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Various new measurements in charmless Bu;d;s → PP modes, where P is a low lying pseudoscalar
meson, are reported by Belle and LHCb. These include the rates of B0 → π0π0, ηπ0, Bs → η0η0, B0 →
KþK− and B0

s → πþπ− decays. Some of these modes are highly suppressed and are among the rarest B
decays. Direct CP asymmetries on various modes are constantly updated. It is well known that direct CP
asymmetries and rates of suppressed modes are sensitive to final state interaction (FSI). As new
measurements are reported and more data will be collected, it is interesting and timely to revisit the
rescattering effects in Bu;d;s → PP states. We perform a χ2 analysis with all available data on CP-averaged
rates and CP asymmetries in B̄u;d;s → PP decays. Our numerical results are compared to data and those
from factorization approach. The quality of the fit is improved significantly from the factorization results in
the presence of rescattering. The relations on topological amplitudes and rescattering are explored and they
help to provide a better understanding of the effects of FSI. As suggested by U(3) symmetry on topological
amplitudes and FSI, a vanishing exchange rescattering scenario is considered. The exchange, annihilation,
u-penguin, u-penguin annihilation, and some electroweak penguin amplitudes are enhanced significantly
via annihilation and total annihilation rescatterings. In particular, the u-penguin annihilation amplitude is
sizably enhanced by the tree amplitude via total annihilation rescattering. These enhancements affect rates
and CP asymmetries. Predictions can be checked in the near future.
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I. INTRODUCTION

In recent years there are some experimental progresses on
measurements of the charmlessBu;d;s → PP decays. In year
2015, Belle reported a 3.0σ significant measurement on
B̄0 → ηπ0 decay rate with BðB0 → ηπ0Þ ¼ ð4.1þ1.7þ0.5

−1.5−0.7 Þ ×
10−7 [1] and BðB0

s → K0K̄0Þ ¼ ð19.6þ5.8
−5.1 � 1.0� 2.0Þ ×

10−6 [2] with 5.1σ significance, while LHCb observedBs →
η0η0 decay at ð3.31� 0.64� 0.28� 0.12Þ × 10−5 at 6.4σ
significance [3]. In year 2016, LHCb reported on the
observation of annihilation modes with BðB0 → KþK−Þ ¼
ð7.80� 1.27� 0.81� 0.21Þ × 10−8 andBðB0

s → πþπ−Þ ¼
ð6.91� 0.54� 0.63� 0.19� 0.40Þ × 10−7 [4]. Last year
Belle reported the rate of B̄0 → π0π0 of BðB̄0 → π0π0Þ ¼
ð1.31� 0.19� 0.18Þ × 10−6 [5]. Some of these modes
are highly suppressed and are among the rarest B decays.
Therewere constant updates on othermeasurements, such as
rates and direct CP asymmetries on BðsÞ → Kπ; KK; ππ
modes [6–8].

It is well known that direct CP asymmetries and rates of
suppressed modes are sensitive to final state interaction
(FSI) [9,10]. In a study on the effects of FSI on Bu;d;s → PP
modes [11], the so called (too large) Bðπ0π0Þ=Bðπþπ−Þ
ratio and (nonvanishing) ΔA≡AðK−πþÞ −AðK−π0Þ
direct CP asymmetry puzzles in B̄u;d decays can both be
resolved by considering rescattering among PP states.1

Several rates and CP asymmetries were predicted. The
newly observed B0

s → K0K̄0 rate is consistent with the
prediction. However, there are some results that are in
tension with the recent measurement. In particular, the
predicted Bs → η0η0 rate is too high compared to data. In
fact, its central value is off by a factor of 3. As new
measurements are reported and more data will be collected
in LHCb, and Belle II will be turned on in the very near
future, it is interesting and timely to revisit the subject.
It will be useful to give the physical picture. From

the time-invariant property of the Wilson operators in the
weak Hamiltonian, one finds that the decay amplitude
satisfies [14]2

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1One is referred to [12,13] for some recent analyses on these
puzzles.

2See Appendix A for a derivation.
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Ai ¼
XN
k¼1

S1=2
ik A0

k; ð1Þ

where Ai is a B̄q → PP decay amplitude with weak as well
as strong phases, A0

k is a amplitude containing weak phase
only, i ¼ 1;…; n, denotes all charmless PP states and
k ¼ 1;…; n; nþ 1;…; N, denotes all possible states that
can rescatter into the charmless PP states through the
strong interacting S-matrix, S. Strong phases are encoded
in the rescattering matrix. This is known as the Watson
theorem [15]. There are two points needed to be emphas-
ised. First, the above result is exact. Every B̄q → PP decay
amplitude should satisfy it. Second, for a typical B̄q decay,
since the B mass is large there is a large number of
kinematically allowed states involved in the above equa-
tion, i.e., N in the above equation is large. Consequently,
the equation is hard to solve.
Although the largeness of the Bmass makes it difficult to

solve the above equation, it is interesting that on the
contrary it is precisely the largeness of mB that makes
the problem somewhat trackable. According to the duality
argument, when the contributions from all hadronic states
at a large enough energy scale are summed over, one should
be able to understand the physics in terms of the quark
and gluon degrees of freedom. Indeed, several quantum
chromodynamics (QCD)-based factorization approaches,
such as pQCD [16], QCD factorization (QCDF) [17,18]
and soft collinear effective theory (SCET) [19] make use of
the large B mass and give predictions on the facrorization
amplitudes, Afac. In other words, using the largeness of mB
comparing to ΛQCD, the factorization approaches provide

solutions to Eq. (1), i.e., Afac
i ¼ P

N
k¼1 S

1=2
ik A0

k.
In the infinite mB limit, the above program may work

perfectly. However, in the physical mB case, power cor-
rections can be important and may not be neglected. In fact,
the effects of power corrections are strongly hinted from
some unexpected enhancements in rates of several color
suppressed modes, such as B̄0 → π0π0 decay [6,7], and
some unexpected signs of direct CP asymmetries, as in the
difference of direct CP asymmetries of B̄0 → K̄−πþ and
B− → K−π0 decays [20]. These anomalies lead to the
above mentioned ππ and Kπ puzzles. It is fair to say that
the factorization approaches can reasonably produce rates
of color allowed modes, but it encounters some difficulties
in rates of color-suppressed states and CP asymmeties. It is
to plausible to assume that factorization approaches do not
give the full solution to Eq. (1), some residual rescattering
or residual final state interaction is still allowed and needed
in B̄q → PP decays. Note that the group of charmless PP
states is unique to B̄q → PP decays, as P belongs to the
same SU(3) multiplet and PP states are well separated from
all other states, where the duality argument cannot be
applied to these limited number of states [21,22]. Note that
residual rescattering among PP modes only slightly affect

the rates of color allowed modes, but it can easily change
direct CP violation of most modes and the rates of color
suppressed modes at the same time. It can be a one stone
two birds scenario. It can potentially solve two problems at
the same time without affecting the successful results of
factorization approach on color allowed rates. In fact, this
approach is modest than the factorization approach as it left
some rooms for our ignorance on strong dynamics. In the
following text, unless indicated otherwise we use rescatter-
ing among PP states or rescattering for short to denote this
particular type of rescattering, while we assume that FSI
contributions from all other states are contained in the
factorization amplitudes.
The quark diagram or the so-called topological approach

has been extensively used in mesonic modes [9,12,23–27].
It will be useful and interesting to study the FSI effects on
topological amplitudes. For some early works in different
approach, one is referred to ref. [9]. The relation on
topological amplitudes and rescattering will be explored
and it can help to provide a better understanding on the
effects of residual rescattering.
The layout of the present paper is as follows: In Sec. II

we give the formalism. Results and discussions are pre-
sented in Sec. IV. Section V contains our conclusions.
Some useful formulas and derivations are collected in
Appendices A and B.

II. FORMALISM

In this section we will give the rescattering (res.)
formulas, topological amplitudes (TA) of B̄q → PP decays,
and the relations between res. and TA.

A. Rescattering formulas

Most of the following formulas are from [11], but some
are new. As noted in the Introduction section, in the
rescattering we have (see Appendix A)

Ai ¼
Xn
j¼1

ðS1=2
res ÞijAfac

j ; ð2Þ

where i; j ¼ 1;…; n denote all charmless PP states.
To apply the above formula, we need to specify the
factorization amplitudes. In this work, we use the factori-
zation amplitudes obtained in the QCD factorization
approach [18].
According to the quantum numbers of the final states,

which can be mixed under FSI, B̄q → PP decays can be
grouped into 4 groups. Explicit formulas are collected
in Appendix A. Here we give an example for illustration.
The B̄0

d → K−πþ decay can rescatter with three other states,
namely B̄0

d → K̄0π0, K̄0η8 and K̄0η1, via charge exchange,
singlet exchange and annihilation rescatterings as denoted
in Fig. 1(a)–(c). These states are the group-1 modes. The
relevant rescattering formula is given by
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0
BBBBB@

AB̄0
d→K−πþ

AB̄0
d→K̄0π0

AB̄0
d→K̄0η8

AB̄0
d→K̄0η1

1
CCCCCA ¼ S1=2

res;1

0
BBBBBB@

Afac
B̄0
d→K−πþ

Afac
B̄0
d→K̄0π0

Afac
B̄0
d→K̄0η8

Afac
B̄0
d→K̄0η1

1
CCCCCCA; ð3Þ

with S1=2
res;1 ¼ ð1þ iT 1Þ1=2 and

T 1¼

0
BBBBBBB@

r0þ ra
−raþreffiffi

2
p −raþreffiffi

6
p 2r̄aþr̄effiffi

3
p

−raþreffiffi
2

p r0þ raþre
2

ra−re
2
ffiffi
3

p −2r̄aþr̄e
3
ffiffi
2

p

−raþreffiffi
6

p ra−re
2
ffiffi
3

p r0þ raþ5re
6

−2r̄aþr̄e
3
ffiffi
2

p

2r̄aþr̄effiffi
3

p −2r̄aþr̄effiffi
6

p −2r̄aþr̄e
3
ffiffi
2

p r̃0þ 4r̃aþ2r̃e
3

1
CCCCCCCA
: ð4Þ

The rescattering parameters r0;a;e;t, r̄0;a;e;t, r̃0;a;e;t, r̂0;a;e;t
and ř0;a;e;t denote

3 rescattering in Πð8ÞΠð8Þ → Πð8ÞΠð8Þ,
Πð8ÞΠð8Þ → Πð8Þη1, Πð8Þη1 → Πð8Þη1 and η1η1 → η1η1,
respectively, with Πð8Þ the SU(3) octet and η1 the singlet,
and the subscripts 0; a; e; t represent flavor singlet, anni-
hilation, exchange and total-annihilation rescatterings,
respectively (see Fig. 1).
Flavor symmetry requires that ðSresÞm with an arbitrary

power of m should also have the same form as Sres. More
explicitly, from SU(3) symmetry, we should have

ðSresÞm ¼ ð1þ iT Þm ≡ 1þ iT ðmÞ; ð5Þ
where T ðmÞ is defined through the above equation and its
form is given by

T ðmÞ ¼T with ðrj; r̄j; r̃j; řjÞ→ ðrðmÞ
j ; r̄ðmÞ

j ; r̃ðmÞ
j ; řðmÞ

j Þ; ð6Þ
for j ¼ 0; a; e; t.
It is useful to note that we have 8 ⊗ 8, 8 ⊗ 1, 1 ⊗ 8 and

1 ⊗ 1 SU(3) products for P1P2 final states, which has to be
symmetric under the exchange of P1 and P2 in the B̄ → PP
decay as the meson pair is in s-wave configuration and they
have to satisfy the Bose-Einstein statistics. The allowed
ones are the 27, 8 and the 1 from 8 ⊗ 8, the 80 from the
symmetrized 8 ⊗ 1þ 1 ⊗ 8, and 10 from 1 ⊗ 1 (see, e.g.,
[28], for the decomposition). Hence, from SU(3) symmetry
and the Bose-Einstein statistics, we should have

ðSresÞm¼
X27
a¼1

j27;aie2miδ27h27;aj

þ
X8
b¼1

X
p;q¼8;80

jp;biUm
pqhq;bjþ

X
p;q¼1;10

jp;1iVm
pqhq;1j;

ð7Þ

where a and b are labels of states within multiplets, and
matrices Um and Vm are given by

Umðτ; δ8; δ08Þ≡
�

cos τ sin τ

− sin τ cos τ

��
e2miδ8 0

0 e2miδ0
8

�

×
�
cos τ − sin τ

sin τ cos τ

�
;

Vmðν; δ1; δ01Þ≡
�

cos ν sin ν

− sin ν cos ν

��
e2miδ1 0

0 e2miδ0
1

�

×

�
cos ν − sin ν

sin ν cos ν

�
; ð8Þ

respectively. Rescattering parameters ri as the solutions to
Eqs. (5) and (6) can be expressed in terms of these angles
and phases:

1þ iðrðmÞ
0 þ rðmÞ

a Þ ¼ 2e2miδ27 þ 3Um
11

5
;

iðrðmÞ
e − rðmÞ

a Þ ¼ 3e2miδ27 − 3Um
11

5
;

iðrðmÞ
a þ rðmÞ

t Þ ¼ −e2miδ27 − 4Um
11 þ 5Vm

11

20
;

ið2r̄ðmÞ
a þ r̄ðmÞ

e Þ ¼ 3ffiffiffi
5

p Um
12;

1þ i
�
r̃ðmÞ
0 þ 4r̃ðmÞ

a þ 2r̃ðmÞ
e

3

�
¼ Um

22;

i

�
r̂ðmÞ
t þ 4r̂ðmÞ

a þ 2r̂ðmÞ
e

3

�
¼ 1ffiffiffi

2
p Vm

12;

1þ i

�
řðmÞ
0 þ 4řðmÞ

a þ 2řðmÞ
e þ 3řðmÞ

t

6

�
¼ Vm

22; ð9Þ

with Um
ij and Vm

ij given in Eq. (8).

π, η0

s

d

u

s

d

u

K K
0

π+ u

u

(a)

d d

u
K

u

π+ π+

K
s s

u u

(b)

π, η0

d d

s s

d
K K

0

π+

u

du

(c) (d)

d
π+

0d

s K

d

s
K

0

u

u

d
π

FIG. 1. Pictorial representation of (a) charge exchange
re, (b) singlet exchange r0, (c) annihilation ra and (d) total-
annihilation rt for PP (re)scattering.

3Note that r̂ and ř do not appear in T 1, but they will contribute
to some other PP modes.
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It is interesting to see how the rescattering behaves in a
U(3) symmetric case. It is known that the UAð1Þ breaking is
responsible for the mass difference between η and η0 and
U(3) symmetry is not a good symmetry for low-lying
pseudoscalars. However, U(3) symmetry may still be a
reasonable one for a system that rescatters at energies of
order mB. The mass difference between η and η0, as an
indicator of U(3) symmetry breaking effect, does not lead
to sizable energy difference of these particles in charmless
B decays. Note that in the literature, some authors also
make use of U(3) symmetry in charmless B decays (see,
e.g.,[29]). We note that in the U(3) case, we have

ri ¼ r̄i ¼ r̃i ¼ r̂i ¼ ři: ð10Þ
Consequently, by requiring

T ðmÞ ¼ T with ðrj; r̄j; r̃j; řjÞ→ ðrðmÞ
j ;rðmÞ

j ;rðmÞ
j ;rðmÞ

j Þ;
ð11Þ

as required by Eq. (10), one must have [11]

rðmÞ
a rðmÞ

e ¼ 0: ð12Þ

There are two solutions, either rðmÞ
e ¼ 0 or rðmÞ

a ¼ 0 [see.
Eqs. (A16) and (A17)]. Note that in both solutions, we have

δ27 ¼ δ08 ¼ δ01: ð13Þ
To reduce the number of the rescattering parameters and as
a working assumption, the above relations will be used in
this work, although we are not imposing the full U(3)
symmetry to FSI.
After imposing the above relation and factor out a over

phase factor, say δ27, we are left with two mixing angles and
two phase differences:

τ; ν; δ≡ δ8 − δ27; σ ≡ δ1 − δ27; ð14Þ
in the scattering matrices. The rescattering formula Eq. (2)
now becomes

A ¼ S1=2
res ðτ; ν; δ; σÞ · Afac; ð15Þ

with the overall phase removed. In summary, 4 additional
parameters fromRes are introduced to the decay amplitudes.
We find that it is useful to incorporate SU(3) breaking

effect in the scattering matrix. The idea is that we try to
remove the SU(3) breaking effect in Afac before recattering
and put the SU(3) breaking effect back after the rescatter-
ing. The underlying reason is as following. In the core of
FSI, the rescattering processes are occurring at the mB
energy scale, the SU(3) breaking effect cannot be very
important at this stage. Hence the amplitudes to be
rescattered are taken in the SU(3) limit, but after the
rescattering, as the hadronization process takes place,
SU(3) breaking cannot be neglected and their effect needs
to be included. In practice we use ratio of decay constants to

model the SU(3) breaking effect. For example, the B− →
K0K− factorization amplitude is multiplied by ðfπ=fKÞ2
before recattering with other states and is multiplied by
ðfK=fπÞ2 after rescattering. For convenience these two
factors are absorbed in S1=2

res . These are new to Ref. [11].
The rescattering matrices needed in this work are

collected in Appendix A. As we will see in the next
section, including these four rescattering parameters will
enhance the agreement of theory and data notably.

B. Rescattering and topological amplitudes
in the SU(3) limit

Topological amplitude approach or flavor flow approach
is based on SU(3) symmetry. The amplitudes can contain
weak and strong phases. FSI will generate additional strong
phases and can potentially mixed up different topological
amplitudes. It is therefore interesting to investigate the
relation of the FSI and topological amplitudes. We will take
a closer look of this issue in the presence of the rescattering
among PP states. We will consider the topological ampli-
tudes in the SU(3) limit, rescattering of topological ampli-
tudes in the SU(3) limit and, finally, topological amplitudes
and rescattering in the U(3) limit. The discussion will be
useful to provide a better understanding of the effect of FSI
in B̄q → PP decays. These are all new to Ref. [11].

1. Topological amplitudes in the SU(3) limit

It is well known that the fields annihilating B−; B̄0
d;s and

creating π; K; η8 transform respectively as 3̄ and 8 under
SU(3) (see, for example [28]),

B̄ ¼ ðB− B̄0 B̄0
s Þ;

Π ¼

0
BBBBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η8

1
CCCCCA: ð16Þ

For the b → uūd and b → qq̄d processes, the tree (OT) and
penguin (OP) operators, respectively, have the following
flavor structure,

OT ∼ ðūbÞðd̄uÞ ¼ Hik
j ðq̄ibÞðq̄kqjÞ;

OP ∼ ðd̄bÞðq̄iqiÞ ¼ Hkðq̄kbÞðq̄iqiÞ;
OEWP ∼Qjðd̄bÞðq̄jqjÞ ¼ HEW

ik
j ðq̄ibÞðq̄kqjÞ; ð17Þ

where we define Hk ¼ δk2, H
ik
j ¼ δi1δ

1
jδ

k
2 and ðHEWÞikj ¼

δi2Qjδ
k
j (no sum in indices). Note that it is easy to check that

we haveHik
i ¼Hk,Hik

k ¼0, ðHEWÞikk ¼0, ðHEWÞiki ¼ Q2δ
k
2 ¼

Q2Hk. The flavor structures of jΔSj ¼ 1 tree and penguin
operators can be obtained by replacing d to s, Hk ¼ δk3,
Hik

j ¼ δi1δ
1
jδ

k
3 and ðHEWÞikj ¼ δi3Qjδ

k
j .
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The effective Hamiltonian, in term of the meson degree of freedom, for the B̄ → PP decay should have the same SU(3)
transform property of HW. Consequently, we have

Heff ¼TB̄mHik
j ðΠoutÞjkðΠoutÞmi þCB̄mHik

j ðΠoutÞjiðΠoutÞmk þEB̄kHik
j ðΠoutÞjlðΠoutÞliþAB̄iHik

j ðΠoutÞjlðΠoutÞlk
þPB̄mHkðΠoutÞmi ðΠoutÞikþ

1

2
PAB̄kHkðΠoutÞlmðΠoutÞml þPEWB̄mHik

EWjðΠoutÞmi ðΠoutÞjkþPC
EWB̄mHik

EWjðΠoutÞmk ðΠoutÞji
þPE

EWB̄kHik
EWjðΠoutÞjlðΠoutÞliþPA

EWB̄iHik
EWjðΠoutÞjlðΠoutÞlkþðHeffÞsinglet; ð18Þ

where the A, P, PA, and PEW terms correspond to annihilation, penguin, penguin annihilation, and electroweak penguin
amplitudes, respectively. and ðHeffÞsinglet is the Hamiltonain involving η1, given by

ðHeffÞsinglet ¼ T̄B̄mHik
j ðΠoutÞjkðΠ̃outÞmi þ C̄1B̄mHik

j ðΠoutÞjiðΠ̃outÞmk þ C̄2B̄mHik
j ðΠ̃outÞjiðΠoutÞmk þ C̃B̄mHik

j ðΠ̃outÞjiðΠ̃outÞmk
þ Ē1B̄kHik

j ðΠ̃outÞjlðΠoutÞli þ Ē2B̄kHik
j ðΠoutÞjlðΠ̃outÞli þ ẼB̄kHik

j ðΠ̃outÞjlðΠ̃outÞli þ Ā1B̄iHik
j ðΠ̃outÞjlðΠoutÞlk

þ Ā2B̄iHik
j ðΠoutÞjlðΠ̃outÞlk þ P̄1B̄mHkðΠ̃outÞmi ðΠoutÞik þ P̄2B̄mHkðΠoutÞmi ðΠ̃outÞik þ P̃B̄mHkðΠ̃outÞmi ðΠ̃outÞik

þ 1

2
P̃AB̄kHkðΠ̃outÞlmðΠ̃outÞml þ P̄EWB̄mHik

EWjðΠ̃outÞmi ðΠoutÞjk þ P̄C
EW;1B̄mHik

EWjðΠ̃outÞmk ðΠoutÞji
þ P̄C

EW;2B̄mHik
EWjðΠoutÞmk ðΠ̃outÞji þ P̃C

EWB̄mHik
EWjðΠ̃outÞmk ðΠ̃outÞji þ P̄E

EW;1B̄kHik
EWjðΠ̃outÞjlðΠoutÞli

þ P̄E
EW;2B̄kHik

EWjðΠoutÞjlðΠ̃outÞli þ P̃E
EWB̄kHik

EWjðΠ̃outÞjlðΠ̃outÞli
þ P̄A

EW;1B̄iHik
EWjðΠ̃outÞjlðΠoutÞlk þ P̄A

EW;2B̄iHik
EWjðΠoutÞjlðΠ̃outÞlk þ P̃A

EWB̄iHik
EWjðΠ̃outÞjlðΠ̃outÞlk; ð19Þ

with ðΠ̃outÞij ¼ ηout1 δij=
ffiffiffi
3

p
. Note that we introduce PE

EW and PA
EW, namely the electroweak penguin exchange and

electroweak penguin annihilation terms for completeness. The above Heff contains all possible SU(3) invariant
combinations in first order of Hik

j , H
k and HEW

ik
j . It should be emphasize that the effective Hamiltonian in Eq. (18)

is obtained using flavor SU(3) symmetry argument only. The TA amplitude can contain all possible FSI contributions, while
the expressions of the decay amplitude in term of these TA will remain the same.
With redefinition of the following amplitudes:

2Ā≡ Ā1 þ Ā2; 2Ē≡ Ē1 þ Ē2; 2P̄≡ P̄1 þ P̄2;

2P̄A
EW ≡ P̄A

EW;1 þ P̄A
EW;2; 2P̄E

EW ≡ P̄E
EW;1 þ P̄E

EW;2; ð20Þ

ðHeffÞsinglet can be expressed in a more compact form,

ðHeffÞsinglet¼ðT̄þ2ĀÞB̄iHik
j ðΠoutÞjkηout1 =

ffiffiffi
3

p
þðC̄1þ2ĒÞB̄kHik

j ðΠoutÞjiηout1 =
ffiffiffi
3

p
þ
�
C̄2þ2P̄−

1

3
P̄C
EW;2

�
B̄mHkðΠoutÞmk ηout1 =

ffiffiffi
3

p

þðP̄EWþ2P̄A
EWÞB̄iHEW

ik
j ðΠoutÞjkηout1 =

ffiffiffi
3

p
þðP̄C

EW;1þ2P̄E
EWÞB̄kHEW

ik
j ðΠoutÞjiηout1 =

ffiffiffi
3

p

þ
�
C̃þẼþP̃þ3

2
P̃A−

1

3
P̃C
EW−

1

3
P̃E
EW

�
B̄kHkηout1 ηout1 =3: ð21Þ

Using the above approach we can reproduce familiar expressions of decay amplitudes in terms of TA [26,27].4 Explicitly,
we have the following amplitudes:

4See also [30] for a recent discussion.
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AB̄0
d→K−πþ ¼T 0 þP0 þ1

3
ð2P0C

EW−P0E
EWÞ;

AB̄0
d→K̄0π0 ¼

1

3
ffiffiffi
2

p ð3C0−3P0 þ3P0
EWþP0C

EWþP0E
EWÞ;

AB̄0
d→K̄0η8

¼ 1

3
ffiffiffi
6

p ð3C0−3P0 þ3P0
EWþP0C

EWþP0E
EWÞ;

AB̄0
d→K̄0η1

¼ 1

3
ffiffiffi
3

p ð3C̄0
2þ6P̄0− P̄0C

EW;1− P̄0C
EW;2−2P̄0E

EWÞ; ð22Þ

for group-1 modes,

AB−→K̄0π− ¼A0 þP0 þ1

3
ð−P0C

EWþ2P0E
EWÞ;

AB−→K−π0 ¼
1

3
ffiffiffi
2

p ð3T 0 þ3C0 þ3A0 þ3P0 þ3P0
EWþ2P0C

EWþ2P0E
EWÞ;

AB−→K−η8 ¼
1

3
ffiffiffi
6

p ð3T 0 þ3C0−3A0−3P0 þ3P0
EWþ4P0C

EW−2P0E
EWÞ;

AB−→K−η1 ¼
1

3
ffiffiffi
3

p ð3T̄ 0 þ3C̄0
2þ6Ā0 þ6P̄0 þ2P̄0C

EW;1− P̄0C
EW;2þ4P̄0E

EWÞ; ð23Þ

for group-2 modes,

AB−→π−π0 ¼
1ffiffiffi
2

p ðTþCþPEWþPC
EWÞ;

AB−→K0K− ¼AþPþ1

3
ð−PC

EWþ2PE
EWÞ;

AB−→π−η8 ¼
1

3
ffiffiffi
6

p ð3Tþ3Cþ6Aþ6Pþ3PEWþPC
EWþ4PE

EWÞ;

AB−→π−η1 ¼
1

3
ffiffiffi
3

p ð3T̄þ3C̄2þ6Āþ6P̄þ2P̄C
EW;1− P̄C

EW;2þ4P̄E
EWÞ; ð24Þ

for group-3 modes,

AB̄0
d→πþπ− ¼TþEþPþPAþ1

3
ð2PC

EWþPA
EW−PE

EWÞ;

AB̄0
d→π0π0 ¼

1ffiffiffi
2

p
�
−CþEþPþPA−PEW−

1

3
PC
EWþ1

3
PA
EW−

1

3
PE
EW

�
;

AB̄0
d→η8η8

¼ 1

9
ffiffiffi
2

p ð3Cþ3Eþ3Pþ9PAþ3PEW−PC
EW−3PA

EW−PE
EWÞ;

AB̄0
d→η8η1

¼ 1

9
ffiffiffi
2

p ð3C̄1þ3C̄2þ6Ēþ6P̄þ3P̄EWþ6P̄A
EW− P̄C

EW;1− P̄C
EW;2−2P̄E

EWÞ;

AB̄0
d→η1η1

¼ 1

9
ffiffiffi
2

p ð6C̃þ6Ẽþ6P̃þ9P̃A−2P̃C
EW−2P̃E

EWÞ;

AB̄0
d→KþK− ¼EþPAþ1

3
PA
EW;

AB̄0
d→K0K̄0 ¼PþPA−

1

3
ðPC

EWþ2PA
EWþPE

EWÞ;

AB̄0
d→π0η8

¼ 1

3
ffiffiffi
3

p ð3E−3PþPC
EWþ3PA

EWþPE
EWÞ;

AB̄0
d→π0η1

¼ 1

3
ffiffiffi
6

p ð3C̄1−3C̄2þ6Ē−6P̄þ3P̄EWþ6P̄A
EWþ P̄C

EW;1þ P̄C
EW;2þ2P̄E

EWÞ; ð25Þ

for group-4 modes, and the following amplitudes:
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AB̄0
s→Kþπ− ¼TþPþ1

3
ð2PC

EW−PE
EWÞ;

AB̄0
s→K0π0 ¼

1

3
ffiffiffi
2

p ð3C−3Pþ3PEWþPC
EWþPE

EWÞ;

AB̄0
s→K0η8

¼ 1

3
ffiffiffi
6

p ð3C−3Pþ3PEWþPC
EWþPE

EWÞ;

AB̄0
s→K0η1

¼ 1

3
ffiffiffi
3

p ð3C̄2þ6P̄−P̄C
EW;1−P̄C

EW;2−2P̄E
EWÞ;

ð26Þ
and

AB̄0
s→πþπ− ¼E0 þPA0 þ1

3
P0A
EW;

AB̄0
s→π0π0 ¼

1ffiffiffi
2

p
�
E0 þPA0 þ1

3
P0A
EW

�
;

AB̄0
s→η8η8

¼ 1

9
ffiffiffi
2

p ð−6C0 þ3E0 þ12P0 þ9PA0

−6P0
EW−4P0C

EW−3P0A
EW−4P0E

EWÞ;

AB̄0
s→η8η1

¼ 1

9
ffiffiffi
2

p ð3C̄0
1−6C̄0

2þ6Ē0−12P̄0 þ3P̄0
EW

þ6P̄0A
EWþ2P̄0C

EW;1þ2P̄0C
EW;2þ4P̄0E

EWÞ;

AB̄0
s→η1η1

¼ 1

9
ffiffiffi
2

p ð6C̃0 þ6Ẽ0 þ6P̃0 þ9fPA0−2P̃0C
EW−2P̃0E

EWÞ;

AB̄0
s→KþK− ¼T 0 þE0 þP0 þPA0 þ1

3
ðP0A

EWþ2P0C
EW−P0E

EWÞ;

AB̄0
s→K0K̄0 ¼P0 þPA0−

1

3
ðP0C

EWþ2P0A
EWþP0E

EWÞ;

AB̄0
s→π0η8

¼ 1ffiffiffi
3

p ð−C0 þE0−P0
EWþP0A

EWÞ;

AB̄0
s→π0η1

¼ 1ffiffiffi
6

p ðC̄0
1þ2Ē0 þ P̄0

EWþ2P̄0A
EWÞ; ð27Þ

for B̄s → PP decays, where the T, C, A, P, PA, and PEW
terms correspond to color-allowed tree, color-suppressed
tree, annihilation, penguin, penguin annihilation, and
electroweak penguin amplitudes, respectively. Note that
PE
EW and PA

EW, namely the electroweak penguin exchange
and electroweak penguin annihilation terms, are introduced
for completeness. See Appendix B for details. Those with
(without) prime are for ΔS ¼ −1ð0Þ transition.
The one-to-one correspondence of the SU(3) parameters

and the topological amplitudes is not a coincidence. It can
be understood by using a flavor flow analysis. We take the
first term of Heff for illustration. In HW the decays are
governed by the OT ∼ ðūbÞðd̄uÞ ¼ Hik

j ðq̄ibÞðq̄kqjÞ, b →
qiq̄jqk transition with the corresponded Hik

j coupling. The

first term ofHeff in Eq. (18) is TB̄mHik
j ðΠoutÞjkðΠoutÞmi . Note

that we use subscript and superscript according to the
field convention. For example, we assign a subscript
(superscript) to the initial (final) state antiquark q̄m (q̄m).
The B̄mðΠoutÞmi part in TB̄mHik

j ðΠoutÞjkðΠoutÞmi can be

interpreted as a B̄m to ðΠoutÞmi transition with the same
spectator antiquark q̄m from B̄m becoming the final state
spectator anti-quark q̄m, which ends up in ðΠoutÞmi . The
quark qi from b → qi transition also ends up in ðΠoutÞmi ,
while the ðΠoutÞjk part is responsible for the creation of the
meson where the W-emitted q̄jqk pair ends up with. The
above picture clearly corresponds to the external W-
emission topology. Similarly, the identification of the other
topological amplitudes can be understood similarly.
One can check that all of the above amplitudes can be

expressed in terms of the following combinations:

Tð0Þ þ Cð0Þ; Cð0Þ − Eð0Þ; Að0Þ þ Cð0Þ;

Pð0Þ − Cð0Þ þ 1

3
Pð0ÞC
EW ; PAð0Þ −

4

9
Cð0Þ þ 13

9
Eð0Þ −

1

3
Pð0ÞC
EW ;

Pð0Þ
EW þ Pð0ÞC

EW ; Pð0ÞC
EW − Pð0ÞE

EW ; Pð0ÞA
EW þ Pð0ÞC

EW ;

T̄ð0Þ þ 2Āð0Þ; C̄ð0Þ
1 þ 2Ēð0Þ;

C̄ð0Þ
2 þ 2P̄ð0Þ −

1

3
P̄ð0ÞC
EW;2; P̄

ð0Þ
EW þ 2P̄ð0ÞA

EW ; P̄ð0ÞC
EW;1 þ 2P̄ð0ÞE

EW ;

C̃ð0Þ þ Ẽð0Þ þ P̃ð0Þ þ 3

2
P̃Að0Þ −

1

3
P̃ð0ÞC
EW −

1

3
P̃ð0ÞE
EW : ð28Þ

For example, we can express the decay amplitude of B̄0 →
K−πþ in the following combinations:

AðB̄0 → K−πþÞ ¼ ðT 0 þ C0Þ þ
�
P0 − C0 þ 1

3
PC0
EW

�
þ 1

3
ðPC0

EW − PE0
EWÞ: ð29Þ

It is interesting to compare the amplitudes expressed in
terms of the topological amplitudes with the those in the
QCDF calculation. We can obtain the following relations
in the SU(3) limit: (using formulas in [18] but taking the
SU(3) limit)

Tð0Þ0 ¼ APPλ
ð0Þ
p δpuα1;

Cð0Þ0 ¼ APPλ
ð0Þ
p δpuα2;

Eð0Þ0 ¼ APPλ
ð0Þ
p δpuβ1;

Að0Þ0 ¼ APPλ
ð0Þ
p δpuβ2;

Pð0Þ0 ¼ APPλ
ð0Þ
p ðαp4 þ βp3 Þ;

PAð0Þ0 ¼ 2APPλ
ð0Þ
p βp4 ;

Pð0Þ0
EW ¼ 3

2
APPλ

ð0Þ
p αp3;EW;

Pð0ÞC0
EW ¼ 3

2
APPλ

ð0Þ
p αp4;EW;

Pð0ÞE0
EW ¼ 3

2
APPλ

ð0Þ
p βp3;EW;

Pð0ÞA0
EW ¼ 3

2
APPλ

ð0Þ
p βp4;EW; ð30Þ
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where we use λð0Þp ≡ VpbV�
pdðsÞ, p ¼ u, c with Vpb;pdðsÞ

the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments and summation over p is implied. One can
find detail definitions of APP, α and β in [18]. Note
that APP involves a B̄q → P transition and a P decay
constant:

APP ¼ GFffiffiffi
2

p FBP
0 ðm2

PÞfPm2
B: ð31Þ

It should be note that we have removed an overall i in
the definition of APP. The superscript 0 on TA is
denoting the fact that rescattering among PP states
has not taken place. In the SU(3) limit, we will use
FBP
0 ðm2

PÞ ¼ FBπ
0 ð0Þ and fP ¼ fπ in later discussion.

For B decays to a final state with η1, things are more
complicated. For example, APη1 is in principle different
from Aη1P. We have in the SU(3) limit: [18]

T̄ð0Þ0¼Aη1Pλ
ð0Þ
p δpuα1;

C̄ð0Þ0
1 ¼Aη1Pλ

ð0Þ
p δpuα2;

C̄ð0Þ0
2 ¼APη1λ

ð0Þ
p δpuα2;

2Ēð0Þ0≡Ēð0Þ0
1 þĒð0Þ0

2

¼Aη1Pλ
ð0Þ
p δpuβ1þAPη1λ

ð0Þ
p δpuðβ1þ3βS1Þ;

2Āð0Þ0≡Āð0Þ0
1 þĀð0Þ0

2

¼Aη1Pλ
ð0Þ
p δpuβ2þAPη1λ

ð0Þ
p δpuðβ2þ3βS2Þ;

2P̄ð0Þ0≡P̄ð0Þ0
1 þP̄ð0Þ0

2

¼Aη1Pλ
ð0Þ
p ðαp4 þβp3 ÞþAPη1λ

ð0Þ
p ðαp4 þ3αp3 þβp3 þ3βpS3Þ;

P̄ð0Þ0
EW¼3

2
Aη1Pλ

ð0Þ
p αp3;EW;

P̄ð0ÞC0
EW;1¼

3

2
Aη1Pλ

ð0Þ
p αp4;EW;

P̄ð0ÞC0
EW;2¼

3

2
APη1λ

ð0Þ
p αp4;EW;

2P̄ð0ÞE0
EW ≡P̄ð0ÞE0

EW;1þP̄ð0ÞE0
EW;2

¼3

2
½Aη1Pλ

ð0Þ
p βp3;EWþAPη1λ

ð0Þ
p ðβp3;EWþ3βpS3;EWÞ�;

2P̄ð0ÞA0
EW ≡P̄ð0ÞA0

EW;1þP̄ð0ÞA0
EW;2

¼3

2
½Aη1Pλ

ð0Þ
p βp4;EWþAPη1λ

ð0Þ
p ðβp4;EWþ3βp4S;EWÞ�:

ð32Þ

Note that APη1 involves a B̄ → P transition, while Aη1P

involves a B̄ → η1 transition:

APη1 ¼
GFffiffiffi
2

p FB̄→P
0 fη1m

2
B;

Aη1P ¼ GFffiffiffi
2

p FB̄→η1
0 fPm2

B ≃
GFffiffiffi
2

p FB̄→P
0

fη1
fP

fPm2
B; ð33Þ

where in the second equation, we have made use of the
approximation from [18]. In fact we have APη1 ≃ Aη1P≃
APPðfη1=fPÞ.
Finally comparing our expressions and those in

Ref. [18], we have

C̃ð0Þ0 ¼ Aη1η1λ
ð0Þ
p δpuα2;

Ẽð0Þ0 ¼ Aη1η1λ
ð0Þ
p δpuðβ1 þ 3βS1Þ;

P̃ð0Þ0 ¼ Aη1η1λ
ð0Þ
p ðαp4 þ 3αp3 þ βp3 þ 3βpS3Þ;fPAð0Þ ¼ 2Aη1η1λ
ð0Þ
p ðβp4 þ 3βpS4Þ;

P̃ð0ÞC0
EW ¼ 3

2
Aη1η1λ

ð0Þ
p αp4;EW;

P̃ð0ÞE0
EW ¼ 3

2
Aη1η1λ

ð0Þ
p ðβp3;EW þ 3βpS3;EWÞ; ð34Þ

with

Aη1η1 ¼
GFffiffiffi
2

p FB̄→η1
0 fη1m

2
B≃

GFffiffiffi
2

p FB̄→P
0

fη1
fP

fη1m
2
B

¼APP

�
fη1
fP

�
2

: ð35Þ

In the later discussion, we take fη1 ¼ fP ¼ fπ .

2. Rescattering of topological amplitudes
in the SU(3) limit

We now turn to the rescattering part. The matrices
T 1;2;3;4 can be obtained through a diagrammatic method
by matching the Clebsh-Gordan coefficients of scattering
mesons (see Fig. 1) or by using an operator method.
We have

Oe ¼TrðΠinΠoutΠinΠoutÞ=2; Oa ¼TrðΠinΠinΠoutΠoutÞ;
O0 ¼TrðΠinΠoutÞTrðΠinΠoutÞ=2;
Ot ¼TrðΠinΠinÞTrðΠoutΠoutÞ=4; ð36Þ

corresponding to re, ra, r0, and rt contributions, in the
combination of

T ðmÞ ¼ rðmÞ
0 O0 þ rðmÞ

e Oe þ rðmÞ
a Oa þ rðmÞ

t Ot þ � � � ; ð37Þ

where the remaining terms will be specified in below.
The above terms exhaust all possible combinations for
Πð8ÞΠð8Þ → Πð8ÞΠð8Þ scatterings.

CHUN-KHIANG CHUA PHYS. REV. D 97, 093004 (2018)

093004-8



To obtain operators involving η1, we simply replace Π in
the above operators to Πþ η113×3=

ffiffiffi
3

p
and collect terms

with different number of η1 as

ffiffiffi
3

p
Ōe ¼

ffiffiffi
3

p

2
Ōa¼TrðΠinΠoutΠinÞηout1 þTrðΠoutΠinΠoutÞηin1 ;

Õ0 ¼
3

4
Õa ¼

3

2
Õe ¼TrðΠinΠoutÞηin1 ηout1 ;

4Ôt ¼ 3Ôa ¼ 6Ôe

¼ ηin1 η
in
1 TrðΠoutΠoutÞþηout1 ηout1 TrðΠinΠinÞ;

2Ǒ0 ¼ 4Ǒt¼ 3Ǒa¼ 6Ǒe ¼ ηin1 η
out
1 ηin1 η

out
1 : ð38Þ

Note that it is impossible to obtain a term containing three
η1 as is prohibited from SUð3Þ symmetry. We now have

T ðmÞ ¼ rðmÞ
0 O0 þ rðmÞ

e Oe þ rðmÞ
a Oa þ rðmÞ

t Ot þ r̄ðmÞ
e Ōe

þ r̄ðmÞ
a Ōa þ r̃ðmÞ

0 Õ0 þ r̃ðmÞ
a Õa þ r̃ðmÞ

e Õe þ r̂ðmÞ
t Ôt

þ r̂ðmÞ
a Ôa þ r̂ðmÞ

e Ôe þ řðmÞ
0 Ǒ0 þ řðmÞ

t Ǒt

þ řðmÞ
a Ǒa þ řðmÞ

e Ǒe: ð39Þ

Using Eq. (38), the above equation can be simplified
into

T ðmÞ ¼rðmÞ
0 O0þrðmÞ

e OeþrðmÞ
a OaþrðmÞ

t Otþðr̄ðmÞ
e þ2r̄ðmÞ

a ÞŌeþ
�
r̃ðmÞ
0 þ4r̃ðmÞ

a þ2r̃ðmÞ
e

3

�
Õ0þ

�
r̂ðmÞ
t þ4r̂ðmÞ

a þ2r̂ðmÞ
e

3

�
Ôt

þ
�
řðmÞ
0 þ4řðmÞ

a þ2řðmÞ
e þ3řðmÞ

t

6

�
Ǒ0: ð40Þ

Note that various r̄ðmÞ
i , r̃ðmÞ

i , r̂ðmÞ
i , and řðmÞ

i occur in T ðmÞ
only through some very specific combinations. We still

preserve the subscripts (i ¼ 0; t; a; e), since these r̄ðmÞ
i , r̃ðmÞ

i ,

r̂ðmÞ
i and řðmÞ

i for different i correspond to different flavor
flow patterns in rescattering diagrams (see Fig. 1) and they

will, in fact, reduce to rðmÞ
i in the Uð3Þ limit.

It is straightforward to obtain the rescattering effects on
topological amplitudes. In analogy to Eq. (15):

A ¼ S1=2
res · Afac ¼ ð1þ iT 1=2Þ · Afac; ð41Þ

we have

Heff ¼ ð1þ iT 1=2Þ ·H0
eff ¼ H0

eff þ iT 1=2 ·H0
eff ; ð42Þ

where Heff is given in Eq. (18), T 1=2 in Eq. (40) but with
m ¼ 1=2,H0

eff is the unscattered effective Hamiltonian with

all TA in Heff replaced by TA0 and the dot in the above
equation implies all possible pairing of the PoutPout fields in
H0

eff to theP
inPin fields in T 1=2 (thePoutPout in T 1=2 remains

unpaired). As noted previously since the effective
Hamiltonian in Eq. (18) is obtained using flavor SU(3)
symmetry argument only, its flavor structure will not be
changed in the presence of rescattering, i.e., Eq. (42) will not
modify the flavor structure of Heff . This feature is indeed
verified in the explicit computation. Therefore the expres-
sions of the decay amplitude in term of theTAwill remain the
same, but now these TA contain rescattering contributions.
The effect of rescattering on TA can be obtained using

the above equation. The computation is straightforward, but
tedious. Here we only give the final results, some deriva-
tions using the above equation can be found in Appendix B
for illustration. We obtain, in the presence of the rescatter-
ing, TA will receive corrections in the following ways:

δTð0Þ ¼ ir00T
ð0Þ0 þ ir0eCð0Þ0;

δCð0Þ ¼ ir00C
ð0Þ0 þ ir0eTð0Þ0;

δEð0Þ ¼ ir00E
ð0Þ0 þ ir0aTð0Þ0 −

1

3
iðr0e þ 2r0aÞCð0Þ0 þ 1

3
ið−2r0e þ 5r0aÞEð0Þ0 þ 1

3
iðr̄0e þ 2r̄0aÞðC̄ð0Þ0

1 þ 2Ēð0Þ0Þ;

δAð0Þ ¼ 1

3
ið3r00 − 2r0e þ 5r0aÞAð0Þ0 −

1

3
iðr0e þ 2r0aÞTð0Þ0 þ ir0aCð0Þ0 þ 1

3
iðr̄0e þ 2r̄0aÞðT̄ð0Þ0 þ 2Āð0Þ0Þ;

δPð0Þ ¼ ir00P
ð0Þ0 þ ir0aTð0Þ0 −

1

3
iðr0e þ 2r0aÞCð0Þ0 þ 1

3
ið−2r0e þ 5r0aÞPð0Þ0

−
1

3
ir0aP

ð0Þ0
EW þ 1

9
iðr0e þ 2r0aÞPð0ÞC0

EW þ 1

3
iðr̄0e þ 2r̄0aÞ

�
C̄ð0Þ0
2 þ 2P̄ð0Þ0 −

1

3
P̄ð0ÞC0
EW;2

�
;
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δPAð0Þ ¼ 1

3
ið3r00 − r0e þ 16r0a þ 12r0tÞPAð0Þ0 þ ir0tTð0Þ0 þ 1

9
ð2ir0e þ 4ir0a − 3ir0tÞCð0Þ0

þ 2

9
ðir0e þ 11ir0a þ 12ir0tÞEð0Þ0 þ 2

9
ðir0e þ 11ir0a þ 12ir0tÞPð0Þ0 −

1

3
ir0tP

ð0Þ0
EW þ 1

27
ið−2r0e − 4r0a þ 3r0tÞPð0ÞC

EW

−
2

27
iðr0e þ 11r0a þ 12r0tÞPð0ÞE0

EW −
2

9
iðr̄0e þ 2r̄0aÞ

�
C̄ð0Þ0
1 þ 2Ēð0Þ0 þ C̄ð0Þ0

2 þ 2P̄ð0Þ0 −
1

3
P̄ð0ÞC0
EW;2 −

1

3
P̄ð0ÞC0
EW;1 −

2

3
P̄ð0ÞE0
EW

�

þ 1

3
i
�
r̂0t þ

4r̂0a þ 2r̂0e
3

��
C̃ð0Þ0 þ Ẽð0Þ0 þ P̃ð0Þ0 þ 3

2
P̃Að0Þ0 −

1

3
P̃ð0ÞC0
EW −

1

3
P̃ð0ÞE0
EW

�
;

δPð0Þ
EW ¼ ir00P

ð0Þ0
EW þ ir0eP

ð0ÞC0
EW ;

δPð0ÞC
EW ¼ ir00P

ð0ÞC0
EW þ ir0eP

ð0Þ0
EW;

δPð0ÞE
EW ¼ ir00P

ð0ÞE0
EW þ ir0aP

ð0Þ0
EW −

1

3
iðr0e þ 2r0aÞPð0ÞC0

EW þ 1

3
ið−2r0e þ 5r0aÞPð0ÞE0

EW þ 1

3
iðr̄0e þ 2r̄0aÞðP̄ð0ÞC0

EW;1 þ 2P̄ð0ÞE0
EW Þ;

δPð0ÞA
EW ¼ 1

3
ið3r00 − 2r0e þ 5r0aÞPð0ÞA0

EW −
1

3
iðr0e þ 2r0aÞPð0Þ0

EW þ ir0aP
ð0ÞC0
EW þ 1

3
iðr̄0e þ 2r̄0aÞðP̄ð0Þ0

EW þ 2P̄ð0ÞA0
EW Þ; ð43Þ

δðT̄ð0Þ þ 2Āð0ÞÞ ¼ iðr̄0e þ 2r̄0aÞ
�
−
2

3
Tð0Þ0 þ Cð0Þ0 þ 5

3
Að0Þ0

�
þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
ðT̄ð0Þ0 þ 2Āð0Þ0Þ;

δðC̄ð0Þ
1 þ 2Ēð0ÞÞ ¼ iðr̄0e þ 2r̄0aÞ

�
Tð0Þ0 −

2

3
Cð0Þ0 þ 5

3
Eð0Þ0

�
þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
ðC̄ð0Þ0

1 þ 2Ēð0Þ0Þ;

δ

�
C̄ð0Þ
2 þ 2P̄ð0Þ −

1

3
P̄ð0ÞC
EW;2

�
¼ iðr̄0e þ 2r̄0aÞ

�
Tð0Þ0 −

2

3
Cð0Þ0 þ 5

3
Pð0Þ0 −

1

3
Pð0Þ0
EW þ 2

9
Pð0ÞC0
EW

�

þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

��
C̄ð0Þ0
2 þ 2P̄ð0Þ0 −

1

3
P̄ð0ÞC0
EW;2

�
;

δðP̄ð0Þ
EW þ 2P̄ð0ÞA

EW Þ ¼ iðr̄0e þ 2r̄0aÞ
�
−
2

3
Pð0Þ0
EW þ Pð0ÞC0

EW þ 5

3
Pð0ÞA0
EW

�
þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
ðP̄ð0Þ0

EW þ 2P̄ð0ÞA0
EW Þ;

δðP̄ð0ÞC
EW;1 þ 2P̄ð0ÞE

EW Þ ¼ iðr̄0e þ 2r̄0aÞ
�
Pð0Þ0
EW −

2

3
Pð0ÞC0
EW þ 5

3
Pð0ÞE0
EW

�
þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
ðP̄ð0ÞC0

EW;1 þ 2P̄ð0ÞE0
EW Þ; ð44Þ

and

δ

�
C̃ð0Þ þ Ẽð0Þ þ P̃ð0Þ þ 3

2
fPAð0Þ −

1

3
P̃ð0ÞC
EW −

1

3
P̃ð0ÞE
EW

�

¼ i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

��
3

2
Tð0Þ0 −

1

2
Cð0Þ0 þ 4Eð0Þ0 þ 4Pð0Þ0 þ 6PAð0Þ0 −

1

2
P0
EW þ 1

6
ðPC

EWÞ0 −
4

3
ðPE

EWÞ0
�

þ i
�
ř00 þ

4ř0a þ 2ř0e þ 3ř0t
6

��
C̃ð0Þ0 þ Ẽð0Þ0 þ P̃ð0Þ0 þ 3

2
fPAð0Þ0 −

1

3
P̃ð0ÞC0
EW −

1

3
P̃ð0ÞE0
EW

�
; ð45Þ

where the superscript 0 denote unscattered amplitudes andwe

define r0i≡rð1=2Þi , r̄0i≡r̄ð1=2Þi , r̂0i≡r̂ð1=2Þi , ř0i≡ řð1=2Þi , r̃0i≡ r̃ð1=2Þi .
The full topological amplitudes contain the unscattered

and the contribution from the scattering. For example, for
the tree amplitude the full amplitude is Tð0Þ, the unscattered
tree amplitude is Tð0Þ0. After scattering we have

Tð0Þ ¼ Tð0Þ0 þ δTð0Þ ¼ Tð0Þ0 þ ir00T
ð0Þ0 þ ir0eCð0Þ0: ð46Þ

One can check that the above equations are consistent
with the topological amplitude expressions Eqs. (22),

(23), (24), (25), (26), and (27), and the
rescattering formulas, Eqs. (A5), (A6), (A7), (A8) and
those of Bs decays. It should be pointed out that this is a
nontrivial check, as one can see that Eqs. (22), (23),
(24), (25), (26), and (27) are rather complicate and a
single error in them can easily spoil the consis-
tency check.
Note that decay amplitudes can be expressed in terms of

several combinations of topological amplitudes, such as
T þ C, C − E and so on, and FSI affects these combina-
tions only through,
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1þ iðr00 þ r0aÞ; iðr0e − r0aÞ; iðr0a þ r0tÞ; ið2r̄0a þ r̄0eÞ; 1þ i

�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
; i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

�
: ð47Þ

We have

Tð0Þ þCð0Þ ¼ ½ð1þ ir00þ ir0aÞþ iðr0e− r0aÞ�ðTð0Þ0þCð0Þ0Þ¼ eiδ27ðTð0Þ0þCð0Þ0Þ;

Cð0Þ−Eð0Þ ¼ ð1þ ir00þ ir0aÞðCð0Þ0−Eð0Þ0Þþ1

3
iðr0e− r0aÞ½3ðTð0Þ0þCð0Þ0Þ−2ðCð0Þ0−Eð0Þ0Þ�

−
1

3
iðr̄0eþ2r̄0aÞðC̄ð0Þ0

1 þ2Ēð0Þ0Þ;

Að0Þ þCð0Þ ¼ ð1þ ir00þ ir0aÞðAð0Þ0þCð0Þ0Þþ2

3
iðr0e− r0aÞ½ðTð0Þ0þCð0Þ0Þ− ðAð0Þ0þCð0Þ0Þ�

þ1

3
iðr̄0eþ2r̄0aÞðT̄ð0Þ0þ2Āð0Þ0Þ;

Pð0Þ−Cð0Þ þ1

3
Pð0ÞC
EW ¼ ½ð1þ ir00þ ir0aÞ−

2

3
iðr0e− r0aÞ�

�
Pð0Þ0−Cð0Þ0þ1

3
Pð0ÞC0
EW

�

þ1

3
iðr0e−r0aÞ½−3ðTð0Þ0þCð0Þ0ÞþðPð0Þ0

EWþPð0ÞC0
EW Þ�

þ1

3
iðr̄0eþ2r̄0aÞ

�
C̄ð0Þ0
2 þ2P̄ð0Þ0−

1

3
P̄ð0ÞC0
EW;2

�
;

PAð0Þ−
4

9
Cð0Þ þ13

9
Eð0Þ−

1

3
Pð0ÞC
EW ¼

�
1þ ir00þ ir0a−

1

3
iðr0e−r0aÞþ4iðr0aþ r0tÞ

��
PAð0Þ0−

4

9
Cð0Þ0þ13

9
Eð0Þ0−

1

3
Pð0ÞC
EW

�

þ
�
−
4

9
iðr0e−r0aÞþ iðr0aþ r0tÞ

�
ðTð0Þ0þCð0Þ0Þþ7

9

�
1

3
iðr0e− r0aÞþ4iðr0aþ r0tÞ

�
ðCð0Þ0−Eð0Þ0Þ

þ
�
2

9
iðr0e− r0aÞþ

8

3
iðr0aþ r0tÞ

��
Pð0Þ0−Cð0Þ0þ1

3
Pð0ÞC0
EW

�

−
1

3
½iðr0e− r0aÞþ iðr0aþ r0tÞ�ðPð0Þ0

EWþPð0ÞC0
EW Þþ

�
2

27
iðr0e− r0aÞþ

8

9
iðr0aþ r0tÞ

�
ðPð0ÞC0

EW −Pð0ÞE0
EW Þ

þ 1

27
iðr̄0eþ2r̄0aÞ

�
7ðC̄ð0Þ0

1 þ2Ēð0Þ0Þ−6

�
C̄ð0Þ0
2 þ2P̄ð0Þ0−

1

3
P̄ð0ÞC0
EW;2

�
þ2ðP̄ð0ÞC0

EW;1þ2P̄ð0ÞE0
EW Þ

�

þ1

3
i

�
r̂0tþ

4r̂0aþ2r̂0e
3

��
C̃ð0Þ0þ Ẽð0Þ0þ P̃ð0Þ0þ3

2
P̃Að0Þ0−

1

3
P̃ð0ÞC0
EW −

1

3
P̃ð0ÞE0
EW

�
;

Pð0Þ
EWþPð0ÞC

EW ¼ ½ð1þ ir00þ ir0aÞþ iðr0e− r0aÞ�ðPð0Þ0
EWþPð0ÞC0

EW Þ¼ eiδ27ðPð0Þ0
EWþPð0ÞC0

EW Þ;

Pð0ÞC
EW −Pð0ÞE

EW ¼ð1þ ir00þ ir0aÞðPð0ÞC0
EW −Pð0ÞE0

EW Þþ1

3
iðr0e− r0aÞ½3ðPð0Þ0

EWþPð0ÞC0
EW Þ−2ðPð0ÞC0

EW −Pð0ÞE0
EW Þ�

−
1

3
iðr̄0eþ2r̄0aÞðP̄ð0ÞC0

EW;1þ2P̄ð0ÞE0
EW Þ;

Pð0ÞA
EW þPð0ÞC

EW ¼ð1þ ir00þ ir0aÞðPð0ÞA0
EW þPð0ÞC0

EW Þþ2

3
iðr0e− r0aÞ½ðPð0Þ0

EWþPð0ÞC0
EW Þ− ðPð0ÞA0

EW þPð0ÞC0
EW Þ�

þ1

3
iðr̄0eþ2r̄0aÞðP̄ð0Þ0

EWþ2P̄ð0ÞA0
EW Þ; ð48Þ
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ðT̄ð0Þ þ2Āð0ÞÞ¼
�
1þ i

�
r̃00þ

4r̃0aþ2r̃0e
3

��
ðT̄ð0Þ0þ2Āð0Þ0Þþ iðr̄0eþ2r̄0aÞ

�
−
2

3
ðTð0Þ0þCð0Þ0Þþ5

3
ðAð0Þ0þCð0Þ0Þ

�
;

ðC̄ð0Þ
1 þ2Ēð0ÞÞ¼

�
1þ i

�
r̃00þ

4r̃0aþ2r̃0e
3

��
ðC̄ð0Þ0

1 þ2Ēð0Þ0Þþ iðr̄0eþ2r̄0aÞ
�
ðTð0Þ0þCð0Þ0Þ−5

3
ðCð0Þ0−Eð0Þ0Þ

�
;

C̄ð0Þ
2 þ2P̄ð0Þ−

1

3
P̄ð0ÞC
EW;2¼

�
1þ i

�
r̃00þ

4r̃0aþ2r̃0e
3

���
C̄ð0Þ0
2 þ2P̄ð0Þ0−

1

3
P̄ð0ÞC0
EW;2

�
þ iðr̄0eþ2r̄0aÞ½ðTð0Þ0þCð0Þ0Þ

þ5

3

�
Pð0Þ0−Cð0Þ0þ1

3
Pð0ÞC0
EW

�
−
1

3
ðPð0Þ0

EWþPð0ÞC0
EW Þ�;

ðP̄ð0Þ
EWþ2P̄ð0ÞA

EW Þ¼
�
1þ i

�
r̃00þ

4r̃0aþ2r̃0e
3

��
ðP̄ð0Þ0

EWþ2P̄ð0ÞA0
EW Þþ iðr̄0eþ2r̄0aÞ

�
−
2

3
ðPð0Þ0

EWþPð0ÞC0
EW Þþ5

3
ðPð0ÞA0

EW þPð0ÞC0
EW Þ

�
;

ðP̄ð0ÞC
EW;1þ2P̄ð0ÞE

EW Þ¼
�
1þ i

�
r̃00þ

4r̃0aþ2r̃0e
3

��
ðP̄ð0ÞC0

EW;1þ2P̄ð0ÞE0
EW Þþ iðr̄0eþ2r̄0aÞ½ðPð0Þ0

EWþPð0ÞC0
EW Þ−5

3
ðPð0ÞC0

EW −Pð0ÞE0
EW Þ�; ð49Þ

and

�
C̃ð0Þ þ Ẽð0Þ þ P̃ð0Þ þ 3

2
fPAð0Þ −

1

3
P̃ð0ÞC
EW −

1

3
P̃ð0ÞE
EW

�

¼ i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

��
3

2
ðTð0Þ0 þ Cð0Þ0Þ þ 14

3
ðCð0Þ0 − Eð0Þ0Þ þ 4

�
Pð0Þ0 − Cð0Þ0 þ 1

3
Pð0ÞC0
EW

�

þ 6

�
PAð0Þ0 −

4

9
Cð0Þ0 þ 13

9
Eð0Þ0 −

1

3
Pð0ÞC0
EW

�
−
1

2
ðPð0Þ0

EW þ Pð0ÞC0
EW Þ þ 4

3
ðPð0ÞC0

EW − Pð0ÞE0
EW Þ

�

þ
�
1þ i

�
ř00 þ

4ř0a þ 2ř0e þ 3ř0t
6

���
C̃ð0Þ0 þ Ẽð0Þ0 þ P̃ð0Þ0 þ 3

2
P̃Að0Þ0 −

1

3
P̃ð0ÞC0
EW −

1

3
P̃ð0ÞE0
EW

�
: ð50Þ

With the help of Eq. (9) (with m ¼ 1=2) we will be able to
study the effect of rescattering to the above combinations
and give a clearer picture.Note that the above transformation
formulas of the combined topological amplitudes, in
Eqs. (48)–(50), are not as powerful compared to trans-
formation formulas of the individual topological ampli-
tudes, Eqs. (43)–(45). They are, however, the ones that can
have in terms of the combinations of r0i [Eq. (47)] and hence
the rescattering angles and phases, τ, ν, σ, and δ [see Eqs. (9)
and (14)], without introducing additional assumptions.

3. Topological amplitudes and rescattering
in the U(3) limit

It is interesting to investigate the above relations in the
U(3) limit, where we take Eq. (10) and

T̄ ¼ T̃ ¼ T; C̄1 ¼ C̄2 ¼ C̃ ¼ C;

Ē ¼ Ẽ ¼ E; Ā ¼ Ã ¼ A;

P̄ ¼ P̃ ¼ P; P̄EW ¼ P̃EW ¼ PEW;

P̄C
EW;1 ¼ P̄C

EW;2 ¼ P̃C
EW ¼ PC

EW;

P̄E
EW ¼ P̃E

EW ¼ PE
EW; P̄A

EW ¼ P̃A
EW ¼ PA

EW;

PA ¼ fPA ¼ PA: ð51Þ

Using Eq. (10) and Eqs. (43)–(45), we find that

δðT̄þ2ĀÞ−δðTþ2AÞ¼ 3ir0eA0;

δðC̄1þ2ĒÞ−δðCþ2EÞ¼ 3ir0eE0;

δ
�
C̄2þ2P̄−

1

3
P̄C
EW;2

�
−δ

�
Cþ2P−

1

3
PC
EW

�
¼ 3ir0eP0;

δðP̄EWþ2P̄A
EWÞ−δðPEWþ2PA

EWÞ¼ 3ir0ePA0
EW;

δðP̄C
EW;1þ2P̄E

EWÞ−δðPC
EWþ2PE

EWÞ¼ 3ir0ePE0
EW;

ð52Þ

and

δ

�
C̃þ Ẽþ P̃þ 3

2
fPA −

1

3
P̃C
EW −

1

3
P̃E
EW

�

− δ

�
Cþ Eþ Pþ 3

2
PA −

1

3
PC
EW −

1

3
PE
EW

�

¼ 1

2
ir0eð6E0 þ 6P0 þ 9PA0 − 2PE0

EWÞ: ð53Þ

The above relations can be consistent with the relations in
the U(3) limit, Eq. (51), only if we take
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r0e ¼ 0: ð54Þ

It is useful to recall that by requiring U(3) symmetry to the
rescattering matrix T [Eq. (10)] one only leads to r0er0a ¼ 0
[see Eq. (12)], which can either be r0e ¼ 0 or r0a ¼ 0. Now
we can select out the r0e ¼ 0 solution. The reason of being
more specify here is that we now apply U(3) symmetry to
both rescattering matrix T [Eq. (10)] and to the topological
amplitudes [Eq. (51)]. Hence it leads to a more specify
relation.

III. NUMERICAL RESULTS

In this section, we will present our numerical results.
First, we will give an overview of the results of the fits. We
will then discuss the rescattering effects on topological
amplitudes. Finally, numerical results for decay rates and
CP asymmetries will be shown.

A. Overview of the results of the fits

Before present our numerical results, we specify the
inputs used in the following numerical study. Masses of all
particles and total widths of Bu;d;s mesons are taken from
the review of the Particle Data Group (PDG) [7] and the
branching ratios of B to charmless meson decays are taken
from the latest averages in [6].
For theoretical inputs, we use fπ ¼ 130.2 MeV, fK ¼

155.6 MeV and fBðsÞ ¼ 187.1 (227.2) MeV for decay con-
stants and msð2 GeVÞ ¼ 93.5 MeV for the strange quark
mass, which is taken from the central value of the PDG
averaged value, 93.5� 2 MeV [7].5 The values of CKM
matrix elements, except γ=ϕ3, are also taken from the central
values of the latest PDG’s results [7]. We use the QCD
factorization calculated amplitudes [18] for the factorization
amplitudes in the right-hand side of Eq. (2). We take the
renormalization scale as μ ¼ 4.2 GeV and the power cor-
rection parameters XA;H ¼ lnðmB=ΛhÞð1þ ρA;HeiϕA;HÞ. For
meson wave functions, we use the following Gegenbauer
moments: αK̄1 ¼ −αK1 ¼ 0.2, αK̄2 ¼ αK2 ¼ 0.1, απ1 ¼ 0, απ2 ¼
0.2 and αη;η

0
1;2 ¼ 0 [18]. Several hadronic parameters, in

additional to the CKM phase γ=ϕ3, ρA;H and ϕA;H, in
factorization amplitudes are fit parameters and are allowed
to vary in the following ranges:

FBπ
0 ð0Þ¼ 0.25�0.05; FBK

0 ð0Þ¼ 0.35�0.08;

FBsKð0Þ¼ 0.31�0.08; γ=ϕ3¼ð73.2�10Þ°;
λB ¼ 0.35�0.25GeV; λBs

¼ 0.35�0.25GeV:

ð55Þ

These estimations agree with those in [18,31–36], while the
ranges of form factors and γ=ϕ3 are slightly enlarged. For
example, the aboveFBπ

0 ð0Þ can be compared to the following
reported values for the quantity: 0.28� 0.05 [18], 0.25 [31],
0.29 [32], 0.258� 0.031 [33], 0.26þ0.04

−0.03 [34], 0.281þ0.027
−0.029

[35], and 0.261þ0.020
−0.023 [36].6

It is known that semileptonic B → πlν decays are related
to the B → π form factor and the determination of jVubj [7].
Using data from BABAR [37,38] and Belle [39,40],
HFLAG obtain the following result in 2014: [6]

FBπ
0 ð0ÞjVubj ¼ ð9.23� 0.24Þ × 10−4; ð56Þ

We will use this in our χ2 analysis.
In summary, 9 hadronic parameters, ρA;H, ϕA;H, FBπ

0 ð0Þ,
FBK
0 ð0Þ, FBsKð0Þ, λB, λBs

, and one CKM phase, γ=ϕ3,
involved in the QCDF amplitudes will be fitted from data.
The residue rescattering part add 4 more parameters, τ, ν, δ,
and σ, giving 14 parameters in total. Note that the majority
of the fitted parameters are from the factorization part.
In this analysis there are totally 93 measurable quantities,

including 34 rates, 34 direct CP asymmetries, 24 mixing
induced CP asymmetries and one measurement from
semileptonic B decay [Eq. (56)]. Among them we will
fit to all available data, including 26 rates, 16 direct CP
asymmetries, 5 mixing induced CP asymmetries and 1
semileptonic decay data, giving 48 in total, and will have
prediction on 8 rates, 18 direct CP asymmetries and 19
mixing induced CP asymmetries. The explicit list of these
48 items will be shown later. The total numbers of data in fit
and in predictions are roughly the same. The summary of
these numbers is shown in Table I.
We perform a χ2 analysis with all available data on CP-

averaged rates and CP asymmetries in B̄u;d;s → PP decays.
In the following study we use two different scenarios: Fac
and Res. For the formal we use only factorization ampli-
tudes (i.e., Ai ¼ Afac

i ), while for the latter we add residue

TABLE I. Numbers of rates B, direct CP asymmetries A and
mixing induced CP asymmetries S of B̄q → PP decays involved
in this study.

Number
of B

Number
of A

Number
of S

Number
of SL

Total
number

All 34 34 24 1 93
Fitted 26 16 5 1 48
Predicted 8 18 19 0 45

5Note that in the previous study [11] ms is taken as a fit
parameter in the range of 100� 30 MeV, but now as the value
becomes more precisely known it is better to use the present
central value as an input parameter.

6It is preferable to use the form factors as inputs instead of
variables in the fit, but in the present situation no definite values
for these form factors can be found (see for example the collected
FBπ
0 ð0Þ values from [18,31–36]) and we therefore treat them as

fitting variables to avoid bias in this work. Hopefully the situation
can be improved in future. See also Footnote 5.
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FSI effect as well (i.e., Ai ¼
P

n
j¼1ðS1=2

res ÞijAfac
j ). Both are

fitted to data. The confidence levels and χ2s for the best fitted
cases in both senarios are shown in Table II. Contributions to
χ2min from various subsets of data are also given. Modes
that are related through the Res are grouped together
[see Eq. (A5), and see Eqs. (A6)–(A8) for other groups].
Off course only those with data can contribute
to χ2. Numbers of data used are shown in parentheses.
Explicitly, χ2fBðB̄0→KπÞ;…g and χ2fAðB̄0→KπÞ;…g in the table

denote the χ2 contribution obtained from 4CP-average rates
and 3 direct CP asymmetries, respectively, of the group-1
modes: consisting of B̄0 → K−πþ; K̄0π0; K̄0η; K̄0η0 decays
(except AðB̄0 → K̄0ηÞ); χ2fBðB−→KπÞ;…g and χ2fAðB−→KπÞ;…g
are contributed from the group-2 modes: B− →
K̄0π−; K−π0; K−η; K−η0 decays; χ2fBðB−→ππÞ;…g and

χ2fAðB−→ππÞ;…g are contributed from the group-3 modes:

B− → π−π0; K−K0; π−η; π−η0 decays; χ2fBðB̄0→ππÞ;…g is con-

tributed from the group-4 modes: B̄0 →
πþπ−; π0π0; ηη; ηη0; η0η0; KþK−; K̄0K0; π0η; π0η0 decays,
while χ2fAðB̄0→ππÞ;…g only contributed from 3 of the above

modes, B̄0 → πþπ−; π0π0; K̄0K0 decays; χ2fBðB̄sÞ;AðB̄sÞg is

contributed from 5 CP-averaged rates in B̄0
s → Kþπ−;

πþπ−; η0η0; KþK−; K0K̄0 decays and from 2 direct CP
asymmetries in B̄0

s → Kþπ−; KþK− decays; χ2fSðB̄0ÞÞ;SðB̄0
sÞÞg

is contributed from mixing induced CP asymmetries of
B̄0 → K̄0π0; K̄0η0; πþπ−; KSK̄S, and B̄0

s → KþK− decays.
The semileptonic data, Eq. (56) is also included in the fit.
The above lists are the 26 rates, 16 directCP asymmetries, 5
mixing induced asymmetries and 1 semileptonic data
[Eq. (56)], 48 in totally, that go into the fit.
Table II shows the overall performances of the fits. We

discuss the factorization case first. The χ2 per degree of
freedom of Fac is 213.4=ð48 − 10Þ. One can compare the χ2

values and the numbers of data used in the corresponding
groups.When the ratio of χ2 and the number of data is smaller
than one, the fit in thegroup is reasonablywell. By inspecting
the table, we see that Fac gives a good fit in the direct CP

asymmetries of group-1 modes (B̄0 → K−πþ;…), and
produces reasonable fits in the direct CP asymmetries of
group-2 modes (B− → K̄0π−;…) and of group-3 modes
(B− → π−π0;…), but the fits in rates andmixing inducedCP
asymmetries of all modes (including Bs decay modes) and
direct CP asymmetries of group-4 modes are poor. In
particular, the ratios of χ2 per number of data used in rates
of the group-2 modes (B− → K̄0π−;…), group-4 modes
(B̄0 → πþπ−;…), in the rates and direct CP asymmetries of
Bs modes and in the semileptonic quantity are as large as
24.7=4, 55.3=9, 64.0=7, and 8.0=1, respectively, indicating
the badness of the fit in these sectors.
The fit is significant improved when the rescattering is

added. In the best fitted case, the χ2 per degree of freedom
of the fit is 48.1=ð48 − 14Þ giving the p-value of 5.5%. It
should be noted that with 4 additional parameters the
quality of the fit is improved significantly. All χ2, except the
direct CP of group-3 modes (B− → π−π0;…), which is
slightly enhanced, are reduced. In particular, the χ2 per
number of data of rates of the group-2 modes
(B− → K̄0π−;…), group-4 modes (B̄0 → πþπ−;…), the
rates and direct CP asymmetries of Bs modes and in the
semileptonic quantity are 6.3=4, 7.8=9, 0.6=7 and 0.7=1,
respectively. The performance of the fit in these sector is
improved significantly. Detailed results will be shown later.
The fitted parameters are shown in Table III.

Uncertainties are obtained by scanning the parameter space
with χ2 ≤ χ2min þ 1. The parameters consist of those in
factorization amplitude and of Res. The Fac fit gives
FBπ ¼ 0.239� 0.002, while the Res fit gives FBπ ¼
0.253�0.002. They correspond to FBπjVudj¼ð8.55þ0.08

−0.05Þ×
10−4 and FBπjVudj ¼ ð9.03� 0.09Þ × 10−4 for jVubj ¼
35.76 × 10−4 employed in the numerical study, respec-
tively, and they can be compared the HFLAG average,
FBπ
0 ð0ÞjVubj ¼ ð9.23� 0.24Þ × 10−4. The Res result

agrees better with the data.
Both fits prefer large λBs

. Except ρA and ϕA, most
common parameters in Fac and Res have similar fitted
values. A closer look reveals that Fac prefers γ=ϕ3 close to
its center value [see Eq. (55)], while Res prefers a lower
γ=ϕ3. Comparing the fitted phases to those in the U(3)

TABLE II. Confidence level (C.L.), χ2min=d:o:f: and various contributions to χ2min for the best fitted solutions. The p-value of the
rescattering (Res) case is 5.5%. Numbers of data used are shown in parentheses.

χ2min :=d:o:f: χ2fBðB̄0→KπÞ;…g χ2fAðB̄0→KπÞ;…g χ2fBðB−→KπÞ;…g χ2fAðB−→KπÞ;…g

Fac 213.4=38 (48) 10.1 (4) 1.8 (3) 24.7 (4) 5.2 (4)
Res 48.1=34 (48) 7.2 (4) 1.1 (3) 6.3 (4) 0.6 (4)

χ2fBðB−→ππÞ;…g χ2fAðB−→ππÞ;…g χ2fBðB̄0→ππÞ;…g χ2fAðB̄0→ππÞ;…g χ2fBðB̄sÞ;AðB̄sÞg
Fac 10.6 (4) 6.5 (4) 55.3 (9) 15.7 (3) 64.0 (7)
Res 6.4 (4) 7.5 (4) 7.8 (9) 4.7 (3) 0.6 (7)

χ2fSðB̄0ÞÞ;SðB̄0
sÞÞg χ2SL

Fac 12.9 (5) 8.0 (1)
Res 5.2 (5) 0.7 (1)
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exchange-type solution [see Eq. (A17)] τ ¼ 24.1°, ν ¼
35.3° and σ − δ ¼ 0 and in the U(3) annihilation-type
solution [see Eq. (A16)] τ ¼ −41.8°, ν ¼ −19.5° and
σ − δ ≠ 0, we see that the fitted τ ≃ 22° and ν ≃ 78° seem
to prefer the exchange-type solution, while the fitted σ −
δ ≃ 97.4° supports the annihilation-type solution.

B. Rescattering effects on topological amplitudes

In this part, we will show the rescattering effects on
topological amplitudes in certain combinations and on

some individual topological amplitudes of interest.
Note that the discussion in the first part is generic,
while we need to impose further assumption in the
second part.

1. Rescattering effects on the combinations
of topological amplitudes

It is useful to show the fitted results on residual
rescattering parameters r0i (or r

ð1=2Þ
i ):

1þ iðr00 þ r0aÞ ¼ ð0.979þ0.007
−0.008Þ exp½ið11.98þ1.66

−1.81Þ°þ iδ27�;
iðr0e − r0aÞ ¼ ð0.208þ0.028

−0.031Þ exp½ið−78.36� 2.02Þ°þ iδ27�;
iðr0a þ r0tÞ ¼ ð0.059� 0.009Þ exp½ið−92.06þ9.09

−13.21Þ°þ iδ27�;
ið2r̄0a þ r̄0eÞ ¼ ð0.189þ0.048

−0.044Þ exp½ið−78.36� 2.02Þ°þ iδ27�;

1þ i
�
r̃00 þ

4r̃0a þ 2r̃0e
3

�
¼ ð0.990þ0.004

−0.006Þ exp½ið3.27þ1.24
−1.01Þ°þ iδ27�;

ir̂0t þ i
4r̂0a þ 2r̂0e

3
¼ ð0.248þ0.067

−0.068Þ exp½ið−29.66þ11.13
−11.13Þ°þ iδ27�;

1þ i

�
ř00 þ

4ř0a þ 2ř0e þ 3ř0t
6

�
¼ ð0.936þ0.031

−0.041Þ exp½ið118.43þ22.24
−21.73Þ°þ iδ27�: ð57Þ

From the above equation, we see that most of
these parameters have large phases (with respect to
δ27). Note that ir̂0t þ ið4r̂0a þ 2r̂0eÞ=3, iðr0e − r0aÞ and
ið2r̄0a þ r̄0eÞ are three most sizable combinations and
they are close to λ, −iλ and −iλ (taking the overall
phase δ27 ¼ 0), respectively, where λ is the Wolfenstein
parameter.
In Tables IV and V we show the topological

amplitudes of B̄q → PP and Bq → PP decays before

rescattering (A0) and after rescattering (AFSI) in the unit
of 10−8 GeV.7 These amplitudes are expressed in
certain combinations as noted in Eq. (28). Note that
without lost of generality the overall phase (δ27) is set to
0 from now on for simplicity. The ratios AFSI=A0 are
also shown. These results are obtained using the best
fitted solution and Eqs. (30), (33), (34), (48)–(50).
Both ΔS ¼ 0 and ΔS ¼ −1 amplitudes are shown.
Note that we do not use them directly in the fitting.
In fact, they can be obtained only after the best fit result
is available. Nevertheless they will provide useful
information.
From Table IV, we see that before rescattering, we have

the following order for B̄q → PP amplitudes:

TABLE III. Fitted hadronic and FSI parameters. Upper table contains fitted parameters in factorization amplitudes (Fac), while the
lower ones are parameters in the rescattering (Res) case.

ρA ρH ϕAð°Þ ϕHð°Þ FBπ
0 ð0Þ FBK

0 ð0Þ FBsK
0 ð0Þ

Fac 0.97þ0.01
−0.02 2.82þ0.20

−0.61 −28.4þ0.3
−0.1 −111.5þ4.4

−13.6 0.239� 0.002 0.27þ0.00
−0.00 0.23þ0.00

−0.00
Res 2.87þ0.02

−0.03 2.33� 0.63 165.1� 0.9 −111.7� 20.6 0.253� 0.002 0.28� 0.01 0.24� 0.01

λB (GeV) λBs
(GeV) γ=ϕ3ð°Þ τð°Þ νð°Þ δð°Þ σð°Þ

Fac 0.19þ0.02
−0.05 0.60þ0.00

−0.04 75.4þ1.7
−1.6 – – – –

Res 0.22� 0.06 0.45þ0.15
−0.34 68.9� 1.8 22.2� 2.2 78.1� 2.9 23.3� 4.0 120.7� 22.3

7The A0 are obtained by using the rescattering parameters as
shown in Table III, but with τ, ν, δ, and σ set to zero. Do not
confuse it with the annihilation amplitude, where they may share
the same notation occasionally.
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jT0þC0j> jT̄0þ2Ā0j>
			C̄0

2þ2P̄0−
1

3
P̄C0
EW;2

			>			P0−C0þ1

3
PC0
EW

			>			C̃0þ Ẽ0þ P̃0þ3

2
P̃A0−

1

3
P̃C0
EW−

1

3
P̃E0
EW

			> jC0−E0j

≳ jA0þC0j≳ jC̄0
1þ2Ē0j>

			PA0−
4

9
C0þ13

9
E0−

1

3
PC0
EW

			;
while the rest are rather small. After rescattering, we have:

jT þ Cj > jT̄ þ 2Āj >
				P − Cþ 1

3
PC
EW

				≳
				C̄2 þ 2P̄ −

1

3
P̄C
EW;2

				 >
				C̃þ Ẽþ P̃þ 3

2
P̃A −

1

3
P̃C
EW −

1

3
P̃E
EW

				≳ jC − Ej

≳ jAþ Cj > jC̄1 þ 2Ēj >
				PA −

4

9
Cþ 13

9
E −

1

3
PC
EW

				;

TABLE IV. Combinations of topological amplitudes of ΔS ¼ 0, B̄q → PP, and Bq → PP decays before rescattering (A0) and after
rescattering (AFSI) in the unit of 10−8 GeV. These results are obtained using the best fitted solution and Eqs. (30), (33), (34), (48)–(50).
Without loss of generality the overall phase (δ27) for AFSI is set to 0 for simplicity.

A0ðB̄Þ AFSIðB̄Þ AFSI=A0ðB̄Þ A0ðBÞ AFSIðBÞ AFSI=A0ðBÞ
T þ C 3.23e−i79.8° 3.23e−i79.8° 1 3.23ei57.9° 3.23ei57.9° 1
C − E 1.13e−i119.5° 1.58e−i118.8° 1.40ei0.7° 1.18ei18.2° 1.58ei19.0° 1.40ei0.7°

Aþ C 1.07e−i122.4° 1.52e−i120.7° 1.42ei1.7° 1.07ei15.3° 1.52ei17.0° 1.42ei1.7°

P − Cþ 1
3
PC
EW 1.77ei34.1° 2.23ei44.1° 1.26ei10.0° 0.80e−i102.1° 0.94e−i128.3° 1.17e−i26.2°

PA − 4
9
Cþ 13

9
E − 1

3
PC
EW 0.56ei75.4° 0.45ei69.7° 0.81e−i5.7° 0.64e−i160.6° 0.80e−i141.5° 1.25ei19.1°

PEW þ PC
EW 0.10ei11.9° 0.10ei11.9° 1 0.10e−i32.1° 0.10e−i32.1° 1

PC
EW − PE

EW 0.04e−i36.7° 0.05e−i31.0° 1.40ei5.7° 0.04e−i79.5° 0.05e−i74.9° 1.37ei4.6°

PA
EW þ PC

EW 0.03e−i44.2° 0.05e−i38.5° 1.53ei5.7° 0.03e−i89.8° 0.05e−i83.6° 1.55ei6.1°

T̄ þ 2Ā 2.66e−i63.9° 2.43e−i56.2° 0.92ei7.7° 2.66ei73.8° 2.43ei81.5° 0.92ei7.7°

C̄1 þ 2Ē 0.90e−i134.9° 1.29e−i129.3° 1.44ei5.6° 0.96ei2.8° 1.29ei8.4° 1.44ei5.6°

C̄2 þ 2P̄ − 1
3
P̄C
EW;2 1.97e−i36.6 2.22e−i49.1 1.13e−i12.5° 2.99e−i29.7 3.34e−i27.1 1.12ei2.6°

P̄EW þ 2P̄A
EW 0.09ei28.4° 0.08ei37.4° 0.92ei8.9° 0.09e−i15.8° 0.08e−i6.7° 0.92ei9.2°

P̄C
EW;1 þ 2P̄E

EW 0.04e−i58.8° 0.05e−i46.9° 1.34ei11.9° 0.03e−i72.1° 0.04e−i68.8° 1.53ei3.3°

C̃þ Ẽþ P̃þ 3
2
P̃A − 1

3
P̃C
EW − 1

3
P̃E
EW 1.34e−i65.0° 1.56e−i2.6° 1.16ei62.4° 1.89e−i32.2° 1.92ei59.1° 1.02ei91.3°

TABLE V. Same as Table IV, but for ΔS ¼ −1 transition decay amplitudes.

A0ðB̄Þ AFSIðB̄Þ AFSI=A0ðB̄Þ A0ðBÞ AFSIðBÞ AFSI=A0ðBÞ
T 0 þ C0 0.75e−i79.8° 0.75e−i79.8° 1 0.75ei57.9° 0.75ei57.9° 1
C0 − E0 0.26e−i119.5° 0.36e−i118.8° 1.40ei0.7° 0.26ei18.2° 0.36ei19.0° 1.40ei0.7°

A0 þ C0 0.25e−i122.4° 0.35e−i120.7° 1.42ei1.7° 0.25ei15.3° 0.35ei17.0° 1.42ei1.7°

P0 − C0 þ 1
3
P0C
EW 4.36ei164.2° 4.00ei174.0° 0.92ei9.8° 4.64ei170.3° 4.48e−i178.6° 0.97ei11.1°

PA0 − 4
9
C0 þ 13

9
E0 − 1

3
P0C
EW 0.42ei3.5° 0.99ei73.2° 2.37ei69.7° 0.29e−i31.2° 0.74ei81.8° 2.58ei113.0°

P0
EW þ P0C

EW 0.46ei168.9° 0.46ei168.9° 1 0.46ei171.0° 0.46ei171.0° 1
P0C
EW − P0E

EW 0.18ei120.8° 0.26ei124.8° 1.40ei3.9° 0.18ei122.9° 0.26ei126.8° 1.40ei3.9°

P0A
EW þ P0C

EW 0.14ei113.6° 0.22ei118.9° 1.53ei5.3° 0.14ei115.6° 0.22ei121.0° 1.53ei5.4°

T̄ 0 þ 2Ā0 0.61e−i63.9° 0.56e−i56.2° 0.92ei7.7° 0.61ei73.8° 0.56ei81.5° 0.92ei7.7°

C̄0
1 þ 2Ē0 0.21e−i134.9° 0.30e−i129.3° 1.44ei5.6° 0.21ei2.8° 0.30ei8.4° 1.44ei5.6°

C̄0
2 þ 2P̄0 − 1

3
P̄0C
EW;2 10.62ei152.6 11.13ei149.9 1.05e−i2.7° 10.38ei152.4 10.85ei148.8 1.05e−i3.6°

P̄0
EW þ 2P̄0A

EW 0.42e−i174.8° 0.38e−i165.9° 0.92ei8.8° 0.42e−i172.6° 0.38e−i163.8° 0.92ei8.9°

P̄0C
EW;1 þ 2P̄0E

EW 0.08ei61.0° 0.12ei93.9° 1.48ei33.0° 0.08ei63.0° 0.12ei93.0° 1.48ei33.0°

C̃0 þ Ẽ0 þ P̃0 þ 3
2
P̃A0 − 1

3
P̃0C
EW − 1

3
P̃0E
EW 6.04ei140.0° 5.01e−i141.5° 0.83ei78.5° 5.89ei138.1° 4.88e−i146.1° 0.83ei75.8°
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where jC − Ej, jAþ Cj and jC̄1 þ 2Ēj are enhanced by 40 ∼ 44%, jP − Cþ 1
3
PC
EWj by 26% and jC̃þ Ẽþ P̃þ 3

2
fPA −

1
3
P̃C
EW − 1

3
P̃E
EWj by 16%. Note that the orders of jC̄2 þ 2P̄ − 1

3
P̄C
EW;2j and jP − Cþ 1

3
PC
EWj are switched after turning on Res.

Subleading tree amplitudes and penguin amplitudes are enhanced. We will return to this shortly. Note that except in
C̃þ Ẽþ P̃þ 3

2
fPA − 1

3
P̃C
EW − 1

3
P̃E
EW Res does not introduce sizable phases to these topological amplitude combinations.

Similarly, from Table IV, we see that before rescattering, we have the following order for the conjugated Bq → PP decay
amplitudes:

jT0 þ C0j >
				C̄0

2 þ 2P̄0 −
1

3
P̄C0
EW;2

				 > jT̄0 þ 2Ā0j >
				C̃0 þ Ẽ0 þ P̃0 þ 3

2
P̃A0 −

1

3
P̃C0
EW −

1

3
P̃E0
EW

				 > jC0 − E0j≳ jA0 þ C0j

≳ jC̄0
1 þ 2Ē0j >

				P0 − C0 þ 1

3
PC0
EW

				 >
				PA0 −

4

9
C0 þ 13

9
E0 −

1

3
PC0
EW

				;

while the rest are rather small. Note that the above order is
different form the one in B̄q → PP decays. After rescatter-
ing, only the first two terms switch order, where jC̄2 þ 2P̄ −
1
3
P̄C
EW;2j is enhanced by 12%, jP − Cþ 1

3
PC
EWj by 17%

and jC − Ej, jAþ Cj and jC̄1 þ 2Ēj by 40 ∼ 44%. Note that
Res introduces sizable phases to some of these topo-
logical amplitude combinations and jC̄2þ2P̄−1

3
P̄C
EW;2j,

jC̃þ Ẽþ P̃þ 3
2
fPA − 1

3
P̃C
EW − 1

3
P̃E
EWj, and jPA − 4

9
Cþ

13
9
E − 1

3
PC
EWj are quite different to those in B̄q → PP

decays.
Some comments will be useful. (i) A large number of

combinations of topological amplitudes are sizable.
(ii) After rescattering one sees that the phases introduced
to B̄ → PP and B → PP amplitudes are quite different.
(iii) The above facts imply that the effect of Res on direct
CP violations can be complicate and rich. (iv) The
enhancement of rescattering on some of the ΔS ¼ 0
topological amplitudes can be up to 55%, such as on
PA
EW þ PC

EW, but their sizes are still small even after the
enhancement. Nevertheless this may have impact on some
suppressed modes.
It is useful to see the above enhancements in details. It is

clear from Eq. (48) that the effects of Res on T þ C and
PEW þ PC

EW are just adding the common phase δ27 to them.
The effects on other combinations of topological amplitudes
are more interesting. In B̄q → PP decays, considering only
the dominant contributions in Eq. (48), we have

C − E ≃ ð1þ ir00 þ ir0aÞðC0 − E0Þ þ iðr0e − r0aÞðT0 þ C0Þ;

Aþ C ≃ ð1þ ir00 þ ir0aÞðA0 þ C0Þ þ 2

3
iðr0e − r0aÞðT0 þ C0Þ

þ 1

3
iðr̄0e þ 2r̄0aÞðT̄0 þ 2Ā0Þ: ð58Þ

We can estimation the above values by taking the central
values of ð1þ ir00 þ ir0aÞ, iðr0e − r0aÞ and iðr̄0e þ 2r̄0aÞ from
Eq. (57) and the central values of C0 − E0, A0 þ C0, T0 þ
C0 and T̄0 þ 2Ā0 from Table IV, obtaining

C − E
C0 − E0

≃ 1.4e−i7°;
Aþ C
A0 þ C0

≃ 1.4e−i4°; ð59Þ

which are close the values of 1.40ei0.7° and 1.42ei1.7° shown
in Table IV. Even using a crude estimation by taking
ð1þ ir00 þ ir0aÞ ≃ 1 and iðr0e − r0aÞ ≃ iðr̄0e þ 2r̄0aÞ ≃ −iλ,
one still get 1.5e−i19° and 1.5e−i16°, which are not too far
off. It is clear that the effect of Res in C − E mainly comes
from the exchange and annihilation rescatterings fed from
theT0 þ C0 amplitude,while those inAþ C comes from the
exchange and annihilation rescatterings fed from both T0 þ
C0 and T̄0 þ 2Ā0 amplitudes.
Similarly from Eq. (50), we have

�
C̃þẼþP̃þ3

2
fPA−1

3
P̃C
EW−

1

3
P̃E
EW

�

≃
�
1þi

�
ř00þ

4ř0aþ2ř0eþ3ř0t
6

��

×
�
C̃0þẼ0þP̃0þ3

2
P̃A0−

1

3
P̃C0
EW−

1

3
P̃E0
EW

�

þi

�
r̂0tþ

4r̂0aþ2r̂0e
3

��
3

2
ðT0þC0Þþ14

3
ðC0−E0Þ

þ4

�
P0−C0þ1

3
PC0
EW

�
þ6

�
PA0−

4

9
C0þ13

9
E0−

1

3
PC0
EW

��
;

ð60Þ

and we find that the T0 þ C0 and C0 − E0 terms give
(sizable) destructive contributions, while P0 − C0 þ 1

3
PC0
EW

and PA0 − 4
9
C0 þ 13

9
E0 − 1

3
PC0
EW terms give (sizable) con-

structive contributions via the same Res parameter
ir̂0t þ ið4r̂0a þ 2r̂0eÞ=3. The final result of the 16% enhance-
ment in jC̃þ Ẽþ P̃þ 3

2
P̃A − 1

3
P̃C
EW − 1

3
P̃E
EWj is the com-

plicate interplay of these contributions.
We now turn to the Res effect on the penguin amplitudes.

From [see Eq. (48)]
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P−Cþ1

3
PC
EW≃

�
ð1þ ir00þ ir0aÞ−

2

3
iðr0e−r0aÞ

�

×

�
P0−C0þ1

3
PC0
EW

�
− iðr0e−r0aÞðT0þC0Þ

þ1

3
iðr̄0eþ2r̄0aÞ

�
C̄0
2þ2P̄0−

1

3
P̄C0
EW;2

�
;

ð61Þ

we obtain for B̄ → PP decay:

P − Cþ 1
3
PC
EW

P0 − C0 þ 1
3
PC0
EW

≃ 1.3ei10°; ð62Þ

which is close to the value 1.26ei10.0° shown in Table IV.
where the main contribution is from the r0e − r0a rescattering
term fed from T0 þ C0.
We now turn to ΔS ¼ −1 processes. The results are

shown in Table V. We see from the table that before
rescattering, we have the following order for B̄q → PP
amplitudes:

				C̄00
2 þ2P̄00−

1

3
P̄0C0
EW;2

				
>

				C̃00þ Ẽ00þ P̃00þ3

2
P̃A00−

1

3
P̃0C0
EW−

1

3
P̃0E0
EW

				
>

				P00−C0þ1

3
PC0
0EW

				≫ jT 00þC00j

> jT̄ 00þ2Ā00j> jP00
EWþP0C0

EWj

≳
				PA00−

4

9
C00þ13

9
E00−

1

3
P0C0
EW

				
≳ jP̄00

EWþ2P̄0A0
EWj> jC00−E00j≳ jA00þC00j;

while the rest are rather small. Note that as expected
penguin amplitudes dominate over trees. In fact, even the
electroweak penguin amplitudes, which were neglected in
the ΔS ¼ 0 case, cannot be neglected now. After rescatter-
ing, the above orders are rearranged into:

				C̄0
2þ2P̄0−

1

3
P̄0C
EW;2

				>
				C̃0þẼ0þP̃0þ3

2
P̃A0−

1

3
P̃0C
EW−

1

3
P̃0E
EW

				
>

				P0−C0þ1

3
P0C
EW

				
≫
				PA0−

4

9
C0þ13

9
E0−

1

3
P0C
EW

				
> jT 0þC0j> jT̄ 0þ2Ā0j
> jP0

EWþP0C
EWj> jP̄0

EWþ2P̄0A
EWj

≳ jC0−E0j≳ jA0þC0j:

We see that the combinations with sub-leading tree ampli-
tudes, C0 − E0 and A0 þ C0, are enhanced, while the one
with the penguin term, P0 − C0 þ P0C

EW=3, is slightly
reduced. Note that jPA0 − 4

9
C0 þ 13

9
E0 − 1

3
P0C
EWj is enhanced

by a factor of 2, but jC̃0 þ Ẽ0 þ P̃0 þ 3
2
fPA0 − 1

3
P̃0C
EW −

1
3
P̃0E
EWj is reduced by about 20%. Similar pattern occurs

in the conjugated Bq → PP decays.
The effect of rescattering on A0 þ C0 is similar to the one

in Aþ C. It is enhanced from the exchange and annihila-
tion rescatterings fed from both T 00 þ C00 and T̄ 00 þ 2Ā00
amplitudes. We also note that the effect of rescattering on
P0C
EW − P0E

EW is similar to the one in C0 − E0, but with tree
amplitudes replaced by electroweak penguins. Hence
P0C
EW − P0E

EW is affected most from P00
EW þ P0C0

EW and the
effect is an enhancement in size.
It is useful to see the enhancement and reduction in

jPA0−4
9
C0þ13

9
E0−1

3
P0C
EWj and jC̃0þẼ0þP̃0þ3

2
fPA0−1

3
P̃0C
EW−

1
3
P̃0E
EWj, respectively, in more detail. In B̄q → PP decays,

keeping only the ðPA00 − 4
9
C00 þ 13

9
E00 − 1

3
P0C
EWÞ and the

ðP00 − C00 þ 1
3
P0C0
EWÞ terms in the corresponding formula

shown in Eq. (48), we obtain

PA0 − 4
9
C0 þ 13

9
E0 − 1

3
P0C
EW

PA00 − 4
9
C00 þ 13

9
E00 − 1

3
P0C0
EW

≃ 2.6ei52°; ð63Þ

which is close to the value 2.37ei69.7° shown in Table V.
Similarly using the corresponding formula in Eq. (48) and

keep only the ðC̃00þ Ẽ00þ P̃00þ 3
2
fPAð0Þ0− 1

3
P̃0C0
EW− 1

3
P̃0E0
EWÞ

and the ðP00 − C00 þ 1
3
P0C0
EWÞ terms we obtain

C̃0 þ Ẽ0 þ P̃0 þ 3
2
fPA0− 1

3
P̃0C
EW− 1

3
P̃0E
EW

C̃00þ Ẽ00þ P̃00þ 3
2
fPA00− 1

3
P̃0C0
EW− 1

3
P̃0E0
EW

≃0.8ei76°; ð64Þ

which is close to the value 0.83ei78.5° shown in Table V. In
both cases the most important contributions are from the
ðP00 − C00 þ 1

3
P0C0
EWÞ term.

2. Rescattering effects on some
individual topological amplitudes

The results in Tables IV and V are all we can have, if no
further assumption is made. It is, however, desirable to
reveal the effect of Res on some individual topological
amplitudes instead of their combinations. To explore the
effect one needs the information of various r0i instead of
their combinations shown in Eq. (57). For example, the Res
effect on exchange amplitude is given by [see Eq. (43)]
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δEð0Þ ¼ ir00E
ð0Þ0 þ ir0aTð0Þ0 −

1

3
iðr0e þ 2r0aÞCð0Þ0

þ 1

3
ið−2r0e þ 5r0aÞEð0Þ0

þ 1

3
iðr̄0e þ 2r̄0aÞðC̄ð0Þ0

1 þ 2Ēð0Þ0Þ: ð65Þ

It is clear that we need the information of r00, r
0
a, r0e and so

on to obtain δEð0Þ. From the fit we only have information on
some combinations of these rescattering parameters, such
as 1þ iðr00 þ r0aÞ, iðr0e − r0aÞ and so on [see Eq. (57)], but
not on individual ones. To study the effect of Res on
individual topological amplitudes, we make an additional
assumption:

r0e ¼ 0; ð66Þ

which is suggested by the U(3) symmetry on TA [see
Eq. (54)]. Note that we only assume r0e ¼ 0 and do not
impose any condition on r̄0e, r̂0e and ř0e. Hence we are not
using the full U(3) symmetry, but rather consider the case of
a suppressed r0e. Using the above assumption and the results
in Eq. (57) one can now extract the effect of Res on some
individual TAs of interest. The results are shown in
Table VI. One should keep in mind of the assumption
made. Note that the above assumption will affect our
interpretation of the effect of Res on individual topological

amplitudes, but not on the interpretation of the effect of
Res on the combinations of topological amplitudes as
discussed previously. In other words, the above assumption
will affect the results stated in Table VI, but not on those in
Tables IV and V.
From Table VI we see that, before Res, for B̄q → PP and

Bq → PP decays, we have

jT0j> jC0j> jP0j≫ jE0j> jP0
EWj> jPA0j> jA0j

≳ jP0C
EWj> jP0E

EWj≫ jP0A
EWj;

jP00j≫ jT 00j> jP00
EWj> jPA00j

≳ jC00j> jP0C0
EWj> jP0E0

EWj> jE00j≫ jA00j≳ jP0A0
EWj; ð67Þ

while after Res, we have

jTj > jPj > jCj > jPAj > jEj > jAj
≫ jPEWj > jPC

EWj > jPE
EWj > jPA

EWj;
jP0j ≫ jPA0j > jT 0j > jP0

EWj > jC0j > jP0C
EWj > jP0E

EWj
≳ jE0j > jA0j > jP0A

EWj; ð68Þ

for B̄q → PP decays, and

TABLE VI. Some topological amplitudes of ΔS ¼ 0;−1, B̄q → PP and Bq → PP decays before rescattering (A0) and after
rescattering (AFSI) in the unit of 10−9 GeV. These results are obtained using the best fitted solution and Eqs. (30), (33), (34) and (43). We
use an additional assumption, r0e ¼ 0 as suggested from U(3) symmetry on TA [see Eq. (54)]. Without lost of generality the overall phase
(δ27) for AFSI is set to 0. Results in combinations of Ā and Ã can be found in Tables IV and V.

A0ðB̄Þ AFSIðB̄Þ AFSI=A0ðB̄Þ A0ðBÞ AFSIðBÞ AFSI=A0ðBÞ
T 25.84e−i63.5° 25.84e−i63.5° 1 25.84ei74.2° 25.84ei74.2° 1
C 10.45e−i123.9° 10.45e−i123.9° 1 10.45ei13.8° 10.45ei13.8° 1
E 1.19ei102.6° 5.46ei71.0° 4.61e−i31.5° 1.19e−i119.7° 5.46e−i151.2° 4.61e−i31.5°

A 0.38e−i77.4° 4.78e−i113.8° 12.67e−i36.4° 0.38ei60.3° 4.78ei23.9° 12.67e−i36.4°

P 8.89ei8.6° 12.26ei34.3° 1.38ei25.7° 9.94e−i31.6° 6.43e−i47.6° 0.65e−i16.0°

PA 0.76e−i166.4° 7.95e−i116.2° 10.50ei50.2° 0.76ei149.3° 5.19e−i1.6° 6.86e−i150.9°

PEW 0.86ei29.0° 0.86ei29.0° 1 0.86e−i15.3° 0.86e−i15.3° 1
PC
EW 0.29e−i46.8° 0.29e−i46.8° 1 0.29e−i89.1° 0.29e−i89.1° 1

PE
EW 0.11ei170.5° 0.27ei166.0° 2.42e−i4.4° 0.11ei126.2° 0.26ei121.2° 2.31e−i5.0°

PA
EW 0.02ei13.6° 0.18e−i24.7° 11.21e−i38.3° 0.02e−i30.7° 0.18e−i68.8° 11.08e−i:38.1°

T 0 5.98e−i63.5° 5.98e−i63.5° 1 5.98ei74.2° 5.98ei74.2° 1
C0 2.41e−i123.9° 2.41e−i123.9° 1 2.41ei13.8° 2.41ei13.8° 1
E0 0.27ei102.6° 1.26ei71.0° 4.61e−i31.5° 0.27e−i119.7° 1.26e−i151.2° 4.61e−i31.5°

A0 0.09e−i77.4° 1.10e−i113.8° 12.67e−i36.4° 0.09ei60.3° 1.10ei23.9° 12.67e−i36.4°

P0 44.12ei167.6° 40.99ei177.5° 0.93ei9.9° 43.90ei169.6° 42.29e−i178.7° 0.96ei11.7°

PA0 3.54e−i9.6° 7.43ei78.3° 2.10ei87.9° 3.54e−i7.5° 9.56ei68.4° 2.70ei75.9°

P0
EW 4.01e−i174.2° 4.01e−i174.2° 1 4.01e−i172.1° 4.01e−i172.1° 1

P0C
EW 1.38ei111.0° 1.38ei111.0° 1 1.38ei113.0° 1.38ei113.0° 1

P0E
EW 0.53e−i32.7° 1.27e−i40.3° 2.40e−i7.6° 0.53e−i30.6° 1.27e−i38.2° 2.41e−i7.6°

P0A
EW 0.07ei170.4° 0.83ei132.2° 11.14e−i38.2° 0.07ei172.5° 0.83ei134.3° 11.15e−i38.2°

REVISITING FINAL STATE INTERACTION IN … PHYS. REV. D 97, 093004 (2018)

093004-19



jTj > jCj > jPj > jEj > jPAj > jAj
≫ jPEWj > jPC

EWj > jPE
EWj > jPA

EWj;
jP0j ≫ jPA0j > jT 0j > jP0

EWj > jC0j > jP0C
EWj > jP0E

EWj
≳ jE0j > jA0j > jP0A

EWj; ð69Þ

for Bq → PP decays. Note that the positions of jPj and
jPAj in the above orders are different in B̄q → PP and
Bq → PP decays. We will come to that later.
We see from Table VI that jEj, jE0j, jAj, jA0j, jPAj, jPA0j,

jPA;E
EWj and jP0A;E

EW j are enhanced significantly with factors
ranging from 2 ∼ 11, while jPj is enhanced by 35% in
B̄q → PP decay, but is suppressed by 35% in Bq → PP
decay and jP0j are suppressed by 6% and 3% in B̄q → PP
and Bq → PP decays, respectively. Note that in particular
jAj and jA0j are enhanced by a factor of 11.5. It is useful to
look into the enhancement. From Eq. (43), we have

Að0Þ ¼
�
1þ ir00 −

2

3
ir0e þ

5

3
ir0a

�
Að0Þ0 −

1

3
iðr0e þ 2r0aÞTð0Þ0

þ ir0aCð0Þ0 þ 1

3
iðr̄0e þ 2r̄0aÞðT̄ð0Þ0 þ 2Āð0Þ0Þ: ð70Þ

Now make use of r0e ¼ 0 and Eq. (57), we obtain

Að0Þ

Að0Þ0 ¼ 0.99ei20.0° þ 9.48e−i64.4° þ 5.75ei55.2° þ 4.45−i64.8°

¼ 12.67e−i36.4; ð71Þ

where the terms in the right-hand side of the first equality are
from Að0Þ0, Tð0Þ0, Cð0Þ0, T̄ð0Þ0 þ 2Āð0Þ0 contributions, respec-
tively. We see that the Tð0Þ0, Cð0Þ0, T̄ð0Þ0 þ 2Āð0Þ0 terms give
sizable contributions to Að0Þ, via r0a, r0a, and r̄e þ 2r̄0a
rescatterings, respectively, and enhance its size significantly.
Similarly we have

Eð0Þ

Eð0Þ0 ¼ 0.99ei20.0° þ 4.53e−i64.4° þ 1.22ei55.2° þ 0.48i44.2°

¼ 4.61e−i31.5; ð72Þ

where the terms in the right-hand side of the first equality are

from Að0Þ0, Tð0Þ0, Cð0Þ0, C̄ð0Þ0
1 þ 2Ēð0Þ0 contributions, respec-

tively. The dominate contribution is from Tð0Þ0 via annihi-
lation rescattering r0a.
As noted previously Pð0Þ and PAð0Þ receive different Res

contributions in B̄q → PP and Bq → PP decays. It is
interesting to investigate the effects of Res on these penguin
amplitudes in details. First, we decompose Pð0Þ into the so-
called u-penguin (Pð0Þu) and c-penguin (Pð0Þc) as Pð0Þ ¼
Pð0Þu þ Pð0Þc according to the different CKM factors. Now
from Eq. (43), we have

Pð0Þu ¼
�
1þ ir00þ

1

3
ið−2r0eþ5r0aÞ

�
Pð0Þu0þ ir0aTð0Þ0

−
1

3
iðr0eþ2r0aÞCð0Þ0−

1

3
ir0aP

ð0Þu0
EW þ1

9
iðr0eþ2r0aÞPð0ÞuC0

EW

þ1

3
iðr̄0eþ2r̄0aÞ

�
C̄ð0Þ0
2 þ2P̄ð0Þu0−

1

3
P̄ð0ÞuC0
EW;2

�
;

Pð0Þc ¼
�
1þ ir00þ

1

3
ið−2r0eþ5r0aÞ

�
Pð0Þc0

−
1

3
ir0aP

ð0Þc0
EW þ1

9
iðr0eþ2r0aÞPð0ÞcC0

EW

þ1

3
iðr̄0eþ2r̄0aÞ

�
2P̄ð0Þc0−

1

3
P̄ð0ÞcC0
EW;2

�
: ð73Þ

Using these formulas and the best fit parameters, we obtain

Pð0Þu

Pð0Þu0 ¼ 0.99ei20.0° þ 1.53e−i70.2° þ 0.41ei49.4°

þ 0.01−i56.1° þ 0.10−i2.3° ¼ 1.99e−i23.6°; ð74Þ
where the terms in the right-hand side of the first

equality are from Pð0Þu0, Tð0Þ0, Cð0Þ0, Pð0Þu0;ð0ÞuC0
EW , and

C̄ð0Þ0
2 þ 2P̄ð0Þu0 − 1

3
P̄ð0ÞuC0
EW;2 , respectively, and

Pð0Þc

Pð0Þc0 ¼ 0.99ei20.0° þ 0.01−i46.8° þ 0.15−i94.6° ¼ 0.94ei11.2°;

ð75Þ
where the terms in the right-hand side of the first equality

are from Pð0Þc0, Pcð0Þ0;cð0ÞC0
EW , and 2P̄ð0Þc0 − 1

3
P̄ð0ÞcC0
EW;2 , respec-

tively. It is clear that Tð0Þ0 and Cð0Þ0 only contribute to Pð0Þu

(via the annihilation rescattering r0a) and jPð0Þuj is enhanced
by about a factor of 2. On the other hand Pð0Þc is only
slightly affected by rescattering and is still close to the
original Pð0Þc0. The results are shown in Table VII.
It is useful to note that the ratio of u-penguin and c-

penguin in ΔS ¼ 0 process before rescattering is expected
to proportional to the CKM factors giving				Pu

Pc

				≃
				VubV�

ud

VcbV�
cd

				 ≃ 0.38. ð76Þ

The estimation is close to the ratio jPu0=Pc0j ¼
3.51=10.09 ≃ 0.35 using Pu0 and Pc0 shown in
Table VII. The CKM ratio implies that u-penguin and
the c-penguin are not as hierarchical as in the ΔS ¼ −1
case. Furthermore, when rescattering is turned on, the u-
penguin and c-penguin receive different contributions as
only Pu can receive contribution fed from T0, see Eq. (74),
and, consequently, the above ratio is enhanced to
6.98=9.49 ≃ 0.74 (see Table VII). These will affect the
CP asymmetries of ΔS ¼ 0 modes to be discussed later.
We now turn to PAð0Þ. Similarly we decompose PAð0Þ

into PAð0Þu þ PAð0Þc and from Eq. (43) we have
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PAð0Þu ¼ 1

3
ð3þ 3ir00 − ir0e þ 16ir0a þ 12ir0tÞPAð0Þu0 þ ir0tTð0Þ0 þ 1

9
ð2ir0e þ 4ir0a − 3ir0tÞCð0Þ0

þ 2

9
ðir0e þ 11ir0a þ 12ir0tÞEð0Þ0 þ 2

9
ðir0e þ 11ir0a þ 12ir0tÞPð0Þu0

þ
�
−
1

3
ir0tP

ð0Þu0
EW þ 1

27
ið−2r0e − 4r0a þ 3r0tÞPð0ÞuC0

EW −
2

27
iðr0e þ 11r0a þ 12r0tÞPð0ÞuE0

EW

�

−
2

9
iðr̄0e þ 2r̄0aÞ

�
C̄ð0Þ0
1 þ 2Ēð0Þ0 þ C̄ð0Þ0

2 þ 2P̄ð0Þu0 −
1

3
P̄ð0ÞuC0
EW;2 −

1

3
P̄ð0ÞuC0
EW;1 −

2

3
P̄ð0ÞuE0
EW

�

þ 1

3
i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

��
C̃ð0Þ0 þ Ẽð0Þ0 þ P̃ð0Þu0 þ 3

2
fPAð0Þu0 −

1

3
P̃ð0ÞuC0
EW −

1

3
P̃ð0ÞuE0
EW

�
;

PAð0Þc ¼ 1

3
ð3þ 3ir00 − ir0e þ 16ir0a þ 12ir0tÞPAð0Þc0 þ 2

9
ðir0e þ 11ir0a þ 12ir0tÞPð0Þc0

þ
�
−
1

3
ir0tP

ð0Þc0
EW þ 1

27
ið−2r0e − 4r0a þ 3r0tÞPð0ÞcC0

EW −
2

27
iðr0e þ 11r0a þ 12r0tÞPð0ÞcE0

EW

�

−
2

9
iðr̄0e þ 2r̄0aÞ

�
2P̄ð0Þc0 −

1

3
P̄ð0ÞcC0
EW;2 −

1

3
P̄ð0ÞcC0
EW;1 −

2

3
P̄ð0ÞcE0
EW

�

þ 1

3
i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

��
P̃ð0Þc0 þ 3

2
fPAð0Þc0 −

1

3
P̃ð0ÞcC0
EW −

1

3
P̃ð0ÞcE0
EW

�
; ð77Þ

Using these formulas and the best fit parameters, we obtain

PAð0Þu

PAð0Þu0 ¼ 0.94ei2.2°þ22.39e−i67.4°þ6.17ei53.7°þ0.78i91.1°

þ2.31i96.8°þ0.09−i47.6°þ1.91i28.5°þ1.52−i99.7°

¼ 19.55e−i42.7°; ð78Þ

where the terms in the right-hand side of the first equality

are from PAð0Þu0, Tð0Þ0, Cð0Þ0, Eð0Þ0, Pð0Þu0, Pð0Þu0;ð0ÞuC0;ð0ÞuE0
EW ,

C̄ð0Þ0
1 þ2Ēð0Þ0þC̄ð0Þ0

2 þ2P̄ð0Þu0−1
3
P̄ð0ÞuC0
EW;2 −1

3
P̄ð0ÞuC0
EW;1 −2

3
P̄ð0ÞuE0
EW ,

and C̃ð0Þ0 þ Ẽð0Þ0 þ P̃ð0Þu0 þ 3
2
fPAð0Þu0 − 1

3
P̃ð0ÞuC0
EW − 1

3
P̃ð0ÞuE0
EW

contributions, respectively. Note that jPAð0Þuj is enhanced
by a factor of 18, and the main contributions are from Tð0Þ0,
Cð0Þ0 and Pð0Þu0 terms via the total annihilation rescattering
r0t, the annihilation r0a and total annihilation r0t rescatterings,
respectively. In particular, the enhancement from Tð0Þ0 via r0t
is the most prominent one.

Similarly we have

PAð0Þc

PAð0Þc0 ¼ 0.94ei2.2° þ 2.51ei88.2° þ 0.09−i47.0°

þ 1.26−i97.3° þ 1.41ei117.7° ¼ 2.49ei84.0°; ð79Þ

where the terms in the right-hand side of the first equality

are from PAð0Þc0, Pð0Þc0, Pð0Þc0;ð0ÞcC0;ð0ÞcE0
EW , 2P̄ð0Þc0− 1

3
P̄ð0ÞcC0
EW;2 −

1
3
P̄ð0ÞcC0
EW;1 − 2

3
P̄ð0ÞcE0
EW , and P̃ð0Þc0þ3

2
fPAð0Þc0−1

3
P̃ð0ÞcC0
EW −1

3
P̃ð0ÞcE0
EW

contributions, respectively. Note that jPAð0Þcj is enhanced
by a factor of 2.5, while the main contribution is from the
Pð0Þc0 term via the annihilation r0a and total annihilation r0t
rescatterings. The effect of rescattering in PAð0Þc is not as
prominent as in the PAð0Þu case.
We see that in the presence of rescattering, the resulting

jPAuj is even greater than jPAcj, while PAð0Þu can no longer

TABLE VII. Same as Table VI, but for u-penguins and c-penguins.

A0ðB̄Þ AFSIðB̄Þ AFSI=A0ðB̄Þ A0ðBÞ AFSIðBÞ AFSI=A0ðBÞ
Pu 3.51ei108.3° 6.98ei84.7° 1.99e−i23.6° 3.51e−i113.9° 6.98e−i137.6° 1.99e−i23.6°

Pc 10.09e−i11.4° 9.49e−i0.2° 0.94ei11.2° 10.09e−i11.4° 9.49e−i0.2° 0.94ei11.2°

PAu 0.31e−i77.4° 5.98e−i120.1° 19.55e−i42.7° 0.31ei60.3° 5.98ei17.6° 19.55e−i42.7°

PAc 0.81ei171.4° 2.02e−i104.6° 2.49ei84.0° 0.81ei171.4° 2.02e−i104.6° 2.49ei84.0°

Pu0 0.81ei108.3° 1.61ei84.7° 1.99e−i23.6° 0.81e−i113.9° 1.61e−i137.6° 1.99e−i23.6°

Pc0 43.71ei168.6° 41.10ei179.8° 0.94ei11.2° 43.71ei168.6° 41.10ei179.8° 0.94ei11.2°

PAu0 0.07e−i77.4° 1.38e−i120.1° 19.55e−i42.7° 0.07ei60.3° 1.38ei17.6° 19.55e−i42.7°

PAc0 3.51e−i8.6° 8.75ei75.4° 2.49ei84.0° 3.51e−i8.6° 8.75ei75.4° 2.49ei84.0°
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be neglected (see Table VII). The above observations can
shed light on the results in the following discussions.

C. Numerical results for decay rates and
CP asymmetries

In this part we will present the numerical results on rates
in B̄0 and B− decays, direct CP violations in B̄0 and B−

Decays, rates and direct CP asymmetries in B̄0
s decays, and

time-dependent CP violations in B̄0 and B̄0
s decays.

1. Rates in B̄0 and B− decays

In Table VIII, we show the CP-average rates of
B̄0; B− → PP decays. In the table, Fac and Res denote
the factorization (without rescattering) and the rescattering
results, respectively. To see the effect of rescattering, we
also show the results from the rescattering solution, but
with all rescattering phases turn off, i.e., with rescattering
turn off, in the parentheses. In the table the contributions
from various modes to χ2min in the best fitted solutions are
also shown.
From the table, we see that, except for rates in B̄0 →

K−πþ, K̄0η, and B− → π−η0 decays, the χ2 in Res for the
other modes are lower than the Fac ones. In particular, the χ2

in the B̄0 → K̄0π0, πþπ−, K0K̄0, and B− → K̄0π−, K−η,

π−π0, π−η rates are improved significantly, as Fac encoun-
ters difficulties to fit some of these rates well. In fact, in Fac
the χ2 in B̄0 → πþπ− is as large as 36.1, while it is reduced to
0.7 inRes.We see that in each group the χ2 is improved in the
presence of Res. The total χ2 from these 21ð¼ 4þ4þ4þ9Þ
modes reduced from 100.7ð¼ 10.1þ24.7þ10.6þ55.3Þ to
27.7ð¼ 7.2þ 6.3þ 6.4þ 7.8Þ (the breakdown can be
found in Table II as well). Overall speaking rescattering
significantly improves the fit in this sector, especially in the
last group, and can reproduce all the measured B̄u;d → PP
rates reasonably well.
Note that both Fac and Res can successfully reproduce

the newly measured B̄0 → π0η and KþK− rates [1,4]. On
the other hand, both Fac and Res results on the B̄0 → π0π0

rate have tension with the data, while Res is somewhat
better as its χ2ð¼ 3.7Þ is smaller than the one (5.6) in Fac.
It should be note that the uncertainty in the present data is
still large and it will be interesting to see the updated
measurement. Both Fac and Res fits on the B− → π−π0

rates are smaller than the experimental result. The χ2 from
Fac on this mode is 5.7, while the Res fit improves it to
2.9 with a slightly large rate, but both results are in tension
with data.
We will investigate how rescattering improves the fit

in B̄0
d → πþπ−; π0π0; KþK− and B− → K̄−π0 rates. For

TABLE VIII. Branching ratios of various B̄u;d → PPmodes in units of 10−6. Fac and Res denote factorization and rescattering results,
respectively. Experimental results are taken from [6,7]. Contributions to χ2min from the best fitted solutions are also shown. The values in
parenthesis are the results from the rescattering solution, but with all rescattering phases turn off.

Mode Exp Fac Res χ2ðFacÞmin χ2ðResÞmin

B̄0 → K−πþ 19.57þ0.53
−0.52 19.3þ0.3

−0.3 20.7þ0.3
−0.3 (23.1) 0.2 4.7 (44.7)

B̄0 → K̄0π0 9.93� 0.49 8.5� 0.1 9.6þ0.2
−0.1 (10.7) 8.2 0.4 (2.4)

B̄0 → K̄0η 1.23þ0.27
−0.24 1.3� 0.1 1.6� 0.1 (1.6) 0.0 1.6 (1.8)

B̄0 → K̄0η0 66.1� 3.1 70.0� 1.2 68.3þ2.6
−1.4 (64.6) 1.6 0.5 (0.2)

B− → K̄0π− 23.79� 0.75 21.1� 0.3 22.5� 0.3 (25.4) 11.8 3.1 (4.5)
B− → K−π0 12.94þ0.52

−0.51 12.1� 0.1 12.3� 0.2 (13.8) 2.7 1.7 (2.7)
B− → K−η 2.36þ0.22

−0.21 1.7� 0.1 2.1þ0.1
−0.2 (2.1) 8.2 1.5 (1.1)

B− → K−η0 71.1� 2.6 74.7� 1.3 71.4þ2.9
−1.5 (66.5) 1.9 0.0 (3.1)

B− → π−π0 5.48þ0.35
−0.34 4.7� 0.1 4.9þ0.2

−0.1 (4.9) 5.7 2.9 (2.9)
B− → K0K− 1.32� 0.14 1.43� 0.03 1.31� 0.03 (1.5) 0.6 0.0 (1.8)
B− → π−η 4.02� 0.27 3.4� 0.1 4.2� 0.1 (4.3) 4.1 0.3 (0.8)
B− → π−η0 2.7þ0.5

−0.4 2.9� 0.1 3.5� 0.1 (3.3) 0.1 3.3 (1.5)
B̄0 → πþπ− 5.10� 0.19 6.2� 0.1 5.3� 0.1 (6.0) 36.1 0.7 (23.7)
B̄0 → π0π0 1.59� 0.26a 0.98þ0.05

−0.03 1.09þ0.06
−0.05 (0.82) 5.6 3.7 (9.7)

B̄0 → ηη 0.76� 0.29 0.28� 0.01 0.41þ0.04
−0.06 (0.11) 2.8 1.5 (5.1)

B̄0 → ηη0 0.5� 0.4ð<1.2Þ 0.32þ0.02
−0.01 0.30þ0.05

−0.04 (0.26) 0.2 0.2 (0.4)
B̄0 → η0η0 0.6� 0.6ð<1.7Þ 0.24� 0.01 0.40þ0.15

−0.12 (0.08) 0.4 0.1 (0.7)
B̄0 → KþK− 0.084� 0.024 0.065� 0.002 0.100þ0.012

−0.007 (0.03) 0.6 0.5 (4.3)
B̄0 → K0K̄0 1.21� 0.16 1.67� 0.03 1.19� 0.03 (1.21) 8.4 0.0 (0.0)
B̄0 → π0η 0.41� 0.17 0.37� 0.01 0.36þ0.02

−0.00 (0.41) 0.1 0.1 (0.0)
B̄0 → π0η0 1.2� 0.6b 0.52� 0.02 0.60� 0.02 (0.47) 1.3 1.0 (1.5)

aAn S factor of 1.4 is included in the uncertainty.
bTaken from PDG with an S factor of 1.7 included in the uncertainty.
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simplicity we will concentrate on the dominant contri-
butions to the decay amplitudes in the following
discussion. By neglecting the electroweak penguin
contributions, the B̄0 → πþπ− amplitude in Eq. (25)
can be expressed as

AB̄0
d→πþπ− ≃ T þ Pþ Eþ PA: ð80Þ

Using the results in Sec. III B, we see that before rescatter-
ing and after rescattering, we have (in unit of 10−8 GeV)

ðAB̄0
d→πþπ−Þ0 ≃ 2.58e−i63.5° þ 0.89ei8.6° þ 0.19ei102.6° þ 0.08e−i166.4°

≃ 2.98e−i47.0° þ 0.14ei135.4° ≃ 2.84e−i47.1°;

ðAB0
d→πþπ−Þ0 ≃ 2.58ei74.2° þ 0.99e−i31.6° þ 0.12e−i119.7° þ 0.08ei149.3°

≃ 2.50ei51.8° þ 0.14e−i152.6° ≃ 2.38ei53.2°;

ðAB̄0
d→πþπ−ÞFSI ≃ 2.58e−i63.5° þ 1.23ei34.3° þ 0.55ei71.0° þ 0.79e−i116.2°

≃ 2.71e−i136.8° þ 0.26e−i131.4° ≃ 2.70e−i42.4°;

ðAB0
d→πþπ−ÞFSI ≃ 2.58ei74.2° þ 0.64e−i47.6° þ 0.55e−i152.2° þ 0.52e−i1.6°

≃ 2.31ei60.6° þ 0.28e−i81.7° ≃ 2.10ei55.9°; ð81Þ

respectively, where expressions with four terms are given in
the order of T, P, E, and PA and those in two terms are with
the first two terms (T þ P) and the last two terms (Eþ PA)
summed separately. Before we proceed we may compare
the above estimation to our full numerical results,
where we have ðAB̄0

d→πþπ−Þ0, ðAB0
d→πþπ−Þ0, ðAB̄0

d→πþπ−ÞFSI,
and ðAB0

d→πþπ−ÞFSI given by 2.86e−i47.1°, 2.36ei52.8°,

2.71e−i40.8°, and 2.16ei57.2° (in unit of 10−8 GeV), respec-
tively, which are close to the above estimation.
Note that T þ P are dominant contributions, while

Eþ PA are subleading contributions, and these two groups
interfere destructively. In the presence of rescattering, the
sizes of the dominant parts, T þ P, are reduced, while the
sizes of the destructive and subleading parts, Eþ PA, are

enhanced, resulting more effective destructive interfer-
ences. From the estimation we see that the B̄0

d → πþπ−

rate is reduced by about 15% bringing BðB̄0 → πþπ−Þ ≃
6 × 10−6 down to ∼5 × 10−6, which agrees well with the
data [ð5.1� 0.19Þ × 10−6] shown in Table VIII and, con-
sequently, the quality of the fit is improved significantly.
Similarly for B̄0 → π0π0 decays, we have

ffiffiffi
2

p
AB̄0

d→π0π0 ≃ −Cþ Pþ Eþ PA; ð82Þ

which is close to the above B̄0 → πþπ− amplitudes, but
with T replaced by −C. Before rescattering and after
rescattering, we have (in unit of 10−8 GeV)

ffiffiffi
2

p
ðAB̄0

d→π0π0Þ0 ≃ 1.05ei56.1° þ 0.89ei8.6° þ 0.19ei102.6° þ 0.08e−i166.4°

≃ 1.82ei37.9° þ 0.08e−i166.4° ≃ 1.75ei38.9°;ffiffiffi
2

p
ðAB0

d→π0π0Þ0 ≃ 1.05e−i166.2° þ 0.99e−i31.6° þ 0.12e−i119.7° þ 0.08ei149.3°

≃ 0.90e−i104.5° þ 0.08ei149.3° ≃ 0.88e−i109.2°;ffiffiffi
2

p
ðAB̄0

d→π0π0ÞFSI ≃ 1.05ei56.1° þ 1.23ei34.3° þ 0.55ei71.0° þ 0.79e−i116.2°

≃ 2.73ei49.5° þ 0.79e−i116.2° ≃ 1.97ei43.8°;ffiffiffi
2

p
ðAB0

d→π0π0ÞFSI ≃ 1.05e−i166.2° þ 0.64e−i47.6° þ 0.55e−i152.2° þ 0.52e−i1.6°

≃ 1.45e−i137.0° þ 0.52e−i1.6° ≃ 1.14e−i118.3°; ð83Þ

respectively, where terms are given in the order of−C, P, E,
and PA and the expressions with the first three terms
(−Cþ Pþ E) combined are also shown. The above esti-
mation is close to the values in the full numerical results

with
ffiffiffi
2

p ðAB̄0
d→π0π0Þ0,

ffiffiffi
2

p ðAB0
d→π0π0Þ0,

ffiffiffi
2

p ðAB̄0
d→π0π0ÞFSI andffiffiffi

2
p ðAB0

d→π0π0ÞFSI given by1.67ei39.6°,0.89e−i114.8°,1.96ei45.0°
and 1.08e−i126.0° in the unit of 10−8 GeV, respectively.
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In the above estimation the first three terms and the last
term interfere destructively. With Res P and E are enhanced
giving a larger −Cþ Pþ E, while the enhanced PA cannot
be neglected anymore, producing a slightly larger decay
amplitude and resulting a 35% enhancement in rate, which
brings the rate up from BðB̄0 → π0π0Þ ≃ 0.8 × 10−6 to
∼1.1 × 10−6 as shown in Table VIII. As noted previously
the rate is still smaller than the central value of the data,
which however accompanies with large uncertainty.

For the newly observed B̄0
d → KþK− mode, we note that

as shown in Table VIII rescattering enhances the rate by
0.100=0.03 ¼ 3.33 times. It will be useful to see the
enhancement in details. From Tables IV and VII and
Eq. (25),

AB̄0
d→KþK− ¼ Eþ PAu þ PAc þ 1

3
PA
EW; ð84Þ

we have (in unit of 10−8 GeV)

ðAB̄0
d→KþK−Þ0 ≃ 0.119ei102.6° þ 0.031e−i77.4° þ 0.081ei171.4° þ 0.001ei13.6° ≃ 0.139ei135.2°;

ðAB0
d→KþK−Þ0 ≃ 0.119e−i119.7° þ 0.031ei60.3° þ 0.081ei171.4° þ 0.001e−i30.7° ≃ 0.139e−i152.4°;

ðAB̄0
d→KþK−ÞFSI ≃ 0.546ei71.0° þ 0.598e−i120.1° þ 0.202e−i104.6° þ 0.006e−i24.7° ≃ 0.261e−i130.1°

ðAB0
d→KþK−ÞFSI ≃ 0.546e−i151.2° þ 0.552ei17.1° þ 0.202e−i105.4° þ 0.006e−i68.8° ≃ 0.286e−i81.4°; ð85Þ

for the decay amplitudes before and after rescattering, where
terms are given in the order of E, PAu, PAc, and PA

EW=3.
Compare the above estimation to the values in our full
numerical result, which have 0.200ei135.0°, 0.200e−i152.6°,
0.332e−i139.8°, and 0.350e−i87.2° for ðAB̄0

d→KþK−Þ0,
ðAB0

d→KþK−Þ0, ðAB̄0
d→KþK−ÞFSI, and ðAB0

d→KþK−ÞFSI in unit

of 10−8 GeV, respectively. The discrepancy is mainly from
SU(3) breaking effects, which are not included in the above
equation. In fact, by scaling the numbers in Eq. (85) by
ðfK=fπÞ2, the sizes become 0.199, 0.199, 0.373 and 0.409,
which agree better to the above values now.
From the above equation, we see that E, PAu, PAc and

PA
EW are all enhanced. Note that E interferes destructively

with PAu and PAc in AB̄0
d→KþK− , while PAu interferes

destructively with E and PAc in AB0
d→KþK− . The result is an

enhancement of 3.8 in the averaged rate, which is close to
our numerical result (0.100=0.03 ¼ 3.33) as shown in
Table VIII. We will return to this mode again in the
discussion of direct CP asymmetry.
Finally we turn to the B− → K̄0π− decay. From Eq. (23)

we have

AB−→K̄0π− ¼ A0 þ P0u þ P0c þ 1

3
ð−P0C

EW þ 2P0E
EWÞ; ð86Þ

which gives before and after rescattering (in unit of 10−8 GeV)

ðAB−→K̄0π−Þ0 ≃ 0.01e−i77.4° þ 0.08ei108.3° þ 4.37ei168.6°

þ 0.08e−i53.3° ≃ 4.35ei168.4°;

ðABþ→K0πþÞ0 ≃ 0.01ei60.3° þ 0.08e−i113.9° þ 4.37ei168.6°

þ 0.08e−i51.2° ≃ 4.33ei170.2°;

ðAB−→K̄0π−ÞFSI ≃ 0.11e−i113.8° þ 0.16ei84.7° þ 4.11ei179.8°

þ 0.13e−i50.3° ≃ 4.06e−i179.7°;

ðABþ→K0πþÞFSI ≃ 0.11ei23.9° þ 0.16e−i137.6° þ 4.11ei179.8°

þ 0.13e−i48.2° ≃ 4.05e−i178.0°; ð87Þ

respectively, where terms are given in the order of A0,P0u,P0c,
and ð−P0C

EW þ 2P0E
EWÞ=3. Note that in our numerical result,

we have 5.17ei167.2°, 5.29ei171.2°, 4.86ei179.6°, and 4.98ei175.7°,
for ðAB−→K̄0π−Þ0, ðABþ→K0πþÞ0, ðAB−→K̄0π−ÞFSI and
ðABþ→K0πþÞFSI in unit of 10−8 GeV, respectively. By scaling
the values in the Eq. (87) by fK=fπ, the sizes become 5.20,
5.17, 4.85 and 4.83, respectively, which are close to the
numerical results. In the full numerical result either in the
presence of rescattering or without it, the sizes of ABþ→K0πþ is
slightly greater thanAB−→K̄0π− , but it is the otherway around in
the estimation. In fact, in the numerical result, we have P0u ¼
0.10ei107.8° and P0c ¼ 5.19ei167.5° in ðAB−→K̄0π−Þ0 and P0u ¼
0.10e−i114.4° andP0c ¼ 5.33ei169.6° in ðABþ→K0πþÞ0. The latter
jP0cj in ðABþ→K0πþÞ0 is greater than the one in ðAB−→K̄0π−Þ0.
The difference can be traced to the nonvanishing
first Gegenbauer moment of the kaon wave function
(αK̄1 ¼ −αK1 ¼ 0.2Þ, which will change sign in changing from
K̄ to K. This will affect the direct CP asymmetry and such a
feature is absent in the above estimation.
From Eq. (87) we see that A0 þ 1

3
ð−P0C

EW þ 2P0E
EWÞ

interferes destructively to the dominating P0c term. Since
the sizes of A0 and 1

3
ð−P0C

EW þ 2P0E
EWÞ are enhanced, while

the size of P0c is slightly reduced, the size of the total
amplitude is reduced under the rescattering resulting a
reduction of 13% in the averaged rate, which brings the rate
from BðB− → K̄0πþÞ ≃ 25 × 10−6 to ∼22 × 10−6, which is
closer to the data [ð23.79� 0.75Þ × 10−6] as shown in
Table VIII.

2. Direct CP violations in B̄0 and B− decays

Results for direct CP asymmetries (A) in B̄u;d → PP
decays are summarized in Table IX. The Fac and Res fits
give similar results in the first group of data, namely the
direct CP asymmetries in B̄0 → K−πþ, K̄0π0 and K̄0η0
decays. Both can explain the so-call Kπ CP puzzle by
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producing positive AðB− → K−π0Þ and negative
AðB̄0 → K−πþÞ, but the Res give a slightly larger
AðB− → K−π0Þ. Fac fits better than Res in the B− →
π−η0 and B0 → K0K̄0 modes, while Res fits better than Fac
in the B− → K̄0π−, K−η0, B̄0 → πþπ−, and π0π0 modes. In
particular, the χ2 in A of B̄0 → πþπ− is reduced signifi-
cantly from 11.5 (Fac) to 2.9 (Res). Overall speaking the fit
in Res in this sector (see also Table II) is better than Fac, as
the corresponding χ2 are 13.9ð¼ 1.1þ 0.6þ 7.5þ 4.7Þ
and 29.2ð¼ 1.8þ 5.2þ 6.5þ 15.7Þ, respectively.
It is interesting to see how rescattering solve the so-

called KπCP puzzle, where experimental data gives
ΔA≡AðK−πþÞ −AðK−π0Þ ¼ ð12.2� 2.2Þ%, in details.
The B̄0 → K−πþ and B− → K−π0 decay amplitudes can be
expressed as

AB̄0
d→K−πþ ¼T 0 þP0 þ1

3
ð2P0C

EW−P0E
EWÞ;ffiffiffi

2
p

AB−→K−π0 ¼T 0 þC0 þA0 þP0 þP0
EWþ2

3
P0C
EWþ2

3
P0E
EW:

ð88Þ

It is useful to note that these two amplitudes are related by
the following relation:

ffiffiffi
2

p
AB−→K−π0 ¼ AB̄0

d→K−πþ þ C0 þ A0 þ P0
EW þ P0E

EW: ð89Þ

Using the values in Table V and the above equation, we
have (in unit of 10−8 GeV and in the corresponding order
of the above equation) before and after Res

ffiffiffi
2

p
ðAB−→K−π0Þ0 ≃ 4.12ei173.0° þ 0.24e−i123.9° þ 0.01e−i77.4° þ 0.40e−i174.2° þ 0.05e−i32.7° ≃ 4.58ei177.2°;ffiffiffi

2
p

ðABþ→Kþπ0Þ0 ≃ 4.45ei160.8° þ 0.24ei13.8° þ 0.01ei60.3° þ 0.40e−i172.1° þ 0.05e−i30.6° ≃ 4.55ei161.5°;ffiffiffi
2

p
ðAB−→K−π0ÞFSI ≃ 3.90e−i176.4° þ 0.24e−i123.9° þ 0.11e−i113.8° þ 0.40e−i174.2° þ 0.13e−i40.3° ≃ 4.43e−i171.3°;ffiffiffi

2
p

ðABþ→Kþπ0ÞFSI ≃ 4.18ei171.9° þ 0.24ei13.8° þ 0.11ei23.9° þ 0.40e−i172.1° þ 0.13e−i38.2° ≃ 4.14ei172.2°; ð90Þ

TABLE IX. Same as Table VIII, except for the direct CP asymmetries A (in units of percent) in various B̄u;d → PP modes.

Mode Exp Fac Res χ2ðFacÞmin χ2ðResÞmin

B̄0 → K−πþ −8.2� 0.6 −8.0� 0.1 −8.2� 0.3 ð−9.5Þ 0.1 0.0 (4.8)
B̄0 → K̄0π0 −1� 13

a −15.2� 0.6 −14.3� 1.0 ð−8.5Þ 1.2 1.0 (0.3)
B̄0 → K̄0η – −29.3þ1.3

−1.9 −27.7þ1.4
−2.2 ð−17.5Þ – –

B̄0 → K̄0η0 5� 4 7.8� 0.2 6.1þ1.3
−0.9 (6.3) 0.5 0.1 (0.1)

B− → K̄0π− −1.7� 1.6 −3.5� 0.1 −2.4þ0.6
−0.4 ð−2.3Þ 1.2 0.2 (0.1)

B− → K−π0 4.0� 2.1 4.0� 0.4 4.9þ0.8
−1.1 ð−1.9Þ 0.0 0.2 (7.8)

B− → K−η −37� 8 −42.0þ2.5
−3.7 −33.9� 2.6 ð−10.8Þ 0.4 0.1 (10.7)

B− → K−η0 1.3� 1.7 4.5þ0.2
−0.1 1.8þ1.6

−0.7 (2.7) 3.6 0.1 (0.7)
B− → π−π0 2.6� 3.9 −0.11� 0.00 −0.09� 0.01 ð−0.09Þ 0.5 0.5 (0.5)
B− → K0K− −8.7� 10.0 −5.7� 0.1 −4.8þ3.8

−5.3 ð−8.8Þ 0.1 0.2 (0.0)
B− → π−η −14� 5 −11.9þ0.8

−0.7 −10.3þ1.7
−1.6 (0.8) 0.2 0.5 (8.7)

B− → π−η0 6� 15 37.8þ0.8
−1.3 43.6þ2.0

−2.4 (34.6) 4.5 6.3 (3.6)
B̄0 → πþπ− 31� 5 14.0� 0.4 22.5þ0.9

−1.0 (19.1) 11.5 2.9 (5.7)
B̄0 → π0π0 34� 22 79.1þ1.2

−1.5 53.7þ3.3
−7.1 (55.9) 4.2 0.8 (1.0)

B̄0 → ηη – −64.5þ1.5
−1.4 −31.1þ7.2

−5.5 ð−73.5Þ – –
B̄0 → ηη0 – −35.6� 1.1 −29.8þ9.4

−8.0 ð−52.1Þ – –
B̄0 → η0η0 – −20.0� 0.4 −7.6þ19.2

−19.8 ð−12.9Þ – –
B̄0 → KþK− – 0 −5.2þ5.2

−5.0 (0) – –
B̄0 → K0K̄0 −6� 36

b −8.4� 0.1 −41.8þ2.6
−3.9 ð−10.0Þ 0.0 1.0 (0.0)

B̄0 → π0η – −45.6þ1.8
−1.7 −40.9þ4.6

−3.6 ð−36.3Þ – –
B̄0 → π0η0 – −30.4þ0.9

−0.5 −8.8� 1.4 ð−8.8Þ – –
aAn S factor of 1.4 is included in the uncertainty.
bAn S factor of 1.4 is included in the uncertainty.
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respectively. In our full numerical results, for B̄0 → K−πþ

decay, we have 4.91ei172.0°, 5.40ei161.8°, 4.68e−i176.8° and
5.08ei174.0° for ðAB̄0

d→K−πþÞ0, ðAB0
d→Kþπ−Þ0, ðAB̄0

d→K−πþÞFSI
and ðAB0

d→Kþπ−ÞFSI in unit of 10−8 GeV, respectively, which

are close to the scaled (by fK=fπ) estimations, 4.93ei177.2°,
5.32ei161.5°, 4.66e−i171.3°, and 4.99ei172.2°, from Eq. (90).
For B− → K−π0 decays, we have 5.40ei176.4°, 5.50ei162.7°,
5.26e−i171.6°, and 5.01ei174.8° for

ffiffiffi
2

p ðAB−→K−π0Þ0,ffiffiffi
2

p ðAB−→K−π0Þ0,
ffiffiffi
2

p ðAB−→K−π0ÞFSI, and
ffiffiffi
2

p ðAB−→K−π0ÞFSI
in unit of 10−8 GeV, respectively, which are close to the
scaled (by fK=fπ) estimations, 5.48ei177.2°, 5.44ei161.5°,
5.29e−i171.3°, and 4.94ei172.2°, from Eq. (90).
From Eq. (90) we see that the asymmetries are

AðB̄0
d → K−πþÞ ≃ −7.7%, AðB− → K−π0Þ ≃ 0.6% and

ΔA ≃ 8.3% before Res, which are not too far from
the values −9.5%, −1.9% and 7.6% shown in Table IX,
and AðB̄0

d → K−πþÞ ≃ −6.8%, AðB− → K−π0Þ ≃ 6.8%
and ΔA ≃ 13.6% after Res, which are close to the values

−8.2%,4.9 %, and 13.0% shown in Table IX. As noted in
the discussion of the B− → K̄0π− rate in the last sub-
section, the first Gegenbauer moment of the kaon wave
function is the main source of the discrepancies between
the estimations and the full numerical results.
As shown in Eq. (90), it is interesting that before

rescattering the C0 and P0
EW terms are the sources of

deviation of AðB− → K−π0Þ from AðB̄0
d → K−πþÞ, while

with the presence of Res, the sizes of A0 and P0E
EW are

enhanced and hence further enlarges the deviation of
AðB̄0

d → K−πþÞ and AðB− → K−π0Þ producing a larger
ΔA. Note that comparing to the discussion in B̄0 → πþπ−

and π0π0 decay rates [see discussion after Eq. (81)], we see
that the correlation of the effects of Res on these two sectors
is not prominent. Indeed, in the π0π0 mode the most

affected TAs under rescattering are P, E, and PA, while
at here A0 and P0E

EW are the most affected and relevant ones.
We now turn toAðB̄0→πþπ−Þ. From previous discussion

[see Eq. (81)], we find that before Res AðB̄0→ πþπ−Þ≃
2.84e−i47.1° ×10−8 GeV and AðB0→ πþπ−Þ≃2.38ei53.2°×
10−8 GeV, giving A≃18%, while in the presence of Res,
the sizes of the dominant parts, TþP, are reduced, but the
sizes of the destructive but the subleading parts, EþPA, are
enhanced, resulting richer interferences, giving AðB̄0 →
πþπ−Þ≃2.70e−i42.4° ×10−8 GeV and AðB0 → πþπ−Þ≃
2.10ei55.9° × 10−8 GeV, and, consequently, producing an
enhancedA ≃ 24.7%, which is closer to the data, ð31� 5Þ%.
Note that the results of Fac and Res in AðB̄0 → K0K̄0Þ

are different, while with large uncertainty the present data,
AðB̄0 → K0K̄0Þ ¼ ð−6� 36Þ%, allows both. Note that
the uncertainty in the data is enlarged by an S factor of
1.4, as Belle and BABAR give very different results in
AðB̄0 → KsKsÞ, namely, Belle gives AðB̄0→KsKsÞ¼
−0.38�0.38�0.5 [41], while BABAR gives 0.40�
0.41�0.06 [42]. The result of Res, AðB̄0→K0K̄0Þ¼
−0.418þ0.026

−0.039 , prefers the Belle result. One should be
reminded that Res can reproduce the B̄0 → K0K̄0 CP-
averaged rate much better than Fac (see Table VIII). We
need more data to clarify the situation and to verify these
predictions.
It will be useful to see the effect of Res on the B̄0

d →
K0K̄0 direct CP asymmetry. From Eq. (25), we can
approximate the B̄0

d → K0K̄0 amplitude as

AB̄0
d→K0K̄0 ≃ Pþ PA ≃ Pu þ PAu þ Pc þ PAc: ð91Þ

From Table VII, before Res and after FSI, we have (in unit
of 10−8 GeV)

ðAB̄0
d→K0K̄0Þ0 ≃ 0.35ei108.3° þ 0.03e−i77.4° þ 1.01e−i11.4° þ 0.08ei171.4° ≃ 0.81ei8.1°;

ðAB0
d→K0K̄0Þ0 ≃ 0.35e−i113.9° þ 0.03ei60.3° þ 1.01e−i11.4° þ 0.08ei171.4° ≃ 0.92e−i31.6°;

ðAB̄0
d→K0K̄0ÞFSI ≃ 0.70ei84.7° þ 0.60e−i120.1° þ 0.95e−i0.2° þ 0.20e−i104.6° ≃ 0.66e−i1.9°;

ðAB0
d→K0K̄0ÞFSI ≃ 0.70e−i137.6° þ 0.60ei17.6° þ 0.95e−i0.2° þ 0.20e−i104.6° ≃ 1.07e−i27.2°; ð92Þ

respectively, where the values of Pu, PAu, Pc, and PAc are
shown in the corresponding order. In our full numerical
result, we have 1.12ei8.6°, 1.24e−i33.3°, 0.90ei1.6°, and
1.40e−i27.8° for ðAB̄0

d→K0K̄0Þ0, ðAB0
d→K0K̄0Þ0, ðAB̄0

d→K0K̄0ÞFSI,
and ðAB0

d→K0K̄0ÞFSI in units of 10−8 GeV, respectively, which

are close to the scaled [by ðfK=fπÞ2] estimations, 1.16ei8.1°,
1.31e−i31.6°, 0.95e−i1.9°, and 1.53e−i27.2°, from Eq. (92).
In Eq. (92), we see that both Pu and the PAu terms are

enhanced under Res (mainly through rescattering from T0)

and produce richer inference pattern contributing to the
direct CP asymmetry. The B̄0

d → K0K̄0 amplitude is
reduced, while the amplitude of the conjugated decay
mode, B0

d → K0K̄0, is enhanced under Res, producing
an enlarged direct CP asymmetry, which is changed from
−12% to −45% and hence close to the Belle result.
As shown in Table IX, we see that before Res the directCP

asymmetry of B̄0 → KþK− is vanishing. Indeed, as one can
infer from Eq. (85) that the rates of B̄0 → KþK− and B0→
KþK− are the same before Res. This can be understood in the
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following. In QCDF, E, PA and PA
EW can be expressed in

terms of the so-called Ai
1 and A

i
2 terms, and these A

i
1 and A

i
2

terms are identical when the asymptotic distribution ampli-
tudes are used (as in the present case) [18]. Since we have
AB̄0→KþK− ¼ Eþ PAþ PA

EW=3 and these three topological
amplitudes all have a common strong phase resulting a
vanishing direct CP asymmetry. Note that in the presence
of Res, E, and PAu are enhanced mostly from T0 [see
Eqs. (72) and (78)], while PAc from Pc [see Eq. (79)],
consequently, the strong phases of these terms are no longer
degenerate. In fact, from Eq. (85) one can infer that the direct
CP asymmetry is estimated to be −18%, which can be
compared to the value of ð−7.7þ6.0

−6.2Þ% obtained in the full
numerical result as shown in Table IX.
For prediction, we see that except B̄0 → KþK−, the sizes

of the predicted direct CP asymmetries from Res are
smaller than those in Fac.

3. Rates and direct CP asymmetries in B̄0
s Decays

We show the CP-averaged rates and direct CP violations
of B̄0

s → PP decays in Table X. There are five measured B̄s

decay rates, namely Kþπ−, πþπ−, η0η0, KþK− and K0K̄0

decay rates. Among them B̄s → πþπ− and η0η0 decays are
newly observed by LHCb [3,4]. From the table we see that
both Fac and Res can fit the B̄s → Kþπ− rate well, but Fac
is having difficulties in fitting all other four modes: in
particular the χ2 of πþπ−, η0η0 and KþK− are as large as
20.2, 16.0 and 21.3, respectively, while Res can fit all Bs
decay modes very well and brings down these χ2 effi-
ciently, giving 0.0, 0.0, and 0.0, respectively. Note that the
rates of the two newly measured modes (πþπ− and η0η0) can
be easily reproduced in the Res fit, but not in the Fac fit. For
other modes, we see from the table that Res predicts larger
rates in B̄0

s → K0π0, K0η, π0π0 decays, but gives similar
predictions on K0η0, ηη, ηη0, π0η, and π0η0 rates.
The B̄0

s → πþπ− rate in the factorization calculation is too
small compared to data. As shown in Table X, through Res
the rate can be enhanced significantly. It is useful to see the
enhancement of the πþπ− rate more closely. From Eq. (27),

AB̄0
s→πþπ− ¼ E0 þ PA0u þ PA0c þ 1

3
P0A
EW; ð93Þ

and the values in Tables Vand VII, before and after Res, we
have (in unit of 10−9 GeV)

TABLE X. Same as Table VIII, except for the branching ratios (upper table) in the unit of 10−6 and direct CP asymmetries (lower
table) in the unit of percent for various B̄s → PP modes.

Mode Exp Fac Res χ2ðFacÞmin χ2ðResÞmin

BðB̄0
s → Kþπ−Þ 5.5� 0.5 5.5� 0.1 5.5þ0.4

−1.8 (6.3) 0.0 0.0 (2.6)
BðB̄0

s → K0π0Þ – 0.59� 0.01 1.02þ3.64
−0.13 (0.68) – –

BðB̄0
s → K0ηÞ – 0.18þ0.01

−0.00 0.48þ1.87
−0.06 (0.22) – –

BðB̄0
s → K0η0Þ – 1.76� 0.03 2.02þ4.30

−0.19 (1.75) – –

BðB̄0
s → πþπ−Þ 0.671� 0.083 0.30� 0.01 0.67þ0.49

−0.06 (0.14) 20.2 0.0 (41.1)
BðB̄0

s → π0π0Þ – 0.15� 0.00 0.33þ0.25
−0.03 (0.07) – –

BðB̄0
s → ηηÞ – 24.7þ0.3

−0.4 19.6þ0.6
−6.5 (20.4) – –

BðB̄0
s → ηη0Þ – 67.2þ0.9

−1.4 75.1þ67.4
−3.5 (68.7) – –

BðB̄0
s → η0η0Þ 33.1� 7.1 60.5þ0.8

−1.1 34.9þ16.0
−4.7 (46.6) 16.0 0.0 (3.6)

BðB̄0
s → KþK−Þ 24.8� 1.7 32.7þ0.5

−0.6 24.6þ2.7
−0.6 (24.5) 21.3 0.0 (0.0)

BðB̄0
s → K0K̄0Þ 19.6� 9.5 34.3þ0.5

−0.6 24.6þ0.7
−1.0 (25.6) 2.4 0.3 (0.4)

BðB̄0
s → π0ηÞ – 0.07� 0.00 0.07þ0.09

−0.00 (0.06) – –
BðB̄0

s → π0η0Þ – 0.09þ0.00
−0.00 0.11þ0.10

−0.01 (0.10) – –

AðB̄0
s → Kþπ−Þ 26� 4 17.4þ0.4

−0.5 24.8þ22.1
−1.0 (28.2) 4.6 0.1 (0.3)

AðB̄0
s → K0π0Þ – 66.8þ1.5

−1.6 74.9þ4.8
−50.8 (53.7) – –

AðB̄0
s → K0ηÞ – 88.1þ0.9

−1.2 81.2þ6.9
−54.8 (78.2) – –

AðB̄0
s → K0η0Þ – −38.7þ0.9

−0.5 −38.6þ13.0
−2.2 ð−34.4Þ – –

AðB̄0
s → πþπ−Þ – 0 1.7þ0.5

−2.5 (0) – –

AðB̄0
s → π0π0Þ – 0 1.7þ0.5

−2.5 (0) – –
AðB̄0

s → ηηÞ – −2.4� 0.1 −3.7þ0.6
−8.2 ð−2.8Þ – –

AðB̄0
s → ηη0Þ – −0.01� 0.01 0.95þ0.39

−0.19 ð−0.01Þ – –
AðB̄0

s → η0η0Þ – 2.0� 0.0 −1.2þ1.0
−4.7 (1.9) – –

AðB̄0
s → KþK−Þ −14� 11 −5.8� 0.0 −10.5þ1.1

−0.4 ð−9.9Þ 0.6 0.1 (0.1)
AðB̄0

s → K0K̄0Þ – −0.9� 0.0 0.9þ2.2
−0.3 ð−0.6Þ – –

AðB̄0
s → π0ηÞ – 46.0þ1.5

−1.2 92.9þ2.9
−15.4 (69.9) – –

AðB̄0
s → π0η0Þ – 64.3þ1.4

−1.1 77.7þ8.5
−6.9 (54.0) – –
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ðAB̄0
s→πþπ−Þ0 ≃ 0.27ei102.6° þ 0.07e−i77.4° þ 3.51e−i8.6° þ 0.02ei170.4 ≃ 3.42e−i5.4°;

ðAB̄0
s→πþπ−Þ0 ≃ 0.27e−i120.1° þ 0.07ei60.3° þ 3.51e−i8.6° þ 0.02ei172.5 ≃ 3.42e−i11.7°;

ðAB̄0
s→πþπ−ÞFSI ≃ 1.26ei71.0° þ 1.38e−i120.1° þ 8.75ei75.4° þ 0.28ei132.2° ≃ 8.88ei78.7°;

ðAB̄0
s→πþπ−ÞFSI ≃ 1.26e−i151.2° þ 1.38ei17.6° þ 8.75ei75.4° þ 0.28ei134.3° ≃ 8.76ei75.3°; ð94Þ

respectively, where terms are given in the order of E0, PA0u,
PA0c, and P0A

EW=3. In our full numerical result, we
have 4.17e−i5.3°, 4.17e−i11.7°, 9.19ei66.7°, and 9.04ei64.8°

for ðAB̄0
s→πþπ−Þ0, ðAB̄0

s→πþπ−Þ0, ðAB̄0
s→πþπ−ÞFSI, and

ðAB̄0
s→πþπ−ÞFSI in unit of 10−9 GeV, respectively, which

are close to the scaled (by fBs
=fB ≃ fK=fπ) estimations,

4.15e−i5.4°, 4.15e−i11.8°, 10.74ei78.7° and 10.64ei75.3°, from
Eq. (94).
From Eq. (94), we see that the sizes of the amplitudes of

the B̄0
s and the conjugated B0

s decays are enhanced by
factors of 2.58 and 2.56, respectively, where the enhance-
ments are mainly from the enhancement in PA0c.
Consequently, the CP-averaged rate is enhanced by a
factor of 6.6, while A is changed from 0 to 0.9% as E0
and PA0u are also enhanced. Note that the above estimation
of rate enhancement is somewhat larger than the one in our
full numerical result (0.67=0.14 ¼ 4.79) in Table X, but the
direct CP asymmetry is close the value (1.9%) shown in the
table. The reason of the vanishingA before Res is similar to
those in the B̄0 → KþK− decay as discussed previously.
Hence, in the presence of Res, E0 and PA0u are enhanced
mostly from T 00 [see Eqs. (72) and (78)], while PA0c from
P0c [see Eq. (79)], which help to enhance the B̄0

s → πþπ−
rate and bring in nonvanishing direct CP asymmetry.
We now compare our results to the data in direct CP

asymmetries. There are two reported measurements in
direct CP asymmetries of B̄s modes: AðB̄0

s → Kþπ−Þ
and AðB̄s → KþK−Þ. A better measurement is reported
in the Kþπ− mode with a much reduced uncertainty. From
the table we see that Res gives a better fit to this data than
Fac with χ2ðFacÞ ¼ 4.6 and χ2ðResÞ ¼ 0.1. On the other hand
both Fac and Res can fit AðB̄s → KþK−Þ well, as the
uncertainty in data is still large to accommodate both
results, but Res has a smaller χ2.
For predictions on direct CP asymmetries, we note that

the signs ofAðB̄s → η0η0Þ andAðB̄s → K0K̄0Þ are opposite
in Fac and Res; Res predicts nonvanishing AðB̄s →
πþπ−; π0π0Þ and larger AðB̄s → π0ηÞ, while predictions
of Fac and Res on other modes are similar. These
predictions can be checked in near future.

4. Time-dependent CP violations in B̄0 and B̄0
s decays

Results on time-dependent CP-asymmetries S are given
in Table XI. We fit to data on mixing induced CP
asymmetries. There are reported experimental results of
mixing induced CP asymmetries in the following 5 modes:

B̄0 → K̄0π0, B̄0 → K̄0η0, B̄0 → πþπ−, B̄0 → KSK̄S and
B̄0
s → KþK−. Since the measurements are subtle, the

experimental progress in this sector is slower than those
in rates and direct CP asymmetries. Currently, the B̄0 →
K̄0π0 mode was updated up to 2010; the B̄0 → K̄0η0 mode
was updated up to 2014; the B̄0 → πþπ− modewas updated
up to 2013, the B̄0 → KSK̄S mode was updated up to 2007
and the B̄s → KþK− mode was included in these meas-
urement in 2013 [41–44]. New data are eagerly awaited.
Note that for the B̄0 → K0K̄0 mode, the mixing inducedCP
asymmetry obtained by Belle (−0.38þ0.69

−0.77 � 0.09 [41]) and
BABAR (−1.28þ0.80þ0.11

−0.73−0.16 [42]) are different. As the central
value of the latter exceeds the physical range, we only
include the former one in our fit.
From Table XI we see that fit in Res for the B̄0 → πþπ−

mode is much better than the one in Fac, where the χ2 are 1.1
and 9.3 for the former and the latter, respectively. On the
contrary, the fit in Fac is better than Res in the B̄s → KþK−

mode, where the χ2 are 0.6 and 1.4 for the former and the
latter, respectively.Note that the uncertainty in the data of the
B̄s → KþK− mode is much larger than the one in the B̄0 →
πþπ− mode. It will be interesting to see the updated data on
the B̄s → KþK− mode. Overall speaking the quality of fit to
mixing induced CP asymmetries is improved (χ2 reduced
from 12.9 to 5.2, see also Table II) in the presence of Res.
It is useful to look into the mixing induced asymmetry in

the B̄0
d → K0K̄0 mode. Recall in Eq. (92) that, before and

after Res, we have (in unit of 10−8 GeV, without SU(3)
breaking correction)

ðAB̄0
d→K0K̄0Þ0≃0.81ei8.1°; ðAB0

d→K0K̄0Þ0≃0.92e−i31.6°;

ðAB̄0
d→K0K̄0ÞFSI≃0.66e−i1.9°; ðAB0

d→K0K̄0ÞFSI≃1.07e−i27.2°;

ð95Þ
respectively. Using the well known formula:

S ¼ 2ImλA
1þ jλAj2

ð96Þ

with

λA ≡ q
p

AB̄0
d→K0K̄0

AB0
d→K0K̄0

¼ e−i2β
AB̄0

d→K0K̄0

AB0
d→K0K̄0

; ð97Þ

we obtain S ≃ −0.08 and −0.29 without and with Res,
respectively, which are close to the values reported in
Table XI. As explained previously, although B̄0

d → K0K̄0 is
a pure penguin mode, its S is not necessary close to
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− sin 2β, as the u-penguin contribution is not negligible
(jP0u=P0cj ≃ 0.35, see Table VII). When Res is turned on,
the u-penguin and c-penguin receive different contribu-
tions, where it is clear that trees can only contribute to the
former giving jPu=Pcj ≃ 0.74 (see Table VII), and, con-
sequently, the value of S can be changed drastically.
We now compare the predictions of Fac and Res on

mixing induced CP asymmetries. We note that they have
different predictions on the mixing induced CP asymme-
tries of B̄0 → ηη, ηη0, π0η, π0η0, B̄s → π0η, π0η0, Ksπ

0, Ksη,
and KSη

0 modes. In particular, the signs of central values of
the asymmetries of B̄0 → π0η, π0η0, B̄s → π0η, π0η0, and
Ksη are opposite.

IV. CONCLUSION

Various new measurements in charmless Bu;d;s → PP
modes are reported by Belle and LHCb. These include the
rates of B0 → π0π0, ηπ0, Bs → η0η0, B0 → KþK− and B0

s →
πþπ− decays. Some of these modes are highly suppressed
and are among the rarest B decays. Direct CP asymmetries
on various modes are constantly updated. It is well known

that direct CP asymmetries and rates of suppressed modes
are sensitive to final state interaction. As newmeasurements
are reported and more data will be collected, it is interesting
and timely to studied the rescattering on Bu;d;s → PP
decays. We perform a χ2 analysis with all available data
on CP-averaged rates and CP asymmetries in B̄u;d;s → PP
decays. Our numerical results are compared to data and
those from factorization approach. The quality of the fit is
improved significantly in the presence of Res, especially in
the decay rates in the B̄0 ΔS ¼ 0 sector and in rates and
direct CP asymmetries in the B̄0

s decay modes. Indeed, the
χ2 in the B̄0 → K̄0π0, πþπ−, K0K̄0, B− → K̄0π−, K−η,
π−π0, π−η, and B̄0

s → πþπ−, η0η0, and KþK− rates, and in
B̄0 → πþπ− and B̄0

s → Kþπ− direct CP asymmetries are
improved significantly. Res also fit better to the semi-
leptonic data on jVubjFBπð0Þ [see Eq. (56)].
The relations on topological amplitudes and rescattering

are explored and they help to provide a better under-
standing of the effects of rescattering. As suggested by
U(3) symmetry on topological amplitudes and FSI, a vani-
shing exchange rescattering scenario is considered. The
exchange, annihilation, u-penguin, u-penguin annihilation,

TABLE XI. Results on the time-dependent CP asymmetry sin 2βeff (for the first three modes) and S of various B̄d;s → PP modes.

Mode Exp Fac Res χ2ðFacÞmin χ2ðResÞmin

B̄0 → K̄0π0 0.57� 0.17 0.798� 0.002 0.806þ0.010
−0.003 (0.793) 1.8 1.9 (1.7)

B̄0 → K̄0η – 0.672þ0.009
−0.015 0.728þ0.030

−0.018 (0.757)
B̄0 → K̄0η0 0.63� 0.06 0.689þ0.001

−0.002 0.683þ0.006
−0.008 (0.693) 1.0 0.8 (1.1)

B̄0 → πþπ− −0.66� 0.06 −0.477þ0.039
−0.041 −0.598� 0.040 ð−0.578Þ 9.3 1.1 (1.9)

B̄0 → π0π0 – 0.602� 0.023 0.675þ0.055
−0.049 (0.778)

B̄0 → ηη – −0.741þ0.014
−0.015 −0.663þ0.031

−0.033 ð−0.669Þ
B̄0 → ηη0 – −0.847þ0.013

−0.014 −0.953þ0.028
−0.021 ð−0.795Þ

B̄0 → η0η0 – −0.922þ0.003
−0.004 −0.753þ0.067

−0.089 ð−0.962Þ
B̄0 → KþK− – −0.835þ0.016

−0.017 −0.992þ0.017
−0.007 ð−0.895Þ

B̄0 → KSK̄S −0.38þ0.69
−0.77 � 0.09 −0.016� 0.002 −0.231þ0.048

−0.042 ð−0.037Þ 0.2 0.0 (0.2)

−1.28þ0.80
−0.73

þ0.11
−0.16

B̄0 → π0η – 0.215þ0.005
−0.006 −0.473þ0.043

−0.068 ð−0.494Þ
B̄0 → π0η0 – −0.002þ0.010

−0.012 −0.414þ0.035
−0.025 ð−0.440Þ

B̄0
s → πþπ− – 0.152� 0.001 0.071þ0.011

−0.009 (0.149)
B̄0
s → π0π0 – 0.152� 0.001 0.071þ0.011

−0.009 (0.149)
B̄0
s → ηη – −0.005� 0.000 −0.035þ0.004

−0.067 ð−0.027Þ
B̄0
s → ηη0 – −0.004� 0.000 0.005þ0.007

−0.001 (0.006)
B̄0
s → η0η0 – 0.021� 0.000 0.046þ0.006

−0.003 (0.025)
B̄0
s → KþK− 0.30� 0.13 0.200� 0.002 0.149þ0.005

−0.066 (0.176) 0.6 1.4 (1.0)

B̄0
s → K0K̄0 – −0.022þ0.001

−0.000 −0.019þ0.004
−0.017 ð−0.027Þ

B̄0
s → π0η – −0.059þ0.009

−0.004 0.100þ0.050
−0.475 (0.308)

B̄0
s → π0η0 – 0.232þ0.013

−0.008 −0.016þ0.065
−0.319 (0.053)

B̄0
s → KSπ

0 – −0.738þ0.017
−0.020 −0.311þ0.541

−0.092 ð−0.784Þ
B̄0
s → KSη – −0.296þ0.041

−0.037 0.274þ0.369
−0.076 ð−0.273Þ

B̄0
s → KSη

0 – −0.395þ0.011
−0.004 −0.049þ0.367

−0.052 ð−0.276Þ
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and some electroweak penguin amplitudes are enhanced
significantly via annihilation and total annihilation rescat-
terings. In particular, the u-penguin annihilation amplitude
is sizably enhanced by the tree amplitude via total anni-
hilation rescattering. These enhancements affect rates and
CP asymmetries. For example, the enhanced PAu changes
the B̄0

d → K0K̄0 direct CP asymmetry significantly; the
enhanced P, E, and PA produce (through complicated
interference) a slightly larger B̄0 → π0π0 decay amplitude
and resulting a 35% enhancement in rate; A0 and P0E

EW are
enhanced and enlarges the deviation of AðB̄0

d → K−πþÞ
and AðB− → K−π0Þ producing a larger ΔA; the B̄0

s →
πþπ− rate is sizably enhanced through the enhancement
in PA0c; the jPu=Pcj ratio is enhanced from 0.35 to 0.74
and can change mixing induced CP asymmetries
drastically.
For the comparison of the predictions of Fac and Res, we

observed the following points. (i) Belle and BABAR give
very different results in AðB̄0 → KsKsÞ mode, namely
Belle gives AðB̄0 → KsKsÞ ¼ −0.38� 0.38� 0.5 [41],
while BABAR gives 0.40� 0.41� 0.06 [42]. The result
of Res prefers the Belle result, while Fac prefers a negative
but less sizable direct CP asymmetry. (ii) Except
B̄0 → KþK−, the sizes of the predicted direct CP asym-
metries of B−; B̄0 → PP modes from Res are smaller than
those in Fac. (iii) For Bs decay rates, Res predicts larger
rates in B̄0

s → K0π0, K0η, π0π0 decays, but gives similar
predictions on K0η0, ηη, ηη0, π0η, and π0η0 rates. (iv) For
predictions on direct CP asymmetries, we note that the
signs of AðB̄s → η0η0Þ and AðB̄s → K0K̄0Þ are opposite in
Fac and Res; Res predicts nonvanishing AðB̄s →
πþπ−; π0π0Þ and larger AðB̄s → π0ηÞ, while predictions
of Fac and Res on other modes are similar. (v) Finally, Fac
and Res have different predictions on the mixing induced
CP asymmetries of B̄0 → ηη, ηη0, π0η, π0η0, B̄s → π0η,
π0η0, Ksπ

0, Ksη, and KSη
0 modes. In particular, the signs of

central values of the asymmetries of B̄0 → π0η, π0η0,
B̄s → π0η, π0η0, and Ksη modes are opposite. These
predictions can be checked in the future.
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APPENDIX A: FSI FORMULAS

The weak Hamiltonian for charmless B̄q decays can be
written as HW ¼ ðGf=

ffiffiffi
2

p ÞPr;lVqbV�
rqcrlO

r
l , where crl are

Wilson coefficients,Or
l are Wilson operators and Vqb;rq are

the relevant CKM matrix elements, see for example [45].
From the time invariant of the Wilson operator Or

l , we
obtain ðhi;outjOr

l jB̄iÞ� ¼ ðhi;outjÞ�U†
TUTðOr

l Þ�U†
TUT jBi�,

where UT is the time-reversal transformation operator.

Using the time-reversal invariant of the operators, Or
l ¼

UTðOr
l Þ�U†

T and the appropriate phase convention of states,
UT joutðinÞi� ¼ jinðoutÞi, we have

ðhi; outjOr
l jB̄iÞ� ¼ hi; injOr

l jBi
¼

X
j

hi; injj; outihj; outjOijB̄i;

where we have inserted a complete set in the last step.
Therefore using the time-reversal invariant property of the
operator Or

l in a B̄ → PP decay, one obtains

ðhi; outjOr
l jB̄iÞ� ¼

X
j

S�
jihj; outjOr

l jB̄i; ðA1Þ

where Sij ≡ hi; outjj; ini is the strong interaction S-matrix
element, j denotes all possible states. Equation (A1) is the
master formula of FSI.
One can easily verify that the solution of the above

equation is given by

AiðOr
l Þ ¼

XN
k¼1

S1=2
ik A0

kðOr
l Þ; ðA2Þ

where we have AiðOr
l Þ≡ hi; outjOr

l jB̄i and A0ðOr
l Þ are real

amplitudes. Putting back the coefficients, we obtain the
master formula Eq. (1), and we can now state clearly Ai ≡
hi; outjHWjB̄i ¼ ðGf=

ffiffiffi
2

p ÞPr;lVqbV�
rqcrlAiðOr

l Þ and A0
i ≡

ðGf=
ffiffiffi
2

p ÞPr;lVqbV�
rqcrlA

0
i ðOr

l Þ.
Without loss of generality, we can reexpress the S-matrix

in Eq. (1) as

Sik ¼
Xn
j¼1

ðS1ÞijðS2Þjk; ðA3Þ

where S1 is a nonsingular n × n matrix with n the total
number of charmless PP states and S2 is defined through
the above equation, i.e., S2 ≡ S−1

1 S. As mentioned pre-
viously (in the introduction) the factorization amplitudes
contain a large portion of rescattering effects as encoded in
S2, while some residual rescattering among a small group
of states is still allowed and needs to be explored:

S1 ¼ Sres; Afac
j ¼

XN
k¼1

ðS1=2
2 ÞjkA0

k; ðA4Þ

with N the total number of states entering Eq. (1), Afac
j the

factorization amplitude and Sres the rescattering matrix to
govern rescattering among PP states.
We collect the rescattering formulas used in this work.

We have
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0
BBBBB@

AB̄0
d→K−πþ

AB̄0
d→K̄0π0

AB̄0
d→K̄0η8

AB̄0
d→K̄0η1

1
CCCCCA ¼ S1=2

res;1

0
BBBBBBB@

Afac
B̄0
d→K−πþ

Afac
B̄0
d→K̄0π0

Afac
B̄0
d→K̄0η8

Afac
B̄0
d→K̄0η1

1
CCCCCCCA
; ðA5Þ

for group-1 modes, 0
BBBB@

AB−→K̄0π−

AB−→K−π0

AB−→K−η8

AB−→K−η1

1
CCCCA ¼ S1=2

res;2

0
BBBBB@

Afac
B−→K̄0π−

Afac
B−→K−π0

Afac
B−→K−η8

Afac
B−→K−η1

1
CCCCCA; ðA6Þ

for group-2 modes, 0
BBBB@

AB−→π−π0

AB−→K0K−

AB−→π−η8

AB−→π−η1

1
CCCCA ¼ S1=2

res;3

0
BBBBB@

Afac
B−→π−π0

Afac
B−→K0K−

Afac
B−→π−η8

Afac
B−→π−η1

1
CCCCCA; ðA7Þ

for group-3 modes and

0
BBBBBBBBBBBBBBBBBBB@

AB̄0
d→πþπ−

AB̄0
d→π0π0

AB̄0
d→η8η8

AB̄0
d→η8η1

AB̄0
d→η1η1

AB̄0
d→KþK−

AB̄0
d→K0K̄0

AB̄0
d→π0η8

AB̄0
d→π0η1

1
CCCCCCCCCCCCCCCCCCCA

¼ S1=2
res;4

0
BBBBBBBBBBBBBBBBBBBBBBBB@

Afac
B̄0
d→πþπ−

Afac
B̄0
d→π0π0

Afac
B̄0
d→η8η8

Afac
B̄0
d→η8η1

Afac
B̄0
d→η1η1

Afac
B̄0
d→KþK−

Afac
B̄0
d→K0K̄0

Afac
B̄0
d→π0η8

Afac
B̄0
d→π0η1

1
CCCCCCCCCCCCCCCCCCCCCCCCA

; ðA8Þ

for group-4 modes, where we define S1=2
res;i ¼ð1þ iT iÞ1=2≡1þ iT ð1=2Þ

i , before incorporating SU(3) breaking effect, with

T 1¼

0
BBBBBB@

r0þra
−raþreffiffi

2
p −raþreffiffi

6
p 2r̄aþr̄effiffi

3
p

−raþreffiffi
2

p r0þ raþre
2

ra−re
2
ffiffi
3

p −2r̄aþr̄e
3
ffiffi
2

p

−raþreffiffi
6

p ra−re
2
ffiffi
3

p r0þ raþ5re
6

−2r̄aþr̄e
3
ffiffi
2

p

2r̄aþr̄effiffi
3

p −2r̄aþr̄effiffi
6

p −2r̄aþr̄e
3
ffiffi
2

p r̃0þ 4r̃aþ2r̃e
3

1
CCCCCCA; T 2¼

0
BBBBBB@

r0þra
ra−reffiffi

2
p −raþreffiffi

6
p 2r̄aþr̄effiffi

3
p

ra−reffiffi
2

p r0þ raþre
2

−raþre
2
ffiffi
3

p 2r̄aþr̄e
3
ffiffi
2

p

−raþreffiffi
6

p −raþre
2
ffiffi
3

p r0þ raþ5re
6

−2r̄aþr̄e
3
ffiffi
2

p

2r̄aþr̄effiffi
3

p 2r̄aþr̄effiffi
6

p −2r̄aþr̄e
3
ffiffi
2

p r̃0þ 4r̃aþ2r̃e
3

1
CCCCCCA;

T 3¼

0
BBBBBB@

r0þra 0 0 0

0 r0þra
ffiffi
2
3

q
ðra−reÞ 2r̄aþr̄effiffi

3
p

0
ffiffi
2
3

q
ðra−reÞ r0þ 2raþre

3

ffiffi
2

p
3
ð2r̄aþ r̄eÞ

0 2r̄aþr̄effiffi
3

p
ffiffi
2

p
3
ð2r̄aþ r̄eÞ r̃0þ 4r̃aþ2r̃e

3

1
CCCCCCA; ðA9Þ

and
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T 4 ¼ diagðr0; r0; r0; r̃0; ř0; r0; r0; r0; r̃0Þ

þ

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

2ra þ rt
2ra−reþrtffiffi

2
p 2raþreþ3rt

3
ffiffi
2

p
ffiffi
2

p ð2r̄aþr̄eÞ
3

4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p ra þ rt ra þ rt 0 0

2ra−reþrtffiffi
2

p 2raþreþrt
2

2raþreþ3rt
6

2r̄aþr̄e
3

4r̂aþ2r̂eþ3r̂t
6

raþrtffiffi
2

p raþrtffiffi
2

p 0 0

2raþreþ3rt
3
ffiffi
2

p 2raþreþ3rt
6

2raþreþrt
2

− 2r̄aþr̄e
3

4r̂aþ2r̂eþ3r̂t
6

5ra−2reþ3rt
3
ffiffi
2

p 5ra−2reþ3rt
3
ffiffi
2

p 0 0ffiffi
2

p ð2r̄aþr̄eÞ
3

2r̄aþr̄e
3

− 2r̄aþr̄e
3

4r̃aþ2r̃e
3

0 − 2r̄aþr̄e
3
ffiffi
2

p − 2r̄aþr̄e
3
ffiffi
2

p 0 0

4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p 4r̂aþ2r̂eþ3r̂t
6

4r̂aþ2r̂eþ3r̂t
6

0 4řaþ2řeþ3řt
6

4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p 4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p 0 0

ra þ rt
raþrtffiffi

2
p 5ra−2reþ3rt

3
ffiffi
2

p − 2r̄aþr̄e
3
ffiffi
2

p 4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p 2ra þ rt ra þ rt
ra−reffiffi

3
p 2r̄aþr̄effiffi

6
p

ra þ rt
raþrtffiffi

2
p 5ra−2reþ3rt

3
ffiffi
2

p − 2r̄aþr̄e
3
ffiffi
2

p 4r̂aþ2r̂eþ3r̂t
3
ffiffi
2

p ra þ rt 2ra þ rt
−raþreffiffi

3
p − 2r̄aþr̄effiffi

6
p

0 0 0 0 0 ra−reffiffi
3

p −raþreffiffi
3

p 2raþre
3

ffiffi
2

p ð2r̄aþr̄eÞ
3

0 0 0 0 0 2r̄aþr̄effiffi
6

p − 2r̄aþr̄effiffi
6

p
ffiffi
2

p ð2r̄aþr̄eÞ
3

4r̃aþ2r̃e
3

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

ðA10Þ

Note that for identical particle final states, such as π0π0,
factors of 1=

ffiffiffi
2

p
are included in the amplitudes and the

corresponding Sres matrix elements. The rescattering for-
mulas for B̄0

s → P̄ P̄ decays are similar to the B̄0
d → PP

ones, since strong interaction respect charge conjugation.
For example, the rescattering formula for B̄0

s → K̄þπ̄− is
similar to those of B̄0

d → K−πþ with trivial replacement on
amplitudes.

To include the SU(3) breaking effect, we proceed as
outlined in the main text. First we remove the SU(3)
breaking effect in Afac before recattering and put it back
after the rescattering. For the reasoning one is referred to the
main text. For convenientwe absorb these two action into the
rescattering matrices. We use ratios of decay constants to
model the SU(3) breaking effect. For example, in the group-
3 modes, in the π−π0–K0K−–π−ηq–π

−ηs basis, we have

S1=2
res;3 ¼

0
BBBBBBB@

1 0 0 0

0

�
fK
fπ

�
2

0 0

0 0
fηq
fπ

0

0 0 0
fηs
fπ

1
CCCCCCCA
ð1þ iT ð1=2Þ

3 Þ

0
BBBBBBB@

1 0 0 0

0

�
fπ
fK

�
2

0 0

0 0 fπ
fηq

0

0 0 0 fπ
fηs

1
CCCCCCCA
: ðA11Þ

In the numerical study we follow [46] to use fηq=fπ ¼ 1.07 and fηs=fπ ¼ 1.34. It is clear that when FSI is turned off the
above S1=2

res;3 is just an identity matrix. The SU(3) breaking effects are incorporated in other S1=2
res;i in a similar fashion. Note

that T i in Eqs. (A9) and (A10) are given in the η8–η1 basis and to incorporate the SU(3) effect, one needs to transform T i to
the ηq–ηs basis (see below).

The physical η; η0 mesons are defined through

�
η

η0

�
¼

�
cos ϑ − sinϑ

sinϑ cos ϑ

��
η8

η1

�
; ðA12Þ

with the mixing angle ϑ ≃ −15.4° [46]. For the ηð0Þηð0Þ states, we have

0
B@

ηη

ηη0

η0η0

1
CA ¼

0
B@ cos2ϑ −

ffiffiffi
2

p
cos ϑ sinϑ sin2ϑffiffiffi

2
p

cosϑ sin ϑ cos2ϑ − sin2ϑ −
ffiffiffi
2

p
cosϑ sin ϑ

sin2ϑ
ffiffiffi
2

p
cosϑ sin ϑ cos2ϑ

1
CA
0
B@

η8η8

η8η1

η1η1

1
CA; ðA13Þ
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where the identical particle factor of 1=
ffiffiffi
2

p
is

properly included in the mixing matrix. Note that the
above formulas can be easily used to transform the ηq–ηs
basis into the η8–η1 basis by replacing the above ϑ

by tan−1
ffiffiffi
2

p
.

Rescattering parameters enter Sres only through 7 inde-
pendent combinations: 1þiðr0þraÞ, iðre − raÞ, iðra þ rtÞ,
ið2r̄a þ r̄eÞ, 1þ i½r̃0 þ ð4r̃a þ 2r̃eÞ=3�, ið4r̂a þ 2r̂e þ 3r̂tÞ
and 1þ i½ř0 þ ð4řa þ 2ře þ 3řtÞ=6�. The solutions to
Eqs. (5) and (6) are given in Eq. (9).
If the full U(3) symmetry is a good symmetry, it

requires:

ri ¼ r̄i ¼ r̃i ¼ r̂i ¼ ři; ðA14Þ

for each i ¼ 0; a; e; t. We are constrained to have

rðmÞ
e rðmÞ

a ¼ 0. ðA15Þ

Consequently, there are two different solutions: (a) the

annihilation type (rðmÞ
a ≠ 0; rðmÞ

e ¼ 0) with

δ27 ¼ δ08 ¼ δ01; δ8; δ1;

τ ¼ −
1

2
sin−1

4
ffiffiffi
5

p

9
; ν ¼ −

1

2
sin−1

4
ffiffiffi
2

p

9
; ðA16Þ

and (b) the exchange type (rðmÞ
e ≠ 0; rðmÞ

a ¼ rðmÞ
t ¼ 0)

with

δ27 ¼ δ08 ¼ δ01; δ8 ¼ δ1;

τ ¼ 1

2
sin−1

ffiffiffi
5

p

3
; ν ¼ 1

2
sin−1

2
ffiffiffi
2

p

3
: ðA17Þ

It is interesting to note that in both solutions of the U(3)
case, a common constraint

δ27 ¼ δ08 ¼ δ01; ðA18Þ

has to be satisfied.

APPENDIX B: DERIVATION OF THE
RESCATTERING EFFECTS ON
TOPOLOGICAL AMPLITUDES

It is straightforward to obtain the rescattering effects on
topological amplitudes. In analogy to Eq. (15): A ¼ S1=2

res ·
Afac ¼ ð1þ iT 1=2Þ · Afac, we have Heff ¼ ð1þ iT 1=2Þ·
H0

eff ¼ H0
eff þ iT 1=2 ·H0

eff , where Heff is given in
Eq. (18), T 1=2 in Eq. (40), H0

eff is the unscattered effective
Hamiltonian with all TA inHeff replaced by TA0 and the dot
in the above equation implies all possible pairing of the
PoutPout fields inH0

eff to the P
inPin fields in T 1=2. It is useful

to useHik
i ¼ Hk,Hik

k ¼ 0, ðHEWÞikk ¼ 0, ðHEWÞiki ¼ − 1
3
Hk,

ðΠinÞaa ¼ ðΠoutÞaa ¼ 0 and the fact that the paring of creation
and annihilation fields gives the following flavor struc-
ture: hðΠoutÞjkðΠinÞabi → δjbδ

a
k −

1
3
δjkδ

a
b.

Below we work out the contribution from T0 via
the rescattering among PP states for illustration.
We shall concentrate on the flavor structures after the
pairings in ðiT 1=2 ·H0

effÞ and compare them to the operators
in Heff .

8

1. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and

ðir00=2ÞTrðΠinΠoutÞTrðΠinΠoutÞ
Pairing the T0 term in H0

eff and the ir00 term from T 1=2

gives:

T0B̄mHik
j ðΠoutÞjkðΠoutÞmi ·

�
ir00
2
ðΠinÞabðΠoutÞbaðΠinÞcdðΠoutÞdc

�

¼ ir00
2
T0B̄mHik

j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞcdi þ hðΠoutÞjkðΠinÞcdihðΠoutÞmi ðΠinÞabi�ðΠoutÞbaðΠoutÞdc

¼ ir00
2
T0B̄mHik

j

��
δjbδ

a
k −

1

3
δjkδ

a
b

��
δmd δ

c
i −

1

3
δmi δ

c
d

��
þ
�
δjdδ

c
k −

1

3
δjkδ

c
d

��
δmb δ

a
i −

1

3
δmi δ

a
b

��
ðΠoutÞbaðΠoutÞdc

¼ ir00
2
T0B̄mHik

j ½ðΠoutÞjkðΠoutÞmi þ ðΠoutÞmi ðΠoutÞjk�
¼ ir00T

0B̄mHik
j ðΠoutÞjkðΠoutÞmi : ðB1Þ

We note that the last term has the same form of the T operator inHeff and we denote it as δTðT0ÞB̄mHik
j ðΠoutÞjkðΠoutÞmi . From

the above equation we obtain,

8There are integrations of momentum and so on, which will not shown explicitly in the following derivation and are absorbed in the
definition of r0i. See Ref. [47] for the treatment on this issue.
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δTðT0Þ ¼ ir00T
0: ðB2Þ

2. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and ir0eTrðΠinΠoutΠinΠoutÞ=2

Pairing the T0 term in H0
eff and the ir0e term from T 1=2 gives:

T0B̄mHik
j ðΠoutÞjkðΠoutÞmi ·

�
ir0e
2
ðΠinÞabðΠoutÞbcðΠinÞcdðΠoutÞda

�

¼ ir0e
1

2
T0B̄mHik

j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞcdi þ hðΠoutÞjkðΠinÞcdihðΠoutÞmi ðΠinÞabi�ðΠoutÞbcðΠoutÞda

¼ ir0e
1

2
TB̄mHik

j ½ðΠoutÞjiðΠoutÞmk −
1

3
δmi ðΠoutÞjcðΠoutÞck þ ðΠoutÞmk ðΠoutÞji −

1

3
δmi ðΠoutÞakðΠoutÞja�

¼ ir0eT0B̄mHik
j ðΠoutÞjiðΠoutÞmk −

1

3
ir0eT0B̄iHik

j ðΠoutÞjlðΠoutÞlk
¼ δCðT0ÞB̄mHik

j ðΠoutÞjiðΠoutÞmk þ δAðT0ÞB̄iHik
j ðΠoutÞjlðΠoutÞlk; ðB3Þ

which leads to

δCðT0Þ ¼ ir0eT0; δAðT0Þ ¼ −
1

3
ir0eT0: ðB4Þ

3. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and ir0aTrðΠinΠinΠoutΠoutÞ

Pairing the T0 term in H0
eff and the ir0a term from T 1=2 gives:

ir0aT0B̄mHik
j ðΠoutÞjkðΠoutÞmi ½ðΠinÞabðΠinÞbcðΠoutÞcdðΠoutÞda�

¼ ir0aT0B̄mHik
j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞbci þ hðΠoutÞjkðΠinÞbcihðΠoutÞmi ðΠinÞabi�ðΠoutÞcdðΠoutÞda

¼ ir0aT0B̄mHkðΠoutÞmi ðΠoutÞik þ ir0aT0B̄kHik
j ðΠoutÞjlðΠoutÞli −

2

3
ir0aT0B̄iHik

j ðΠoutÞjlðΠoutÞlk
¼ δPðT0ÞB̄mHkðΠoutÞmi ðΠoutÞik þ δEðT0ÞB̄kHik

j ðΠoutÞjlðΠoutÞli þ δAðT0ÞB̄iHik
j ðΠoutÞjlðΠoutÞlk; ðB5Þ

which leads to

δPðT0Þ ¼ ir0aT0; δEðT0Þ ¼ ir0aT0; δAðT0Þ ¼ −
2

3
ir0aT0: ðB6Þ

4. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and ir0tTrðΠinΠinÞTrðΠoutΠoutÞ=4

Pairing the T0 term in H0
eff and the ir0t term from T 1=2 gives:

ir0t
1

4
T0B̄mHik

j ðΠoutÞjkðΠoutÞmi ½ðΠinÞabðΠinÞbaðΠoutÞcdðΠoutÞdc �

¼ ir0t
1

4
T0B̄mHik

j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞbai þ hðΠoutÞjkðΠinÞbaihðΠoutÞmi ðΠinÞabi�ðΠoutÞcdðΠoutÞdc

¼ 1

2
ir0tT0B̄kHkðΠoutÞlmðΠoutÞml

¼ 1

2
δPAðT0ÞB̄kHkðΠoutÞlmðΠoutÞml ; ðB7Þ

which leads to

δPAðT0Þ ¼ ir0tT0: ðB8Þ
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5. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and iðr̄0e + 2r̄0aÞ TrðΠinΠoutΠinÞηout1 =

ffiffiffi
3

p

Pairing the T0 term in H0
eff and the iðr̄0e þ 2r̄0aÞ term from T 1=2 gives:

iðr̄0e þ 2r̄0aÞT0B̄mHik
j ðΠoutÞjkðΠoutÞmi ½ðΠinÞabðΠinÞbcðΠoutÞcaηout1 �

¼ iðr̄0e þ 2r̄0aÞT0B̄mHik
j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞbci þ hðΠoutÞjkðΠinÞbcihðΠoutÞmi ðΠinÞabi�ðΠoutÞcaηout1 =

ffiffiffi
3

p

¼ iðr̄0e þ 2r̄0aÞTB̄mHik
j

�
δjiðΠoutÞmk ηout1 =

ffiffiffi
3

p
þ δmk ðΠoutÞjiηout1 =

ffiffiffi
3

p
−
1

3
δmi ðΠoutÞjkηout1 =

ffiffiffi
3

p
−
1

3
δmi ðΠoutÞjkηout1 =

ffiffiffi
3

p
Þ
�

¼ iðr̄0e þ 2r̄0aÞT0B̄mHkðΠoutÞmk ηout1 =
ffiffiffi
3

p
þ iðr̄0e þ 2r̄0aÞT0B̄kHik

j ðΠoutÞjiηout1 =
ffiffiffi
3

p
−
2

3
iðr̄0e þ 2r̄0aÞT0B̄iHik

j ðΠoutÞjkηout1 =
ffiffiffi
3

p

¼ δ

�
C̄2 þ P̄1 þ P̄2 −

1

3
P̄C
EW;2

�
ðT0ÞB̄mHkðΠoutÞmk ηout1 =

ffiffiffi
3

p
þ δðC̄1 þ Ē1 þ Ē2ÞðT0ÞB̄kHik

j ðΠoutÞjiηout1 =
ffiffiffi
3

p

þ δðT̄ þ Ā1 þ Ā2ÞðT0ÞB̄iHik
j ðΠoutÞjkηout1 =

ffiffiffi
3

p
; ðB9Þ

which is similar to the pairing of T0 ir0a and leads to

δ

�
C̄2 þ P̄1 þ P̄2 −

1

3
P̄C
EW;2

�
ðT0Þ ¼ iðr̄0e þ 2r̄0aÞT0

δðC̄1 þ Ē1 þ Ē2ÞðT0Þ ¼ iðr̄0e þ 2r̄0aÞT0

δðT̄ þ Ā1 þ Ā2ÞðT0Þ ¼ −
2

3
iðr̄0e þ 2r̄0aÞT0: ðB10Þ

6. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and iðr̃00 + 4r̃0a + 2r̃0e

3 Þ TrðΠinΠoutÞηin1 ηout1

Pairing the T0 term in H0
eff and the iðr̃00 þ 4r̃0aþ2r̃0e

3
Þ term from T 1=2 gives vanishing result.

7. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and iðr̂0t + 4r̂0a + 2r̂0e

3 Þηout1 ηout1 TrðΠinΠinÞ=4
Pairing the T0 term in H0

eff and the iðr̃00 þ 4r̃0aþ2r̃0e
3

Þ term from T 1=2 gives:

i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

�
1

4
T0B̄mHik

j ðΠoutÞjkðΠoutÞmi ½ðΠinÞabðΠinÞbaηout1 ηout1 �

¼ i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

�
1

4
T0B̄mHik

j ½hðΠoutÞjkðΠinÞabihðΠoutÞmi ðΠinÞbai þ hðΠoutÞjkðΠinÞbaihðΠoutÞmi ðΠinÞabi�ηout1 ηout1

¼ 1

2
i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

�
T0B̄kHkηout1 ηout1

¼ δ

�
C̃þ Ẽþ P̃þ 3

2
fPA −

1

3
P̃C
EW −

1

3
P̃E
EW

�
ðT0ÞB̄kHkηout1 ηout1 =3; ðB11Þ

which is similar to the pairing of T ir0t and leads to

δ

�
C̃þ Ẽþ P̃þ 3

2
fPA −

1

3
P̃C
EW −

1

3
P̃E
EW

�
ðT0Þ ¼ 3

2
i

�
r̂0t þ

4r̂0a þ 2r̂0e
3

�
T0: ðB12Þ

8. Pairing T0B̄mHik
j ðΠoutÞjkðΠoutÞmi and iðřðmÞ

0 + 4r̂ðmÞ
a + 2r̂ðmÞ

e + 3r̂ðmÞ
t

6 Þ 12 ηin1 ηout1 ηin1 η
out
1

Pairing the T0 term in H0
eff and the iðřðmÞ

0 þ 4r̂ðmÞ
a þ2r̂ðmÞ

e þ3r̂ðmÞ
t

6
Þ term from T 1=2 gives vanishing result.

The results of rescattering effects from T0 are collected in Eqs. (43), (44) and (43). Rescattering effects from other TA are
obtained and collected similarly.
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