find the roots ρ ¼ 1, α1 ¼ −2ðaþ xÞ, and
α2 ¼ −2ða − xÞ in the third case of the theorem. Each
coefficient in (3.16) can then be written as a linear
combination of two functions asymptotic to power laws.
As seen in Table VII, all of them decay to zero. When
comparing to the results of [73,74], one must remember

that cσσð1;1Þσσ2n and cσσð1;3Þσσ2n include many squared OPE
coefficients due to the increasing amount of degeneracy at
each level of a Verma module.
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Our main claim about cσσð1;1Þσσ2n and cσσð1;3Þσσ2n —that they
are positive for finite n—cannot be proven with asymp-
totics. Instead, we will use a theorem from [75] which
bounds the ratio between neighboring terms in a sequence.
Theorem 2. Let xðnÞ be a solution of

xðnÞ ≥ aðnÞ
bðnÞ xðn − 1Þ − cðnÞ

dðnÞ xðn − 2Þ; ðA2Þ

where aðnÞ, bðnÞ, cðnÞ, and dðnÞ are degree-k polynomials
with positive leading terms. Also define fðnÞ ¼ aðnþ
1Þdðnþ 1Þ− 2bk

ak
bðnþ 1Þcðnþ 1Þ− ak

2bk
bðnþ 1Þdðnþ 1Þ.

Finally, let m be an integer large enough to guarantee that
bðnÞ, cðnÞ, dðnÞ, and fðnÞ have positive values for n ≥ m.

If xðmÞ
xðm−1Þ >

ak
2bk

, then xðnÞ
xðn−1Þ >

ak
2bk

for n ≥ m.

Proposition 1. The sequences y1ðnÞ ¼ Pnð7−2Δσ
6

; 4−2Δσ
6

;
− 1−2Δσ

6
; 5þ2Δσ

6
; 1þ4Δσ

6
Þ and y2ðnÞ ¼ Pnð2þ2Δσ

3
; 1
2
;− 1

2
;− 1

2
;

1þ4Δσ
6

Þ of Wilson polynomials are positive for 1
8
≤ Δσ ≤ 1

2
.

Proof.—The theorem above is more effective at identi-
fying increasing sequences than ruling out changes of sign
directly. Therefore, we will work with x1ðnÞ ¼ n2y1ðnÞ and
x2ðnÞ ¼ n2y2ðnÞ—expressions that have been guided by
the asymptotics in Table VII.
Looking at the more difficult case first, x1ðnÞ satisfies

(A2) with

bðnÞ ¼ ðn− 1Þ2ðnþ 1Þð2nþ 1Þð4n− 3Þð6n− 4Δσ þ 5Þ;
cðnÞ ¼ nðn− 1Þð2n− 1Þð2n− 3Þð4nþ 1Þð3nþ 2Δσ − 4Þ;
dðnÞ ¼ ðn− 2Þ2ðnþ 1Þð2nþ 1Þð4n− 3Þð6n− 4Δσ þ 5Þ:

ðA3Þ

These are clearly positive for n > 2. Also, by writing out
the polynomial for aðnÞ, we find a leading coefficient of
a6 ¼ 2b6 ¼ 96. It remains to check fðnÞ or equivalently
ðn þ 2Þ−1ð2n þ 3Þ−1ð4n þ 1Þ−1ð6n − 4Δσ þ 11Þ−1fðnÞ.
This is a sixth degree polynomial in which 64ΔσðΔσ þ
1Þn6 is followed immediately by negative coefficients.
From this we see that the critical value of n, beyond which
fðnÞ > 0, increases without bound asΔσ → 0. This reflects
the fact that the n2 we introduced is only able to overpower
n2Δσ−2 for strictly positive Δσ . Fortunately, the smallest
value of Δσ that we consider is

1
8
leading to a critical value

of n ¼ 44. Since x1ð44Þ > x1ð43Þ, we establish positivity
of the entire sequence x1ðnÞ by checking its first 44 terms.
Things will be easier for x2ðnÞ which satisfies (A2) for

bðnÞ ¼ ðn − 1Þ2ð6nþ 4Δσ − 11Þð6nþ 4Δσ − 5Þ2
× ð6nþ 4Δσ þ 1Þð12nþ 4Δσ − 23Þ;

cðnÞ ¼ 1296n2ðn − 1Þðn − 3Þð12nþ 4Δσ − 11Þ;
dðnÞ ¼ ð6nþ 4Δσ − 11Þð6nþ 4Δσ − 5Þ2

× ð6nþ 4Δσ þ 1Þð12nþ 4Δσ − 23Þ: ðA4Þ

Additionally, we find a6 ¼ 2b6 ¼ 31104 and an fðnÞ
proportional to ð6nþ 4Δσ − 5Þð6nþ 4Δσ þ 1Þ2ð6nþ
4Δσ þ 7Þð12nþ 4Δσ − 11Þ. The nontrivial factor of fðnÞ
begins with 41472ðΔσ − 1

8
Þn5 which is potentially prob-

lematic, but the next coefficient that follows it is positive
for all real Δσ. As a result, fðnÞ is positive for n > 3 just
as the polynomials above. Checking that x2ð3Þ >
x2ð2Þ > x2ð1Þ > 0, positivity of x2ðnÞ has been proven
as well. □

Although we do not have closed-form solutions for
them, it is possible that cϵϵð1;1Þϵϵ2n , cϵϵð1;3Þϵϵ2n , and cϵϵð1;5Þϵϵ2n are
positive as well. The main hint of this, which we now
prove, is that the Virasoro blocks containing them have
positive Taylor coefficients around z ¼ 0. The fact that this
is a necessary condition follows trivially from expanding
gðzÞ ¼P∞

n¼0 c2nKrþ2nðzÞ. The analogous statement in
higher dimensions was proven in [76].
Proposition 2. Let bk be a sequence starting at b0 ¼ 1

with the rest of the terms given by (3.21). If Δϵ > 1, the
sequence monotonically increases.

Proof.—Defining K ¼ kþ r for brevity, we have

½4K3 þ 8ð1 − ΔϵÞK2 þ ð3Δ2
ϵ − 14Δϵ þ 4ÞK þ 3ΔϵðΔϵ − 2Þ�bkþ1 ¼ ½12K2 − 4ð5Δϵ þ 1ÞK þ 6Δ2

ϵ �Kbk
− ½12K3 − 16ðΔϵ þ 2ÞK2 þ 2ðΔ2

ϵ þ 12Δϵ þ 14ÞK þ 2ðΔϵ − 2ÞðΔϵ þ 1ÞðΔϵ þ 2Þ�bk−1
þ ½4K3 − 4ðΔϵ þ 5ÞK2 − ðΔ2

ϵ − 10Δϵ − 32ÞK þ ðΔϵ − 2ÞðΔϵ þ 2ÞðΔϵ þ 4Þ�bk−2: ðA5Þ

Although this has four terms, we will convert it to a simpler recursion having only three. We do this by assuming that the
piece with bk−1 and bk−2 is bounded by some function of bk and bk−1. Our ansatz for this function is
½4K2 − 12ðΔϵ þ 1ÞK þM�Kbk þ 4K3bk−1. In other words, we need to show that

TABLE VII. Decay rates of the fundamental solutions that
comprise two of our main results. We have not included the
prefactors in (3.16). These will make the convergence much
faster, namely ð1=16Þn, which can be predicted from the growth
rate of K2nð1Þ.
Coefficient Leading rates

cσσð1;1Þσσ2n n−
8þ2Δσ

3 and n2Δσ−2

cσσð1;3Þσσ2n n−
5þ8Δσ

3 and n−1
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½4K2−12ðΔϵþ1ÞKþM�Kbk > ½8K3−16ðΔϵþ2ÞK2

þ2ðΔ2
ϵ þ12Δϵþ14ÞKþ2ðΔϵ−2ÞðΔϵþ1ÞðΔϵþ2Þ�bk−1

− ½4K3−4ðΔϵþ5ÞK2− ðΔ2
ϵ −10Δϵ−32ÞK

þðΔϵ−2ÞðΔϵþ2ÞðΔϵþ4Þ�bk−2: ðA6Þ

Using (A6) in (A5), we find an expression of the form
RþðKÞbkþ1 > R0ðKÞbk þ R−ðKÞbk−1. We will perform a
rescaling to instead write this as

SþðKÞbkþ1 > S0ðKÞbk þ S−ðKÞbk−1
SiðKÞ≡ ½4ðK þ 1Þ2 − 12ðΔϵ þ 1ÞðK þ 1Þ þM�

× ðK þ 1ÞRþðKÞ−1RiðKÞ: ðA7Þ

For our assumption to be true, the fractional coefficients in
(A7) must exceed the K ↦ K þ 1 versions of the ones in
(A6). These two conditions each give one side of an
inequality for M. The result is 10Δ2

ϵ þ 20Δϵ þ 4 < M <
10Δ2

ϵ þ 29Δϵ þ 4 which may be satisfied for any Δϵ > 0.
Having chosen M appropriately, we have moved the
problem into the domain of the theorem above. The
monotonicity proof for bk is now identical to the one for

n2cσσð1;1Þσσ2n and n2cσσð1;3Þσσ2n . □

APPENDIX B: IMPLEMENTATION DETAILS

1. The semidefinite program

The conformal bootstrap is any technique for demanding
that crossing symmetry and unitarity hold for the four-point
function:

hϕiðx1Þϕjðx2Þϕkðx3Þϕlðx4Þi

¼
�jx24j
jx14j

�
Δij
�jx14j
jx13j

�
Δkl
P

OλijOλklOg
Δij;Δkl

O ðu;vÞ
jx12jΔiþΔj jx34jΔkþΔl

: ðB1Þ

The conformal blocks g
Δij;Δkl

O ðu; vÞ are functions of the

cross ratios u ¼ x2
12
x2
34

x2
13
x2
24

and v ¼ x2
14
x2
23

x2
13
x2
24

. Invariance under

ð1; iÞ ↔ ð3; kÞ, which relates two channels of crossing
symmetry, leads to the following sum rule [14]:X
O

½λijOλklOFij;kl
∓;Oðu; vÞ � λkjOλilOF

kj;il
∓;Oðu; vÞ� ¼ 0;

Fij;kl
�;O ≡ v

ΔkþΔj
2 g

Δij;Δkl

O ðu; vÞ � u
ΔkþΔj

2 g
Δij;Δkl

O ðv; uÞ: ðB2Þ

To apply this rule, we choose an odd scalar σ and an even
scalar ϵ and let our external operators run over all
admissible combinations of these. Using λσϵO¼ð−1ÞlλϵσO,
this yields

X
O;2jl

ðλσσOλϵϵOÞVþ;Δ;l

�
λσσO

λϵϵO

�
þ
X
O

λ2σϵOV−;Δ;l¼0; ðB3Þ

where

Vþ;Δ;l ¼

2
6666666666666666666664

�
Fσσ;σσ
−;Δ;l 0

0 0

�
�

0 0

0 Fϵϵ;ϵϵ
−;Δ;l

�
�
0 0

0 0

�
�

0 1
2
Fσσ;ϵϵ
−;Δ;l

1
2
Fσσ;ϵϵ
−;Δ;l 0

�
�

0 1
2
Fσσ;ϵϵ
þ;Δ;l

1
2
Fσσ;ϵϵ
þ;Δ;l 0

�

3
7777777777777777777775

;

V−;Δ;l ¼

2
666666664

0

0

Fσϵ;σϵ
−;Δ;l

ð−1ÞlFϵσ;σϵ
−;Δ;l

−ð−1ÞlFϵσ;σϵ
þ;Δ;l

3
777777775
: ðB4Þ

In ruling out solutions to (B3), which is a set of five
functional equations, we must approximate each row as a
finite-dimensional vector. The standard way to do this is to
expand around the point ðu; vÞ ¼ ð1

4
; 1
4
Þ. We may take either

derivatives with respect to z, z̄, defined by u ¼ jzj2,
v ¼ j1 − zj2, or the diagonal/off-diagonal variables a ¼
zþ z̄; b ¼ ðz − z̄Þ2 [29]. We choose a, b and control the

order of our derivatives ∂mþngΔ;l
∂am∂bn with two parameters mmax

and nmax:

n ∈ f0;…; nmaxg;
m ∈ f0;…; 2ðnmax − nÞ þmmaxg: ðB5Þ

Since half of the derivatives vanish when our conformal
blocks are added or subtracted, the resulting number of
components is

N ¼ bðnmax þ 1Þðmmax þ nmax þ 1Þ=2c: ðB6Þ

The three-correlator plot in this work was obtained with
ðmmax; nmaxÞ ¼ ð3; 5Þ. All one-correlator results, on the
other hand, use ðmmax; nmaxÞ ¼ ð5; 10Þ. There are two
additional parameters needed to turn (B3) into a concrete
bootstrapping problem. One is a cutoff on the number of
spins, which we take to be lmax ¼ 30. The other is the
accuracy parameter for a single conformal block, which we
take to be kmax ¼ 40. This controls how many poles from
the triple series
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Δ1ðlÞ ¼ 1 − l − k k ¼ 1; 2;…;

Δ2ðlÞ ¼
d
2
− k k ¼ 1; 2;…;

Δ3ðlÞ ¼ d − 1þ l − k k ¼ 1; 2;…;l ðB7Þ

appear in the function

χlðΔÞ ¼
rΔ�

ΠiðΔ − ΔiðlÞÞ
;

r� ≡ 3 − 2
ffiffiffi
2

p
: ðB8Þ

As explained in [14,77,78], there are algorithms for
explicitly constructing each conformal block derivative
as a rational approximation:

∂mþn

∂am∂bn F
ij;kl
�;Δ;lða ¼ 1; b ¼ 0Þ ¼ χlðΔÞPij;kl;mn

�;l ðΔÞ: ðB9Þ

Here, Pij;kl;mn
�;l is a polynomial with the same degree as χl

for m ¼ n ¼ 0. Its degree goes up by one whenever the
derivative order is increased. Our task of inputting
ðkmax;lmax; mmax; nmaxÞ and computing a table suitable
for approximating (B3) is accomplished with the program
PYCFTBOOT [79].
With the truncations described above, problems of this

form are tractable with semidefinite programming [15]. In
the dual formulation, one wishes to find a linear functional
y which sends each term of (B3) to a positive-definite
matrix, thereby certifying that no solution to crossing
symmetry exists. For illustrative purposes, we consider a
single correlator problem which allows us to drop the ij; kl
and � labels on Pij;kl;mn

�;l . We will also dropmn through our
understanding that Pl is a vector with components Pi

l.
If we single out the contribution of the identity operator as
n, we arrive at the polynomial matrix program (PMP)
where we include an objective b for generality,

maximizebTy over nTy ¼ 1;

such thatPlðΔÞTy ≥ 0 for all l ≤ lmax;Δ ≥ Δmin:

ðB10Þ
After all, the crossing equationX

k;l

λ2k;lPlðΔkÞ ¼ n ðB11Þ

becomes a contradiction when y solving the above con-
ditions is applied to both sides. If we reshuffle each vector
according to

P̃0
l ¼ 1

n0
P0
l;

P̃i
l ¼ Pi

l −
ni

n0
P0
l; ðB12Þ

dotting Pl with a functional whose action on n is 1
becomes the same as dotting P̃l with a functional whose
leading component is 1. This is precisely the choice to work
with crossing equations projectively as (B11) becomes

X
k;l

λ2k;l

�
P̃0
lðΔkÞ

P̃i
lðΔkÞ

�
¼
�
1

0

�
ðB13Þ

after reshuffling both sides. Any spectrum satisfying the
bottom row can automatically be made to satisfy the top
row through a rescaling. From now on, we will denote the
polynomial vector in the bottom row of (B13) by Pl to
rewrite the PMP,

maximizebTy;

such thatP0
lðxÞ þ PlðxÞTy ≥ 0 for all l ≤ lmax; x ≥ 0:

ðB14Þ

Here, x ¼ Δ − Δmin. To solve this type of problem effi-
ciently, we use the program SDPB [15]. Because we will see
an alternative choice shortly, we briefly review the process
by which SDPB translates (B14) into a semidefinite pro-
gram (SDP).
Positivity of P0

lðxÞ þ PlðxÞTy on the half-line is equiv-
alent to the requirement that it be equal to

Tr

��
qlðxÞqT

lðxÞ 0

0 xqlðxÞqT
lðxÞ

�
Yl

�
; ðB15Þ

where Yl is positive definite and ql is a vector of
orthogonal polynomials. We have abused notation slightly
since the maximum power of x that (B15) needs to express
may be even or odd. Because of this, the first ql might have
one more component than the second ql. It is sufficient to
demand this equality on a set of sample points which we
denote xk. It is also possible to combine all Yðk;lÞ into a
single matrix Y. Making the identifications

Aðk;lÞ ¼ diag

�
0;…;0;

�
qlðxkÞqT

lðxkÞ 0

0 xkqlðxkÞqT
lðxkÞ

�
;

0;…;0

�
;

Bðk;lÞ;i ¼ −Pi
lðxkÞ;

cðk;lÞ ¼ P0
lðxkÞ;

C¼ 0; ðB16Þ

(B14) becomes

maximize Tr ðCYÞ þ bTy over Y≽0;

such that TrðA�YÞ þ By ¼ c: ðB17Þ
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In the numerical bootstrap, (B17) and the primal problem
corresponding to it are typically solved together, in order to
see which one becomes feasible first [15].

2. The extremal functional method

It was shown in [29] that solutions to crossing symmetry
may be built by locating the zeros of y. This functional may
be found either by ruling out CFTs just outside the allowed
region or by maximizing an OPE coefficient just inside it.
Ideally, elements of the spin-l spectrum are dimensions Δk
such that

det

0
BBB@yT

2
6664
ðPlðΔkÞÞ0;0 … ðPlðΔkÞÞ0;n

..

. . .
. ..

.

ðPlðΔkÞÞn;0 … ðPlðΔkÞÞn;n

3
7775
1
CCCA ¼ 0; ðB18Þ

where Pl is one of the polynomial vectors appearing in
(B9). On the other hand, numerical errors usually prevent
this polynomial from ever reaching zero for real Δ. There
are two approaches, both based on the SPECTRUM.PY script
[47], which make it easy to account for this. The first is to
run the script as written after spending several iterations
to bring the primal and dual solutions close together. A
highly converged functional is needed since SPECTRUM.PY
assumes that the would-be zeros are close to the local
minima of (B18) which uses only the polynomial numer-
ator. The second is to modify the script to use a non-
polynomial function minimizer, allowing us to multiply
(B18) by the prefactor χl from (B9). The advantage is that
when y acts on a full convolved block, the local minima are
closer to the physical Δk. As a result, punishing SDPB

parameters are no longer required. For the data in Fig. 7, we
have used the first approach and specified

− PRECISION ¼ 660;

− DUALITYGAPTHERSHOLD ¼ 1e − 75

as the nondefault parameters. The rest of the script obtains
high precision OPE coefficients directly from the primal
solution.20

To plot the points in Fig. 8, we have used an older
method which minimizes the error in a set of crossing
equations with known scaling dimensions.21 Once a set of
Z stable operators has been found, we may consider a
truncated crossing equation of the form

XZ
k¼1

akFk ¼ n: ðB19Þ

When studying a single correlator involving Z2-even
operators, we make the identifications

ak ¼ λ2ϕϕOk
;

Fk ¼ Fϕϕ;ϕϕ
−;Δk;lk

;

n ¼ −Fϕϕ;ϕϕ
−;0;0 : ðB20Þ

The point is that ϕ may denote σ, ϵ, or indeed any scalar
whose self-OPE is well approximated by the Z operators in
our set. We regard (B19) as a set of N > Z linear equations
with N given by (B6). A naive approach is to remove rows
corresponding to high derivatives bringing the number of
equations down to Z. This often leads to ak coefficients that
are negative, even when we use dimensions that are
accurate to four digits. To overcome this, we follow [29]
and leave one extra equation so that N ¼ Z þ 1. With this
overdetermined system, we will not be able to find ak that
satisfy (B19) exactly. Rather, we find the ak that minimize
the distance between the left and right sides of (B19). In this
fit, the constraint ak ≥ 0 may be specified by hand. If our
norm for this is the 1-norm, it is convenient to introduce a
vector of positive entries t such that

−t ≤ n −
XZ
k¼1

akFk ≤ t;

����n −
XZ
k¼1

akFk

���� ≤
XZþ1

k¼1

tk: ðB21Þ

We may now concatenate t and a into a vector y and
recognize that the norm (B21) is bTy with the objective
bT ¼ ½1;…; 1; 0;…; 0�. Under the identifications

B ¼
�−IZþ1 F1 … FZ

−IZþ1 −F1 … −FZ

�
; c ¼

�
n

−n
�
;

ðB22Þ

this becomes the linear program (LP):

minimizebTy over y ≥ 0;

such thatBy ≤ c: ðB23Þ

It is amusing to point out that a reader using SDPB may
continue to use it for solving (B23) because every linear
program is also a semidefinite program. To do this, the
ð2Z þ 2Þ × ð2Z þ 1Þ and ð2Z þ 2Þ × 1 matrices B and c
must be enlarged to ð4Z þ 3Þ × ð2Z þ 1Þ and ð4Z þ 3Þ × 1
so that they encode component-wise positivity of y in
addition to (B21). The next necessary step is replacing b

20For an implementation with linear programming, see [45].
The semidefinite programming version first appeared in [80]
which uses opposite conventions for what the primal and dual
problems are.

21An analogous approach to the severely truncated bootstrap—
fitting operator dimensions and OPE coefficients at the same time
—was recently explored in [81].
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with −b (and prepending an arbitrary number) as SDPB’s
objective is maximized instead of minimized. Finally, the
orthogonal polynomials should all be 1. With this choice,
constraint matrices in (B17) simply pull off a diagonal
component of Y and c − By ¼ TrðA�YÞ reads c − By ≥ 0.
In any case, whether (B23) is solved as an LP or SDP, it is
clear that the returned y will give us the OPE coeffi-
cients λ2ϕϕOk

.
To verify that this gives reliable values for ak in two

dimensions, we have compared exact and approximate
results in the Ising model where ϵ × ϵ operators are also in
σ × σ. Starting withΔϕ ¼ Δσ , the λ2σσO coefficients are very
close to the ones found in [29]. Changing the external
dimension to Δϕ ¼ Δϵ, the same algorithm produces

accurate λ2ϵϵO coefficients as well. These are shown
in Fig. 9.
Turning to three dimensions, exact Ising CFT data are

not available, but the tables in [47] have negligible error for
our purposes. Despite all the progress in isolating this
model, it appears that several spin-l operators are still
missing from these spectra: the ones that do not fall into
½σσ�n, ½ϵϵ�n, and ½σϵ�n twist families. As evidence of this,
Fig. 10 shows that OPE coefficients fit with the dual
method differ greatly from the ones returned by
SPECTRUM.PY. To guess where the first missing operator
appears, we can take the naive view that twist families exist
all the way down to l ¼ 0. Constructing one out of an
irrelevant operator Φ, we have Δ ≈ 2ΔΦ þ 2nþ l > 2d.

FIG. 10. The analogue of Fig. 9 for the 3D Ising model. In the fit, we have used the Z2-even operator dimensions from [47]. This is
already a longer list than anything that is likely to come from a one-correlator bootstrap. Due to a remaining bias in the spectrum, there is
strong disagreement between the primal and dual methods.

FIG. 9. OPE coefficients in the 2D Ising model for operators with Δ ≤ 8. Wide blue bars show exact values and narrow red bars show
estimates from the fit used in [29]. (a) Comparison for coefficients in the σ × σ OPE. (b) Comparison for coefficients in the ε × ε OPE.
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Four-point functions approximated by bootstrap data have
already proven useful for conformal perturbation theory
and measuring non-Gaussianity [82,83]. As it is signifi-
cantly affected by the incompleteness of the spectrum
aboveΔ� ≈ 2d, a fit to the crossing equations must be a less
forgiving problem.
Although we have not done so in this work, it should also

be possible to fit mixed OPE coefficients in a 2D theory.
The last two rows of (B3) would lead to coupled quadratic
equations which rapidly become impractical to solve as our
system grows. Therefore, we will focus on the third row. If
only the identity has been singled out, this is a homogenous
equation and its parameters are ambiguous up to a rescal-
ing. This is why it helps to find OPE coefficients in a

prescribed order. As long as λϕϕϕ2 has been found from the
ϕ × ϕ fit described above, permutation symmetry of this
coefficient may be used to make our equation inhomo-
geneous. In this case, it takes the form of (B19) but now
with

ak ¼ λ2
ϕϕ2Ok

;

Fk ¼ Fϕϕ2;ϕϕ2

−;Δk;lk
;

n ¼ −λ2
ϕϕ2ϕ

Fϕϕ2;ϕϕ2

−;Δϕ;0
: ðB24Þ

Essentially, ϕ plays the same role that the identity operator
played before.
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