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We apply the newly developed theory of permutation-symmetric Oð6Þ hyperspherical harmonics to the
quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark
potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of
coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in
terms of (i) a few interaction-dependentOð6Þ expansion coefficients and (ii) Oð6Þ hyperspherical harmonics
matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to
the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of
standard Ansätze for the confining potentials, such as the Y- and Δ-string ones. We present analytic formulas
for the K ¼ 2, 3, 4, 5 shell states’ eigenenergies in homogeneous three-body potentials, which we then apply
to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for
power-law pairwise potentials with the exponent ranging between −1 and þ2. In the process, we resolve the
25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K ¼ 3 shell,
in favor of the former. Finally, we show the first clear difference between the spectra of Δ- and Y-string
potentials, which appears in K ≥ 3 shells. Our results are generally valid, not just for confining potentials but
also for many momentum-independent permutation-symmetric homogenous potentials that need not be
pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable
under the Oð6Þ hyperangular integral, the class of which, however, does not include the Dirac δ function.
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I. INTRODUCTION

The nonrelativistic three-quark system has been the basis
of our understanding of baryon spectroscopy for more than
50 years; of course, this model also has many limitations,
its nonrelativistic character being just one of several. After
the November 1974 discovery of charmed hadrons, the
nonrelativistic nature stopped being a detriment, at least in
the case of heavy quarks. There are, of course, still only
comparatively few heavy-quark baryons in Particle Data
Group tables, and fewest of all are the triple-heavy ones.
That circumstance will not prevent us from trying to
understand them, however. Indeed, even if there were no
heavy-quark baryons at all, it would still be an important
systematic question to answer, if for no other reason than to
have a definite benchmark against which to compare
relativistic calculations.
Chronologically, at first, all calculations were done with

a harmonic oscillator potential, due to its integrability,
but with passing time, other “more realistic” potentials,
such as the pairwise sum of the Coulomb and linearly rising
two-body potentials plus various forms of “strong hyper-
fine” interactions, have been used in numerical

calculations. Such calculations generally involve uncon-
trolled, sometimes drastic, approximations, such as the
introduction of cutoff(s), due to the contact nature of the
strong hyperfine interactions, thus leaving open many
questions about the level ordering, convergence, and even
existence of energy spectra in such calculations [1].
In this, the third in a series of papers, we show that the

nonrelativistic three-quark problem does have a well-
defined spectrum for a class of (homogeneous) potentials
that includes the “standard” confinement potentials. This
development is based on two previous (sets of) papers:
(1) Refs. [8,9], wherein the three-body permutation sym-
metry-adapted Oð6Þ hyperspherical harmonics were con-
structed, and (2) Ref. [10], wherein we applied the said
permutation symmetry-adapted Oð6Þ hyperspherical har-
monics to the problem of three nonrelativistic identical
particles in a homogeneous potential. Here, we present a
mathematically well-defined method for solving the three-
heavy quarks problem, together with several examples: the
K ¼ 0;…; 5 shells. These examples turn out to be (very)
instructive, as they clearly mark out the region of appli-
cability of our method.
In spite of the huge amount of literature on the

quantum-mechanical three-body bound-state problem, in
which the hyperspherical harmonics play a prominent role,*isalom@ipb.ac.rs
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Refs. [11–14], there are still many open problems related to
the general structure of the three-body bound-state spec-
trum (e.g., the ordering of states, even in the simplest case
of three identical particles). [15] The core of the existing
difficulties can be traced back to the absence of a systematic
construction of permutation-symmetric three-body wave
functions. Until recently, see Refs. [8,9], permutation-
adapted three-body hyperspherical harmonics in three
dimensions were known explicitly only in a few special
cases, such as those with total orbital angular momentum
L ¼ 0, 1, Refs. [13,16].
In this paper, we confine ourselves to the study of

factorizable (into hyper-radial and hyperangular parts)
three-body potentials that are square integrable [17] (in
hyperangles) for technical reasons; for this class of poten-
tials, our method allows closed-form (“analytical”) results,
at sufficiently small values of the grand angular momentum
K (i.e., up to and including the K ≤ 8 shell). Factorizable
potentials include homogenous potentials, which in turn
include pairwise sums of two-body power-law potentials,
such as the linear (confining) “Δ-string,” “Y-string”
[19,20], and Coulomb potentials. Lattice QCD studies
[21–23] suggest that three static quarks potential is a
(linear) combination of the aforementioned three.
Singular potentials, such as the (strong, or electromag-

netic) hyperfine interactions, that include the Dirac δ
function, even though homogeneous, do not fall into the
class of potentials susceptible to this method, as they are
not square integrable; therefore, they require special atten-
tion and will be treated elsewhere. The spin-orbit potentials
generally involve both the spin and the spatial variables for
their permutation invariance, which requires special tech-
niques. Simple inhomogenous potentials can only be
treated numerically, however, using our method.
Strictly speaking, our (present) results are applicable

only to three-equal-heavy quark systems, not one of which
has been created in experiment, thus far (which does not
mean that some are not forthcoming). This condition limits
the method’s applicability to c3 and b3 baryons only. Of
course, in these two cases, there is no flavor multiplicity,
and we may drop the SUFSð6Þ and SUFð3Þ labels.
Nevertheless, we have kept the full SUFSð6Þ and
SUFð3Þ labels, in the hope that in the future the present
methods can and will be extended to (a) two identical and
one distinct heavy-quark systems, such as the c2b and b2c,
and (b) (semi)relativistic three-light quark systems.
This paper is divided into six sections and two

Appendices. After the present Introduction, in Sec. II,
we show how the Schrödinger equation for three particles
in a homogenous/factorizable potential can be reduced to a
single differential equation and an algebraic/numerical
problem for their coupling strengths. In Sec. III, we defined
the Y-string and Δ-string, the QCD Coulomb, and the
logarithmic potentials and calculated the four lowest Oð6Þ
hyperspherical harmonics expansion coefficients that are

relevant to K ≤ 5 shell states. In Sec. IV, we calculate the
K ¼ 2, 3, 4, 5 shells’ level splittings in terms of four
parameters that characterize the three-body potential. In
Sec. V, we discuss our results, and in Sec. VI, we
summarize and draw conclusions. The details of calcula-
tions are shown in Appendix B.

II. THREE-BODY PROBLEM IN
HYPERSPHERICAL COORDINATES

In this section, we shall closely follow the treatment of the
nonrelativistic three-body problem presented in Ref. [10].
The three-body wave functionΨðρ; λÞ can be transcribed

from the Euclidean relative position (Jacobi) vectors
ρ¼ 1ffiffi

2
p ðx1−x2Þ, λ ¼ 1ffiffi

6
p ðx1 þ x2 − 2x3Þ, into hyperspher-

ical coordinates as ΨðR;Ω5Þ, where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

p
is the

hyper-radius and five angles Ω5 that parametrize a hyper-
sphere in the six-dimensional Euclidean space. Three
(Φi; i ¼ 1, 2, 3) of these five angles (Ω5) are just the
Euler angles associated with the orientation in a three-
dimensional space of a spatial reference frame defined by
the (plane of) three bodies; the remaining two hyperangles
describe the shape of the triangle subtended by three
bodies; they are functions of three independent scalar
three-body variables, e.g., ρ · λ, ρ2, and λ2. As we saw
above, one linear combination of the two variables ρ2 and
λ2 is already taken by the hyper-radius R, so the shape
space is two dimensional, and topologically equivalent to
the surface of a three-dimensional sphere.
There are two traditional ways to parametrize this

sphere: (1) the standard Delves choice [11] of hyperangles
ðχ; θÞ, which somewhat obscures the full S3 permutation
symmetry of the problem, and (2) the Iwai, Ref. [14],
hyperangles ðα;ϕÞ: ðsin αÞ2 ¼ 1 − ð2ρ×λR2 Þ2, tanϕ ¼ ð 2ρ·λ

ρ2−λ2Þ,
reveal the full S3 permutation symmetry of the problem: the
angle α does not change under permutations, so all
permutation properties are encoded in the ϕ dependence
of the wave functions. We shall use the latter choice, as it
leads to permutation-adapted hyperspherical harmonics, as
explained in Refs. [8,9], in which specific hyperspherical
harmonics used here are displayed.
We expand the wave function ΨðR;Ω5Þ in terms

of hyperspherical harmonics YK
½m�ðΩ5Þ, ΨðR;Ω5Þ ¼P

K;½m�ψK
½m�ðRÞYK

½m�ðΩ5Þ, where K together with ½m� ¼
½Q; ν; L; Lz ¼ m� constitutes the complete set of hyper-
spherical quantum numbers: K is the hyperspherical
angular momentum, L is the (total orbital) angular momen-
tum, Lz ¼ m its projection on the z axis, Q is the Abelian
quantum number conjugated with the Iwai angle ϕ, and ν is
the multiplicity label that distinguishes between hyper-
spherical harmonics with the remaining four quantum
numbers that are identical; see Ref. [8,9].
The hyperspherical harmonics turn the Schrödinger

equation into a set of (infinitely) many coupled equations,
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−
1

2μ

�
d2

dR2
þ 5

R
d
dR

−
KðKþ 4Þ

R2
þ 2μE

�
ψK
½m�ðRÞ

þ VeffðRÞ
X
K0;½m0�

CKK0
½m�½m0�ψ

K0
½m0�ðRÞ ¼ 0; ð1Þ

with a hyperangular coupling coefficients matrix CKK0
½m�½m0�

defined by

VeffðRÞCK0K
½m0�½m� ¼ hYK0

½m0�ðΩ5ÞjVðR; α;ϕÞjYK
½m�ðΩ5Þi

¼ VðRÞhYK0
½m0�ðΩ5ÞjVðα;ϕÞjYK

½m�ðΩ5Þi: ð2Þ

Factorizability of the potential is a simplifying assumption
that leads to analytic results in the energy spectrum. It holds
for several physically interesting potentials, such as power-
law ones, but also other homogeneous ones; see Sec. III.
Unfortunately, the sum (and difference) of two factorizable
potentials is generally not factorizable itself.
In Eq. (1), we used the factorizability of the potential

VðR; α;ϕÞ ¼ VðRÞVðα;ϕÞ to reduce this set to one
(common) hyper-radial Schrödinger equation. The hyper-
angular part Vðα;ϕÞ can be expanded in terms of Oð6Þ
hyperspherical harmonics with zero angular momenta
L¼m¼ 0 (due to the rotational invariance of the potential),

Vðα;ϕÞ ¼
X∞
K;Q

v3−bodyK;Q YKQν
00 ðα;ϕÞ; ð3Þ

where

v3−bodyK;Q ¼
Z

YKQν�
00 ðΩ5ÞVðα;ϕÞdΩð5Þ; ð4Þ

leading to

VeffðRÞCK00K0
½m00�½m0�

¼ VðRÞ
X∞
K;Q

v3−bodyK;Q hYK00
½m00�ðΩ5ÞjYKQν

00 ðα;ϕÞjYK0
½m0�ðΩ5Þi

ð5Þ

There is no summation over the multiplicity index in
Eq. (3) because no multiplicity arises for harmonics with

L < 2. Here, we separate out the K ¼ 0 term and absorb the

factor
v3−body
00

π
ffiffi
π

p into the definition of VeffðRÞ ¼ v3−body
00

π
ffiffi
π

p VðRÞ to
find

CK00K0
½m00�½m0� ¼ δK00;K0δ½m00�;½m0� þ π

ffiffiffi
π

p X∞
K>0;Q

v3−bodyK;Q

v3−body00

× hYK00
½m00�ðΩ5ÞjYKQν

00 ðα;ϕÞjYK0
½m0�ðΩ5Þi: ð6Þ

Homogenous potentials, such as the Δ- and Y-string
ones, which are linear in R, and the Coulomb one, see
Sec. III for the definition of these potentials, have the first
coefficient v3−body00 in the hyperspherical harmonic expan-
sion that is generally (at least) 1 order of magnitude larger
than the rest v3−bodyK>0;Q ; see Table I and Fig. 1. This reflects the
fact that, on average, these potentials depend more on the
overall size of the system than on its shape, thus justifying
the adiabatic (perturbative) approach taken in Ref. [6], with
the first term in Eq. (6) taken as the zeroth-order approxi-
mation [24].
In such cases, Eq. (1) decouple, leading to zeroth-order

solutions for ψK
0½m�ðRÞ that are independent of [m] and thus

TABLE I. Expansion coefficients vKQ of the Y- and Δ-string as well as of the Coulomb and logarithmic potentials
in terms of Oð6Þ hyperspherical harmonics YK;0;0

0;0 , for K ¼ 0, 4, 8, 12, respectively, and of the hyperspherical

harmonics Y6;�6;0
0;0 .

ðK;QÞ vKQ (Y-central) vKQ (Y-string) vKQðΔÞ vKQ (Coulomb) vKQ (Log)

(0,0) 8.18 8.22 16.04 20.04 −6.58
(4,0) −0.443 −0.398 −0.445 2.93 −1.21
ð6;�6Þ 0 −0.027 −0.14 1.88 −0.56
(8,0) −0.064 −0.064 −0.04 1.41 −0.33
(12,0) −0.01 −0.01 0 0 −0.17

FIG. 1. The graphs of the ratios vϵ4;0=v
ϵ
00 (green, solid), v

ϵ
6;6=v

ϵ
00

(red, dotted), vϵ8;0=v
ϵ
00 (magenta, short dashes), and vϵ12;0=v

ϵ
00

(blue, long dashes) (listed in the decreasing order) as functions of
the power ϵ in the potential Eq. (22). One can see the tendency of
the higher-order coefficients to diminish with an increasing value
of index K.
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have equal energies within the same K shell and different
energies in different K shells. Two known exceptions are
potentials with the homogeneity degree k ¼ −1; 2, which
lead to “accidental degeneracies” and have to be treated
separately.
The first-order corrections are obtained by diagonaliza-

tion of the block matrices CKK
½m�½m0�, K ¼ 1; 2;…, while the

off-diagonal couplings CKK0
½m�½m0�, K ≠ K0 appear only in the

second-order corrections. Rather than calculating pertur-
bative first-order energy shifts, a better approximation is
obtained when the diagonalized block matrices are plugged
back into Eq. (1), and equations then decouple into a set of
(separate) individual ordinary differential equations in one
variable, which differ only in the value of the effective
coupling constant,

�
d2

dR2
þ 5

R
d
dR

−
KðKþ 4Þ

R2
þ 2μðE − VK

½md�ðRÞÞ
�

× ψK
½md�ðRÞ ¼ 0; ð7Þ

where VK
½md�ðRÞ ¼ CK

½md�VeffðRÞ, with CK
½md� being the eigen-

values of matrix CKK
½m�½m0�.

The spectrum of three-body systems in homogenous
potentials, such as those considered in Refs. [8,9], is now
reduced to finding the eigenvalues of a single differential
operator, just as in the two-body problem with a radial
potential. The matrix elements in Eq. (6) can be readily
evaluated using the permutation-symmetric Oð6Þ hyper-
spherical harmonics and the integrals that are spelled out
in Refs. [8,9].
This is the main (algebraic) result of this section:

combined with the hyperspherical harmonics recently
obtained in Refs. [8,9], it allows one to evaluate the
discrete part of the (energy) spectrum of a three-body
potential as a function of its shape-sphere harmonic
expansion coefficients v3−bodyK;Q . Generally, these matrix
elements obey selection rules: they are subject to the
“triangular” conditions K0 þ K00 ≥ K ≥ jK0 − K00j plus the
condition that K0 þ K00 þ K ¼ 0; 2; 4;…, and the angular
momenta satisfy the selection rules: L0 ¼ L00, m0 ¼ m00.
Moreover, Q is an Abelian (i.e., additive) quantum number
that satisfies the simple selection rule: Q00 ¼ Q0 þQ. That
reduces the sum in Eq. (6) to a finite one, which depends on
a finite number of coefficients v3−bodyK;Q ; for small values of
K, this number is also small.
A matrix such as that in Eq. (6) is generally sparse in the

permutation-symmetric basis, so its diagonalization is not a
serious problem, and for sufficiently small K values, it can
even be accomplished in closed form; for example, for
K ≤ 5, all results depend only on four coefficients (v00, v40,
v6�6, and v80), and there is at most three-state mixing, so
the eigenvalue equations are at most cubic ones, with well-
known solutions. As there is only a small probability that

many states from the K ≥ 6 shells will be observed in the
foreseeable future, we limit ourselves to K ≤ 5 shells here.

III. THREE-BODY SPIN-INDEPENDENT
POTENTIALS

A. Lattice QCD three static quarks potential

Lattice QCD calculations indicate that the confining
interactions among quarks do not depend on the quarks’
spin and flavor degrees of freedom.
There have been several attempts at extracting the three-

quark potential from lattice QCD over the years; see
Refs. [21–23]. They were based on lattices of different
sizes, 123 × 24 at β ¼ 5.7 and 163 × 32 at β ¼ 5.8, 6.0 in
Ref. [21], 163 × 32 at β ¼ 5.8, 6.0 in Ref. [22], and 244 at
β ¼ 5.7, 5.8, 6.0 in Ref. [23]. Moreover, Refs. [21,22] use
the Wilson loop techniques, whereas Ref. [23] uses the
Polyakov loop. Their conclusions also differ markedly:
Ref. [21] “supports the Y Ansatz,” Ref. [22] “finds support
for the Δ Ansatz,” and the most recent Ref. [23] finds that
the “potentials of triangle geometries are clearly different
from the half of the sum of the two-body quark-antiquark
potential,” i.e., suggesting that is not the Δ Ansatz. All of
these indicate that the lattice QCD potential is neither a
pure Y Ansatz nor a pure Δ Ansatz.
A detailed analysis [25] of the Ref. [21] and Ref. [23]

published data in terms of hyperspherical coordinates has
shown that these two groups have calculated the potential
(mostly) in very different geometric configurations, the
overlap of which is small so that neither calculation is
conclusive.
It stands to reason that the definitive QCD prediction is a

linear superposition of the two Ansätze and the QCD
Coulomb term, but at this stage, it is impossible to evaluate
the lattice QCD potential’sOð6Þ expansion coefficients due
to the dearth of evaluated points on the hypersphere.
For this reason, we shall analyze both Ansätze, separately,

in addition to the QCD Coulomb potential, which is a must.
Finally, we shall also consider the logarithmic potential,
which can be thought of as the best homogeneous-potential
approximation to the sum of the Coulomb and the linearly
rising potential.
As stated in Sec. II above, any spin-independent three-

body potential must be invariant under overall (ordinary)
rotations, as it is a scalar; i.e., it contains only the zero-
angular momentum hyperspherical components, which sig-
nificantly simplifies the expansion of the potential in Oð6Þ
hyperspherical harmonics. Below, we shall calculate these
expansion coefficients in several homogeneous potentials.

B. Y-string and other area-dependent potentials

The complexity of the full Y-string potential, defined by

VY-string ¼ σYmin
x0

X3
i¼1

jxi − x0j; ð8Þ
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can best be seen when expressed in terms of three-body
Jacobi (relative) coordinates ρ and λ, as follows. The full
Y-string potential, Eq. (8), consists of the so-called central
Y-string, or “Mercedes Benz-string,” term,

VY-central ¼ σY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðρ2 þ λ2 þ 2jρ × λjÞ

r
; ð9Þ

which is valid when8>>>>><
>>>>>:

2ρ2 −
ffiffiffi
3

p
ρ · λ ≥ −ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λ

q
2ρ2 þ ffiffiffi

3
p

ρ · λ ≥ −ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λ

q
3λ2 − ρ2 ≥ − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ 3λ2Þ2 − 12ðρ · λÞ2

p
;

ð10Þ

and three other angle-dependent two-body string, also
called V-string terms; see Eqs. (A1a)–(A1c).
Because of the complexity of conditions in Eqs. (10)

and (A1a)–(A1c) and of the difficulties related to their
implementation in calculations, there was a widespread
lack of use of the full Y-string potential (8) in comparison to
its dominant part, the central Y-string potential VY-central. In
our hyperspherical harmonics approach, however, both the
full Y-string potential and its central part are treated in
the same manner (just as the rest of the potentials) and
present no significant mathematical obstacles. Both the
central and the full Y-string potentials are decomposed
into hyperspherical harmonics, and the resulting decom-
position coefficients turn out close to each other, which
renders VY-central a good approximation to the full Y-string
potential.
However, there is a physical reason that favors retaining

only the central part of the Y-string potential over taking
account of the full potential: namely, the central Y-string
potential VY-central, Eq. (9), has an exact dynamical Oð2Þ
symmetry, unlike the full potential, Eq. (8). To demonstrate
this, we first show that the VY-central is a function of both
Delves-Simonov hyperangles ðχ; θÞ,

VY-centralðR; χ; θÞ ¼ σYR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1þ sin 2χj sin θjÞ

r
; ð11Þ

but a function of only one Smith-Iwai hyperangle—the
“polar angle” α,

VY-centralðR; α;ϕÞ ¼ σYR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1þ j cos αjÞ

r
: ð12Þ

This independence of the “azimuthal” Smith-Iwai hyper-
angle ϕ means that the associated component Q of the
hyperangular momentum (as in Ref. [8]) is a constant of the
motion. As this is actually a feature of the jρ × λj term
that is proportional to the area of the triangle subtended
by the three quarks, the property is thus shared by all

area-dependent potentials, such as the central part of the Y
string, Refs. [19].
The expansion (3) of the central Y-string potential (12) in

hyperspherical harmonics

VY-centralðR; α;ϕÞ

¼ σYR

ffiffiffi
3

2

r X∞
K¼0;4;…

vYK0Y
K0ν
00 ðα;ϕÞ

≡ VY
effðRÞ

�
1þ vY40

vY00
π
ffiffiffi
π

p
Y40

000ðα;ϕÞ þ � � �
�
; ð13Þ

where vYKQ are defined in Eq. (4), runs over Oð6Þ hyper-
spherical harmonics with K ¼ 0; 4; 8;… and zero value of
the democracy quantum number Q ¼ 0, as well as vanish-
ing angular momentum L ¼ m ¼ 0 [26]. The numerical
values are tabulated in Table I.
On the contrary, the expansion of the full Y-string

potential (8) has additional terms with K ¼ 0ðmod 6Þ,Q ¼
0ðmod 6Þ that spoil the dynamical Oð2Þ symmetry of the
potential in Eq. (9). These terms are much smaller than the
corresponding terms in the Δ-string, QCD Coulomb, and
logarithmic potentials, see Table I, and may therefore be
neglected, in leading approximation, with impunity. In
Appendix A, we illustrate how to evaluate the coefficient
vY-stringK¼6;Q¼�6 and show its value in Table I.

C. QCD Coulomb potential

The QCD Coulomb potential Eq. (14) is attractive in all
three pairs, unlike the electromagnetic one; in terms of
Jacobi vectors, it reads

VCoulomb ¼ −αC
X3
i>j¼1

jxi − xjj−1: ð14Þ

VCoulomb ¼ −αC

0
B@ 1ffiffiffiffiffiffiffi

2ρ2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

q

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

q
1
CA: ð15Þ

The Coulomb potential’s hyperspherical expansion is

VCoulombðR; α;ϕÞ ¼ VCoulombðRÞVCoulombðα;ϕÞ

¼ VCoulombðRÞ
X∞
K;Q

vCoulomb
K;Q YKQν

00 ðα;ϕÞ;

ð16Þ
where VCoulombðRÞ ¼ −αC=R and the expansion coeffi-
cients vCoulomb

K;Q are defined by the Coulomb analog of
Eq. (4) and are tabulated in Table I.
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We note that this and any other permutation-symmetric
sum of two-body potentials (with the sole exception of
the harmonic oscillator) has a specific “triple-periodic”
azimuthal ϕ hyperangular dependence with the angular
period of 2

3
π. That provides additional selection rules for

the “democracy quantum number” Q-dependent terms in
this expansion, besides the K ¼ 0; 4;… rule for Q ¼ 0
terms discussed above:

X∞
KQ

vΔKQY
KQν
00 ðα;ϕÞ ¼

X∞
K¼0;4;…

vΔK0Y
K0ν
00 ðα;ϕÞ

þ
X∞

K;Q¼�6

vΔKQY
KQν
00 ðα;ϕÞ

þ
X∞

K;Q¼�12

vΔKQY
KQν
00 ðα;ϕÞ

þ � � � ð17Þ

Note that the values of all quantum numbers here are
double those in two spatial dimensions (D ¼ 2), [20]. This
has to do with the different integration measures for D ¼ 2
and D ¼ 3 hyperspherical harmonics.

D. Δ-string potential

The Δ-string potential

VΔ ¼ σΔ
X3
i>j¼1

jxi − xjj; ð18Þ

written out in terms of Jacobi vectors reads

VΔ ¼ σΔ

� ffiffiffiffiffiffiffi
2ρ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

r �
: ð19Þ

The Δ-string potential (19) in terms of Iwai-Smith
angles reads

VΔðR; α;ϕÞ ¼ σΔR

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinðαÞ sin

�
π

6
− ϕ

�s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinðαÞ sin

�
ϕþ π

6

�s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinðαÞ cosðϕÞ

p !
: ð20Þ

To find the general hyperspherical harmonic expansion of
the Δ-string potential, we note that it factors into the hyper-
radial VΔðRÞ ¼ σΔR and the hyperangular part VΔðα;ϕÞ,

VΔðR; α;ϕÞ ¼ VΔðRÞVΔðα;ϕÞ

¼ VΔðRÞ
X∞
K;Q

vΔK;QY
KQν
00 ðα;ϕÞ; ð21Þ

where the expansion coefficients vΔK;Q are defined by the Δ
analog of Eq. (4) and are tabulated in Table I.

E. General pairwise power-law potential

Infinitely many permutation-symmetric sums of two-
body power-law potentials have the generic form of
Eq. (18) with different exponents ϵ; i.e., both the
Coulomb and the Δ-string potentials are two special cases
of the more general attractive homogeneous potential,

Vϵ ¼ sgnðϵÞσϵ
X3
i>j¼1

jxi − xjjϵ

¼ sgnðϵÞσϵ
�
ð2ρ2Þϵ=2 þ

�
1

2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

�
ϵ=2

þ
�
1

2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

�
ϵ=2
�
; ð22Þ

where sgnðϵÞ ¼ ϵ=jϵj. Note that in the special case of the
harmonic oscillator potential (ϵ ¼ 2) the above form degen-
erates into an expression proportional to ρ2 þ λ2 ¼ R2.
In Fig. 1, we display the graphs of four ratios of

hyperspherical expansion coefficients as functions of the
exponent ϵ. There, one can see that these coefficients
depend smoothly on the exponent ϵ and that they uniformly
decrease with the increasing value of index K, in this class
of potentials. Numerical values of five expansion coeffi-
cients of potentials VY, VΔ, VCoulomb, and VLog are shown
in Table I.

F. Logarithmic potential

The logarithmic potential

VLog ¼ σLog
X3
i>j¼1

logðjxi − xjjÞ ð23Þ

has a divergent short-distance and a steadily rising long-
distance part; thence, it can be thought of as a linear
combination of the QCD Coulomb (with a homogeneity
index α ¼ −1) and a linear confining potential (with a
homogeneity index α ¼ 1), with a common homogeneity
index equal to 0: α ¼ 0. Note that this homogeneity
condition boils down to an additive, rather than multipli-
cative, factorization of the potential:

VLogðR; α;ϕÞ ¼ VLogðRÞ þ VLogðα;ϕÞ

¼ VLogðRÞ þ
X∞
K;Q

vLogK;QY
KQν
00 ðα;ϕÞ: ð24Þ
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The logarithmic potential has been used with great
success in the heavy quark-antiquark two-body problem;
it reproduces the remarkable mass independence of the
cc̄ − J=Ψ and bb̄ − Υ spectra. It has not been used in the
three-quark problem at all, to our knowledge.

IV. RESULTS

In the following, we present the K ¼ 0;…; 5 shells’
energy spectra, for two reasons: (1) both as an example of
the kind of results that one may expect as K increases and
in order to settle some long-standing issues regarding the
K ¼ 3 shell [6,7,27] and (2) as an illustration of the
methods, see Appendix B, that were used in their calcu-
lation. With regard to 2, we note that these examples are all
purely algebraic, in the sense that no numerical calculations
were necessary, but that ceases to be the case as K increases
beyond K > 8, at first only for certain subsets of states and,
ultimately, for all states.
Wenote thatwe have already reported at a conference [28]

some of the K ¼ 4 shell results, albeit without derivation.

A. K= 0, 1, 2 shells

The K ¼ 0, 1 bands are affected only by the v00
coefficient, so they need not be treated separately here,
whereas the K ¼ 2 band is affected by the v00 and v40
coefficients. The calculated energy splittings of K ¼ 2 shell
states depend only on the SU(6) multiplets,

½20; 1þ� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½70; 0þ� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40

�

½70; 2þ� 1

π
ffiffiffi
π

p
�
v00 −

1

5
ffiffiffi
3

p v40

�

½56; 2þ� 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

5
v40

�
; ð25Þ

and the resulting spectrum is shown in Fig. 2. Our main
concern is the energy splitting pattern among the states
within the K ¼ 2 hyperspherical Oð6Þ multiplet. The
hyper-radial matrix elements of the linear hyper-radial
potential are identical for all the (hyper-radial ground)
states in one K band. Therefore, as is well known, the
energy differences among various substates of a particular
K band multiplet are integer multiples of the energy
splitting “unit” ΔK ¼ 1

π
ffiffi
π

p ð 1

5
ffiffi
3

p − 1ffiffi
3

p Þv40 ¼ − 1
π
ffiffi
π

p 4

5
ffiffi
3

p v40.

Note, however, that this kind of spectrum is subject to
the condition v00 ≠ 0.

B. K= 3 shell

With the area-dependent (i.e., ϕ-independent) central Y-
string potential VY-central, Eq. (9), in three dimensions, we

find that the each SUð6Þ, or S3 multiplet in the K ¼ 3 band
has one of four possible energies shown in Eqs. (26)
with vY-central6�6 ¼ 0.
Upon introduction of the ϕ-dependent two-body

“V-string” potentials VV-string, Eqs. (A1a)–(A1c) into the

full Y string, the vY-string6�6 coefficient becomes ≠ 0. After
diagonalization of the C½K0�;½K� matrix, one finds further
splittings among the previously degenerate states ½70; 1−�,
½56; 3−�, and ½20; 3−� as well as among ½70; 3−�, ½56; 1−�,
and ½20; 1−�,

½20; 1−� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40 −
2

7
v66

�

½56; 1−� 1

π
ffiffiffi
π

p
�
v00 þ

1ffiffiffi
3

p v40 þ
2

7
v66

�

½70; 1−� 1

π
ffiffiffi
π

p ðv00Þ

½70; 2−� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½70; 3−� 1

π
ffiffiffi
π

p
�
v00 −

1ffiffiffi
3

p v40

�

½20; 3−� 1

π
ffiffiffi
π

p
�
v00 −

ffiffiffi
3

p

7
v40 − v66

�

½56; 3−� 1

π
ffiffiffi
π

p
�
v00 −

ffiffiffi
3

p

7
v40 þ v66

�
; ð26Þ

where our v66 < 0 is negative and Richard and Taxil’s is
positive. These results are displayed in Fig. 3.
For the K ¼ 3 band in three dimensions, the energy

splittings have been calculated by Bowler et al. [7,27] for
two-body anharmonic potentials perturbing the harmonic
oscillator and confirmed and clarified by Richard and Taxil,
Ref. [6], in the hyperspherical formalism with linear two-
body potentials (the Δ string).
In hindsight, Richard and Taxil’s Ref. [6] separation of

V4ðRÞ and V6ðRÞ potentials’ contributions is particularly
illuminating: the former corresponds precisely to our

FIG. 2. The K ¼ 2 spectrum of both the YandΔ strings in three
dimensions.
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“ϕ-independent” term v40, and the latter corresponds to the
“ϕ-dependent” potential’s contribution to v66.
As both the central Y string and the Δ string contain

the former, whereas only the Δ string contains the latter, we
see that the latter is the source of different degeneracies/
splittings in the spectra of these two types of poten-
tials [29].

C. K= 4 shell

The SUð6Þ, or S3 multiplets in the K ¼ 4 band have one
of the following 12 values of the diagonalized C matrix
CK
½md� ×

v00
π
ffiffi
π

p , from which one can evaluate the eigenenergies.

We use the baryon-spectroscopic notation ½dim; LP�, where
dim is the dimension of the SUFSð6Þ representation and the
correspondence with the representations of the permutation
group S3 is given as 70 ↔ M, 20 ↔ A, 56 ↔ S,
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ð27Þ

The Δ-string results are shown in Fig. 4. Again, as the
third coefficient v6�6 vanishes in the central Y-string
potential VY-central (which is without two-body terms),
or as it is roughly ten times smaller than usual, in the
full Y-string potential VY-string, the (second) observable
difference between Y-string and Δ-string potentials shows
up in the magnitude of splitting between the pairs of
½70; 2þ�; ½700; 2þ� and ½70; 4þ�; ½700; 4þ� levels: the Y-string
states are ordered as shown in the third (v6�6 ¼ 0) column
in Fig. 4. As explained earlier, the vanishing of v6�6 follows
from the central Y-string potential’s independence of the
Iwai angle ϕ, i.e., from the dynamical “kinematic rotations/
democracy transformations” Oð2Þ symmetry [19,20] asso-
ciated with it.
Numerical results for other potentials are shown in

Table II. Table II shows that the ordering of K ¼ 4 states
is not universally valid even for the (convex) potentials
considered here; note that, although the three highest-lying
multiplets always come from the same set (½70; 3þ�;
½56; 2þ�; ½20; 3þ�; ½700; 4þ�; see Fig. 4), their orderings are
different in these potentials. That, of course, is a conse-
quence of different ratios v40=v00, v6�6=v00, and v80=v00.
This goes to show that one cannot expect strongly restric-
tive ordering theorems to hold for three-body systems, as
they hold in the two-body problem, Ref. [2]. Nevertheless,
even the present results are useful, as they indicate that
certain sets of multiplets are jointly lifted, or depressed,
as a single group in the spectrum, with ordering within
the group being subject to the detailed structure of the
potential.
Of course, similar conclusions hold also for K ¼ 3

spectrum splitting but are less pronounced, as that shell

FIG. 3. Schematic representation of the K ¼ 3 band in the
energy spectrum of the Δ-string potential in three dimensions,
following Ref. [6]. The sizes of the two splittings (the vΔ40-
induced Δ and the subsequent vΔ6�6-induced splitting) are not on
the same scale, the latter having been increased, so as to be clearly
visible. The Δ here is the same as the Δ in the K ¼ 2 band.
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depends only on two numbers: the ratios v40=v00 and
v6�6=v00. As the difference between Δ and Y-string
potentials is most pronounced in the value of v6�6, that
is the case in which the distinction between these two
potentials is most clearly seen.
On the phenomenological side, some eigenenergies of

three quarks in the K ¼ 4 shell have been calculated in
Ref. [30] using a variational method based on harmonic
oscillator wave functions. These calculations included the
Δ-string, Y-string, and Coulomb potentials, all at once, as
well as a relativistic kinetic energy [this kinetic energy
violates theOð6Þ symmetry]. Each one of these three terms
in the potential is homogenous, but their sum is not—
therefore, the individual contributions of these terms to the
total/potential energy cannot be compared directly with the
results of their separate calculations. Moreover, each term
in the Hamiltonian breaks the Oð6Þ symmetry differently,
thus inducing different splittings of energy spectra. These
facts prevent us from directly comparing our results with
Ref. [30], but the overall trend for groups of states seem to
be in agreement with our results; see Table II for
comparison.

D. K= 5 shell

With a ϕ-independent central Y-string potential in three
dimensions, we find that each SUð6Þ, or S3 multiplet in the
K ¼ 5 band has one of four of 15 different energies. Upon
introduction of a ϕ-dependent (“two-body”) component of

the potential, proportional to v66, and upon diagonalization
of the C½K0�;½K� matrix, one finds four new splittings between
previously degenerate states, (1) ½56; 2−�; ½20; 2−�; (2) ½560;
4−�; ½200; 4−�; (3) ½70; 1−�; ½700; 1−�; and (4) ½70; 5−�;
½700; 5−�, as well as three nondegenerate states of which
the energies are shifted by v66. These algebraic results are
summarized in
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FIG. 4. Schematic representation of the K ¼ 4 band in the
energy spectrum of three quarks in the Δ-string potential.

TABLE II. The values of effective potentials in the Y-,Δ-string,
and (strong) Coulomb potentials for various K ¼ 4 states (for all
allowed orbital waves L).

K ½SUð6Þ; LP� hVY=σYi hVΔ=σΔi −hVC=αCi
4 ½56; 0þ� 1.45921 2.87122 3.82554
4 ½70; 0þ� 1.39729 2.80996 4.11043
4 ½70; 1þ� 1.47483 2.88587 3.48449
4 ½56; 2þ� 1.51372 2.92453 3.36709
4 ½20; 2þ� 1.47483 2.88587 3.48449
4 ½70; 2þ� 1.44997 2.87749 4.13184
4 ½700; 2þ� 1.43052 2.82683 3.49379
4 ½70; 3þ� 1.51906 2.92963 3.281
4 ½20; 3þ� 1.50137 2.91213 3.36239
4 ½56; 4þ� 1.4187 2.83095 3.94783
4 ½70; 4þ� 1.44036 2.85066 3.3656
4 ½700; 4þ� 1.49938 2.91178 3.81992
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The numerical results for three different potentials are
displayed in Table III, whereas in Table IV we show the
results for the Δ-string potential, with this potential's
different multipole contributions separated and graphically
displayed in Fig. 5.

TABLE III. The values of the effective potential matrix ele-
ments for the Y-, Δ-string, and (strong) Coulomb potentials and
various K ¼ 5 states (for all allowed orbital waves L).

K ½SUð6Þ; LP� hVY=σYi hVΔ=σΔi −hVC=αCi
5 ½70; 1−� 1.39729 2.80778 2.55667
5 ½700; 1−� 1.46442 2.87829 2.85542
5 ½56; 1−� 1.44898 2.87055 2.46858
5 ½20; 1−� 1.44898 2.85059 2.5953
5 ½70; 2−� 1.49547 2.90629 2.32887
5 ½20; 2−� 1.47483 2.87091 2.47611
5 ½56; 2−� 1.47483 2.90084 2.28602
5 ½70; 3−� 1.46682 2.84167 2.41462
5 ½700; 3−� 1.44037 2.8887 2.30016
5 ½7000; 3−� 1.5103 2.92104 2.67414
5 ½56; 3−� 1.44031 2.82915 2.84424
5 ½20; 3−� 1.44031 2.87571 2.54855
5 ½70; 4−� 1.49547 2.90629 2.32887
5 ½56; 4−� 1.52299 2.93685 2.23815
5 ½20; 4−� 1.52299 2.93020 2.28039
5 ½70; 5−� 1.50797 2.91991 2.75234
5 ½700; 5−� 1.41405 2.82520 2.30772
5 ½56; 5−� 1.44788 2.84623 2.63735
5 ½20; 5−� 1.44788 2.87283 2.46839

TABLE IV. The values of the effective three-body Δ-string
potential divided by the string tension σΔ, hVΔðv0;0; v4;0;
v6;6; v8;0Þ=σΔi, as a function of the expansion coefficients
ðv0;0; v4;0; v6;6; v8;0Þ, for various K ¼ 5 states (for all allowed
orbital waves L). Here, hVΔðAÞ=σΔi ¼ hVΔðv0;0; v4;0 ≠ 0 ¼
v6;6 ¼ v8;0Þ=σΔi, and hVΔðBÞ=σΔi ¼ hVΔðv0;0; v4;0; v8;0 ≠ 0 ¼
v6;6Þ=σΔi.
K ½SUð6Þ; LP� hVΔðAÞ=σΔi hVΔðBÞ=σΔi hVΔ=σΔi
5 ½70; 1−� 2.8124 2.80996 2.80778
5 ½700; 1−� 2.88099 2.87611 2.87829
5 ½56; 1−� 2.85813 2.86057 2.87055
5 ½20; 1−� 2.85813 2.86057 2.85059
5 ½70; 2−� 2.90385 2.90629 2.90629
5 ½56; 2−� 2.88099 2.88587 2.87091
5 ½20; 2−� 2.88099 2.88587 2.90084
5 ½70; 3−� 2.85051 2.85214 2.84167
5 ½700; 3−� 2.87918 2.87827 2.8887
5 ½7000; 3−� 2.92091 2.921 2.92104
5 ½56; 3−� 2.85813 2.85243 2.82915
5 ½20; 3−� 2.85813 2.85243 2.87571
5 ½70; 4−� 2.90385 2.90629 2.90629
5 ½56; 4−� 2.93434 2.93352 2.93685
5 ½20; 4−� 2.93434 2.93352 2.93020
5 ½70; 5−� 2.91909 2.91872 2.91991
5 ½700; 5−� 2.82764 2.82639 2.82520
5 ½56; 5−� 2.85813 2.85953 2.84623
5 ½20; 5−� 2.85813 2.85953 2.87283

FIG. 5. Schematic representation of the K ¼ 5 band in the
energy spectrum of the Δ- and Y-string potentials in three
dimensions. The sizes of the two splittings (the vΔ40-induced Δ
and the subsequent vΔ80-induced splitting) are not on the same
scale. The Δ here is not the same as the Δ in the K ¼ 2 band.
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V. DISCUSSION AND COMPARISON WITH
PREVIOUS CALCULATIONS

The following points ought to be made:
(1) The present results are meant (only) as examples

of what can be done; these calculations can be
extended with K increasing ad infinitum, with the
help of Oð6Þ matrix elements that are functions of
Oð6Þ Clebsch-Gordan coefficients, which can be
found in Ref. [8]. This is subject to the proviso
that at some value of K the calculations must
become numerical.

(2) The algebraic results shown in Sec. IV do not hold
for the QCD Coulomb potential, as the QCD
Coulomb hyper-radial potential −αC=R Eq. (16)
has a dynamical Oð7Þ symmetry and therefore
accidental degeneracies are expected to appear. That
symmetry is broken by the hyperangular part of the
Coulomb three-body potential in a manner that still
remains to be explored.

(3) In the K ¼ 2 band/shell of the three-body energy
spectrum, the eigenenergies depend on two coef-
ficients ðv00; v40Þ, and the splittings among various
levels depend only on the (generally small) ratio
v40=v00. This means that the eigenenergies form a
fixed pattern (“ordering”) that does not depend on
the shape of the three-body potential. The actual
size of the K ¼ 2 shell energy splitting depends on
the small parameter v40=v00, provided that the
potential is permutation symmetric. This fact
was noticed almost 40 years ago, Refs. [31,32],
and it suggests that similar patterns might exist in
higher-K shells.
The practical advantage of permutation-adapted

hyperspherical harmonics over the conventional
ones is perhaps best illustrated here: the K ¼ 2
shell splittings in the Y- and Δ-string potentials
were obtained, after some complicated calculations
using conventional hyperspherical harmonics in
Ref. [33], whereas here they follow from the
calculation of four (simple) hyperangular matrix
elements.

(4) Historically, extensions of this kind of calculations
to higher (K ≥ 3) bands, for general three-body
potentials, turned out more problematic than ex-
pected; Bowler et al., Ref. [7], published a set of
predictions for the K ¼ 3, 4 bands, which were
later questioned by Richard and Taxil’s, Ref. [6],
K ¼ 3 hyperspherical harmonic calculation; see
also Refs. [30,34]. This controversy has not been
resolved up to the present day, to our knowledge,
so we address that problem first. In the K ¼ 3
case, the energies depend on three coefficients
(v00, v40, and v6�6), and there is no mixing of
multiplets, so all eigenenergies can be expressed in

a simple closed form that agrees with Ref. [6] and
depends on two small parameters v40=v00 and
v6�6=v00.
Note that the coefficient v6�6 vanishes in the

(simplified) central Y-string potential (without
two-body terms) and thus causes the first poten-
tially observable difference between Y- and Δ-
string potentials: the splittings between ½20; 1−�
and ½56; 1−� as well as between ½20; 3−� and
½56; 3−�. The actual value of v6�6 in the exact
Y-string potential is so small, so as to be negligible
compared with the other two coefficients, v00 and
v40, in its expansion.

(5) Note that from Eq. (7) it follows that there must
exist an upper limit on the values of the ratios
jv40=v00j ≤

ffiffiffi
3

p
, and from Eq. (8), it follows that

jv6�6=v00j ≤ 7=2. If these limits are exceeded, the
overall sign of the effective potential flips, and the
solution (motion) becomes unbound. This example
clearly shows the limitations of the present method.
However, the physically interesting potentials con-
sidered in Sec. III all satisfy inequalities v00 ≫ jv40j
and v00 ≫ jv6�6j, as can be seen in Table I and
Fig. 1, which shows that this method may be
applied here.

(6) The above points (2) and (3) display possible “fault
line(s)” in the predictions of the ordering of shells
with different values of K: in case v00 ¼ 0, the
K ¼ 0, 1 shells become unbound to leading (adia-
batic) order, and their binding becomes a question of
higher-order (nonadiabatic) effects.

(7) We shall not attempt a numerical prediction of triple-
heavy hyperon masses here, for the following
reasons: (a) the mass of heavy quark(s) mQ is not
precisely known in the three-quark environment;
(b) the QCD coupling constant αS is not known in
this environment; (c) the value of the effective string
tension σ is not known in this environment; and
(d) the spin-dependent interactions, which are not
included here, may significantly influence the re-
sults. Nevertheless, nothing prevents the interested
reader from inserting his/her favorite values of mQ,
αS, and σ into our formulas to obtain some definite
predictions.

(8) There are several possible straightforward exten-
sions of the present work: (a) to equal mass systems
with a relativistic kinematic energy and (b) to two
identical and one distinct quark systems. Both
extensions break the Oð6Þ symmetry further still
but can be treated within the present approach, with
certain caveats.

(9) Note that we have kept the full SUFð3Þ, SUFSð6Þ
notation for the three-quark states, even though
there can be only one flavor, with three identical
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heavy quarks. This is in order to keep maxi-
mum generality and to allow potential future
extension to relativistic light-quark systems
(cf. Refs. [30,34]).

(10) The present formalism allows a (mathematically
proper) extension of the Regge theory/trajectories
[35–37] to three-quark systems as well as an
extension of Birman-Schwinger’s results [38,39]
about the number of bound states of a Schrödinger
equation in a given potential.

(11) The present formalism allows an extension to atomic
and molecular physics, as well, albeit with signifi-
cant modifications: (a) atomic systems are subject to
Coulomb potential, which leads to a higher dynami-
cal symmetry, that needs to be taken into account,
and (b) molecular systems are bound by inhomog-
enous potentials, such as the Lennard-Jones one,
which must be treated differently.

VI. SUMMARY AND CONCLUSIONS

In summary, we have reduced the nonrelativistic (quan-
tum) three-identical body problem to a single ordinary
differential equation for the hyper-radial wave function
with coefficients multiplying the homogenous hyper-radial
potential that are determined entirely by Oð6Þ group-
theoretical arguments; see Refs. [8,9]. That equation can
be solved in the same way as the radial Schrödinger
equation in three dimensions. The breaking of the Oð6Þ
symmetry by the three-quark potential determines the
ordering of states within different shells in the energy
spectrum.
The dynamical Oð2Þ symmetry of the Y-string potential

was discovered in Ref. [19], with the permutation group
S3 ⊂ Oð2Þ as the subgroup of the dynamical Oð2Þ sym-
metry. The existence of an additional dynamical symmetry
strongly suggested an algebraic approach, such as that
used in two-dimensional space, in Ref. [20]. In three
dimensions, the hyperspherical symmetry group is Oð6Þ,
and the residual dynamical symmetry of the potential is
S3⊗ SOð3Þrot ⊂Oð2Þ⊗ SOð3Þrot ⊂Oð6Þ, where SOð3Þrot
is the rotational symmetry associated with the (total orbital)
angular momentum L. We showed how the energy eigen-
values can be calculated as functions of the three-body

potential’s (hyper)spherical harmonics expansion coeffi-
cients v3−bodyK;Q and Oð6Þ Clebsch-Gordan coefficients that
are evaluated in Ref. [8].
We have used these results to calculate the energy

splittings of various states [or SUFSð6Þ and S3 multiplets]
in the K ≤ 5 shells of the Y-, Δ-string, and Coulomb
potential spectra. The ordering of bound states has its most
immediate application in the physics of three confined
quarks, for which the question was raised originally,
Refs. [6,7,31,32]. We have shown that in the K ≥ 3 shells
a clear difference appears between the spectra of the Y- and
Δ-string models of confinement. That is also the first
explicit consequence of the dynamical Oð2Þ symmetry of
the Y-string potential.
We stress the algebraic nature of our results, as this

method can be used to obtain predictions for arbitrarily
large K values, the calculations of which must be numeri-
cal, however, as soon as the number of states that are mixed
exceeds 5.
The results presented here do not represent the outer

boundaries of applicability of our method but are rather just
illustrative examples, with a view to its application to
atomic, molecular, and nuclear physics.
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APPENDIX A: EVALUATION OF OBTUSE-
ANGLED TWO-BODY CONTRIBUTIONS

TO THE Y STRING

As stated in Sec. II, at obtuse angles (≥ 1200), there are
two-body contributions to the Y-string potential that break
the dynamical Oð2Þ symmetry of Eq. (12). Therefore, the
expansion coefficient vY-stringK¼6;Q¼�6 of the full potential is not

zero vY-string6;�6 ≠ 0.
Three angle-dependent two-body string in terms of

Jacobi vectors ρ, λ are, see Ref. [33],

VV-string ¼ σ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λÞ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λÞ

r �

when

8>>>>><
>>>>>:

2ρ2 −
ffiffiffi
3

p
ρ · λ ≥ −ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 − 2

ffiffiffi
3

p
ρ · λ

q
2ρ2 þ ffiffiffi

3
p

ρ · λ ≥ −ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 3λ2 þ 2

ffiffiffi
3

p
ρ · λ

q
3λ2 − ρ2 ≤ − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 þ 3λ2Þ2 − 12ðρ · λÞ2

p ðA1aÞ
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VV-string ¼ σ
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The Oð6Þ v6�6 coefficient is defined in Eq. (4),

vY-string6;�6 ¼
Z

Y6�6
00 ðΩ5ÞVY-stringðα;ϕÞdΩð5Þ; ðA2Þ

where the integration over dΩð5Þ is constrained by inequal-
ities (A1a)–(A1c) and

Y6;�6
00 ðα;ϕÞ ¼ 2

π3=2
R−6ðλ2 − ρ2 � 2iλ · ρÞ3

¼ ∓ 2i

π3=2
sin3 α exp ð∓ 3iϕÞ; ðA3Þ

which is equivalent, up to the normalization constant, to the
Oð3Þ spherical harmonics Y3;�3ðα;ϕÞ. Numerical evalu-
ation yields vY-string6;�6 ¼ −0.027, the value of which is
smaller than the subsequent coefficients in the expansion
of this potential; see Table I.

APPENDIX B: DETAILS OF CALCULATIONS

1. K= 2 shell

The calculated coefficients entering the effective poten-
tials for states with K ¼ 2 can be found in Table V.

2. K= 3 shell

The calculated effective potentials in states with of
K ¼ 3 and various values L are listed in Tables VI and VII.

3. K= 4 shell

The calculated effective potentials for states with
K ¼ 4 and various values of L are listed in Table VIII.

TABLE VII. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 3 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

3 ½20; 1−� ½20; 1−� −1
3 ½56; 1−� ½56; 1−� 1
3 ½20; 3−� ½20; 3−� − 2

7

3 ½56; 3−� ½56; 3−� 2
7

3 ½70; L−� ½70; L−� 0

TABLE VI. The values of the three-body potential hyper-
angular diagonal matrix elements hY4;0

00 iang, for various K ¼ 3
states (for all allowed orbital waves L).

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0
00 iang

3 ð3;∓ 3; 1; 1;�1Þ ½20; 1−� 1ffiffi
3

p

3 ð3;∓ 3; 1; 1;�1Þ ½56; 1−� 1ffiffi
3

p

3 ð3;�1; 1; 1;�3Þ ½70; 1−� 0
3 ð3;∓ 1; 2; 2;�5Þ ½70; 2−� − 1ffiffi

3
p

3 ð3;∓ 1; 3; 3;�2Þ ½70; 3−� 5
7
ffiffi
3

p

3 ð3;�3; 3; 3;∓ 6Þ ½56; 3−� −
ffiffi
3

p
7

3 ð3;�3; 3; 3;∓ 6Þ ½20; 3−� −
ffiffi
3

p
7

TABLE V. The values of the three-body potential hyperangular
matrix elements π

ffiffiffi
π

p hY4;0
00 iang, for various K ¼ 2 states (for all

allowed orbital waves L). The correspondence between the
irreducible representations ðS; A;MÞ of the S3 permutation group
and SUð6ÞFS symmetry multiplets (20,56,70) of the three-quark
system is as follows: S ↔ 56, A ↔ 20 and M ↔ 70.

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0
00 iang

2 ð2;−2; 0; 0; 0Þ ½70; 0þ� 1ffiffi
3

p

2 (2,0,2,2,0) ½56; 2þ� ffiffi
3

p
5

2 ð2;∓ 2; 2; 2;�3Þ ½70; 2þ� − 1

5
ffiffi
3

p

2 (2,0,1,1,0) ½20; 1þ� − 1ffiffi
3

p
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The selection rules that we have not derived fully, as of yet,
are as follows:
(1) the three-dimensional expansion of the potentials

goes in double-valued steps of K and Q, as com-
pared with the two-dimensional case; viz., K ¼ 0, 4,
8, 12 and K ¼ 6, Q ¼ 6 in three dimensions and
K ¼ 0, 2, 4, 6 and K ¼ 3,Q ¼ 3 in two dimensions.
The latter can be understood in terms of Oð3Þ
Clebsch-Gordan coefficients and spherical harmon-
ics, whereas the former can be understood in terms
of Oð6Þ Clebsch-Gordan coefficients, the properties
of which are not (well) known, however.

(2) The selection rules read Q≡ 0ðmod 6Þ and
K ≡ 0ðmod 4Þ, and the Clebsch-Gordan coefficients
demand Q ¼ jQf −Qij.

The ϕ-dependent (two-body) component in the three-
body potential, which is proportional to v6�6, enters the
K ¼ 4 spectrum, only through the off-diagonal matrix
elements of two pairs of mixed-symmetry ½70; LP�-plets;

the multiplet states j½70; Lþ�i and j½700; Lþ�i have identical
physical quantum numbers ðK;LPÞ, whereas the democ-
racy label Q is generally not a good quantum number in
permutation-symmetric three-body potentials, so it may be
expected to be broken, and the corresponding eigenstates to
mix under the influence of general permutation-symmetric
three-body potentials. That is precisely what happens when
the expansion coefficients v6�6 ≠ 0 do not vanish. In that
case, the two multiplets j½70; Lþ�i and j½700; Lþ�i mix, as
determined by the diagonalization of the 2 × 2 potential
matrix.

a. |[70;L + ]〉− |[700;L+ ]〉 mixing and the physical states

The three-body potential matrix in the Oð6Þ symmetric
states basis is nondiagonal in general; for example, for two
multiplets (jai, jbi) that have identical quantum numbers,
such as j½70; Lþ�i and j½700; Lþ�i, the potential matrix is
2 × 2 and can be written as

Va;b ¼
1

π
ffiffiffi
π

p
 
v00 þ ½v40hY4;0;0

00 ia þ v80hY8;0;0
00 ia� v6�6h2ℜeY6;�6;0

0;0 ia;b
v6�6h2ℜeY6;�6;0

0;0 ib;a v00 þ ½v40hY4;0;0
00 ib þ v80hY8;0;0

00 ib�

!
; ðB1Þ

where v00; v40; v80, and v6�6 are the hyperspherical ex-

pansion coefficients of the potential in question; hYK;0;0
00 ia

and hYK;0;0
00 ib are the Kth diagonal hyperangular matrix

elements for SOð6Þ states jai and jbi, respectively, that can
be read off from Table VIII; and h2ℜeY6;�6;0

0;0 ia;b is the off-
diagonal matrix element, from Table IX. Diagonalization is

accomplished by way of mixing the j½70; Lþ�ai and
j½70; Lþ�bi states,
j½70; Lþ�i ¼ cos θj½70; Lþ�ai þ sin θj½700; Lþ�bi;
j½700; Lþ�i ¼ − sin θj½70; Lþ�ai þ cos θj½700; Lþ�bi; ðB2Þ
the mixing angle θ being determined by

TABLE VIII. The values of the three-body potential hyperangular diagonal matrix elements hY4;0;0
00 iang and

hY8;0;0
00 iang, for various K ¼ 4 states (for all allowed orbital waves L).

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0;0
00 iang π

ffiffiffi
π

p hY8;0;0
00 iang

4 ð4;�4; 0; 0; 0Þ ½70; 0þ� ffiffi
3

p
2

1

2
ffiffi
5

p

4 (4,0,0,0,0) ½56; 0þ� 0 2ffiffi
5

p

4 ð4;�2; 1; 1;�2Þ ½70; 1þ� 0 − 1ffiffi
5

p

4 ð4; 0; 2; 2;∓ ffiffiffiffiffiffiffiffi
105

p Þ ½56; 2þ� − 12
ffiffi
3

p
35

ffiffi
5

p
7

4 ð4; 0; 2; 2;∓ ffiffiffiffiffiffiffiffi
105

p Þ ½20; 2þ� 0 − 1ffiffi
5

p

4 ð4;�2; 2; 2;�2Þ ½70; 2þ� 4
ffiffi
3

p
35

ffiffi
5

p
7

4 ð4;�4; 2; 2;∓ 3Þ ½700; 2þ� 2
ffiffi
3

p
7

− 1

7
ffiffi
5

p

4 ð4;∓ 2; 3; 3;�13Þ ½70; 3þ� − 5
ffiffi
3

p
14

1

14
ffiffi
5

p

4 (4,0,3,3,0) ½20; 3þ� − 3
ffiffi
3

p
14

−
ffiffi
5

p
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4 (4,0,4,4,0) ½56; 4þ� 5
ffiffi
3

p
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3

14
ffiffi
5

p

4 ð4;∓ 2; 4; 4;�5Þ ½70; 4þ� 3
ffiffi
3

p
14

−
ffiffi
5

p
42

4 ð4;∓ 4; 4; 4;�10Þ ½700; 4þ� − 3
ffiffi
3

p
14

1

42
ffiffi
5

p
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tan2θ

¼ 2v6�6h2ℜeY6;�6;0
0;0 ia;b

½v40hY4;0;0
00 iaþv80hY8;0;0

00 ia�− ½v40hY4;0;0
00 ibþv80hY8;0;0

00 ib�
:

ðB3Þ

The (diagonal) eigenvalues of the potential matrix

Va;b ¼
�
a c

c d

�
ðB4Þ

can also be expressed in terms of the matrix elements
ða; c; dÞ as

V� ¼ 1

2
ðaþ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 2adþ 4c2 þ d2

p
Þ;

and that leads to, for the [70, 4]-plets,

V�ð½70; 4�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

1

42
ffiffiffi
5

p ð−2v80

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1215v240 − 54

ffiffiffiffiffi
15

p
v40v80 þ 9v280 þ 1280v26�6

q
Þ
�

and, for the [70, 2]-plets,

V�ð½70;2�Þ¼
1

π
ffiffiffi
π

p
�
v00þ

1

35
ð7

ffiffiffi
3

p
v40þ2

ffiffiffi
5

p
v80

�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3v240−2

ffiffiffiffiffi
15

p
v40v80þ5v280þ120v26�6

q
Þ
�
;

where b ¼ v40, c ¼ v80, and d ¼ v6�6.

TABLE X. The values of the three-body potential hyperangular diagonal matrix elements hY4;0;0
00 iang, hY8;0;0

00 iang,
and π

ffiffiffi
π

p h2ℜeY6;�6;0
00 iang for various K ¼ 5 SU(6) multiplets (with orbital angular momentum L ¼ J). States

containing one or more asterisks (�) are subject to mixing described in the text.

K ðK;Q; L;M; νÞ ½SUð6Þ; LP� π
ffiffiffi
π

p hY4;0;0
00 iang π

ffiffiffi
π

p hY8;0;0
00 iang π

ffiffiffi
π

p h2ℜeY6;�6;0
00 iang

5 ð5;−5; 1; 1; 1Þ ½70; 1−� ffiffi
3

p
2

1

2
ffiffi
5

p �
5 ð5;−1; 1; 1; 3Þ ½700; 1−� 0 1ffiffi

5
p �

5 ð5;−3; 1; 1;−5Þ ½56; 1−� 1

2
ffiffi
3

p − 1

2
ffiffi
5

p − 2
5

5 ð5;−3; 1; 1;−5Þ ½20; 1−� 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 2
5

5 ð5;−1; 2; 2;−13Þ ½70; 2−� − 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 0

5 ð5;−3; 2; 2; 3Þ ½56; 2−� 0 − 1ffiffi
5

p − 3
5

5 ð5;−3; 2; 2; 3Þ ½20; 2−� 0 − 1ffiffi
5

p 3
5

5 ð5;−5; 3; 3; 6Þ ½70; 3−� 2

3
ffiffi
3

p − 1

3
ffiffi
5

p ��
5 ð5;−1; 3; 3; 7 − ffiffiffiffiffiffiffiffi

241
p Þ ½700; 3−� − 5

12
ffiffi
3

p þ 85

12
ffiffiffiffiffiffi
723

p 241þ19
ffiffiffiffiffiffi
241

p
2892

ffiffi
5

p ��
5 ð5;−1; 3; 3; 7þ ffiffiffiffiffiffiffiffi

241
p Þ ½7000; 3−� − 5ð241þ17

ffiffiffiffiffiffi
241

p Þ
2892

ffiffi
3

p 241−19
ffiffiffiffiffiffi
241

p
2892

ffiffi
5

p ��
5 ð5;−3; 3; 3; 0Þ ½56; 3−� 1

2
ffiffi
3

p 7

6
ffiffi
5

p 14
15

5 ð5;−3; 3; 3; 0Þ ½20; 3−� 1

2
ffiffi
3

p 7

6
ffiffi
5

p − 14
15

5 ð5;−1; 4; 4; 8Þ ½70; 4−� − 1

2
ffiffi
3

p − 1

2
ffiffi
5

p 0

5 ð5;−3; 4; 4; 24Þ ½56; 4−� − 7

6
ffiffi
3

p 1

6
ffiffi
5

p − 2
15

5 ð5;−3; 4; 4; 24Þ ½20; 4−� − 7

6
ffiffi
3

p 1

6
ffiffi
5

p 2
15

5 ð5;−5; 5; 5; 15Þ ½70; 5−� − 5

6
ffiffi
3

p
ffiffi
5

p
66

� � �
5 ð5;−1; 5; 5; 3Þ ½700; 5−� 7

6
ffiffi
3

p 17

66
ffiffi
5

p � � �
5 ð5;−3; 5; 5; 9Þ ½56; 5−� 1

2
ffiffi
3

p − 19

66
ffiffi
5

p 8
15

5 ð5;−3; 5; 5; 9Þ ½20; 5−� 1

2
ffiffi
3

p − 19

66
ffiffi
5

p − 8
15

TABLE IX. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 4 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

4 ½70; 2þ� ½700; 2þ� 6
7

ffiffi
6
5

q
4 ½700; 2þ� ½70; 2þ� 6

7

ffiffi
6
5

q
4 ½70; 4þ� ½700; 4þ� 8

21

4 ½700; 4þ� ½70; 4þ� 8
21

4 ½20; Lþ� ½20; Lþ� 0
4 ½56; Lþ� ½56; Lþ� 0
4 ½20; Lþ� ½56; Lþ� 0
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4. K= 5 shell

The calculated effective potentials of states with K ¼ 5
and various values of L are listed in Tables X,XI, and XII.
The ϕ-dependent (two-body) potential component pro-

portional to v6�6 enters these effective potentials in two
ways: (1) through diagonal matrix elements in Table XI,
causing the splitting of symmetric ½56; LP� and antisym-
metric ½20; LP� multiplets, as in the K ¼ 3 case, and
(2) through off-diagonal matrix elements in Table XII,
causing further splitting of two mixed-symmetry ½70; LP�-
plets, as in the K ¼ 4 case. Just as in Appendix B 3 a, the
three-body potential matrix in the Oð6Þ symmetric states
basis is nondiagonal in general and can be diagonalized in
the same manner.

a. Two-state |[70;LP]〉− |[700;LP]〉 mixing

Diagonalization of the 2 × 2 matrices proceeds by way of
mixing of the j½70; Lþ�ai, and j½70; Lþ�bi states, as deter-
mined by Eq. (B2), and the mixing angle θ being given by
Eq. (B3). The (diagonal) eigenvalues of the potential matrix
Eq. (B4) can also be expressed in terms of thematrix elements
and that leads to, for the ½70; 5−�-plets, see Table XII,

V�ð½70; 5�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

18
v40 þ

ffiffiffi
5

p

30
v80þ

�
ffiffiffi
5

p

165

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1815v240 þ 66

ffiffiffiffiffi
15

p
v40v80 þ 9v280 þ 968v26�6

q �

and, for the ½70; 1−�-plets, see Table XII,

V�ð½70; 1�Þ

¼ 1

π
ffiffiffi
π

p
�
v00 þ

ffiffiffi
3

p

4
v40 þ

3
ffiffiffi
5

p

20
v80

� 1

20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75v240 − 10

ffiffiffiffiffi
15

p
v40v80 þ 5v280 þ 96v26�6

q �
;

where b ¼ v40, c ¼ v80, and d ¼ v6�6.

b. Three-state |[70;3− ]〉− |[700;3− ]〉− |[7000;3 − ]〉 mixing

In the L ¼ 3 case, the mixing potential matrix is 3 × 3
(see Table XII)

Va;b ¼

0
B@

α δ 0

δ β ϵ

0 ϵ γ

1
CA: ðB5Þ

Its eigenvalues can also be expressed in terms of the matrix
elements ðα; β; γ; δ; ϵÞ as follows,

Vð½70; 3−�Þ ¼ 1

3
ðαþ β þ γÞ þ 1

3
ffiffiffi
3

p
2
A −

ffiffiffi
3

p
2

3A
I ðB6Þ

Vð½700; 3−�Þ ¼ 1

3
ðαþ β þ γÞ − ð1 − i

ffiffiffi
3

p Þ
6
ffiffiffi
3

p
2

Aþ ð1þ i
ffiffiffi
3

p Þ
3
ffiffiffi
3

p
4A

I

ðB7Þ

Vð½7000;3−�Þ ¼ 1

3
ðαþ βþ γÞ− ð1− i

ffiffiffi
3

p Þ
6
ffiffiffi
3

p
2

Aþ ð1þ i
ffiffiffi
3

p Þ
3
ffiffiffi
3

p
4A

I;

ðB8Þ

where C and D have been separated into the unperturbed
(ϵ ¼ δ ¼ 0) part and the perturbation—collect the δ2 þ ϵ2

terms together:

TABLE XI. The values of the diagonal matrix elements of the
hyperangular part of the three-body potential hYðK;Qf; L;
M; νfÞj2ℜeY6;�6;0

0;0 jYðK;Qi; L;M; νiÞiang, for various K ¼ 5

states (for all allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

5 ½56; 1−� ½56; 1−� − 2
5

5 ½20; 1−� ½20; 1−� 2
5

5 ½56; 2−� ½56; 2−� 3
5

5 ½20; 2−� ½20; 2−� − 3
5

5 ½56; 3−� ½56; 3−� 14
15

5 ½20; 3−� ½20; 3−� − 14
15

5 ½56; 4−� ½56; 4−� − 2
15

5 ½20; 4−� ½20; 4−� 2
15

5 ½56; 5−� ½56; 5−� 8
15

5 ½20; 5−� ½20; 5−� − 8
15

TABLE XII. The values of the off-diagonal matrix elements of
the hyperangular part of the three-body potential π

ffiffiffi
π

p h½SUð6Þf;
LP
f �j2ℜeY6;�6;0

0;0 j½SUð6Þi; LP
i �iang, for various K ¼ 5 states (for all

allowed orbital waves L).

K ½SUð6Þf; LP
f � ½SUð6Þi; LP

i � π
ffiffiffi
π

p h2ℜeY6;�6;0
0;0 iang

5 ½70; 1−� ½700; 1−� ffiffi
6

p
5

5 ½700; 1−� ½70; 1−� ffiffi
6

p
5

5 ½70; 3−� ½700; 3−� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139
450

þ 2131

450
ffiffiffiffiffiffi
241

p
q

5 ½700; 3−� ½70; 3−� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
139
450

þ 2131

450
ffiffiffiffiffiffi
241

p
q

5 ½70; 3−� ½7000; 3−� − 1
15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
482

ð33499 − 2131
ffiffiffiffiffiffiffiffi
241

p Þ
q

5 ½7000; 3−� ½70; 3−� − 1
15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
482

ð33499 − 2131
ffiffiffiffiffiffiffiffi
241

p Þ
q

5 ½70; 5−� ½700; 5−� 2
3

ffiffi
2
5

q
5 ½700; 5−� ½70; 5−� 2

3

ffiffi
2
5

q
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C ¼ 2α3 þ 2β3 þ 2γ3 − 3ðβ þ γÞðβγ þ α2Þ − 3ðβ2 þ γ2Þαþ 12αβγ

þ 9½ðδ2 − 2ϵ2Þαþ γðϵ2 − 2δ2Þ þ βðϵ2 þ δ2Þ� ðB9Þ

D ¼ 4I3 þ C2 ðB10Þ

I ¼ ð−α2 − β2 − γ2 þ βαþ γαþ βγÞ − 3ðδ2 þ ϵ2Þ: ðB11Þ

Here,

α ¼ 1

π
ffiffiffi
π

p
�
v00 −

�
5

12
ffiffiffi
3

p −
85

12
ffiffiffiffiffiffiffiffi
723

p
�
v40 þ

241þ 19
ffiffiffiffiffiffiffiffi
241

p

2892
ffiffiffi
5

p v80

�

β ¼ 1

π
ffiffiffi
π

p
�
v00 þ

2

3
ffiffiffi
3

p v40 þ −
1

3
ffiffiffi
5

p v80

�

γ ¼ 1

π
ffiffiffi
π

p
�
v00 −

5ð241 − 17
ffiffiffiffiffiffiffiffi
241

p Þ
2892

ffiffiffi
3

p v40 þ
241 − 19

ffiffiffiffiffiffiffiffi
241

p

2892
ffiffiffi
5

p v80

�

δ ¼ 1

π
ffiffiffi
π

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

139

450
þ 2131

450
ffiffiffiffiffiffiffiffi
241

p
s

v66

!

ϵ ¼ 1

π
ffiffiffi
π

p
�
−

1

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

482
ð33499 − 2131

ffiffiffiffiffiffiffiffi
241

p
Þ

r
v66

�
:

These formulas are manifestly rather cumbersome, and they do not offer much new insight into the problem that could not
be gained by a (simpler) numerical calculation. Clearly, there is no advantage to having explicit algebraic expressions for
this kind of quantity. As K increases to K ≥ 6, the number of mixing multiplets can only increase, as can the number of
states within invariant subspaces.
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