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Sum rules for the low-energy constants of the chiral SU(3) Lagrangian with charmed baryons of spin
JP =1/2% and J¥ = 3/27 baryons are derived from large-N, QCD. We consider the large-N,_ operator
expansion at subleading orders for current-current correlation functions in the charmed baryon-ground

states for two scalar and two axial-vector currents.

DOI: 10.1103/PhysRevD.97.094004

I. INTRODUCTION

The dependence of the charmed baryon masses on
the up, down and strange quark masses encodes useful
information on the coupled-channel interaction dynamics of
the Goldstone bosons with such baryon states [1-8]. Lattice
QCD simulations for the baryon masses at unphysical quark
masses are particularly useful [9-14] since they complement
the well-known values for the masses of the charmed baryon
ground states at physical quark masses [15].

An accurate flavor SU(3) chiral extrapolation of the
baryon ground states with zero charm content was estab-
lished in a series of works [16-20]. Based on the chiral
Lagrangian formulated with spin 1/2 and 3/2 fields, the
available lattice data on the baryon masses were reproduced
and accurate predictions for the size of the low-energy
parameters relevant at N°LO were made [20]. The success of
such analyses relies on two crucial ingredients. First, the
chiral expansion is formulated in terms of physical meson
and baryon masses rather than bare masses as is requested by
traditional chiral perturbation theory (yPT). Second, the
flood of low-energy constants that arises at subleading
orders is tamed by sum rules for the latter as they arise in
the limit of a large number of colors (N,) in QCD [20,21].
The large-N . sum rules provide a large parameter reduction
that allowed fits at N*LO to the lattice data set that are
significant. A corresponding program was started for the
charmed baryons [22]. At present, however, the large-N,.
sum rules for the charmed baryons are derived at leading
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order only [22]. Itis the purpose of this work to close this gap
and establish such sum rules accurate to subleading orders in
the 1/N, expansion. This will pave the way to accurate
chiral extrapolation studies of the charmed baryon masses.

The desired sum rules can systematically be derived
from QCD by a study of current-current correlation
functions in the baryon ground states. We study matrix
elements of current-current correlation functions in the
charmed baryon states [21,23]. The technology developed
in [24-26] will be applied. The implications of heavy-quark
symmetry on the counterterms was worked out already
using a suitable multiplet representation of the charmed
baryons [22,27-29].

II. CHIRAL DYNAMICS FOR
CHARMED BARYONS

The chiral dynamics for the charmed baryon fields is
most economically deduced from an effective chiral
Lagrangian that is based on power counting rules. We
consider here the flavor antisymmetric antitriplet and
the flavor symmetric sextet fields B3, Bjg and Bl[le] with
JP =1t and JP =3" quantum numbers. The chiral
Lagrangian consists of all possible interaction terms,
formed with the baryon fields and the conventional
chiral blocks U, and y, that include the Goldstone boson
fields @ as well as the classical source functions, s, p and
vy, a, of QCD [30]. Derivatives of the fields must be
included in compliance with the local chiral SU(3) sym-
metry which in turn requests the covariant derivative D, to
act on the various flavor multiplet fields as follows,

(DU, =0,U5, + F;,luzl/,b - FL,bUg,l’
b __ ab a b b pal
(D”B[G])a = 8”8[6] + Fﬂ,lB[ﬁ] + Fy,lB[ﬁ]’

_\ab _ ab a b b pal
(D, B)* = 0,Bf + 1, By + T B, (1)
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with the chiral connection I', = —FZ given by

1 o 1
L, = Ee_l%[aﬂ —i(v, + aﬂ)]e+'% + Eeﬂ%[@

1

= i(v, — aﬂ)]e_’%,

. i i :
U, = —uT(al,eg)uT - EuT(vﬂ +a,)u+ Eu(vﬂ —a,)u', u = e, (2)

2

The various hadron fields can be decomposed into their isospin multiplet components,

® =17-7(140) + a' - K(494) + K7(494) - a + n(547)Ag,

V2Bp = \%af - EB.(2470) — \/%

V2B = %af - E.(2580) + %5

V2Bj = \% - B(2645) + 7
a = \%(/14 +iks, d¢ + id7),

where the matrices 4; are the standard Gell-Mann gener-
ators of the SU(3) algebra.

The main goal of this work is to derive correlations
amongst the low-energy parameters of the chiral Lagrangian
as they follow from a 1/N, expansion. For that purpose, we
consider QCD’s axial-vector and scalar currents,

A () = Py, 2 W),
S (x) = ¥(x) %“‘P(x), “)

in baryon matrix elements, where we recall their definitions
in terms of the Heisenberg quark-field operators ¥ (x). With
A, we denote the Gell-Mann flavor matrices supplemented
with a singlet matrix Ao = \/2/_3 1. Given the chiral
Lagrangian, it is well defined how to derive the contribution
|

L:x =cy, [33]“( B3]
+C’; [3’;“‘(

Bl 9B
g

— €3 66/ (T ﬂ6)(+g;w 6] )tr()hr)
DU

6] JuX + B 61X +)

2
7(2580) - a + X,.(2455) - tit, + % (1—+/32)

ET(2470) - a + it A (2284),

Q.(2704),

2
B (2645) - a + $(2520) - Tity + g (1 —/345)Q(2770),

T= (/11,/12,)«3), (3)

I
of a given term to such matrix elements. The classical
matrices of source functions, a, and s, enter the chiral
Lagrangian via the building blocks,

U

l .
ﬂzﬁaﬂd)—zaﬂ—ﬁ—---,

1
X+ =73 (uxou + u'you’) = 2Bys + - - -, (5)

where, for notational simplicity in the following, we
put By = 1/2.

We recall all terms in the chiral Lagrangian that are
relevant in a chiral extrapolation of the baryon masses at
N3LO. Altogether we recalled 34 + 16 = 50 distinct low-
energy constants, which have to be correlated. There are 16
symmetry-breaking counterterms

5Bi3))tr(r3) + co55tr(Bpg By (try )

s+ Bt (rs) + ey 33tr(BaxiByg)

Bio|Ble))tr(x7) + ¢2,66/tr(Big Bje)) (try+)?

6]Z+B Jtr(y ) + caeetr(B [6]J(+B[6]) + ¢5 166 T (Blopr + B’y )

[‘] + H.C.)

)tr(;u) €, [66]tr< [619,4,, [6])(tr)(+)
,[66]tr( [ﬁ]g;w)(%—Bl[/G])
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which contribute to the baryon masses at tree level. Not that
as compared to [22] we dropped the flavor redundant term
proportional to ¢3 3. The symmetry-breaking counter-
terms contribute to the current-current correlation function

In addition, there is a class of 34 symmetry-conserving
two-body counterterms that contribute to the baryon
masses at the one-loop level. Following [21,22,31] the
symmetry-conserving counterterms are classified accord-

of two time-ordered scalar currents ing to their Dirac structure.

(7) LO =P 4O 4LV 4 L@ 4 £

Seb(g) = i / x5 519 (x) 50 (0), (8)

in the baryon states. We consider singlet and octet compo-
nents with a,b =0, ..., 8.

A complete list relevant at second order was constructed in
[22] with
|

L) — _go s (BB (U, U) = U'}Bpg)) — 9(()S

,U"}Bjg)) —

9153 (B{U, (B

6]U”B QUL = 9 et (Big {U,

(B Bg))tr(U,U*)
g1 [66 tr( 3 tr(B{U,, U"}Bj5 + H.c.)

o
D]

a N v

+ hiy s (Bl G Big (U, U”) + b (Bl Bl ie(U, U,)

]g;w{U( U{t}B[6) ( )

19 UBl UL) + hyq e (Bl U, By UL +

s tr(B

166 (Big {Uw UL} Big

(B
+ h2 [66]tr(
(B

ﬂ UBI/ UT>

+ h T Big UuBq

1 . 1 = g
LWV = -3 goy[% s (Bjir” (D By )w(UpU,) + He.) =3 gi‘% 3 r(Bjir“Uy (D" Bz UL

l = g
5 9530 (Bpyir"{ U Ugh(DPBpy) + Hec.)

E[6] Zya{ Ug, Uﬂ} (D/}B[i]) -

+ Bg)iy"Uq(DPBj3)) U +Hee) —

% = N g
gg),?f%]tr( (DﬂB[6])W {Ua’ U/}}B[g] + H.C.)

l\)lr—l\)lb—‘

1 .
(()[66] (tr(Bygiy*(D’Bjg)) )tr(UyU,) 4+ H.c.) — 4g(f/[éﬁ]tr(B[é]’}’“Uﬁ(DﬁB[é])Ua

o 1
+ Bigjir*Uqa(DPBjg)) U + H.c.) — 5 gD 2 tr(Bygiy*{U,. Us}(D’Byg) + H.c.)

o (Bl 9, iv* (DPBi (U Uy) + Hee) + 4h§ :

66/ (Bl 9 ir* U (D' B ) Ug
+E’{6]g,wiyaU{,(D Bl )Uj +He) +5 ! S 1S (Bl g v (U UpHDPBig) + Hee),

LA — féﬁ)ﬁﬁ]tr(g’[’@}'WsB[@tr(Ul,Uﬂ) +H.c.) +fl.[66]tr( [6]7 YrsU, B[6]U + B[6]}, rsU, B[(S]UZ +H.c.)
+fg%66]tr(3?6]yv75{Uﬂ, U,}Bjg +H.c.) +f1(é[)66]tr(3fl6]7”75[Uﬂ, U,)Bg + H.e)

+ f(A)36 tr(Bl[lé]yDySU B[i] UT - BI{]YDYSU B[g] UT + H.C.)

+f tl‘(Bﬂ 4 75{U/u U }B[S +H.c. ) +f (Bl[lﬁ]VVYS[Uw UD]BB] + H'C')v
£ = —gfv[)i 5 1(Bio™ [Us. UglBs) = 9] gt (3[6110“”U By Uy + Hee.)

— 0y st (Bigio™Ua, UplBjs + Hec.) = g loq tr(Bgio™ (U, UglBig) + hy loq tr(Blg 9o (U, UglBy), — (9)

where possible further terms are redundant owing to flavor identities or the on-shell conditions of spin—% fields with
yﬂB’[g] =0 and 8,43’[‘6] = 0. As compared to [22] we further streamlined the notations and dropped the flavor redundant

terms proportional to g% 6 EV[%G],
The symmetry-conserving parameters contribute to the current-current correlation function of two time-ordered axial-

vector currents

and g
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Ash(q) = / dxe- i TAD (AP (0),  (10)

in the baryon states.

The specific form of the matrix elements of the current-
current correlation functions (7) and (10) was already
worked out in the previous work [22]. The matrix elements
are detailed in the flavor SU(3) limit where the physical
baryon states are specified by the momentum p and the
flavor indices i, j = 1, 2, 3.

III. PRIMER ON LARGE-N,
OPERATOR ANALYSIS

The low-energy constants recalled in (6) and (8) can
be analyzed systematically in the 1/N, expansion
[21-23,25,26]. Leading-order results have already been
worked out in [22]. Here we extend these results to the next
accuracy level.

The large-N, operator expansion is performed in terms
of a complete set of static and color-neutral one-body
operators that act on effective baryon states rather than the
physical states [21,22,24-26]. In our case, the physical and
effective baryon states,

|p’iji’S’)(>v |iji-’S’)()’ (11)
are specified by the momentum p and the flavor indices i, j,
k=1, 2, 3. The spin S and the spin-polarization are y =
1, 2 for the spin one-half (S = 1/2)and y = 1, ..., 4 for the
spin three-half states (S = 3/2). The flavor sextet and the
antitriplet are discriminated by their symmetric (index -+)
and antisymmetric (index —) behavior under the exchange
of i <> j. At leading order in the 1/N, expansion all
considered baryon states are mass degenerate. The generic
form of the operator expansion takes the form

S.x)

Z p p mni’S)(|Oqtatlc|kli’ ’Z) (12)
n=0

(P

It is important to note that unlike the physical baryon states,
the effective baryon states do not depend on the momentum
p. All dynamical information is moved into appropriate
coefficient functions c,(p, p). The contributions on the
right-hand side of (12) can be sorted according to their
relevance at large N..

The effective baryon states |ij.,y) have a mean-field
structure that can be generated in terms of effective quark
operators g and Q for the light and heavy species
respectively. A corresponding complete set of color-neutral
one-body operators may be constructed in terms of the very
same static quark operators,

1=¢"1®1®1)q. J—c]*( ®1®>

T =4' 1®/1—“®1q Gq:cﬂﬁ@—”@lq
2 : i 2972 ’

1,- 0’18 1)0. g:g*(%m)g, (13)

with static operators ¢ = (u,d, s)’ and Q = ¢ of the up,
down, strange and charm quarks. With 4, we denote the
Gell-Mann matrices supplemented with a singlet matrix

Ao = +/2/31. Here we use a redundant notation with

1 1
TOZ\/%H’ G(I):\/%‘]U (14)

which will turn useful when analyzing matrix elements of
scalar currents.

In the sum of (12) there are infinitely many terms one
may write down. The static operators O  are finite
products of the one-body operators J;, 7% and G¢. Terms
that break the heavy-quark spin symmetry are exclusively
caused by the heavy-spin operator

i NL 15
o~ (15)
with the heavy-quark mass M. In contrast the counting of
N, factors is intricate since there is a subtle balance of
suppression and enhancement effects. An r-body operator
consisting of the r products of any of the spin and flavor
operators receives the suppression factor N;”. This is
counteracted by enhancement factors for the flavor and
spin-flavor operators 7¢ and G¢ that are produced by taking
baryon matrix elements at N. # 3. Altogether, this leads to
the effective scaling laws [25,26]:

J;~ Ta~NO,  G%~NO (16)

N.’
According to (16) there is an infinite number of terms
contributing at a given order in the 1/N, expansion. Taking
higher products of flavor and spin-flavor operators does not
reduce the N, scaling power. A systematic 1/N_. expansion
is made possible by a set of operator identities [21,25,26],
that allows a systematic summation of the infinite number
of relevant terms. This can be summarized into two
reduction rules:

(1) All operator products in which two flavor indices are
contracted using d,;,, f 4pe OF dype OF two spin indices
on G’s are contracted using §;; or &; can be
eliminated.

(i) All operator products in which two flavor indices are
contracted using symmetric or antisymmetric com-
binations of two different d and/or f symbols can be
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eliminated. The only exception to this rule is the

antisymmetric combination f,codpen = freg@ach-
As a consequence the infinite tower of spin-flavor operators
truncates at any given order in the 1/N, expansion. We can
now turn to the 1/N, expansion of the baryon matrix
elements of the QCD’s axial-vector and scalar currents. In
application of the operator reduction rules, the baryon
matrix elements of time-ordered products of the current
operators are expanded in powers of the effective one-body
operators according to the counting rule (15), (16) supple-
mented by the reduction rules. In contrast to Jenkins [26],
|

we consider the ratio N;/N, =1—-1/N_. not as a sup-
pression factor. The strength of the spin-symmetry breaking
terms we estimate with 1/M, ~ 1/N. In the course of the
construction of the various structures, parity and time-
reversal transformation properties are taken into account.

All that is needed in any practical application of the 1/N .
expansion is the action of any of the one-body operators
introduced in (13) on the effective mean-field-type baryon
states |ij.,y). In fact, it suffices to provide results at the
physical value N. =3, for which a complete list was
already generated in [22]. We exemplify such results with

1 1 1 3
el B ®|.. _ ®|.. _
Jo l]+,§,)(> = _66;7;( l]+,§,)(> +%Sj{ l]+,5,)(),

3 I - 2 3 1 1
k| o k) ot .. — (k)T .. _
JQ l]+v§’)() —E(SU( 'S ))?)( l]+7§7)(> +%S)’( l]+»§’)(>a

o1 1 N
JkQ l]_’i’)() 25‘7{? l]—’z’)()’
o1 2 wl.. 1 _ I wl.. 3 _
Jk l‘]+a§’1> :g(f)%() l.]+727/,{> __3S)£(Z) l]+v§a}()’
.3 2 e |, 3 Lol 1T
Ji l]+,§,)() = (5‘7( 'S )5{;( lJ+’§v)(> —_35’;( l]+v§v)( )

1

Jk ij_’i’/Y) :07 (17)

where we apply the spin matrices 6(¥) and S in the convention as used in [22]. Note that an error in the action of the heavy-
spin operator J ’é on the |i j+,%, x) states is corrected here in (17). We affirm that now, with (17), the relations

) . i . i i 3
i d) = el Ui Tp) = el {7575} =3 1o,

Wi J1 =0, [J5.G4 =0,

5, T = 0 (18)

hold if matrix elements in the charmed baryon states as introduced in (11) are taken. The latter were affected by the error
made in [22]. Further corrections for matrix elements of the anticommutator of two one-body operators are considered in the

Appendix.

IV. TWO SCALAR CURRENTS IN CHARMED BARYON MATRIX ELEMENTS

We turn to a derivation of large-N . sum rules for the chiral-symmetry breaking low-energy constants introduced in (6).
They contribute to the time-ordered product of two scalar currents as evaluated in the baryon states. At N>LO in the 1/N,

expansion, we find the relevance of 11 operators

5 (q)

p7kl:t’S7){> = (mnj:vg’)? Oablkli’SJ()’

(p,mny.S.j

O% = 218406501 + €284 1 + 3(T 4040 + 620Ts) + EadapeTe +E5{Ta Ty}
+ Cedape{J' Go} + & ({J7, G340 + 8u0{J". G}, })
+&({V AT Gy} + {77 ATy, G}
+ Codape 1T, G} + e10({Jg, G 1040 + 8a0{ . G}, })

+en({UgATa, G}y +{Jp. A{Ts,

Gath)+-. (19)

where only the first five operators that are required at NLO were considered previously in [22]. We find six additional terms
either involving the spin operators J; or JiQ. The three sums in (19) run over e =1, ..., 8.
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TABLE 1.

The symmetry-breaking two-body counterterms as introduced in (6) are correlated by the large-N,. operators (19).

C1,[66]

2 A
€2,[66] 3€1

€3.[66] 21 /36385 + 68, + 210)

C4.[66] (324 + 325 + 686 + 1285 + Co +2211)
Cs 66] (3¢5 + 1225 +2¢17)

€133 1(68, — 224 + 3¢5)

€233 1(22, - 3¢s)

€333 2\/§(e3 +/6es)

e1.[66] 1(68, — 224 — 426 — 9)
€2, [66] 3¢
€3, [66]

V3285 + 427+ &40)

64,[66] 264 —+ 26‘5 + 466 + 86'8 —+ 6'9 + 26‘11
€5 [66] 2(es +4eg +¢qp)

€433 2(84 = ¢5)

C1.36) —%ém

C2,36] —%(59 +2¢y)

The operator truncation (19) can be matched to the tree-
level Lagrangian (6). For this the matrix elements of the
operators in (19) are derived in the Appendix and [22].
Altogether, we claim the identifications as detailed in
Table I.

At NLO with ¢4_;y = O there are 16 —5 = 11 sum rules.
No spin-symmetry breaking operator J, has to be consid-
ered at this accuracy level. In turn, we recover the eight
heavy-spin symmetry relations in (59) from [22].
Additional relations arise from the large-N . considerations.
We correct two misprints in (60) of [22]. Altogether, the
following set of sum rules arises:

Cnjo6) = €nfos) Torn=1,....5,
Cupe) =0 forn=1,2,

1 1
C1,;33] = C1.[66] +§CS,[66]7 €2,33] = €266 =5 C5.le6]>
€333 = C366] T 2C566]» €433 = Cajos] — 2Cse6]-  (20)

AtN?LO, all 11 operators in (19) turn relevant, and we have
16 — 11 = 5 sum rules:

C1.36) = 5\/§(C3,[66] - 33.[66])’
C2,[66] = €2.[66]>
Ca[36] = 5\/§(C4,[66] - e4,[66])’
3c33) FCo 33 €433 = 3C1.[66) T C2.[66) T Ca.66) — €566
361,[66] ~+ €4.66) — €5.66] = 3C1,[66] ~+C4.[66] — C5.[66)- (21)
V. TWO AXIAL CURRENTS IN CHARMED
BARYON MATRIX ELEMENTS

We study the time-ordered product of two axial-vector
currents. The large-N, operator expansion was already
worked out in [21] at leading order. Matrix elements in
charmed baryons were derived in [22]. Here we consider and
derive the implication for the chiral two-body interactions
introduced (8) at subleading orders in this expansion. At
NLO, there are 19 distinct operators to be considered,

(p.mny, S, 7|AY (q)|p. kL, S.x) = (mny, S, 7| O |kl S, x),

O = =6;j[016a1 + DadapeTe + §31Ta To} + Jadapc {5, GE}
+ 9s({J5 AT o G}y + {T AGE To}}) + Gedanc {5 Ge}
+ 5 ({JoATa. Gy}t + {75 {Ga. Ty} })]
+8s({Gl. G}} + {Ga. Gi)}) + 80 ({G. G7} = {G. GIY)
+ €S ave (01065 + 91 {I* T} + 912405, Te})
+ (P +p)i(P+ P)j[0130m 1 + GradapcTe + 515{Tas T }
+ fiedanc {7 G} + 917 ({75 AT, Gy} + {I5{GE. To }})
+ isdape{ I GE + 0o({I ATa. G} + {IG AGE. To} D+, (22)

where we focus on the space components of the correlation function. In (22), we have ¢ = p—p and a,b =1, ..., 8.
In addition, we consider only terms that arise in the small-momentum expansion and that are required for the desired
matching with (8). The dots in (22) represent additional terms that are further suppressed in the 1/N, expansion or for small

3-momenta p and p.
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TABLE II. The symmetry-conserving two-body counterterms as introduced in (8) are correlated by the large-N . operators (22) with
f]flv[z, b= Zgif/[glb] /(M Ei]/ DM Ebl/ 2>) and fzi‘” = hi‘,/[zm] /M f/ 2 In the flavor SU(3) chiral limit we use here three distinct charm baryon

] J[ad] a]

masses M g]:l/ 2), M Eﬁj]zl/ 2 and M EGJ]Z‘V 2, Only the combinations gg% 5~ 295% 3 and gé“% 5T ggv{; 3 can be matched at leading order in a
nonrelativistic expansion.

s A 2a A 1n (v v . R .
95)1[)5 3] 20 =30 05 + 258 9(().[%5] _9(1,[% 5 T 813 — Y014 + 4015

(T) -0
9r 53 912

s B — 0. —37 AV AV . .
g;).)[ﬁi] 92— 937298 g(D,[)fg] 29;[;‘] +4(gl4 _915>

N ~ 24 N 8 /A N
g(o.[)ﬁé] 201 %0 95{[26] 33913 = 91a)
gﬁzﬁ] 295 + 895 — 497 — 3 Js 9%6] 8(915 + 4917 — 2010)
g(DS_)[%] 9o+ 93+ 204 + 495 — G — 257 — 3 Js gg[)éé] 4(91a + 915 + 2016 + 4917 — J1s — 2919)
gg[)%] ﬁ (=90 + G10) g<FT![)66] 399 = 910 = 4911 + 912)

(T) L (A) .
91,36 39 f1,[36] 9

(4) 0
fD,[36]

@gfgﬁ] ~2V3(915 + 2019) fgf%] —99 + G0

N ~ N AV A 8a
gi),)[%] - ? (96 +277) hé,[éé] 80133014
hff[)éﬁ] 251 =30 ﬁsf/[éé] 8(91s + 4917 + i9)
h(li)ﬁﬁ] 0 fzg/[é()] 2(2014 + 2015 + 4916 + 8917 + G1s + 2019)
hf[)“] 9o+ 03+ 204 + 495 + 596 + 97 — 208 féf‘[)“] 0

) (4) 1y
h3,[66] 0 f]y[@()] \/398
hf‘s[)ﬁﬁ] 205 +89s + 297 — 35 fg‘?“] 0
hf[)ﬁﬁ] 9s ff;ff%] 5 (=00 + Gn0 + 4911 = 4912)
hg[)éﬁ] 3G9 = §10 = 4911 = 2012)

In the previous work [22], only seven leading-order operators were considered. The ansatz of this work is reproduced with

R 1

L, . . . . .
a1 = ggz, Ga—7 =0, J11-12 =0, g13 = 59145 916-19 = 0. (23)

An application of the results of our Appendix leads to the matching result as detailed in Table II.
From the operator analysis (22), we obtain 33 — 7 = 26 sum rules. We do not reproduce all sum rules as considered first
in [22]. In our analysis, we unravel two misprint in (62) of [22]. A complete list of relation reads

g(DS,>[§ 5 = h;s[)“] - his[c,s] - 2}’2,5[)66]’ gff[é 5 = %hf[)Gé] + hg?%],

gés[se] = gg,)[éé] =0, 9(1,S[)66] = hf[)ea] + %hgs[)ss]v gﬁf >[66] = hgs[)es]’ hés[)eq = hf[>66] = hg,s[)sa] =0,

Af)‘/[; 5= _§<1V[; 3t % ilgv[ga]’ QE)V,[)‘ 3= 2A<1‘,/[% 37 }A’(l,v[g,ﬁ] + ilgv[éc,]’

g(()fl[zw] = QE)V,[)'s] = AE)‘,/[és] =0, Qﬁéé] = il(l‘,/[éﬁ]’ @E,V[(,(,] = }Alg/[ée]’

f Y,%e] - _‘/ggiT[)%]’ f 1(:[)36] Zhg[)wy f (;,Eié] =1 (()f,‘[)sa] =7 E?,E%] =0,

f (1A[)66] %hgs[)as]’ 5?,[)66] % h(FT[)se]v QSVT[)é 53=0 Q;T[ga] = _\/Lghg,[)%]’ g(FT[GG] =3 hSTT[)66]’ (24)

094004-7



YONGGOO HEO and MATTHIAS F. M. LUTZ PHYS. REV. D 97, 094004 (2018)

where the two identities in the fourth line of (24) were not presented correctly in [22]. We confirm the result of [22] that the
combination of the heavy spin-symmetry sum rules as summarized in (41) of [22] with the large-N,. sum rules (24) does
lead to one extra relation:
Y
fl,[66] =0. (25)
As argued already in [22], this does not contradict the systematics of the large-N, operator expansion. Though the operator
analysis is not predicting such a feature, it can not be excluded.
We turn to the central result of our work. At NLO, we have derived 33 — 19 = 14 novel sum rules:

9p.3e) = % (g(DS,>[66] - hg,s[)sﬁ])v gff[)ss] = hé,s[)ﬁs]v h(l,s[)sﬁ] = hf[)ﬁs] =0,

QE)V.[)‘Q = % @;)V,E()f)] - ilg./[éﬁ])’ AE)‘,/[és] = i’é‘,/[és]’

f 5[,‘[)36] —\/§g 5?36]’ f 21,4[)66] = % hé?()()]’ f (DA.%%] =/ E)/,i[ f gf«)

g =235l I = =230l + b

gfvTEz 3 = _gg[)éa + %hg,[)és] (26)

VI. SUMMARY

In this work, we considered the chiral Lagrangian for
charmed baryons based on the flavor SU(3) symmetry.
Current-current correlation functions in the baryon states
were evaluated at tree level and analyzed in an expansion of
1/N. at subleading orders. Sum rules for the symmetry-
breaking and symmetry-conserving low-energy constants
are systematically derived and presented. We correct
various misprints found in previous works and establish
novel sum rules that are valid at subleading orders in the
1/N,. expansion. Such parameter correlations are of crucial
importance in chiral extrapolation studies of the charmed
baryon masses at N°LO, but also they determine, to a large
extent, the coupled-channel interaction of the charmed
baryons with the set of Goldstone bosons.
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APPENDIX

We consider matrix elements of the symmetric product
of two one-body operators O in the charmed baryon ground
state at N. = 3. The generic notation,

)%=

S8 —

S.%): (A1)

as™»

with a, b = + will be applied. The results are expressed in

terms of the flavor structures AE:Z)) ()= and Agzg){”)i and the

spin structures o; and S; as introduced in [22]. We correct
and supplement the matrix elements that involve the spin
operator J, with

(m )
5115;0(5( kl)_

(o TN = oA ™ oG =
(k)_ i
<{JiQ’{Ta’G?}}>u =0,
oI =0 (o Tphy =0.
i - i a - 1 a),(mn
<{J:,Ta}>g =0, {J ,q}); = 2—\@(5” ie;jxor) Agk;)f .
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(U (T, G = =, (AL AL 4 AL g0
T N R AT —léuwﬁ)
(I TN = - 36;%3%(2,) D GG == 3o A
<{J; {14, Gb}} -5, (A“ mn) *A rS)+ +AE ))(mn)+AEZ1)§(+rS)+>’
{Jp, ,}> =0, ({] ,Jg}g-:o,

(o TN =0,
(W AT G =0,

. _ 1
<{J 7Gj}>% :_5( j i)j/;( (k1)

1 mn), i j
oI Ng 73(2s,.aj—sjo,.)n(s§k,)z L Wbyt =o.
i 2 (i) x(a).(mn),
({Jh.T }>++ —35;7;(/\@1)+ ,
1

(. G =
(T AT, G4 =0,
22

I D5 = 65 =88] = 88T W JohE" 51,5”55 i
i a /oot a),(mn
<{J T }>++ ( 0;S ))?)(Agkl))i )+’
Ji Ga ++ 1 5 SST SST A(tl),(mn)
{5 J}>% _E(ij_ i~ ji))?;( k), *
i (7a 1 (@).mn), p (D)(rs), | x (B).mn), (a).(rs),
(o AT G NS = 38 (A0 Ay, TG, Ay, ) (A2)
where
1 3.
28,6, — S;0; §<S6 + S;0,) — zte,ijk (A3)
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