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We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers
IJP¼−, ðI; JÞ ¼ 0, 1, by including qq̄ and ðqq̄Þ2 components in a nonrelativistic chiral quark model. The
coupling between two- and four-quark configurations is realized through a 3P0 quark-pair creation model.
With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious
issues of validity for the quenched quark model. Herein, therefore, we introduce some improvements of the
3P0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically
well motivated, the coupling between qq̄ and ðqq̄Þ2 components is weakened, producing mass shifts that
are around 10%–20% of hadron bare masses.
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I. INTRODUCTION

In the conventional quenched quark model, a meson is
described as a quark-antiquark bound state. This picture
was successfully applied to heavy quarkonia, such as
bottomonium and charmonium [1–18], and also, to some
extent, light mesons [19–21]. However, since the discovery
of the Xð3872Þ [22], a large number of so-called XYZ
particles have been found [23]. Some of them, especially
the charged states associated with heavy quarkonium
[24,25], are clear indications that there exist mesons
beyond those which can be built simply from a valence
quark and antiquark.
The effects of hadron loops on hadron properties have

been studied extensively in the framework of the coupled-
channels method [26–33] within the “unquenched” quark
model. Amongst other things, the loops can add continuum
components to a bare (undressed) quark-model state,
shifting its mass, producing a width, and thereby creating
a “physical” hadron that is a considerably more complex
object. For example, in Ref. [34], using a 3P0 model to
generate the couplings [35–37], virtual qq̄ pairs were found
to induce very large mass shifts; and similarly, in Ref. [38],
large shifts (∼500 MeV) were also induced by inclusion of
all six D, D�, Ds, and D�

s pair channels in the analysis of
JPC ¼ 1−− cc̄ states (the J=ψ family).

The most widely discussed new state in the charmonium
sector is the Xð3872Þ. As this state lies at the DD̄�
threshold, it has been suggested that the Xð3872Þ is a
purely molecular DD̄� system. However, some recent
studies indicate that the Xð3872Þ might more accurately
be described as a mixture of a bare cc̄ state and a DD̄�
molecule. For instance, in Ref. [39] a coupled-channels
analysis of the 1þþ cc̄ sector, using a 3P0 pair creation
model to connect qq̄ and DD� molecular configurations,
revealed that the Xð3872Þ can emerge in chiral quark
models as a dynamically generated mixture of a DD�
molecule and the χc1ð2PÞ, where the cc̄ component
represents less than 10% of the compound system; and
Ref. [40] found the Xð3872Þ system to be a χc1ð2PÞ-
dominated charmonium state in two different frameworks:
a coupled-channels model and a screening-potential model.
(See also Refs. [41,42].)
In addition to the observed charmonium and charmonium-

related states, many bottomonium states have also been
reported, e.g. ηbð1SÞ [43], ϒð3DJÞ [44], hbð1PÞ [45], and
hbð2PÞ [46]. Hadron loop effects have been investigated in
this connection [47], too, with a 3P0 model used to describe
the constituent bb̄ system’s coupling to the two-meson BB̄
continuum, where BðB̄Þ denotes BðB̄Þ, BsðB̄sÞ, B�ðB̄�Þ, or
B�
sðB̄�

sÞ. In this case mass shifts of around 100 MeV are
found, so that the effects are smaller than in the charmonium
sector. (Similar results were obtained elsewhere [15,48]
using an analogous framework.)
Evidently, the 3P0 pair-creation model is that most widely

used in quarkmodel explorations of coupled-channel effects
in the heavy-quark sector. It has also been used to study the
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strong decays of light-quarkmesons and baryons [49,50]. In
standard versions of this model [36,37], the quark-antiquark
pair is created with “vacuum quantum numbers,” viz.
JPC ¼ 0þþ, and the probability of creation is assumed to
be independent of the pair’s position and energy. With these
assumptions, coupled-channels analyses of hadron loop
effects normally produce alarmingly large mass shifts.
Were such an outcome unavoidable, then it would seriously
undermine the validity of the quenched quark model. Such a
conclusion, however, is contradicted by the wide-ranging
phenomenological success of the quenched quark model.
We are thus led to pose two questions: Is the 3P0 model a
valid foundation for the study of coupled-channels effects?
And are large mass shifts physically reasonable?
In order to address these issues herein, we compute the

spectrum of IJP¼−, ðI; JÞ ¼ 0, 1 light mesons, incorporating
hadron loops in a chiral quarkmodel and solving the quantum
mechanics problem using the Gaussian expansion method
(GEM) [51].We use a 3P0model to describe pair creation, but
deliberately explore the impact of physically motivated
modifications of the associated operator. Our analysis is
not meant to suggest that such a quark model framework
provides a realistic approach to this sector: a fully relativistic,
quantum field theory approach is properly required [52,53].
Instead, we exploit the relative computational simplicity of
this sector to explain and illustrate improvements to the 3P0

unquenching operator, which is widely used in quantum
mechanical treatments of many sectors.
Our Hamiltonian and method for solving for the coupled

qq̄, ðqq̄Þ2 systems are detailed in Sec. II; implementation of
the 3P0 model is explained in Sec. III; and Sec. IV is
devoted to a discussion of the results. Given that we employ
a nonrelativistic framework, in Sec. V we present a
perspective on the question of relativistic corrections in
constituent quark models; and Sec. VI is a summary.

II. CHIRAL QUARK MODEL AND GEM

In the chiral quark model [54], the meson spectrum is
obtained by solving a Schrödinger equation:

HΨIJ
MIMJ

ð1; 2Þ ¼ EIJΨIJ
MIMJ

ð1; 2Þ; ð1Þ
where 1, 2 are particle labels. The wave function of a meson
with quantum numbers IJPC can be written as

ΨIJ
MIMJ

ð1; 2Þ ¼
X
α

Cα½ψ lðrÞχsð1; 2Þ�JMJ
ωcð1; 2ÞϕI

MI
ð1; 2Þ;

ð2Þ
where α denotes the intermediate quantum numbers, l, s
and possible flavor indices (for I ¼ 0 states, these indices
take the values uū, dd̄, and ss̄); the brackets “[]” indicate
angular momentum coupling; and χsð1; 2Þ, ωcð1; 2Þ, and
ϕIð1; 2Þ are spin, color, and flavor wave functions, respec-
tively (with specific meson isospin, I).

Using GEM, the spatial wave function is written as a
product: radial-function × spherical-harmonic; and the
radial part is expanded using Gaussians:

ψ lmðrÞ ¼
Xnmax

n¼1

cnψG
nlmðrÞ; ð3aÞ

ψG
nlmðrÞ ¼ Nnlrle−νnr

2

Ylmðr̂Þ; ð3bÞ

with the Gaussian size parameters chosen according to the
following geometric progression:

νn ¼
1

r2n
; rn ¼ r1an−1; a ¼

�
rnmax

r1

� 1
nmax−1

: ð4Þ

This procedure enables optimization of the ranges using
just a small number of Gaussians.
At this point, the wave function is expressed as follows:

ΨIJ
MIMJ

ð1;2Þ¼
X
nα

Cαcn½ψG
nlðrÞχsð1;2Þ�JMJ

ωcð1;2ÞϕI
MI
ð1;2Þ:

ð5Þ

Since the Gaussians in Eq. (5) are not orthogonal, we
employ the Rayleigh-Ritz variational principle for solving
the Schrödinger equation, which leads to a generalized
eigenvalue problemX

n0;α0
ðHIJ

nα;n0α0 − EIJNIJ
nα;n0α0 ÞCIJ

n0α0 ¼ 0; ð6aÞ

HIJ
nα;n0α0 ¼ hΦIJ

MIMJ;nα
jHjΦIJ

MIMJ;n0α0
i; ð6bÞ

NIJ
nα;n0α0 ¼ hΦIJ

MIMJ;nα
j1jΦIJ

MIMJ;n0α0
i; ð6cÞ

with ΦIJ
MIMJ;nα

¼½ψG
nlðrÞχsð1;2Þ�JMJ

ωcð1;2ÞϕI
MI
ð1;2Þ, CIJ

nα ¼
Cαcn ≕ Cαn.
The mass of the ðqq̄Þ2 state is also obtained by solving a

Schrödinger equation,

HΨ4IJ
MIMJ

¼ EIJΨ4IJ
MIMJ

; ð7Þ

where Ψ4IJ
MIMJ

is the wave function of the four-quark state,
which can be constructed as follows. First, one writes the
wave functions of two clusters, here taking a meson-meson
configuration as an example,

ΨI1J1
MI1

MJ1
ð1;2Þ

¼
X
α1n1

Cα1n1 ½ψG
n1l1

ðr12Þχs1ð1;2Þ�J1MJ1

ωc1ð1;2ÞϕI1
MI1

ð1;2Þ; ð8aÞ

ΨI2J2
MI2

MJ2
ð3;4Þ

¼
X
α2n2

Cα2n2 ½ψG
n2l2

ðr34Þχs2ð3;4Þ�J2MJ2

ωc2ð3;4ÞϕI2
MI2

ð3;4Þ; ð8bÞ
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where χs, ωc, and ϕI are, respectively, spin, color, and
flavor wave functions of the quark-antiquark cluster. (The
quarks are numbered 1, 3, and the antiquarks 2, 4.) Then the
total wave function of the four-quark state is

Ψ4IJ
MIMJ

¼A
X
Lr

½ΨI1J1ð1;2ÞΨI2J2ð3;4ÞψLr
ðr1234Þ�IJMIMJ

¼
X

α1α2n1n2Lr

Cα1n1C
α2
n2 ½½ψG

n1l1
ðr12Þχs1ð1;2Þ�J1

× ½ψG
n2l2

ðr34Þχs2ð3;4Þ�J2ψLr
ðr1234Þ�JMJ

× ½ωc1ð1;2Þωc2ð3;4Þ�½1�½ϕI1ð1;2ÞϕI2ð3;4Þ�IMI
; ð9Þ

where ψLr
ðr1234Þ is the two-cluster relative wave function,

describing relative cluster orbital angular momentum Lr,
which is also expanded in a series of Gaussians, and the
superscript “[1]” indicates that the cluster wave functions
are coupled into the color-singlet configuration. Here, A is
the antisymmetrization operator: if all quarks (antiquarks)
are taken as identical particles, then

A ¼ 1

2
ð1 − P13 − P24 þ P13P24Þ: ð10Þ

In this case, too, the radial part of the wave function is
expanded using Gaussians, as in Eq. (3), with the size
parameters in Eq. (4).
The calculation of Hamiltonian matrix elements is com-

plicated if any one of the relative orbital angular momenta is
nonzero. In this case, it is useful to employ the method of
infinitesimally shiftedGaussians [51],wherewith the spheri-
cal harmonics are absorbed into the Gaussians,

ψG
nlmðrÞ ¼ Nnlrle−νnr

2

Ylmðr̂Þ

¼ Nnllim
ϵ→0

1

ϵl
Xkmax

k

Clm;ke−νnðr−ϵDlm;kÞ2 ; ð11Þ

where, plainly, the quantities Clm;k, Dlm;k are fixed by the
particular spherical harmonic under consideration and their
values ensure the limit ϵ → 0 exists.
The Hamiltonian of the chiral quark model consists of

three parts: quark rest mass, kinetic energy, and potential
energy:

H ¼
X4
i¼1

mi þ
p2
12

2μ12
þ p2

34

2μ34
þ p2

1234

2μ1234

þ
X4
i<j¼1

�
VC
ij þ VG

ij þ
X

χ¼π;K;η

Vχ
ij þ Vσ

ij

�
: ð12Þ

The potential energy is constituted from pieces describing
quark confinement, “C”; one-gluon exchange (OGE), “G”;
one Goldstone boson exchange, “χ ¼ π, K;…,” and σ
exchange; and the form for the four-quark states is [54]

VC
ij ¼ ð−acr2ij − ΔÞλci · λcj ; ð13aÞ

VG
ij ¼

αs
4
λci · λ

c
j

�
1

rij
−

2π

3mimj
σi · σjδðrijÞ

�
; ð13bÞ

δðrijÞ ¼
e−rij=r0ðμijÞ

4πrijr20ðμijÞ
; ð13cÞ

Vπ
ij ¼

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π
mπvπij

X3
a¼1

λai λ
a
j ; ð13dÞ

VK
ij ¼

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K
mKvKij

X7
a¼4

λai λ
a
j ; ð13eÞ

Vη
ij ¼

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η
mηv

η
ij

× ½λ8i λ8j cos θP − λ0i λ
0
j sin θP�; ð13fÞ

vχij ¼
�
YðmχrijÞ −

Λ3
χ

m3
χ
YðΛχrijÞ

�
σi · σj; ð13gÞ

Vσ
ij ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
; ð13hÞ

where YðxÞ ¼ e−x=x; fmig are the constituent masses of
quarks and antiquarks, and μij are their reduced masses;

μ1234 ¼
ðm1 þm2Þðm3 þm4Þ
m1 þm2 þm3 þm4

; ð14Þ

pij¼ðpi−pjÞ=2, p1234 ¼ ðp12 − p34Þ=2; r0ðμijÞ ¼ s0=μij;
σ are the SUð2Þ Pauli matrices; λ, λc are SUð3Þ flavor, color
Gell-Mann matrices, respectively; g2ch=4π is the chiral
coupling constant, determined from the π-nucleon coupling;
and αs is an effective scale-dependent running coupling [54],

TABLE I. Model parameters, determined by fitting the meson
spectrum, leaving room for unquenching contributions in the case
of light-quark systems.

Quark masses mu ¼ md 313
(MeV) ms 536

mc 1728
mb 5112

Goldstone bosons mπ 0.70
(fm−1 ∼ 200 MeV) mσ 3.42

mη 2.77
mK 2.51
Λπ ¼ Λσ 4.2
Λη ¼ ΛK 5.2
g2ch=ð4πÞ 0.54
θpð°Þ −15

Confinement ac (MeV fm−2) 101
Δ (MeV) −78.3

OGE α0 3.67
Λ0ðfm−1Þ 0.033
μ0ðMeVÞ 36.98
s0ðMeVÞ 28.17
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αsðμijÞ ¼
α0

ln ½ðμ2ij þ μ20Þ=Λ2
0�
: ð15Þ

All the parameters are determined by fitting the meson
spectrum, from light to heavy; and the resulting values are
listed in Table I.

III. 3P0 MODEL

The 3P0 quark-pair creation model [35–37] has been
widely applied to the Okubo-Zweig-Iizuka (OZI) rule
allowing two-body strong decays of hadrons [55–60].
The associated operator is

T0 ¼ −3γ
X
m

h1m1ð−mÞj00i
Z

dp3dp4δ
3ðp3 þ p4Þ

× Ym
1

�
p3 − p4

2

�
χ341−mϕ

34
0 ω34

0 b†3ðp3Þd†4ðp4Þ; ð16Þ

where γ describes the probability for creating a quark-
antiquark pair with momenta p3 and p4, respectively, from
the 0þþ vacuum, and ω34

0 and ϕ34
0 are, in turn, color- and

flavor-singlet wave function components. (The quark and
the antiquark in the source meson are labeled by 1 and 2.)
The matrix element for the transition A → Bþ C can then
be written as

hBCjT42jAi ¼ δ3ðPA − PB − PCÞMMJA
MJB

MJC ; ð17Þ

where PB and PC are the momenta of the B and C mesons
that appear in the final state, with PA ¼ PB þ PC ¼ 0 in the
center-of-mass frame of meson A. MMJA

MJB
MJC is the

helicity amplitude for the process A → Bþ C:

MMJA
MJB

MJC ðPÞ¼γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EAEBEC

p Xi¼A;B;C

MLi
;MSi

;m

hLAMLA
SAMSA jJAMJAihLBMLB

SBMSB jJBMJBi

×hLCMLC
SCMSC jJCMJCih1m1ð−mÞj00ihχ14SBMSB

χ32SCMSC
jχ12SAMSA

χ341−mi

× ½hϕ14
B ϕ32

C jϕ12
A ϕ34

0 iIMLA
;m

MLB
;MLC

ðP;m1;m2;m3Þþð−1Þ1þSAþSBþSChϕ32
B ϕ14

C jϕ12
A ϕ34

0 iIMLA
;m

MLB
;MLC

ð−P;m2;m1;m3Þ�;
ð18Þ

with the momentum space integral

I
MLA

;m
MLB

;MLC
ðP;m1;m2;m3Þ¼

Z
d3pψ�

nBLBMLB

�
m3

m1þm3

Pþp

�
ψ�
nCLCMLC

�
m3

m2þm3

Pþp

�
ψnALAMLA

ðPþpÞYm
1 ðpÞ; ð19Þ

where P ¼ PB ¼ −PC, p ¼ p3, and m3 is the mass of the
created quark, q3. Here, ψnLML

is the (Fourier transform) of
the wave function in Eq. (2), which is obtained via the self-
consistent solution of the Hamiltonian problem in Eq. (1).
The parameters in the 3P0 model can be constrained by

computing the partial decay width of one or more mesons.
For the process A → Bþ C,

Γ ¼ π2
jPj
M2

A

X
JL

jMJLj2; ð20aÞ

where nonrelativistic phase space is assumed,

jPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

A − ðMB þMCÞ2�½M2
A − ðMB −MCÞ2�

p
2MA

; ð20bÞ

with MA, MB, MC being the masses of the mesons
involved, and the partial wave amplitude MJLðA → BCÞ
is related to the helicity amplitude via [61]

MJLðA→BCÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1

p

2JAþ1

X
MJB

;MJC

hL0JMJA jJAMJAi

× hJBMJBJCMJC jJMJAiMMJA
MJB

MJC ðPÞ:
ð20cÞ

As an example, γ in Eq. (16) is normally determined
by fitting an array of hadron strong decays. This yields γ ¼
6.95 for uū and dd̄ pair creation, and γ ¼ 6.95=

ffiffiffi
3

p
for ss̄

pair creation [62]. We will initially use this value, but revise
it by fitting the ρ − ππwidth when amending the 3P0 model.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Basic framework

In the unquenched quark model, the eigenstates of the
system can also be obtained by solving the Schrödinger
equation,
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HΨ ¼ EΨ; ð21Þ

whereΨ is the wave function of the system, which contains
two- and four-quark components,

Ψ ¼ c1Ψ2q þ c2Ψ4q: ð22Þ

In the nonrelativistic quark model, the number
of particles is conserved. Therefore, to study coupled-
channels effects herein, we proceed as follows. The
Hamiltonian is

H ¼ H2q þH4q þ T42; ð23Þ

where H2q acts only on the wave function of mesons, Ψ2q;
H4q acts on the four-quark wave function, Ψ4q; and T42 is
the transition operator in the 3P0 model, Eqs. (17)–(19),
which couples the two- and four-quark components. The
matrix elements of the Hamiltonian can then be written as

hΨjHjΨi ¼ hc1Ψ2q þ c2Ψ4qjHjc1Ψ2q þ c2Ψ4qi
¼ c21hΨ2qjH2qjΨ2qi þ c22hΨ4qjH4qjΨ4qi
þ c1c�2hΨ4qjT42jΨ2qi þ c�1c2hΨ2qjT†

42jΨ4qi:
ð24Þ

In this way we arrive at a block-matrix structure for the
Hamiltonian and overlap:

ðHÞ¼
�ðH2qÞ ðH24Þ
ðH42Þ ðH4qÞ

�
; ðNÞ¼

�ðN2qÞ ð0Þ
ð0Þ ðN4qÞ

�
; ð25Þ

where

ðH2qÞ ¼ hΨ2qjH2qjΨ2qi; ð26aÞ

ðH24Þ ¼ hΨ4qjT24jΨ2qi; ð26bÞ

ðH4qÞ ¼ hΨ4qjH4qjΨ4qi; ð26cÞ

ðN2qÞ ¼ hΨ2qj1jΨ2qi; ð26dÞ

ðN4qÞ ¼ hΨ4qj1jΨ4qi: ð26eÞ

The Hamiltonian diagonalization problem, Eq. (6),

½ ðHÞ − EnðNÞ �½Cn � ¼ 0; ð27Þ

is then solved to determine the eigenenergy En and
expansion coefficients Cn.
The operator T0 in Eq. (16) must be Fourier transformed

because the two- and four-body systems are solved in
coordinate space. In doing this, we insert a convergence
factor e−f

2p2

into the expression, writing

Tf ¼ −i3γ
X
m

h1m1ð−mÞj00i
Z

dr3dr4

�
1

2π

�3
2

2−
5
2f−5

× rY1mðr̂Þe−
r2

4f2χ341−mω
34
0 ϕ34

0 b†3ðr3Þd†4ðr4Þ; ð28Þ
where r ¼ ðr3 − r4Þ and r̂ is the associated direction vector.
With f → 0 in Eq. (28), the original form of the 3P0 quark-
pair creation operator is recovered. We remark here that the
convergence factor, exp ð−r2=4f2Þ, will acquire a physical
meaning below, when we develop improvements to the 3P0

operator.
Upon solving Eq. (27) with the transition matrix con-

structed from Tf in Eq. (28) and in the limit f → 0, we
obtain the results for the states π, ρ, ω, and η, shown in
Table II.1; Here, the π, ρ, ω, η bare masses were obtained
in the quenched quark model, viz. solved with only
the qq̄ component. Evidently, in each case, hadron-loop
effects generate alarmingly large negative mass shifts
(∼ − 2000 MeV) for all the light mesons. Combining this
observation with those obtained elsewhere, one finds the
following pattern: bb̄, mass shifts ∼ − 100 MeV [47]; cc̄,
∼ − ð300–500Þ MeV [29,38]; and nn̄, ∼ − 2000 MeV. In
our view, such large shifts invalidate this straightforward
approach to unquenching the quark model. In the follow-
ing, therefore, we introduce modifications to T0 in the 3P0

model in order to develop a more realistic unquenching
procedure.

TABLE II. Mass shifts computed for nonstrange mesons with
quantum numbers IJ−ðI ¼ 0; 1; J ¼ 0; 1Þ using the transition
matrix constructed from Tf→0 in Eq. (28). (η is an isospin 0
partner to the pion; and all dimensioned quantities are listed in
MeV.)

States ðIJPÞ πð10−Þ ρð11−Þ ωð01−Þ ηð00−Þ
Bare mass (Theo.) 139.0 772.7 701.9 669.5
ππ � � � −130.1 � � � � � �
πρ −847.9 � � � −596.4 � � �
πω � � � −182.5 � � � � � �
ηρ � � � −159.3 � � � � � �
ρρ � � � −561.7 � � � −834.4
ρω −804.4 � � � � � � � � �
ηω � � � � � � −175.1 � � �
ωω � � � � � � � � � −271.1
KK̄ � � � −65.0 −70.7 � � �
KK̄⋆ðK̄K⋆Þ −340.2 −122.4 −125.3 −214.0
K⋆K̄⋆ −680.0 −429.2 −481.7 −421.8

Total mass shift −2672.5 −1650.2 −1449.2 −1741.3

1The hadrons we describe herein as bound-state solutions of
our Hamiltonian should not be confused with the “mesons” used
to define the interaction within that Hamiltonian. They are
distinct objects: the former define the model’s observable/
realizable asymptotic states, whereas the latter are merely
elements in an unobservable potential. Adopting this perspective,
no question of consistency arises.
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B. Improvements

1. Improvement one

In unquenching bare quark-model composites, the role
played by two-meson intermediate states should diminish
as their momentum, p, increases. (Such a feature is seen in
quantum field theory treatments of these effects [63].)
Hence, our first modification of the 3P0 model is to
reinterpret the convergence factor introduced above as a
physically required feature of a realistic unquenching
procedure. Namely, we redefine T0 → T1,

T1 ¼ −3γ
X
m

h1m1ð−mÞj00i
Z

dp3dp4δ
3ðp3 þ p4Þ

× Ym
1 ðp̂Þe−f

2p2

χ341−mϕ
34
0 ω34

0 b†3ðp3Þd†4ðp4Þ; ð29Þ

where p ¼ ðp3 − p4Þ=2 is the relative momentum of the
quark pair. The coordinate-space form of Eq. (29) is just
Eq. (28); and now, f is a parameter, upon which depend our
mass-shift predictions. Their sensitivity is exhibited in
Table III: when f is assigned a value commensurate with
natural hadronic scales, f ∈ ½0.3; 0.7� fm, unquenching
effects are modest; and they vanish as f increases.

2. Improvement two

Equally, the creation of quark-antiquark pairs should
become less likely as the distance from the bare-hadron
source is increased. This property is expressed in the
following formula:

T2 ¼ −3γ
X
m

h1m1ð−mÞj00i
Z

dr3dr4

�
1

2π

�3
2

ir2−
5
2f−5

× Y1mðr̂Þe−
r2

4f2e
−
R2
AV
R2
0 χ341−mϕ

34
0 ω34

0 b†3ðr3Þd†4ðr4Þ; ð30Þ

via the damping factor e−R
2
AV=R

2
0. Here, RAV is the relative

distance between the source particle and quark-antiquark
pair in the vacuum,

RAV ¼ RA − RV ; ð31aÞ

RA ¼ m1r1 þm2r2
m1 þm2

; ð31bÞ

RV ¼ m3r3 þm4r4
m3 þm4

¼ r3 þ r4
2

ðm3 ¼ m4Þ: ð31cÞ

A natural value for this production radius is R0 ≈ 1 fm,
viz. a typical hadronic size. Table IV shows the computed
mass shifts in this situation: f ¼ 0, γ ¼ 6.95, and
R0 ¼ 1 fm. The effect of the factor e−R

2
AV=R

2
0 is to reduce

the original mass shifts by roughly 50%.

3. Improvement three: Combined effect

Based on the observations made above, both corrections
to the 3P0 pair-creation model should be considered simul-
taneously when incorporating meson loops. Therefore, we
build the complete 2q → 4q transition operator using
Eq. (30), wherein now all three parameters, γ, f, R0, are
nonzero and active. Table V shows the f-dependence of the
eigenenergies and mass shifts obtained with γ ¼ 6.95,
R0 ¼ 1 fm. Evidently, for each bound state the mass shift
drops rapidly as f increases; and, within our framework, the
best value of f can only be determined from data.
Given that the ρ is properly regarded as primarily a qq̄

meson, something we shall subsequently verify in our
framework, and the ρ → ππ branching fraction is 100%, we
fix f, γ by fitting the decay width Γρ→ππ ¼ 150 MeV and
requiring that all mass shifts be reasonable, i.e. neither too
large nor too small, and qualitatively consistent with field
theory estimates [63]. In this way, we find

γ ¼ 32.2; f ¼ 0.5 fm; ð32Þ

and the meson mass shifts listed in Table VI. Plainly,
our modified 3P0 pair-creation model generates modest
unquenching corrections, with mass renormalizations being
just 10%–25% of a given meson’s bare mass.
We know that in QCD either the conservation of sym-

metries or the way they are broken is very important.

TABLE III. πρ contribution to π mass, computed with the
modified transition operator in Eq. (29). (Unit: MeV.)

f (fm) 0.001 0.01 0.1 0.3 0.5 0.7 0.9

E0 (MeV) −709 −687 −189 100 133 138 139
ΔM (MeV) −848 −826 −328 −39 −6 −1 0

TABLE IV. Mass shifts computed for non-strange mesons with
quantum numbers IJ−ðI ¼ 0; 1; J ¼ 0; 1Þ using the transition
matrix constructed from T2 in Eq. (30): f ¼ 0, γ ¼ 6.95,
R0 ¼ 1 fm. (η is an isospin 0 partner to the pion; and all
dimensioned quantities are listed in MeV.)

States ðIJPÞ πð10−Þ ρð11−Þ ωð01−Þ ηð00−Þ
Bare mass (Theo.) 139.0 772.7 701.9 669.5
ππ � � � −69.2 � � � � � �
πρ −318.2 � � � −231.2 � � �
πω � � � −69.8 � � � � � �
ηρ � � � −52.3 � � � � � �
ρρ � � � −179.9 � � � −267.8
ρω −280.1 � � � � � � � � �
ηω � � � � � � −59.5 � � �
ωω � � � � � � � � � −91.3
KK̄ � � � −22.1 −24.3 � � �
KK̄⋆ðK̄K⋆Þ −114.0 −38.2 −42.5 −67.9
K⋆K̄⋆ −215.2 −122.1 −140.6 −121.5

Total mass shift −927.5 −553.6 −498.1 −548.5
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Applied to the case at hand, this means that certain patterns
in the quark-antiquark and meson-meson couplings should
be observed. For instance, the ρ and ωmesons differ only in
their isospin (I ¼ 1 and I ¼ 0, respectively) and thus their
couplings to KK̄ and KK� should be identical. Another
example is the hidden channel ρ → ωπ, in which the isospin
coupling is0 ⊗ 1 → 1; and, complementing this, the isospin
coupling for ω → ρπ is j00i ¼ 1 ⊗ 1 ¼ 1ffiffi

3
p ðj11ij1 − 1i−

j10ij10i þ j1 − 1ij11iÞ. Therefore, the ωπ contribution to
the ρ-meson’s mass shift should be equal to one-third of the
ρπ contribution to the ω-meson’s shift. Finally, the ωη
contribution toω should equal the ρη contribution to ρ. From
Table VI, one observes that the isospin-symmetry results are
broadly respected. However, there are some small discrep-
ancies, which are dynamical in origin: as displayed in Fig. 1,
Goldstone boson exchange in the chiral quark model
produces noticeable isospin-symmetry-breaking differences
between the ρ and ω wave functions.
It is worth highlighting here that the inability of the naive

chiral quark model to describe the ρ − ω splitting has long
been known. One proposal for solving the issue is inclusion
of an explicit isospin-dependent mechanism in the light

quark sector [64]. We have seen herein that the magnitude
of the ρ − ω mass splitting can be reconciled with experi-
ment when the contribution of meson loops is included in a
physically sound manner. However, the level ordering
remains incorrect. As with much in the quark model
treatment of light mesons, this devolves into an issue of
fine-tuning. Notably, quantum field theory provides a
different resolution [63], without fine-tuning, because it
preserves the near isospin symmetry of QCD.
In concluding this subsection, let us mention that a

complete calculation that incorporates contributions from
all possible multiple hadron intermediate states is beyond
the scope of this work. However, the improvements to the
3P0 transition operator implemented herein ensure that the
contributions of higher-mass intermediate states are small
and hence the calculation should exhibit rapid convergence,
making our results meaningful.

C. Measured masses and four-quark components

Notably, although the mass shifts reported in Table VI are
sensible, they destroy agreement with the empirical masses.
This is because the parameters in Table I were determined by

TABLE V. f-dependence of meson masses and mass shifts, in MeV, obtained with the transition operator built from T2 in Eq. (30),
using γ ¼ 6.95, R0 ¼ 1 fm. Beginning with column 2, each pair of columns reveals the channel, and the mass and mass shift it yields as
a function of f.

ðπÞ f πρ ΔM ρω ΔM KK⋆ ΔM K⋆K⋆ ΔM

0.1 46.4 −92.6 61.8 −77.2 119.2 −19.8 102.9 −36.1
0.3 131.5 −7.5 132.9 −6.1 138.3 −0.7 137.7 −1.3
0.5 138.1 −0.9 138.3 −0.7 138.9 −0.1 138.9 −0.1
0.7 138.9 −0.1 138.9 −0.1 139.0 0.0 139.0 0.0
0.9 139.0 0.0 139.0 0.0 139.0 0.0 139.0 0.0

ðρÞ f ππ ΔM πω ΔM ηρ ΔM ρρ ΔM KK ΔM KK⋆ ΔM K⋆K⋆ ΔM

0.1 725.2 −47.5 735.4 −37.3 747.3 −25.4 678.7 −94.0 764.7 −8.0 759.5 −13.2 730.8 −41.9
0.3 763.1 −9.6 766.7 −6.0 769.2 −3.5 759.5 −13.2 772.1 −0.6 771.8 −0.9 769.8 −2.9
0.5 771.8 −0.9 771.8 −0.9 772.2 −0.5 770.7 −2.0 772.7 0.0 772.6 −0.1 772.4 −0.3
0.7 772.6 −0.1 772.6 −0.1 772.6 −0.1 772.4 −0.3 772.7 0.0 772.7 0.0 772.7 0.0
0.9 772.7 0.0 772.7 0.0 772.7 0.0 772.7 0.0 772.7 0.0 772.7 0.0 772.7 0.0

ðωÞ f πρ ΔM ηω ΔM KK ΔM KK⋆ ΔM K⋆K⋆ ΔM

0.1 590.5 −111.4 674.7 −27.2 693.8 −8.1 688.4 −13.5 657.7 −44.2
0.3 685.9 −16.0 698.3 −3.6 701.3 −0.6 701.0 −0.9 699.1 −2.8
0.5 699.6 −2.3 701.4 −0.5 701.8 −0.1 701.8 −0.1 701.6 −0.3
0.7 701.5 −0.4 701.8 −0.1 701.9 0.0 701.9 0.0 701.8 −0.1
0.9 701.8 −0.1 701.9 0.0 701.9 0.0 701.9 0.0 701.9 0.0

ðηÞ f ρρ ΔM ωω ΔM KK⋆ ΔM K⋆K⋆ ΔM

0.1 559.1 −110.4 629.7 −39.8 649.1 −20.4 634.6 −34.9
0.3 655.4 −14.1 664.5 −5.0 668.2 −1.3 667.3 −2.2
0.5 667.5 −2.0 668.8 −0.7 669.4 −0.1 669.3 −0.2
0.7 669.1 −0.4 669.4 −0.1 669.5 0.0 669.5 0.0
0.9 669.4 −0.1 669.5 0.0 669.5 0.0 669.5 0.0
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fitting themeson spectrum,without allowing room for ðqq̄Þ2
components. As a final exercise, therefore, we choose to
illustrate a remedy. To that end, we adjust the OGE
parameter α0 and confinement parameter Δ in order to
increase the quenched masses of the π and ρ such that
unquenching delivers the empirical masses, an outcome
achieved with

α0 ¼ 3.85; Δ ¼ −58.3 MeV: ð33Þ

The results are listed in Table VI. Evidently, the sizes of the
mass shifts are not very sensitive to these parameters in the
potential. Having made our point, we leave for the future a
complete refit of the parameters in Table I in order to arrive
finally at a fully unquenched quark model.

Having produced the results in Table VI, it is meaningful
to compute the strength of all ðqq̄Þ2 contributions to each
unquenched quark model state. Our results are listed in
Table VII: with more intermediate states available, and a
sizable coupling to the ππ channel, the ρ-meson possesses
the largest ðqq̄Þ2 component.

V. RELATIVITY AND MODEL INDEPENDENCE

Model estimates of the mean momentum, hpi, of a light
constituent quark, with mass M, inside a meson typically
yield hpi ∼M. It might therefore be imagined that bound-
state calculations for light quark systems should only be
undertaken within models that incorporate relativity at
some level. This potential weakness of the nonrelativistic
quark model has long been considered. For example, the
authors of Ref. [55] remark that a nonrelativistic treatment
of quarkmotion is inaccurate. However, using scales that are
internally consistent, it is not ultrarelativistic. Therefore, the
nonrelativistic approximation must be useful. The point is
also canvassed in Ref. [65], which opens with the question
“Why does the non-relativistic quark model work?” and
proceeds to provide a range of plausible answers. These

0 0.5 1 1.5 2 2.5
0

1

2

3

4

FIG. 1. Computed two-body quark-antiquark wave functions:
solid (green) curve, ρ; and dashed (blue) curve, ω.

TABLE VI. (A) Mass shifts computed for nonstrange mesons
with quantum numbers IJ−ðI ¼ 0; 1; J ¼ 0; 1Þ using the tran-
sition matrix constructed from T2 in Eq. (30): f ¼ 0.5, γ ¼ 32.2,
R0 ¼ 1 fm. (B) Same as above, except that instead of the
unquenched values in Table I, we used α0 ¼ 3.85 (5% increase)
and Δ ¼ −58.3 MeV (25% increase). (η is an isospin 0 partner to
the pion; and all dimensioned quantities are listed in MeV.)

(A) ðIJPÞ πð10−Þ ρð11−Þ ωð01−Þ ηð00−Þ
Bare mass (Theo.) 139.0 772.7 701.9 669.5

ππ � � � −18.0 � � � � � �
πρ −18.3 � � � −45.5 � � �
πω � � � −19.1 � � � � � �
ηρ � � � −11.4 � � � � � �
ρρ � � � −37.3 � � � −42.5
ρω −15.4 � � � � � � � � �
ηω � � � � � � −10.9 � � �
ωω � � � � � � � � � −15.3
KK̄ � � � −1.3 −1.2 � � �

KK̄⋆ðK̄K⋆Þ −1.3 −2.0 −1.9 2.7
K⋆K̄⋆ −2.4 −6.2 −5.8 −4.6

Total mass shift −37.4 −95.3 −65.3 −65.1
Unquenched mass 101.6 677.4 636.6 604.4

(B) State ðIJPÞ πð10−Þ ρð11−Þ ωð01−Þ ηð00−Þ
Bare mass (Theo.) 172.7 869.5 798.5 747.8

ππ � � � −21.4 � � � � � �
πρ −16.3 � � � −42.3 � � �
πω � � � −17.2 � � � � � �
ηρ � � � −10.6 � � � � � �
ρρ � � � −34.8 � � � −39.1
ρω −13.8 � � � � � � � � �
ηω � � � � � � −10.2 � � �
ωω � � � � � � � � � −13.9
KK̄ � � � −1.3 −1.2 � � �

KK̄⋆ðK̄K⋆Þ −1.2 −2.3 −1.8 −2.4
K⋆K̄⋆ −2.1 −5.8 −5.5 −4.3

Total mass shift −33.4 −93.4 −61.0 −59.7
Unquenched mass 139.3 776.1 737.5 688.1

TABLE VII. Fractions (%) of two- and four-quark components
in the unquenched mesons, computed using the framework
developed for Table VI.

π ρ ω η

Bare qq̄ 97.8 74.3 92.7 95.3
ππ � � � 18.4 � � � � � �
πρ 1.2 � � � 5.9 � � �
πω � � � 3.0 � � � � � �
ηρ � � � 0.8 � � � � � �
ηω � � � � � � 0.8 � � �
ρρ � � � 2.9 � � � 3.1
ρω 0.8 � � � � � � � � �
ωω � � � � � � � � � 1.1
KK � � � 0.1 0.1 � � �
KK� 0.1 0.2 0.1 0.2
K�K� 0.1 0.3 0.4 0.3
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discussions are complemented by Ref. [66], which devotes
itself to “The significance of the treatment of relativistically
moving constituents by an effective non-relativistic
Schrödinger equation […].” The conclusion of these and
many other discourses is simple: the nonrelativistic model
has proved very useful, unifying awide range of observables
within a single framework.
This last observation provides our rationale for employing

a nonrelativistic model for the analysis herein. Namely, we
take a pragmatic view: the nonrelativistic quark model is a
useful tool. The practical reason for its success is simple: the
model hasmany parameters; they are fitted to a body of data;
and, consequently, on this domain, the model cannot be
wrong numerically. If one adds relativistic effects in oneway
or another, there are similar parameters in the new potential.
They, too, are fitted to data; and hence the resulting model
cannot produce results that are very different from the
original nonrelativistic version. Thevalues of the parameters
in the potential are modified, but the potential is not
observable, so nothing substantive is altered. Similar com-
ments pertain to our treatment of particle production.
Evidently, a constituent quark model for light quarks,

whether nonrelativistic, relativized, or relativistic, is purely
phenomenological. A discussion of whether one should use
a nonrelativistic or relativistic version is thus purposeless:
fine-tuning is always involved, and the approach chosen
will depend on the goals of the practitioner involved. There
is consequently no sense in which “adding relativity” to a
constituent quark model can deliver objective improve-
ments. It cannot make any difference because all such
approaches are models. They each involve a potential
characterized by numerous parameters, none of which
has a connection with QCD2 and they all require a careful
adjustment of competing effects between terms in those
potentials so as to achieve desired outcomes. Two distinct
models that provide an equally good correlation between a
given set of observables are physically equivalent because no
objectively founded distinctions can be drawn between their
differing Hamiltonians. Ergo, any attempt to identify relativ-
istic corrections in a constituent light-quark model is mean-
ingless: the parameters take those values necessary to
reproduceobservation; and if relativistic effects are important,
then they are implicitly expressed in the parameter values.
With the question of relativity being immaterial, our basic

point becomes significant, viz. when attempting to unquench
a quarkmodel, whether nonrelativistic or relativistic, whether
workingwithmesons or baryons, it is crucial to both include a
“form factor” at the 3P0 vertex and account for themass of the

intermediate states. These statements are true for any naive
vertex that couples qq̄ and ðqq̄Þ2. While we used a model to
expose these facts, their validity is model independent,
something that is emphasized by comparison with compu-
tations of loop effects using continuum methods for the
bound-state problem in quantum field theory. Any compu-
tation of meson-loop corrections to hadron masses and
interactions always involves, as intrinsic, dynamical features,
form factors at the particle production vertices and suppres-
sions associated with the mass of the participating virtual
states, as apparent, e.g. inRefs. [63,67–72]. It follows that the
utility of the 3P0model ismarkedly increased by the inclusion
of the improvements we have explained and illustrated.

VI. SUMMARY

A coupled-channels calculation of the spectrum of light
mesons with quantum numbers IJP¼−, ðI; JÞ ¼ 0, 1, has
been presented. Within a chiral quark model, the qq̄ and
ðqq̄Þ2 masses and wave functions were obtained by solving
the Schrödinger equation using the Gaussian expansion
method. The coupling between two- and four-quark con-
figurations was realized through a modified version of the
transition operator in the 3P0 decay model. This new
version allows us to recover the original in a particular
limit and compare the mass shifts generated by unquench-
ing in a variety of scenarios.
Solving the coupled-channels problem using the original

3P0 operator, we found that the mass shifts for the π, ρ, ω, η
mesons are very large and negative, an outcome which
seriously undermines the quenched model. Such a con-
clusion regarding the validity of that model is unexpected
because it provides a reasonable description of many
hadrons and their decays. We judged, therefore, that the
simple 3P0 transition operator needed modification so as to
ensure that hadron-loop effects do not generate mass shifts
that exceed roughly 10%–20% of the hadron bare masses
computed in the chiral quark model.
We incorporated two simple, physically motivated

improvements into the 3P0 transition operator, ensuring
the following: (i) intermediate dressing states with large
momentum are suppressed; and (ii) quark-antiquark crea-
tion near the hadron source is favored. With these improve-
ments, the mass shift in each channel considered is reduced
by an order of magnitude or more, so that the corrected
results amount to a shift of only 10%–20% of the quenched
mass value. These improvements ensure additionally that
high-mass intermediate states are damped, according to
their mass, and hence that the sum of meson-loop correc-
tions converges quickly, as it typically does in realistic
quantum field theory calculations.
It is also worth mentioning both that our modified

operator fulfills some transition coupling rules, which
are imposed by isospin symmetry; and, by illustration,
we showed that the parameters of the naive chiral quark
model may be adjusted so that a quantitatively useful
unquenched version can be developed in the future.

2If one wishes to make a realistic connection with QCD, then a
quantum field theoretical approach should be used. This is
particularly the case for the light meson sector, in which the
impact of dynamical chiral symmetry breaking is so dramatic.
Composite Nambu-Goldstone bosons can readily be treated in
quantum field theory, without fine-tuning. See, e.g. Ref. [53].
This is not true of any quantum mechanics approach.
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