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We study the features of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model that includes wave-
function renormalization. Model parameters are determined from vacuum phenomenology considering
lattice-QCD-inspired nonlocal form factors. Within this framework, we analyze the properties of light
scalar and pseudoscalar mesons at finite temperature and chemical potential determining characteristics of
deconfinement and chiral restoration transitions.
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I. INTRODUCTION

The strong interaction among quarks depends on their
color charge. When quarks are placed in a medium, this
charge is screened due to density and temperature effects [1].
If either of these increase beyond a certain critical value, the
interactions between quarks no longer confine them inside
hadrons. This is usually referred to as the deconfinement
phase transition. In addition, another transition takes place
when the realization of chiral symmetry shifts from a
Nambu-Goldstone to a Wigner-Weyl phase. Based on lattice
QCD (lQCD) evidence at zero chemical potential [2], one
expects these two phase transitions to occur at approximately
the same temperature. At finite density, in principle, they
could arise at different critical temperatures, leading to a
quarkyonic phase, in which the chiral symmetry is restored
while quarks and gluons remain confined.
Although QCD is a first-principle theory of hadron

interactions, it has the drawback of being a theory where
the low-energy regime is not available using standard
perturbative methods. This problem can be addressed from
first principles through lattice calculations [3–7]. However,
this approach has difficulties when dealing with small
current quark masses and/or finite chemical potential. Thus,
some of the present knowledge about the behavior of
strongly interacting matter arises from the study of effective
models, which offer the possibility to get predictions of the
transition features at regions that are not accessible through
lattice techniques.

Here, we will concentrate on one particular class of
effective theories, viz. the nonlocal Polyakov-Nambu-Jona-
Lasinio (nlPNJL) models (see [8] and references therein),
in which quarks interact through covariant nonlocal chirally
symmetric four- and six-point couplings in a background
color field, and gluon self-interactions are effectively
introduced by a Polyakov loop effective potential. These
approaches, which can be considered as an improvement
over the (local) PNJL model, offer a common framework to
study both the chiral restoration and deconfinement tran-
sitions. In fact, the nonlocal character of the interactions
leads to a momentum dependence in the quark propagator
that can be made consistent [9] with lattice results.
Some previous works have addressed the study of meson

properties and/or phase transitions using nlPNJL models
with Gaussian nonlocal form factors, for specific Polyakov
potentials [10]. These functional forms can be improved,
since it is possible to choose model parameters and
momentum dependences for the form factors so as to fit
the quark propagators obtained in lattice QCD. The aim of
this work is to extend the above references to finite
chemical potential with lQCD-inspired form factors and
determine several properties of light mesons (masses,
mixing angles, decay constants) at zero and finite temper-
ature, analyzing the compatibility with the corresponding
phenomenological values. In addition, we will study the
deconfinement and chiral restoration phase transitions at
finite temperature and density, obtaining the critical tem-
peratures and chemical potentials, and sketching the
corresponding phase diagram.
This article is organized as follows. In Sec. II, we present

the general formalism for a finite temperature and density
system. The numerical and phenomenological analyses at
zero and finite temperature for several meson properties
are included in Sec. III. In Sec. IV, we present the phase
diagrams for different Polyakov loop potentials and discuss
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the phase transition features. Finally, in Sec. V, we
summarize our results and present the conclusions.

II. THERMODYNAMICS

Let us consider an Euclidean action for a three-flavor
quark model with nonlocal four- and six-point couplings [8],

SE ¼
Z

d4xfψ̄ðxÞð−{Dþ m̂ÞψðxÞ

−
G
2
½jSaðxÞjSaðxÞ þ jPa ðxÞjPa ðxÞ þ jrðxÞjrðxÞ�

−
H
4
Aabc½jSaðxÞjSbðxÞjScðxÞ − 3jSaðxÞjPb ðxÞjPc ðxÞ�

þ U½AðxÞ�g: ð1Þ

Here, ψðxÞ is the Nf ¼ 3 fermion triplet ψ ¼ ðudsÞT , and
m̂ ¼ diagðmu;md;msÞ is the current quark mass matrix. We
will work in the isospin symmetry limit, assumingmu ¼ md.
The fermion currents are given by

jsaðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
λaψ

�
x −

z
2

�
;

jpaðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
{λaγ5ψ

�
x −

z
2

�
;

jrðxÞ ¼
Z

d4zfðzÞψ̄
�
xþ z

2

�
{=∂↔
2κ

ψ

�
x −

z
2

�
; ð2Þ

where fðzÞ and gðzÞ are covariant form factors responsible
for the nonlocal character of the interactions, and λa,
a ¼ 0;…; 8, are the standard Gell-Mann matrices, plus
λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
13×3. The relative weight of the interaction

driven by jrðxÞ, responsible for the quark wave-function
renormalization (WFR), is controlled by the parameter κ.
The interaction between fermions and color gauge

fields Ga
μ takes place through the covariant derivative

in the fermion kinetic term, Dμ ≡ ∂μ − {Aμ, where
Aμ ¼ gGa

μλ
a=2. In this effective model, we will assume

that fermions move on a static and constant background
gauge field ϕ. The traced Polyakov loop (PL) Φ, which in
the infinite quark mass limit can be taken as the order
parameter for confinement [11,12], is given by

Φ ¼ 1

Nc
Tr P exp

�
i
Z

1=T

0

dx4ϕ

�
: ð3Þ

The effective gauge field self-interactions in Eq. (1) are
given by the Polyakov-loop potential U½AðxÞ�. At finite
temperature T, it is usual to take for this potential a
functional form based on properties of pure gauge QCD.
The potential is constrained by the condition of reaching
the Stefan-Boltzmann limit at T → ∞ and by requiring the
presence of a first-order phase transition at a given

temperature T0 [13]. In the presence of dynamical flavors
this parameter has to be rescaled from the pure gauge
transition temperature (of about 270 MeV) toward values
around 200 MeV [8]. In addition, it has been argued that T0

should change with the chemical potential μ as [13–15]

T0 ¼ Tτe−1=α0bðμÞ; ð4Þ

where Tτ ¼ 1.77 GeV, α0 ¼ 0.304 and bðμÞ ¼ 1.508–32=
πðμ=TτÞ2. This dependence is motivated by the calculation
of hard dense loop and hard thermal loop contributions to
the effective charge [16].
A possible ansatz for the PL potential is given by a

logarithmic form based on the Haar measure of the SU(3)
color group, namely [17],

U logðΦ;TÞ
T4

¼−
1

2
aðTÞΦ2þbðTÞ logð1−6Φ2þ8Φ3−3Φ4Þ;

ð5Þ

where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

:

Another widely used potential is that given by a poly-
nomial function based on a Ginzburg-Landau ansatz [18,19],

UpolyðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð6Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

:

Numerical values for parameters ai and bi in these potentials
can be found in Refs. [17–19].

A. Mean-field approximation

To determine the QCD phase diagram in the T − μ plane,
we consider the thermodynamic potential per unit volume
at mean-field level (MF). We proceed by using the standard
Matsubara formalism. Following the same procedure as in
Refs. [8,20,21], we perform a standard bosonization of the
fermionic theory, Eq. (1), introducing scalar fields σaðxÞ,
ζðxÞ and pseudoscalar fields πaðxÞ, with a ¼ 0;…; 8.
We obtain

ΩMFðT; μÞ ¼ Ωreg þ Ωfree þ UðΦ; TÞ þ Ω0;

where
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Ωreg ¼ −2
X
c;f

T
X∞
n¼−∞

Z
d3p
ð2πÞ3 log

�
p2
nc þM2

fðpncÞ
Z2ðpncÞðp2

nc þm2
fÞ
�
−
�
ζ̄ R̄þG

2
R̄2 þH

4
S̄uS̄dS̄s

�
−
1

2

X
f

�
σ̄fS̄f þ

G
2
S̄2f

�
;

Ωfree ¼ −2T
X
c;f

X
s¼�1

Z
d3p
ð2πÞ3 Re log

�
1þ exp

�
−
ϵfp þ sðμþ {ϕcÞ

T

��
: ð7Þ

Here, we have defined p2
nc¼½ð2nþ1ÞπTþϕc− {μ�2þ p⃗2,

ϵfp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

f

q
. The sums over color and flavor indices

run over c ¼ r, g, b and f ¼ u, d, s, respectively, and the
color background fields are ϕr ¼ −ϕg ¼ ϕ, ϕb ¼ 0. The
term Ωfree is the regularized expression for the thermody-
namical potential of a free fermion gas, while Ω0 is just a
constant that fixes the value of the thermodynamical
potential at T ¼ μ ¼ 0.
The functions MfðpÞ and ZðpÞ correspond to momen-

tum-dependent effective masses and WFR of the quark
propagators. In terms of the model parameters and form
factors, these are given by

MfðpÞ ¼ ZðpÞ½mf þ σ̄fgðpÞ�;

ZðpÞ ¼
�
1 −

ζ̄

κ
fðpÞ

�−1
; ð8Þ

where σ̄f and ζ̄ are the vacuum expectation values of the
scalar fields introduced to bosonize the fermionic theory.
We use the stationary phase approximation, where the path
integrals over the corresponding auxiliary fields Sf and R
are replaced by the arguments evaluated at the minimizing
values S̄f and R̄. The procedure is similar to that carried out
in Ref. [20], where more details can be found. From the
minimization of this regularized thermodynamic potential
it is possible to obtain a set of coupled gap equations
that determine σ̄f, ζ̄ and ϕ at a given temperature T and
chemical potential μ,

∂ΩMFðT; μÞ
∂σ̄f ¼ ∂ΩMFðT; μÞ

∂ζ̄ ¼ ∂ΩMFðT; μÞ
∂ϕ ¼ 0:

To characterize the chiral and deconfinement phase
transitions, it is necessary to define the corresponding
order parameters. It is well known that the chiral quark
condensates hq̄qi are appropriate order parameters for the
restoration of the chiral symmetry. Their expression can be
obtained by varying the MF partition function with respect
to the current quark masses. In general, these quantities are
divergent, and can be regularized by subtracting the free
quark contributions. Therefore, it is usual to define a
subtracted chiral condensate, normalized to its value at
T ¼ 0, as

hq̄qisub ¼
hūui − mu

ms
hs̄si

hūui0 − mu
ms
hs̄si0

: ð9Þ

Regarding the description of the deconfinement transition,
a crucial role is played by the center symmetry ZðNÞ of the
pure Yang-Mills theory. As stated, we will take as the
corresponding order parameter the trace of the Polyakov
line, given by [22]

Φ ¼ 1

3
½1þ 2 cosðϕ=TÞ�: ð10Þ

If Φ ¼ 0, ZðNÞ symmetry is manifest, and this situation
indicates confinement. Above the critical temperature, one
has Φ ≠ 0; therefore, the symmetry is broken, which
corresponds to the deconfined phase. For the light quark
sector,Φ turns out to be an approximate order parameter for
the deconfinement transition in the same way that the chiral
quark condensate is an approximate order parameter for the
chiral symmetry restoration outside the chiral limit.

B. Observables beyond mean field

The study of meson properties at finite temperature has
to be carried out beyond mean field. The quadratic
contribution (in powers of mesonic fluctuations) to the
thermodynamical potential is given by

Ωquad ¼ 1

2
T
X
k

Z
d3q
ð2πÞ3GMðq2kÞϕMðqkÞϕMð−qkÞ;

where ϕM correspond to the meson fields in the SU(3)
charge basis. Here M labels the scalar and pseudoscalar
mesons in the lowest mass realization, plus the ζ field, and
qk ¼ ðq⃗; νkÞ, where νk ¼ 2kπT, are bosonic Matsubara
frequencies.
Meson masses are then given by the equations [8,10]

GMð−m2
MÞ ¼ 0: ð11Þ

The mass values determined by these equations at q⃗ ¼
ð0; 0; {mMÞ with k ¼ 0 correspond to the spatial masses
of the mesons’ zeroth Matsubara modes, their inverses
describing the persistence lengths of these modes at
equilibrium with the heat bath.
The one-loop functions GM can be written in terms of

the coupling constants G and H, the mean-field values S̄u;s
and quark loop integrals that prove to be ultraviolet
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convergent owing to the asymptotic behavior of the non-
local form factors.
For the pseudoscalar meson sector, one can also evaluate

mixing angles and weak decay constants. The latter are
given by the matrix elements of the axial currents between
the vacuum and the physical meson states. Since the I ¼ 0
states get mixed, it is necessary to introduce mixing angles
θη and θη0 to diagonalize this coupled sector.
Calculation details, together with the definitions of

above quantities at zero temperature, can be found in
Ref. [8]. Our aim is to extend here those results to a finite
temperature system.

III. MESON PHENOMENOLOGY

A. Model parameters and form factors

The model includes five free parameters, namely the
current quark massesmu;s and the coupling constantsG,H,
and κ. In addition, one has to specify the form factors fðzÞ
and gðzÞ in the nonlocal fermion currents of Eq. (2). Here,
we will consider for the form factors a momentum
dependence based on lQCD results for the quark propa-
gators. Therefore, following the analysis of Ref. [23], we
parametrize the effective mass MfðpÞ as

MfðpÞ ¼ mf þ αmfmðpÞ; ð12Þ

where

fmðpÞ ¼
1

1þ ðp2=Λ2
0Þα

; ð13Þ

with α ¼ 3=2. On the other hand, for the WFR, we use the
parametrization [9,24]

ZðpÞ ¼ 1 − αzfzðpÞ; ð14Þ

where

fzðpÞ ¼
1

ð1þ p2=Λ2
1Þβ

: ð15Þ

It is found that lQCD results favor a relatively low value
for the exponent, hence we take here β ¼ 5=2, which is the
smallest exponent compatible with the ultraviolet conver-
gence of the loop integrals. The coefficients αm and αz can
be expressed in terms of the mean-field values σ̄u and ζ̄ [see
Eq. (8)]. From Eqs. (8), (12), and (14), one can relate the
functions fðpÞ and gðpÞ to fmðpÞ and fzðpÞ.
Given the form factor functions, it is possible to set the

model parameters to reproduce the observed meson phe-
nomenology. To the above-mentioned free parameters (mu,
ms, G, H and κ), one has to add the cutoffs Λ0 and Λ1,
introduced in the form factors. Through a fit to lQCD
results quoted in Ref. [25] for the functions fmðpÞ and
ZðpÞ, we obtain

Λ0 ¼ 861 MeV; Λ1 ¼ 1728 MeV; αz ¼ −0.2492:

The curves corresponding to the functions fmðpÞ and ZðpÞ,
together with Nf ¼ 2þ 1 lattice data, are shown in Fig. 1.
The fit has been carried out considering results up to 3 GeV.
The remaining five parameters can be determined by

requiring that the model reproduces the empirical values
of four physical quantities and the value of αz obtained
from the fit. We have taken as inputs the masses of the
pseudoscalar mesons π, K and η0, and the pion weak decay

f m
(p

)

p [GeV]

lQCD data

fit
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 0  0.5  1  1.5  2  2.5  3
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 0.6
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 0  0.5  1  1.5  2  2.5  3

FIG. 1. Fit to lattice data from Ref. [25] for the functions fmðpÞ and ZðpÞ, Eqs. (13) and (14).

TABLE I. Model parameter values.

Parameter Value

mu [MeV] 2.38
ms [MeV] 61.45
GΛ2

0 14.03
HΛ5

0 −158.70
κ [GeV] 10.76
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constant fπ . The obtained values of the model parameters
are quoted in Table I.

B. Vacuum properties

Once we have fixed the model parametrization, we can
calculate the values of several meson properties for the
scalar and pseudoscalar sector. Our numerical results are
summarized in Table II, together with the corresponding
phenomenological estimates. The quantities marked with
an asterisk are those that have been chosen as inputs.
In general, it is seen that meson masses, mixing angles

and weak decay constants predicted by the model are in a
reasonable agreement with phenomenological expectations.
As in precedent analyses [8,9,26], we obtain relatively

low values for mu and ms, and a somewhat large value for
the light quark condensate. On the other hand, we find that
the quark mass ratio is ms=mu ≃ 26, which is phenomeno-
logically adequate. Something similar happens with the
product −hūuimu, which gives 8.17 × 10−5 GeV4, in
agreement with the scale-independent result obtained from
the Gell-Mann-Oakes-Renner relation at the leading order
in the chiral expansion, namely −hūuimu ¼ f2πm2

π=2≃
8.25 × 10−5 GeV4.
Notice that the set of parameters quoted in Table I differs

from the one used in Ref. [8]. As it was explained by

the authors in Ref. [27], the numerical evaluation of loop
integrals has to be treated with some care given the
functional form of the lattice inspired form factors, since
for instance the function fmðsÞ in Eq. (13) presents branch
cuts in the complex plane for ReðsÞ < 0, ImðsÞ ¼ 0. The
presence of these cuts generates new contributions to the
loop integrals, and therefore the values of the presented
free parameters are different from those in Ref. [8].

C. Finite temperature phenomenology

In previous works [8,28], we have analyzed the thermal
behavior of thermodynamic quantities such as entropy,
energy density and interaction measure in this kind of
models. Here, we will describe the temperature dependence
of meson masses, mixing angles and decay constants,
which has not been previously addressed in SU(3) nonlocal
models with WFR and/or lQCD-inspired form factors.
In addition, in Ref. [8] we have studied the mentioned

thermal properties for Gaussian form factors, which guar-
antee a fast ultraviolet convergence of the loop integrals.
However, this kind of exponential momentum dependence
provides unfavorable predictions in comparison with lQCD
estimations and results coming from the previously intro-
duced lQCD-inspired form factors. This same improvement
is also appreciable in the temperature dependence of meson
masses, mixing angles and decay constants presented in
this section (see [10] for an analysis with Gaussian form
factors).
In Fig. 2, we show the behavior of spatial masses of

mesons σ (thin line) and π (thick line) as functions of the
temperature, for the logarithmic (upper panel) and poly-
nomial (lower panel) effective potentials given by Eqs. (5)

TABLE II. Numerical results for various phenomenological
quantities. Input values are marked with an asterisk.

Model Empirical

σ̄u [MeV] 400 ...
σ̄s [MeV] 630 ...
ζ̄=κ −0.332 ...
−hūui1=3 [MeV] 325 ...
−hs̄si1=3 [MeV] 358 ...

mπ [MeV] 139 * 139
mσ [MeV] 518 400–550
mK [MeV] 495 * 495
mK�

0
[MeV] 1159 1425

mη [MeV] 511 547
ma0 [MeV] 968 980
mη0 [MeV] 958 * 958
mf0 [MeV] 1280 990

fπ [MeV] 92.4 * 92.4
fK=fπ 1.18 1.22
f0η=fπ 0.27 (0.11–0.51)
f8η=fπ 1.05 (1.17–1.22)
f0η0=fπ 2.12 (0.98–1.16)
f8η0=fπ −0.63 −ð0.42–0.46Þ
θ0 −7° −ð10°–12°Þ
θ8 −31° −ð25°–29°Þ

m
M

 [G
eV

]

π
σ
muq

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Logarithmic

m
M

 [G
eV

]

T [Mev]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

 50 100 150 200 250 300

Polynomial

FIG. 2. Pion (thick line) and sigma (thin line) mass as functions
of T for the logarithmic and polynomial potential in upper and
lower panel, respectively. Dashed lines represent the thermal
energy.
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and (6), respectively. Around the critical temperature, it is
possible to distinguish a stronger steepness in the curves for
the logarithmic potential. In addition, the higher the
temperature, the larger is the splitting between the pre-
dictions for both PL potentials. At high temperature the
masses are dominated by the thermal energy (dashed lines),
hence the behavior should approach that of an uncorrelated
pair of massless quarks, muq ¼ 2πT [29]. However, for
T ∼ 300 MeV the trace of the Polyakov loop has not yet
reached its asymptotic valueΦ ¼ 1, and there is still a non-
negligible contribution to the quark effective mass provided
by the background color field ϕ. Indeed, the thermal energy
behaves as muq ¼ 2ðπT − ϕÞ.
It is known that the polynomial potential has a smoother

behavior and reaches faster the deconfinement asymptotic
value, in agreement with our results. Nevertheless, the
qualitative thermal evolution for meson masses, decay
constants and mixing angles is similar for both potentials.
Here we show the results for the polynomial potential, since
it provides the best agreement with lQCD results for the
chiral restoration transition [8]. In Figs. 3 and 4 we plot
meson and constituent quark masses as functions of the
temperature, whereas in Fig. 5 we show the behavior of π
and K weak decay constants.
Effective theories that do not include an explicit mecha-

nism of confinement, like PNJL models, usually present a
threshold above which constituent quarks can be simulta-
neously on shell. This leads to an imaginary part of the
effective mass that can be interpreted as the width of a decay
of the meson into two massive quarks. That threshold, which
depends on the model parametrization, is typically of the
order of 1 GeV. Therefore, the description of bound states
lying above this value requires some regularization. In the
cases where the functionsGMð−p2; 0Þ have no zeros for real
values of p, we have defined the meson mass through the
minimum of jGMð−p2; 0Þj.

It can be seen from Figs. 3 and 4 that pseudoscalar meson
masses (solid lines) remain approximately constant up to
the critical temperature Tc, while scalar meson masses
(dashed lines) start dropping somewhat below Tc. Right
above Tc, masses of chiral partners become degenerate.
Then, at higher temperatures, they are dominated by the
thermal energy. In the case of the η0 meson and its chiral
partner f0, and similarly for K and K�

0, the degeneracy is
achieved at larger temperatures than in the case of the other
mesons (see Fig. 4). This a consequence of the strange
quark content, which becomes larger compared to the
content of other flavors as the temperature increases.
In Fig. 3, besides the meson masses we plot in dashed-

dotted lines our results for 2Mu and Mu þMs. Up to
certain temperature Tm (denoted in the figure with a large
dot) the mesons have a lower mass than the masses of their
constituents. When T > Tm, meson masses are no longer a
discrete solution of Eq. (11), which implies a passage from

m
M

 [G
eV

]

T [Mev]

π, σ
η, a0

2 Mu

Mu + Ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300

FIG. 3. Scalar (dashed line) and pseudoscalar (solid line) meson
masses as function of T for the polynomial potential. Effective
quark masses are plotted in dashed-dotted lines. The Mott
temperature is indicated by the large dot.
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]

T [Mev]

K, K0*

η‘, f0
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 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 50 100 150 200 250 300

FIG. 4. Scalar (dashed line) and pseudoscalar (solid line) meson
masses as function of the temperature for the polynomial PL
potential.

f M
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T [Mev]

π
K
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 0.04

 0.06

 0.08
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 0.12

FIG. 5. Pion (thin line) and kaon (thick line) decay constants as
function of the temperature for the polynomial PL potential.
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the discrete to the continuum, known as Mott transition
[30,31]. From Fig. 3, one can see that both Mott temper-
atures are Tm ∼ 170 MeV. Above this temperature the
meson should not be described by a bound state, but as
a correlated state formed by a quark and an antiquark,
which will deconfine when the temperature increases
sufficiently.
It can be analytically proved and numerically checked

that the branch cuts in the complex plane, coming from the
momentum dependence of the nonlocal form factors,
vanish when T > Tm. In this region, meson masses are
lower than muq and therefore the necessary conditions
(ReðsÞ < 0 and ImðsÞ ¼ 0) do not hold. In other words,
contributions from the cuts to the loop integrals are nonzero
only when meson masses are discrete solutions of Eq. (11)
and larger than muq.
This section concludes with the analysis of the thermal

behavior of pseudoscalar meson decay constants, quoted in
Fig. 5, and mixing angles θ0 and θ8. For the former, we
see that pseudoscalar mesons with larger content of
strangeness present a decay constant with a more moderate
decrease after the transition. For the mixing angles, it is
seen (as in Ref. [10]) that above Tc, θ0 and θ8 tend to a
common value, the so-called “ideal” mixing angle
θideal ¼ tan−1

ffiffiffi
2

p
≃ 54.7°. This means that the η meson

becomes approximately nonstrange, while η0 approaches to
an s̄s pair. The fact that the mixing angles go to the “ideal”
value for large temperatures is related to the restoration of
the Uð1ÞA symmetry.

IV. T − μ PHASE DIAGRAM

In this section, we discuss the features of phase tran-
sitions in the T − μ plane for the nonlocal chiral quark
model introduced in Sec. II. The phase diagram can be
sketched by analyzing the numerical results obtained for
the relevant order parameters. In general, one can find
regions in which the chiral symmetry is either broken or
approximately restored through first-order or crossover
phase transitions, and phases in which the system remains
either in confined or deconfined states.
To study the QCD phase diagram, we improve the

analysis carried out in Refs. [8,32] for the dependence
of critical temperatures and chemical potentials with the
parameter T0, by comparing two complementary scenarios.
In the first one (say, situation A), we consider a constant
value, T0 ¼ 200 MeV; in the second (situation B), we
assume that T0 depends on the chemical potential accoding
to Eq. (4). The comparison between these two cases is
illustrated in Fig. 6, where we plot the subtracted chiral
condensate (solid line) and the trace of the Polyakov
loop (dashed line) as functions of the reduced chemical
potential μ=μχ , for a representative value of the temper-
ature, namely T ¼ 80 MeV. The results correspond to the
polynomial PL potential.

For relatively high temperatures, chiral restoration takes
place as a smooth crossover, whereas at low temperatures
the order parameter has a discontinuity at a given critical
chemical potential μχ signaling a first-order phase tran-
sition. This gap in the quark condensate induces also a
jump in the trace of the PL. The value of Φ at both sides of
the discontinuity indicate if the system remains confined
or not. As it was explained in Sec. II, values close to zero
or to one correspond to confinement or deconfinement,
respectively. From Fig. 6, we can see that, for the chosen
temperature T ¼ 80 MeV, at the critical chemical potential
μχ (μ=μχ ¼ 1) the value of Φ for situation B (thin dashed
line) is at least twice larger than for situation A (thick
dashed line). Moreover, in situation B the value can be
assumed to be high enough to consider that quarks are no
longer confined into hadrons, while in situation A, the
system remains in a confined phase in which chiral
symmetry is approximately restored. This difference
between both situations holds for all relevant values of
the temperature. Therefore, for a PL potential with T0 given
by Eq. (4), the chiral restoration and the confinement-
deconfinement transitions take place always simultane-
ously, in agreement with the analysis made in Refs. [13,15]
within a Polyakov-quark-meson model.
In heavy ion collisions, it is believed that before the

occurrence of the kinetic freeze out a mixed phase of quarks
and hadrons could exist [33]. As discussed above, a μ-
dependent T0 leads to a QCD phase diagram without such a
mixed phase. Therefore, we concentrate mainly on the case
of a constant T0, where for large densities and for a certain
temperature range, where the chiral symmetry is restored,
the trace of the Polyakov loop still indicates confinement.
As stated, for the deconfinement and chiral symmetry

restoration transitions we take as order parameters the
traced Polyakov loop Φ and the subtracted chiral con-
densate hq̄qisub, respectively. The associated susceptibil-
ities χΦ and χq are given by the derivatives

<
− qq

>
su

b 
,  

Φ

μ / μχ

<−qq>sub (case A)

<−qq>sub (case B)

Φ (case A)

Φ (case B)

0.60 0.80 1.00 1.20 1.40

 0

 0.2

 0.4

 0.6

 0.8

 1

FIG. 6. Trace of the Polyakov loop (dashed lines) and sub-
tracted chiral condensate (solid lines) as a function of μ=μχ , for
T ¼ 80 MeV. Thick and thin lines correspond to constant and
μ-dependent T0, respectively.
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χΦ ¼ dΦ
dT

and χq ¼
∂2ΩMF

∂m2
q

:

The associated critical temperatures Tχ and TΦ are
defined by the position of the peaks in the chiral suscep-
tibilities in the region where the transition occurs as a
smooth crossover.
When the chiral restoration occurs as a first-order phase

transition, the PL susceptibility present a divergent behav-
ior at the chiral critical temperature even when the order
parameter Φ remains close to zero. Therefore we need
another definition for the deconfinement critical temper-
atures in this region of the phase diagram. Here, we employ
the same prescription as in Ref [34], namely, we define the
critical temperature requiring that Φ takes a given value.
We choose a range between 0.3 and 0.5, which could be
taken as large enough to denote deconfinement.
At zero temperature, the chiral restoration occurs

through a first-order phase transition at a critical chemical
potential μχ ∼ 290 MeV. If we move, in the T − μ plane,
along the first-order phase transition curve, the critical
temperature rises from zero up to a critical end-point (CEP)
temperature TCEP, while the critical chemical potential
decreases from μχ to μCEP. Beyond this point, the chiral
restoration phase transition proceeds as a smooth crossover.
The numerical results (in MeV) for the CEP coordinates,
critical temperatures and densities are summarized in
Table III. The positions in the T, μ plane of these critical
points are similar to those obtained in Refs. [28,35] for
nlPNJL models with two dynamical quark flavors. In
addition, to the best of our knowledge, this work is the
first investigation within SU(3) nonlocal effective theories
on the study of the QCD phase diagram.
On the other hand, at zero chemical potential, when the

temperature increases, the system undergoes both chiral
restoration and deconfinement transitions at a critical
temperature of Tc ∼ 165 MeV, which proceed as smooth
crossovers, in agreement with lQCD. Moreover, in Ref. [2]
it is shown that the deconfinement temperature, defined by
the peak of the entropy of a static quark (which is related to
the Polyakov loop) coincides, within errors, with the chiral
restoration temperature.

However, for chemical potentials larger than μCEP these
transitions begin to separate. This can be seen in Fig. 7,
where we quote for some given values of μ the order
parameters for the deconfinement transition and the chiral
symmetry restoration as functions of the temperature,
plotted in dashed and solid lines respectively, for the
logarithmic (thin line) and polynomial (thick line) effective
potentials. In the upper panel, which corresponds to
μ ¼ 100 MeV, it is seen that the chiral and deconfinement
transitions proceed as smooth crossovers occurring at the
same critical temperature. When the chemical potential
becomes larger than μCEP (see Table III), the order
parameter for the chiral symmetry restoration has a dis-
continuity signaling a first-order phase transition. These

TABLE III. Critical temperatures and densities and CEP
coordinates for both PL effective potentials.

Logarithmic Polynomial

TCEP [MeV] 130 112
μCEP [MeV] 214 234

Tcðμ ¼ 0Þ [MeV] 163 169
Tχðμ ¼ 100Þ [MeV] 158 161
Tχðμ ¼ 250Þ [MeV] 108 98
Tχðμ ¼ 280Þ [MeV] 71 64
μχðT ¼ 0Þ [MeV] 293

<
− qq

>
su
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,  

Φ

<−qq>sub

Φ
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FIG. 7. Subtracted chiral condensate (solid line) and traced
Polyakov loop (dashed line) as functions of the temperature for
the logarithmic (polynomial) PL potential in thin (thick) lines.
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gap in the quark condensate induces also a jump in the
trace of the PL (see central and lower panels in Fig. 7,
where μ ¼ 250 MeV and μ ¼ 280 MeV, respectively).
The relatively low values ofΦ at the discontinuity indicate
that after the transition the system remains confined but in
a chiral symmetry restored state. The deconfinement
occurs at larger temperatures when the order parameter
becomes closer to one. The phase in which quarks remain
confined (signaled by Φ≲ 0.3) even though chiral sym-
metry has been restored is usually referred to as a
quarkyonic phase [36–38].
We quote in Fig. 8 the phase diagrams for the SUð3Þ

nonlocal PNJL model described in Sec. II considering both
logarithmic and polynomial PL potentials, on left and right
panels respectively. In solid (dashed) lines, we plot first-
order (crossover) phase transitions for the chiral symmetry
restoration, while the deconfinement transition lines
defined by Φ ¼ 0.3 and Φ ¼ 0.5 are plotted in dotted
lines. The dot denotes the position of the critical end point.
At a given chemical potential lower than μχ , when the

temperature increases one finds a transition from a hadronic
phase with broken chiral symmetry (BP), to a quarkyonic
phase (QP) where the chiral symmetry is restored but the
quarks are still confined into hadrons. If the temperature
continues raising, the deconfinement transition takes place
and one reaches a partonic phase in which the quarks are
deconfined and the chiral symmetry is restored (RP).
This section concludes with a partial and brief discussion

about the range of applicability of NJL models, mentioning
some possible extensions and the corresponding limitations
of this widely used effective theory.
One of the principal weakness of NJL-like models is the

absence of color confinement. This can be partially cured
by coupling the quark sector to the Polyakov-loop and

adjusting a suitable potential with a temperature depend-
ence that is fitted to pure gauge lattice QCD simulations.
Therefore, to investigate the robustness of nonlocal PNJL
models, one can modify the choice of the Polyakov-loop
potential, for instance taking into account developments
made in Refs. [39–41] or rather general prescriptions as in
Refs. [42,43].
Regarding quark interactions, the simplest version of the

NJL model only includes scalar and pseudoscalar inter-
actions. However, a more detailed description of the low-
energy quark dynamics requires other channels like flavor
mixing and vector meson interactions to be taken into
account.
In addition, another flaw of PNJL theories is related to the

steepness of the phase transitions at zero chemical potential
in the mean-field approximation [8]. This behavior may be
softened after the inclusion of mesonic corrections to the
euclidean action, since when the temperature is increased the
light mesons should be excited before the quarks. It is also
possible to produce nonperturbative results that go beyond
mean field through the optimized perturbation theory (OPT)
[44], commonly used in the context of NJL models (see [45]
and references therein). The main idea behind this formalism
is to perturb the original theory by the introduction of an
artificial expansion parameter, absent in the original theory.
This parameter is introduced in such a way that it interpolates
between the theory one wants to study and another theory
that one knows how to solve.
On the other hand, regarding the study of possible new

regions in the QCD phase diagram, some recent works have
considered that the chiral symmetry restoration at low
temperatures could be driven by the formation of nonuni-
form phases (see Ref. [46] for a review on the subject). In
previous works [47,48], we have analyzed the existence of

T
 [M

eV
] 

μ [MeV]

dΦ/dT

Φ = 0.3

Φ = 0.5

  0  50 100 150 200 250 300
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BP
QP

RP

μ [MeV]

dΦ/dT

Φ = 0.3

Φ = 0.5

  0  50 100 150 200 250 300 350

Polynomial
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QP
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  0

 25

 50

 75

100
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FIG. 8. Phase diagrams for logarithmic (left panel) and polynomial (right panel) PL potentials. The CEP is denoted by the dot. Dashed
and solid lines indicate crossover and first-order chiral transitions, respectively. Dotted lines correspond to deconfinement transitions.
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inhomogeneous condensates in the context of nonlocal
models by explicitly constructing the associated phase
diagrams in the mean-field approximation for a dual chiral
density wave [49]. In principle, a full analysis would
require to consider general spatial dependent condensates,
which turns out to be a very difficult task for an arbitrary
three-dimensional configuration. Instead, one could study,
for instance, a more general one-dimensional configuration.
In addition to the last point, at intermediate and large

chemical potentials effects of color superconductivity are
expected to be important. To study the corresponding QCD
phase diagram, it is necessary to introduce color super-
conducting interaction channels, namely diquark interactions.
It could be very interesting to explore the regions in the

phase diagram in which the corresponding color charged
condensates could have a nontrivial spatial dependence. In
this scenario, at high chemical potentials and low temper-
atures one would expect a competition between inhomo-
geneous phases arising from neutral and color charged
condensates.

V. SUMMARY AND CONCLUSIONS

Along this work we have studied light scalar and
pseudoscalar meson properties and the characteristics of
deconfinement and chiral restoration transitions in the
context of a three-flavor nonlocal chiral model. Gauge
interactions have been effectively introduced through a
coupling between quarks and a constant background color
gauge field, the Polyakov field, whereas gluons self-
interactions have been implemented through logarithmic
and polynomial effective Polyakov loop potentials. The
analysis done in this article should be endorsed as exten-
sions of previous works, Refs. [8,10].
Within this framework we have obtained a parametriza-

tion that reproduces lattice QCD results for the momentum
dependence of the effective quark mass and WFR, and at
the same time leads to an acceptable phenomenological
pattern for particle masses and decay constants in both
scalar and pseudoscalar meson sectors. In our calculations,
we have included the contributions from branch cuts in the
momentum complex plane that arise from the lattice
inspired nonlocal form factors.
As a second step, we have analyzed the temperature

dependence of several meson properties, like meson masses,

decay constants and mixing angles. As expected, it is found
that meson masses get increased beyond the chiral critical
temperature, becoming degenerated with their chiral part-
ners. The temperatures at which this happens depend on the
strange quark content of the corresponding mesons.
Meson masses and weak decay constants remain approx-

imately constant up to the critical chiral temperature. In
addition, light hadrons with strange degrees of freedom
present a decay constant with a less steep decrease.
Regarding the properties of the mixing angles, they tend
to converge to the so-called “ideal”mixing, which indicates
that the Uð1ÞA anomaly tends to vanish as the temperature
increases.
Finally, we study the characteristics of deconfinement

and chiral restoration transitions at finite temperature and
chemical potential. As expected, at zero μ, the model shows
a crossover phase transition, corresponding to the restora-
tion of the SU(2) chiral symmetry. The transition temper-
ature is found to be Tc ∼ 165 MeV, in very good agreement
with lattice results. In addition, one finds a deconfinement
phase transition, which occurs at the same critical temper-
ature. On the other hand, at zero temperature chiral
restoration takes place via a first-order transition at a
critical density μχ ∼ 290 MeV, in agreement with model
estimations [13,15,17,35,50–54].
For chemical potentials larger than μCEP, the critical

temperatures for the restoration of the chiral symmetry and
deconfinement transition begin to separate. The region
between them denotes a phase where the chiral symmetry
is restored but quarks remains confined, known as quarkyonic
phase. This splitting is stronglydependent of theparameterT0

entering in the PL potential. If we consider for this parameter
an explicit dependence with μ, both transitions are always
simultaneous, and therefore there is no such mixed phase, in
contradiction with some results from heavy-ion collisions.

ACKNOWLEDGMENTS

I would like to thank D. Gómez Dumm for a detailed
reading of the manuscript and N. N. Scoccola for helpful
discussions. This work has been partially supported by
CONICET under Grants No. P-UE 2016 “Búsqueda de
Nueva Física” and No. PIP12-449, and by the National
University of La Plata, Project No. X718.

[1] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[2] A. Bazavov, N. Brambilla, H.-T. Ding, P. Petreczky, H.-P.
Schadler, A. Vairo, and J. H. Weber, Phys. Rev. D 93,
114502 (2016).

[3] C. R.Allton, S. Ejiri, S. J. Hands, O.Kaczmarek, F. Karsch, E.
Laermann, and C. Schmidt, Phys. Rev. D 68, 014507 (2003).

[4] C. R. Allton, M. Doring, S. Ejiri, S. J. Hands, O. Kaczmarek,
F. Karsch, E. Laermann, and K. Redlich, Phys. Rev. D 71,
054508 (2005).

J. P. CARLOMAGNO PHYS. REV. D 97, 094012 (2018)

094012-10

https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1103/PhysRevD.93.114502
https://doi.org/10.1103/PhysRevD.93.114502
https://doi.org/10.1103/PhysRevD.68.014507
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.71.054508


[5] Z. Fodor and S. D. Katz, J. High Energy Phys. 04 (2004)
050.

[6] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, J. High
Energy Phys. 01 (2006) 089.

[7] F. Karsch and E. Laermann, in Quark Gluon Plasma, edited
by R. C. Hwa et al. (World Scientific, Singapore, 1995),
p. 1.

[8] J. P. Carlomagno, D. G. Dumm, and N. N. Scoccola, Phys.
Rev. D 88, 074034 (2013).

[9] S. Noguera and N. N. Scoccola, Phys. Rev. D 78, 114002
(2008).

[10] G. A. Contrera, D. G. Dumm, and N. N. Scoccola, Phys.
Rev. D 81, 054005 (2010).

[11] G. ’t Hooft, Nucl. Phys. B138, 1 (1978).
[12] A. M. Polyakov, Phys. Lett. 72B, 477 (1978).
[13] B. J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys.

Rev. D 76, 074023 (2007).
[14] M. Ciminale, R. Gatto, N. D. Ippolito, G. Nardulli, and M.

Ruggieri, Phys. Rev. D 77, 054023 (2008).
[15] T. K. Herbst, J. M. Pawlowski, and B. J. Schaefer, Phys.

Lett. B 696, 58 (2011).
[16] M. LeBellac, Thermal Field Theory (Cambridge University

Press, Cambridge, England, 1996).
[17] S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D 75,

034007 (2007).
[18] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73,

014019 (2006).
[19] O. Scavenius, A. Dumitru, and J. T. Lenaghan, Phys. Rev. C

66, 034903 (2002).
[20] A. Scarpettini, D. Gómez Dumm, and N. N. Scoccola, Phys.

Rev. D 69, 114018 (2004).
[21] D. G. Dumm and N. N. Scoccola, Phys. Rev. D 65, 074021

(2002); Phys. Rev. C 72, 014909 (2005).
[22] D. Diakonov and M. Oswald, Phys. Rev. D 70, 105016

(2004).
[23] P. O. Bowman, U. M. Heller, and A. G. Williams, Phys. Rev.

D 66, 014505 (2002).
[24] S. Noguera, Int. J. Mod. Phys. E 16, 97 (2007).
[25] M. B. Parappilly, P. O. Bowman, U. M. Heller, D. B.

Leinweber, A. G. Williams, and J. B. Zhang, Phys. Rev.
D 73, 054504 (2006).

[26] T. Hell, K. Kashiwa, and W. Weise, Phys. Rev. D 83,
114008 (2011).

[27] M. F. I. Villafae, D. G. Dumm, and N. N. Scoccola, Phys.
Rev. D 94, 054003 (2016).

[28] J. P. Carlomagno, D. G. Dumm, V. Pagura, and N. N.
Scoccola, J. Phys. Conf. Ser. 630, 012049 (2015).

[29] V. L. Eletsky and B. L. Ioffe, Yad. Fiz. 48, 661 (1988) [Sov.
J. Nucl. Phys. 48, 384 (1988)].

[30] D. Blaschke, F. Reinholz, G. Ropke, and D. Kremp, Phys.
Lett. 151B, 439 (1985).

[31] J. Hufner, S. P. Klevansky, and P. Rehberg, Nucl. Phys.
A606, 260 (1996).

[32] V. Pagura, D. G. Dumm, and N. N. Scoccola, Phys. Lett. B
707, 76 (2012).

[33] L. Kumar, Mod. Phys. Lett. A 28, 1330033 (2013).
[34] G. A. Contrera, M. Orsaria, and N. N. Scoccola, Phys. Rev.

D 82, 054026 (2010).
[35] G. A. Contrera, A. G. Grunfeld, and D. B. Blaschke, Phys.

Part. Nucl. Lett. 11, 342 (2014).
[36] L.McLerran and R. D. Pisarski, Nucl. Phys.A796, 83 (2007).
[37] L. McLerran, K. Redlich, and C. Sasaki, Nucl. Phys. A824,

86 (2009).
[38] H. Abuki, R. Anglani, R. Gatto, G. Nardulli, and M.

Ruggieri, Phys. Rev. D 78, 034034 (2008).
[39] M. Ruggieri, P. Alba, P. Castorina, S. Plumari, C. Ratti, and

V. Greco, Phys. Rev. D 86, 054007 (2012).
[40] K. Fukushima andK.Kashiwa, Phys. Lett. B 723, 360 (2013).
[41] L. M. Haas, R. Stiele, J. Braun, J. M. Pawlowski, and J.

Schaffner-Bielich, Phys. Rev. D 87, 076004 (2013).
[42] C. Sasaki and K. Redlich, Phys. Rev. D 86, 014007 (2012).
[43] P. M. Lo, B. Friman, O. Kaczmarek, K. Redlich, and C.

Sasaki, Phys. Rev. D 88, 074502 (2013).
[44] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[45] J. L. Kneur, M. B. Pinto, and R. O. Ramos, Phys. Rev. C 81,

065205 (2010).
[46] M. Buballa and S. Carignano, Prog. Part. Nucl. Phys. 81, 39

(2015).
[47] J. P. Carlomagno, D. G. Dumm, and N. N. Scoccola, Phys.

Lett. B 745, 1 (2015).
[48] J. P. Carlomagno, D. G. Dumm, and N. N. Scoccola, Phys.

Rev. D 92, 056007 (2015).
[49] E. Nakano and T. Tatsumi, Phys. Rev. D 71, 114006 (2005).
[50] D. G. Dumm, D. B. Blaschke, A. G. Grunfeld, and N. N.

Scoccola, Phys. Rev. D 73, 114019 (2006).
[51] D. G. Dumm, D. B. Blaschke, A. G. Grunfeld, and N. N.

Scoccola, Phys. Rev. D 78, 114021 (2008).
[52] G. A. Contrera, M. Orsaria, and N. N. Scoccola, Int. J. Mod.

Phys. D 19, 1703 (2010).
[53] D. Blaschke, D. E. A. Castillo, S. Benic, G. Contrera, and R.

Lastowiecki, Proc. Sci. ConfinementX, (2012) 249, arXiv:
1302.6275.

[54] R. Stiele and J. Schaffner-Bielich, Phys. Rev. D 93, 094014
(2016).

MESON PROPERTIES AND PHASE DIAGRAMS IN A … PHYS. REV. D 97, 094012 (2018)

094012-11

https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2006/01/089
https://doi.org/10.1088/1126-6708/2006/01/089
https://doi.org/10.1103/PhysRevD.88.074034
https://doi.org/10.1103/PhysRevD.88.074034
https://doi.org/10.1103/PhysRevD.78.114002
https://doi.org/10.1103/PhysRevD.78.114002
https://doi.org/10.1103/PhysRevD.81.054005
https://doi.org/10.1103/PhysRevD.81.054005
https://doi.org/10.1016/0550-3213(78)90153-0
https://doi.org/10.1016/0370-2693(78)90737-2
https://doi.org/10.1103/PhysRevD.76.074023
https://doi.org/10.1103/PhysRevD.76.074023
https://doi.org/10.1103/PhysRevD.77.054023
https://doi.org/10.1016/j.physletb.2010.12.003
https://doi.org/10.1016/j.physletb.2010.12.003
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.75.034007
https://doi.org/10.1103/PhysRevD.73.014019
https://doi.org/10.1103/PhysRevD.73.014019
https://doi.org/10.1103/PhysRevC.66.034903
https://doi.org/10.1103/PhysRevC.66.034903
https://doi.org/10.1103/PhysRevD.69.114018
https://doi.org/10.1103/PhysRevD.69.114018
https://doi.org/10.1103/PhysRevD.65.074021
https://doi.org/10.1103/PhysRevD.65.074021
https://doi.org/10.1103/PhysRevC.72.014909
https://doi.org/10.1103/PhysRevD.70.105016
https://doi.org/10.1103/PhysRevD.70.105016
https://doi.org/10.1103/PhysRevD.66.014505
https://doi.org/10.1103/PhysRevD.66.014505
https://doi.org/10.1142/S021830130700565X
https://doi.org/10.1103/PhysRevD.73.054504
https://doi.org/10.1103/PhysRevD.73.054504
https://doi.org/10.1103/PhysRevD.83.114008
https://doi.org/10.1103/PhysRevD.83.114008
https://doi.org/10.1103/PhysRevD.94.054003
https://doi.org/10.1103/PhysRevD.94.054003
https://doi.org/10.1088/1742-6596/630/1/012049
https://doi.org/10.1016/0370-2693(85)91673-9
https://doi.org/10.1016/0370-2693(85)91673-9
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/0375-9474(96)00206-0
https://doi.org/10.1016/j.physletb.2011.11.064
https://doi.org/10.1016/j.physletb.2011.11.064
https://doi.org/10.1142/S0217732313300334
https://doi.org/10.1103/PhysRevD.82.054026
https://doi.org/10.1103/PhysRevD.82.054026
https://doi.org/10.1134/S1547477114040128
https://doi.org/10.1134/S1547477114040128
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1016/j.nuclphysa.2009.04.001
https://doi.org/10.1016/j.nuclphysa.2009.04.001
https://doi.org/10.1103/PhysRevD.78.034034
https://doi.org/10.1103/PhysRevD.86.054007
https://doi.org/10.1016/j.physletb.2013.05.037
https://doi.org/10.1103/PhysRevD.87.076004
https://doi.org/10.1103/PhysRevD.86.014007
https://doi.org/10.1103/PhysRevD.88.074502
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevC.81.065205
https://doi.org/10.1103/PhysRevC.81.065205
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1016/j.physletb.2015.04.023
https://doi.org/10.1016/j.physletb.2015.04.023
https://doi.org/10.1103/PhysRevD.92.056007
https://doi.org/10.1103/PhysRevD.92.056007
https://doi.org/10.1103/PhysRevD.71.114006
https://doi.org/10.1103/PhysRevD.73.114019
https://doi.org/10.1103/PhysRevD.78.114021
https://doi.org/10.1142/S0218271810017718
https://doi.org/10.1142/S0218271810017718
http://arXiv.org/abs/1302.6275
http://arXiv.org/abs/1302.6275
https://doi.org/10.1103/PhysRevD.93.094014
https://doi.org/10.1103/PhysRevD.93.094014

