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We identify the T-odd structure functions that appear in the description of polarized top quark decays in
the sequential decay tð↑Þ → Xb þWþð→lþ þ νlÞ (two structure functions) and the quasi-three-body
decay tð↑Þ → Xb þ lþ þ νl (one structure function). A convenient measure of the magnitude of the T-odd
structure functions is the contribution of the imaginary part ImgR of the right-chiral tensor coupling gR to
the T-odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak
corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically
calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and
determine their contributions to the T-odd helicity structure functions that appear in the description of
polarized top quark decays.
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I. INTRODUCTION

Large numbers of single top quarks have been and are
being currently produced at the LHC [1–4]. The present
situation concerningbothATLASandCMS results on single
top production is nicely summarized in a review article byN.
Faltermann [5]. The dominant production mechanism is the
so-called t-channel production process. The production
proceeds via parity-violating weak interactions—a neces-
sary condition for the top quark to be polarized. In fact,
theoretical calculations predict an average polarization close
to 90% [6,7] where the polarization is primarily along the
direction of the spectator quark. The polarization of singly
produced top quarks has been measured by the CMS
Collaboration [8] (Pt ¼ 0.58� 0.22), by the ATLAS
Collaboration [9] (Pt ¼ 0.97� 0.12) and, most recently,
again by the ATLASCollaborationwho quote a polarization
value of jP⃗j > 0.72 at a confidence level of 95% [10].
There are two ways in which polarized top quark decays

can be analyzed. In the first approach one first considers the
quasi-two-body decay tð↑Þ → Xb þWþ which is analyzed
in the top quark rest frame. The subsequent decay Wþ →
lþ þ νl is analyzed in the Wþ rest frame. One first

calculates the spin density matrix elements of the produced
gauge boson Wþ in the production process t → Xb þWþ
and then analyzes the spin density matrix with the help of
the decay Wþ → lþ þ νl. The structure of the ðtbWÞ
vertex has been probed in this way in a number of
experimental investigations [9,11–13]. It is clear that, in
a perturbative next-to-leading order (NLO) calculation, one
has to complement the (Born ⊗ one-loop) contributions to
the spin density matrix by the integrated (tree ⊗ tree)
contributions. In the second approach one considers the
quasi-three-body decay tð↑Þ → Xb þ lþ þ νl which is
analyzed entirely in the top quark rest frame.
The general matrix element for the decay t → bþWþ

including the leading-order (LO) standard model (SM)
contribution is written as [14–17]

MμðtbWþÞ ¼ −
gWffiffiffi
2

p ūb

�
γμððV�

tb þ fLÞPL þ fRPRÞ

þ iσμνqν

mW
ðgLPL þ gRPRÞ

�
ut; ð1Þ

where PL;R ¼ ð1 ∓ γ5Þ=2. The LO SM structure of the
ðtbWÞ vertex is obtained by dropping all terms except for
the contribution proportional to V�

tb ∼ 1. The form factors
are in general complex-valued functions where SM imagi-
nary parts can be generated by CP-conserving final state
interactions or can be introduced by hand as non-SM CP-
violating imaginary contributions.
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The set of observables in polarized top quark decays
divide into two classes—the T-even and T-odd observ-
ables. The T-even observables, including their NLO QCD
corrections, have been discussed before in Refs. [18,19]
(sequential decays) and in Refs. [20–23] (quasi-three-body
decays). This paper is devoted to a detailed analysis
of the T-odd observables contributing to polarized top
quark decays. These are either fed by CP-conserving SM
final state interactions or by CP-violating non-SM
interactions.
The matrix element (1) is folded with the Born term

contribution to obtain the relevant T-odd contributions. In
the case mb ¼ 0 (which we use throughout the paper), it
turns out that only the coefficient ImgR generates T-odd
correlations. T-odd correlations can be studied in both the
sequential decay tð↑Þ → Xb þWþð→lþ þ νlÞ and the
quasi-three-body decay tð↑Þ → Xb þ lþ þ νl. In either
case, we count the number of T-odd observables, determine
the angular factors that multiply them in the relevant
angular decay distributions and quantify them in terms
of the contribution of the imaginary part of the right-chiral
tensor coupling gR.
We discuss the two approaches in turn in Secs. II and III

where we concentrate on the T-odd contributions to these
decays. We comment on the relations between the two
approaches at the end of Sec. III. In Sec. IV, we discuss
positivity constraints on the various coupling factors in
Eq. (1) resulting from the requirement that the differential
angular decay rate has to remain positive definite over the
full angular phase space.
In Sec. V, we discuss the electroweak contributions to

ImgR. Contrary to the case of QCD the NLO electroweak
corrections admit absorptive one-loop vertex contributions,
or, put in a different language, of final state interactions/
rescattering corrections. The absorptive parts of the NLO
electroweak one-loop vertex contributions treated in this
paper in the case mb ¼ 0 provide imaginary contributions
to the coupling terms fL and gR where ImfL does not
contribute to the T-odd correlations. The reason is that fL
multiplies the same coupling structure as the Born term.
The results on ImgR are presented in analytical form. The
absorptive contributions to gR have been calculated before
analytically (for photon exchange) and numerically (for Z
exchange) in Refs. [17,24]. We agree with the results of
Ref. [24] up to small numerical differences but disagree
with the result of Ref. [17] for the Z exchange contribution.
Finally, in Sec. VI, we provide a summary of our results
and present our conclusions.

II. QUASI-TWO-BODY DECAY tð↑Þ → Xb +W +

FOLLOWED BY THE DECAY W + → l+ + νl
(SEQUENTIAL DECAY)

Let us begin by counting the number of independent
structure functions that appear in the description of the

sequential decay tð↑Þ → Xb þWþð→lþ þ νlÞ. This is
best done by considering the independent spin density

matrix elements Hλtλ
0
t

λWλ
0
W

of the Wþ (also called helicity

structure functions or, for short, structure functions) which
form a Hermitian (3 × 3) matrix

ðHλtλ
0
t

λWλ0W
Þ† ¼ ðHλ0tλt

λ0WλW
Þ ð2Þ

Since the spin of the Xb state remains unobserved, one has
the angular momentum constraint λt þ λW ¼ λ0t þ λ0W
implying jλW − λ0W j ≤ 1. With the above constraints one
counts ten independent double spin densitymatrix elements:

Hþþ
þþ; H−−þþ; Hþþ

−− ; H−−
−−; H

þþ
00 ; H−−

00 ;

ReHþ−
þ0 ; ImHþ−

þ0 ;ReH
−þ
−0 ; ImH−þ

−0 : ð3Þ

The two structure functions ImHþ−
þ0 and ImHþ−

−0 are so-
called T-odd structure functions, the terminology of which
will be explained later on.
In the narrow width approximation, the decay tð↑Þ →

Xb þ lþ þ νl can be described by a sequential two-step
decay process given by the decays tð↑Þ → Xb þWþ and
Wþ → lþ þ νl. Accordingly one defines two coordinate
systems—the top quark rest frame and theWþ rest frame—
where the repective angles in the two systems are defined
in Fig. 1.
The Wþ produced in the decay tð↑Þ → Xb þWþ is

highly polarized. The polarization of the Wþ can be
analyzed in the angular decay distribution of the decay
Wþ → lþ þ νl. The full three-fold angular decay distribu-
tion is obtained from the trace of the product of the spin-1
density matrix of the Wþ in the production process t →
bþWþ and the transpose of the spin-1 density matrix
describing the decay process Wþ → lþ þ νl.
The production spin density matrix HλWλ

0
W
ðθPÞ reads

Xb
t W+

θP

l+

νl

θ

φ

W+

Ptx

y z

FIG. 1. Definition of the polar angles θ and θP and the
azimuthal angle ϕ in the sequential decay tð↑Þ → Xbþ
Wþð→lþ þ νlÞ.
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HλWλ
0
W
ðθPÞ ¼

0
B@

Hþþ þHPþþP cos θP HP
þ0P sin θP 0

HP
0þP sin θP H00 þHP

00P cos θP HP
0−P sin θP

0 HP
−0P sin θP H−− þHP

−−P cos θP

1
CA ð4Þ

In practice, one works with a normalized spin density
matrix ĤλWλ

0
W
¼HλWλ

0
W
=Htot where Htot¼HþþþH00þ

H−−. In addition, it is also useful to extract the unit matrix
1 from the normalized spin density matrix (see e.g.
Ref. [25]).
The polarization of the top quark in the top quark rest

frame is given by (see Fig. 1)

P⃗t ¼ Pðsin θP; 0; cos θPÞ ð5Þ

where P is the magnitude of the polarization of the top
quark. The relevant helicity structure functions can be
projected with the help of the spin-1 polarization four-
vectors of the Wþ which, in the top quark rest frame, is
given by

εð0Þμ¼ 1ffiffiffiffiffi
q2

p ðjq⃗j;0;0;q0Þ εð�Þμ¼ 1ffiffiffi
2

p ð0;∓1;−i;0Þ ð6Þ

The longitudinal and transverse polarization components
of the top quark are given by slμt ¼ ð0; 0; 0; 1Þ and

strμt ¼ ð0; 1; 0; 0Þ, again in the top quark rest frame. The
diagonal elements (λW ¼ λ0W) of HλWλ0W

are defined by

diagonal unpolarized HλWλW ¼Hμνε
�μðλWÞενðλWÞ

diagonal polarized HP
λWλW

¼Hμνðslt Þε�μðλWÞενðλWÞ
ð7Þ

while the off-diagonal polarized elements (λW ≠ λ0W) are
determined by

HP
λWλ0W

¼ Hμνðstrt Þε�μðλWÞενðλ0WÞ ð8Þ

Again, from angular momentum conservation one has
λW − λ0W ¼ �1 ¼ λ0t − λt. The two configurations ðλt; λ0tÞ ¼
ð1=2;−1=2Þ; ð−1=2; 1=2Þ are associated with the transverse
polarization of the top quark (for details see Ref. [19]).
The leptonic spin density matrix LλWλ

0
W
can be projected

in a similar way. One obtains (see e.g. Ref. [26])

LλWλ0W
ðθ;ϕÞ ¼ q2

2

0
BBB@

ð1þ cos θÞ2 2ffiffi
2

p ð1þ cos θÞ sin θeiϕ sin2 θe2iϕ

2ffiffi
2

p ð1þ cos θÞ sin θe−iϕ 2 sin2 θ 2ffiffi
2

p ð1 − cos θÞ sin θeiϕ

sin2 θe−2iϕ 2ffiffi
2

p ð1 − cos θÞ sin θe−iϕ ð1 − cos θÞ2

1
CCCA ð9Þ

where the angles θ and ϕ are defined in Fig. 1. We have set
ml ¼ 0 in Eq. (9). The angular decay distribution is then
obtained from [19,25,27–30]

Wðθ; θP;ϕÞ ¼
X
λWλ

0
W

HλWλ
0
W
ðθPÞLλWλ0W

ðθ;ϕÞ

¼ TrðHðθPÞ · LTðθ;ϕÞÞ ð10Þ
Herewe concentrate on theT-odd correlations in the angular
decay distribution (10). The T-odd pieces are given by the
terms in Eq. (10) proportional to sinϕ. One has

WT-oddðθ; θP;ϕÞ ¼ q2ð−
ffiffiffi
2

p
HP

II sin θP sin 2θ sinϕ

þ 2
ffiffiffi
2

p
HP

IA sin θP sin θ sinϕÞ ð11Þ
where we define two T-odd helicity structure functions
by [31,32]

HP
II ¼

−i
4
ðHP

þ0 −HP
0þ þHP

−0 −HP
0−Þ

HP
IA ¼ −i

4
ðHP

þ0 −HP
0þ −HP

−0 þHP
0−Þ ð12Þ

Compared to Refs. [31,32] we have changed the
notation for the T-odd structure functions such that
ðH5; H9Þ → ðHII; HIAÞ.
That the two angular factors in Eq. (11) correspond to T-

odd correlations can be seen by representing the angular
factors in Eq. (11) in terms of triple-products. To demon-
strate this we collect the relevant normalized three-vectors
as defined in Fig. 1. They read

p̂l ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ
q̂ ¼ ð0; 0; 1Þ P̂t ¼ ðsin θP; 0; cos θPÞ ð13Þ
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One then finds

sin θP sin θ sinϕ ¼ q̂ · ðP̂t × p̂lÞ
sin θP sin 2θ sinϕ ¼ 2ðp̂l · q̂Þq̂ · ðP̂t × p̂lÞ ð14Þ

The nomenclature T-odd interaction derives from the
fact that a product consisting of an odd number of momenta
or polarization vectors as in Eq. (14) changes sign under the
time-reversal operation t → −t since the three-momentum
p⃗ and the polarization vector P⃗t transform as ðp⃗; P⃗tÞ →
ð−p⃗;−P⃗tÞ under t → −t.
After having set up the general formalism, we are now

ready to discuss the contribution of ImgR to the T-odd
structure functions. We shall work at the leading level; i.e.,
we take the final state to be made up of a single bottom
quark and a Wþ. That is, we now deal with t → bþWþ

instead of t → Xb þWþ. We also treat the contributions of
fL, fR, gL and gR as small perturbations. We thus keep only
terms linear in fL, fR, gL and gR when we fold these with
the SM Born term.
We further assumemb ¼ 0. In the casemb ¼ 0, there are a

number of simplifications. For once, in the linear approxi-
mation there are no interference terms between the left-chiral
Born term and the right-chiral coupling terms fR and gL.
This implies that the massless bottom quark contributes
effectively only with its negative helicity state, i.e.
λb ¼ −1=2. This implies that λW ≠ 1 due to the angular
momentum constraint λt ¼ λW − λb. It follows that the four
density matrix elements HP

þ0, H
P
0þ, Hþþ and HPþþ vanish;

i.e., the hadronic double spin density matrix HλWλ
0
W
ðθPÞ

reduces to a 2 × 2 matrix. In particular, this means that
the two independent T-odd observables in the sequential
decay tð↑Þ → Xb þWþð→lþ þ νlÞ coalesce to a single
observable.
For mb ¼ 0 one is effectively dealing only with two

complex-valued invariant form factors in the decomposi-
tion of Eq. (1). These are the form factors fL and gR. The
number of independent invariant amplitudes agrees with
the number of independent helicity amplitudes to which
they are linearly related. The two independent helicity
amplitudes are HλbλW ¼ H−1=20; H−1=2−1.
Nextwe calculate the contribution of ImgR to the structure

functionsHP
II ¼ −HP

IA. The calculation can be streamlined
by making use of an interesting insight provided some time
ago by Kuruma [33]. For mb ¼ 0 the longitudinal and
transverse projections of the matrix element (1) are propor-
tional to the corresponding projections of the Born term
matrix elements [33]. In fact, using the covariant represen-
tation of the longitudinal polarization four-vector

εμð0Þ ¼ −
q2pμ

t − ptqqμffiffiffiffiffi
q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðptqÞ2 − q2m2

t

p ð15Þ

it is not difficult to see that (x ¼ mW=mt)

ε�μð0ÞMμ ¼ ð1þ fL − xgRÞε�μð0ÞMμðBornÞ ð16Þ

For the transverse projection one similarly finds

ε�μð−ÞMμ ¼
�
1þ fL −

1

x
gR

�
ε�μð−ÞMμðBornÞ ð17Þ

where the derivation of the factorization property is facili-
tated by making use of the Gordon-type identity

ūb
iσμνqν

mW
PRut¼ ūb

�
−
1

x
γμPLþ

1

x

ð2ptμ−qμÞ
mt

PR

�
ut ð18Þ

To proceed we calculate the Born term spin density
matrix elements of the Wþ needed when using Eqs. (16)
and (17). The corresponding Born term decay tensor Bμν

reads

Bμν ¼
X
spins

MμðBornÞM†νðBornÞ

¼Tr

�
=pbγ

μ1

2
ð1− γ5Þð=ptþmtÞð1þ γ5=stÞγν

1

2
ð1− γ5Þ

�

¼ 2ðp̄μ
t pν

bþ p̄ν
t p

μ
b− p̄t ·pbgμν− iϵμναβp̄tαpbβÞ ð19Þ

where p̄t ¼ pt −mtst. The Born term spin density ele-
ments Bi and BP

i have been listed in Ref. [19]. For the
nondiagonal structure functions discussed here one has to
specify sμt ¼ strμt ¼ ð0; 1; 0; 0Þ (see Fig. 1). One has

BP
I ¼ −BP

A ¼ −
1

4
ðB−0 þ B0−Þ ¼ −

1

2

ffiffiffi
2

p
m2

t
1 − x2

x
ð20Þ

As discussed before we keep only terms linear in fL and
gR when calculating the structure functions HP

−0 and HP
0−

assuming that the form factors are small. One has

HP
−0¼

�
1þ2RefL−

1þx2

x
RegR− i

1−x2

x
ImgR

�
BP
−0

HP
0−¼

�
1þ2RefL−

1þx2

x
RegRþ i

1−x2

x
ImgR

�
BP
0−

ð21Þ

The NLO imaginary contribution ImfL does not contribute
to the nondiagonal matrix elements HP

−0 ¼ HP�
0− because

the matrix element fL multiplies the same covariant γμPL

as the Born term; i.e., it is self-interfering.
For the T-odd structure functions one finally obtains

HP
II ¼ −HP

IA ¼ −
i
4
ðHP

−0 −HP
0−Þ ¼

1 − x2

x
ImgRBP

I

¼ −
m2

tffiffiffi
2

p
�
1 − x2

x

�
2

ImgR ð22Þ
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The mb ¼ 0 T-odd angular decay distribution reads

WT-oddðθ;θP;ϕÞ
¼2

ffiffiffi
2

p
HP

IIPt sinθP sinθð1−cosθÞsinϕ
¼−2m4

t ð1−x2Þ2ImgRPt sinθP sinθð1−cosθÞsinϕ ð23Þ
with an overall factor ð1 − cos θÞ as expected from angular
momentum conservation.
In order to get a feeling for the size of the T-odd

contribution relative to the unpolarized rate, we integrate
the full angular decay distribution over cos θ where we
keep only the Born term contributions in the T-even terms.
One has

WðθP;ϕÞ ¼
Z

1

−1
d cos θWðθ; θP;ϕÞ

¼ 4

3
m4

t ð1 − x2Þð1þ 2x2Þ
�
1þ ð1 − 2x2Þ

ð1þ 2x2Þ cos θP

þ 3

4
π

x
ð1þ 2x2Þ sin θP cosϕ

−
3

4
π

ð1 − x2Þ
ð1þ 2x2Þ ImgRPt sin θP sinϕ

�
ð24Þ

The factor 3πð1 − x2Þ=ð4ð1þ 2x2ÞÞ ¼ 1.29 multiplying
ImgR is sufficiently large to make an angular analysis such
as Eq. (24) promising.

III. QUASI-THREE-BODY
DECAYS tð↑Þ → Xb +l+ + νl

In this variant of possible angular decay distributions, the
decay tð↑Þ → Xb þ lþ þ νl is analyzed entirely in the top
quark rest frame. Let us begin again by enumerating the
number of structure functions that appear in the quasi-three-
body decay tð↑Þ → Xb þ lþ þ νl. These are the two com-
plex matrix elementsMλt¼1=2 andMλt¼−1=2 that describe the
transition tð↑Þ → Xb þ lþ þ νl. One thus has altogether
the four structure functions jM1=2j2, jM−1=2j2, ReM1=2M�

−1=2
and ImM1=2M�

−1=2 needed to represent the decay process.

The angular decay distribution of the decay is obtained
by folding the decay matrix MλtM

�
λ0t
with the spin density

matrix of the top quark, i.e. by calculating the trace
Trðρλtλ0tMλtM

�
λ0t
Þ where the spin density matrix of the top

quark is given by

ρλtλ0t ¼ 1þ Ptzz þ Ptxx þ Ptyy ð25Þ
(i, i ¼ x, y, z are the Pauli matrices). The components of
the polarization vector P⃗t ¼ ðPtiÞ depend on the coordinate
system in which the decay is analyzed. There is a multitude
of possible choices for the decay coordinate system. Two
different classes of coordinate systems have been in use in
the literature—the helicity system and the transversity
system. In the helicity system, the three final state momenta
in the top quark rest frame span the ðx; zÞ plane while, in the
transversity system, they span the ðx; yÞ plane. The two
classes of systems are displayed in Fig. 2 together with the
definition of the respective polar and azimuthal angles
describing the orientation of the polarization vector of the
top quark. Depending on the choice of coordinate system
the polarized structure functions get toggled around among
the various angular factors that multiply them. We shall
discuss these two possible choices in turn. Which of the
systems are being used in the experimental analysis has to
be decided on the experimental expediency.

A. The helicity system

In the following, we limit our attention to three helicity
systems where the decay plane is in the ðx; zÞ plane and the
z-axis points into the lþ direction, the Xb direction or the
νl direction. One further has to specify the orientation of
the x axis relative to the event. We thus define six
coordinate systems according to

systemI∶ p⃗lkz; a∶ pνx ≥ 0 b∶ pXbx ≥ 0

systemII∶ p⃗Xb
kz; a∶ plx ≥ 0 b∶ pνx ≥ 0

systemIII∶ p⃗νkz; a∶ pXbx ≥ 0 b∶ plx ≥ 0 ð26Þ

θP

φ

decay plane

z

x

y

Pt

decay plane

z

P
x

y

ϕ
ϑ

tP

(a) (b)

FIG. 2. Definition of the helicity system [left panel (a)] and the transversity system [right panel (b)] in the quasi-three-body decay
tð↑Þ → Xb þ lþ þ νl. The polar angles θP and ϑP and the azimuthal angles ϕ and φ describe the orientation of the polarization vector P⃗
of the top quark in the two systems.
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When labelling the three systems we follow the conven-
tions of Ref. [34]. For instance, in system Ib the momenta
and polarization vector read [23] (see Fig. 3)

pt ¼ mtð1; 0; 0; 0Þ
pl ¼ mt

2
xlð1; 0; 0; 1Þ

pν ¼
mt

2
ð1 − xl þ x2Þð1;− sin θν; 0; cos θνÞ

pb ¼
mt

2
ð1 − x2Þð1; sin θb; 0; cos θbÞ

st ¼ ð0; sin θP cosϕ; sin θP sinϕ; cos θPÞ ð27Þ
where xl ¼ 2El=mt is the scaled lepton energy and

cos θν ¼
xlð1 − xl þ x2Þ − 2x2

xlð1 − xl þ x2Þ

sin θν ¼
2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

p
xlð1 − xl þ x2Þ

cos θb ¼
2x2 − xlð1þ x2Þ

xlð1 − x2Þ
sin θb ¼

2x
xlð1 − x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ð28Þ

For the spin density matrix of the top quark one has

ρλtλ0t ¼ 1þ Pt cos θPz þ Pt sin θP cosϕx

þ Pt sin θP sinϕy ð29Þ

where θP and ϕ describe the orientation of the polarization
vector of the top quark as can be read off from Fig. 2(a). We
expand the (2 × 2) decay matrix MλtM

�
λ0t

along the unit

matrix 1 and the three i matrices. One has

MλtM
�
λ0t
¼ 1

2
ðA1þ Bz þ Cx þDyÞ ð30Þ

The angular decay distribution of the decay is obtained by
folding the decay matrix MλtM

�
λ0t

with the spin density

matrix of the top quark, i.e. by calculating the trace
Trðρλtλ0tMλtM

�
λ0t
Þ. One obtains

WðθP;ϕÞ ¼ Trfρλtλ0tMλtM
�
λ0t
g

¼ Aþ BPt cos θP þ CPt sin θP cosϕ

þDPt sin θP sinϕ ð31Þ

The term proportional to the structure functionD represents
the T-odd contribution as can be seen by the representation

sin θP sinϕ ¼ 1

sin θν
p̂ν · ðp̂l × ŝtÞ ð32Þ

The structure functions AðxlÞ, BðxlÞ, CðxlÞ and DðxlÞ
can be calculated from the contraction of the hadron and
lepton tensors given by HμνLμν. Including the LO con-
tribution proportional to V�

tb ∼ 1 one obtains for the six
different systems

ðHμνLμνÞI a=b ¼ 4m4
t ð1 − xlÞ½ðxlð1þ 2RefLÞ − 2xRegRÞð1þ Pt cos θPÞ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
RegRPt sin θP cosϕ

∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ImgRPt sin θP sinϕ�

ðHμνLμνÞII a=b ¼
4m4

t ð1 − xlÞ
1 − x2

½ð1 − x2Þðxlð1þ 2RefLÞ − 2xRegRÞ
− ððð1þ x2Þxl − 2x2Þð1þ 2RefLÞ þ 2xð1þ x2 − 2xlÞRegRÞPt cos θP

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ð2xð1þ 2RefLÞ − 2ð1þ x2ÞRegRÞPt sin θP cosϕ

∓ 2ð1 − x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ImgRPt sin θP sinϕ�

ðHμνLμνÞIII a=b ¼
4m4

t ð1 − xlÞ
1 − xl þ x2

½ð1 − xl þ x2Þðxlð1þ 2RefLÞ − 2xRegRÞ

þ ððð1 − xl þ x2Þxl − 2x2Þð1þ 2RefLÞ þ 2xð1 − xl þ x2ÞRegRÞPt cos θP

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ð2xð1þ 2RefLÞ − 2ð1 − xl þ x2ÞRegRÞPt sin θP cosϕ

∓ 2ð1 − xl þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xlÞðxl − x2Þ

q
ImgRPt sin θP sinϕ�: ð33Þ

After integration over xl in the limits x2 ≤ xl ≤ 1 one obtains
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Z
dxlðHμνLμνÞI a=b ¼

ð1 − x2Þ2m4
t

6
½4ðð1þ 2x2Þð1þ 2RefLÞ − 6xRegRÞð1þ Pt cos θPÞ

� 3πð1 − x2ÞRegRPt sin θP cosϕ ∓ 3πð1 − x2ÞImgRPt sin θP sinϕ�Z
dxlðHμνLμνÞII a=b ¼

ð1 − x2Þ2m4
t

6
½4ðð1þ 2x2Þð1þ 2RefLÞ − 6xRegRÞ

− 4ðð1 − 2x2Þð1þ 2RefLÞ þ 2xRegRÞPt cos θP

� 3πðxð1þ 2RefLÞ − ð1þ x2ÞRegRÞPt sin θP cosϕ ∓ 3πð1 − x2ÞImgRPt sin θP sinϕ�Z
dxlðHμνLμνÞIII a=b ¼

m4
t

6
½4ð1 − x2Þ2ðð1þ 2x2Þð1þ 2RefLÞ − 6xRegRÞ

þ 4ððð1 − x2Þð1 − 11x2 − 2x4Þ − 24x4 ln xÞð1þ 2RefLÞ þ 6xð1 − x2Þ2RegRÞPt cos θP

∓ 3πð1 − xÞ3ð2xð1þ 3xÞð1þ 2RefLÞ − ð1þ xÞ3RegRÞPt sin θP cosϕ

∓ 3πð1 − x2Þ3ImgRPt sin θP sinϕ� ð34Þ

A few comments on the structure of the various contribu-
tions are in order.

(i) After azimuthal averaging and dropping the non-SM
contributions RefL and RegR one obtains from
Eq. (34) the well-known polar distributions

WðθÞ¼ 1þ κiPt cosθ with8><
>:
κI¼ 1

κII ¼ð1−2x2Þ=ð1þ2x2Þ¼ 0.398

κIII ¼ fðxÞ¼−0.261

9>=
>; ð35Þ

where

fðxÞ ¼ ð1 − x2Þð1 − 11x2 − 2x4Þ − 24x4 ln x
ð1 − x2Þ2ð1þ 2x2Þ ð36Þ

(ii) The results of systems II and III can be obtained
from the results of system I through a rotation
around the y axis. The relevant rotations read

�
BII

CII

�
¼

�
cos θb − sin θb
sin θb cos θb

��
BI

CI

�
ð37Þ

�
BIII

CIII

�
¼

�
cos θν sin θν
− sin θν cos θν

��
BI

CI

�
ð38Þ

Since the unpolarized rate function A and the T-odd
y component D are not affected by this rotation the
structure functions A and D are the same in all three
systems such that e.g. DI ¼ DII ¼ DIII.

(iii) The decay distribution in system IIa is closely
related to the decay distribution of sequential top
quark decay discussed in Sec. II. In fact, take
Eq. (10) and substitute the relation between the
cosine of the angle θ and the scaled lepton energy xl
for mb ¼ 0 (see e.g. Ref. [35])

cos θ ¼ ðxl − x2Þ − ð1 − xlÞ
ð1 − x2Þ

sin θ ¼ 2

1 − x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxl − x2Þð1 − xlÞ

q
ð39Þ

into Eq. (10). One then recovers the unintegrated
distribution ðHμνLμνÞIIa after the replacement
θP → π − θP. The structure functions describing the
quasi-three-body decays can be seen to be weighted
sums of the unpolarized and polarized helicity struc-
ture functions in the sequential decays with weight
functions wðxlÞ that are not simple. It is only the T-
odd structure functions that have a simple one-to-one
relation. The relation between the T-odd structure
functions HP

IA and DIa ¼ DIIa ¼ DIIIa ¼ Da can be
worked out to be

θ

φ

ν

X

z

y
x

P

b

l

t

P

t

+l

FIG. 3. Definition of the polar angles θP and the azimuthal
angle ϕ in the helicity system Ib for the quasi-three-body decay
tð↑Þ → Xb þ lþ þ νl.
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Da¼m2
t 8

ffiffiffi
2

p
ð1−xlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−xlÞðxl−x2Þ

q x2

ð1−x2ÞH
P
IA

ð40Þ

When comparing the corresponding expressions in-
tegrated over cos θ and xl one has to take into account
the change in integration measure dcosθ=dxl¼
2=ð1−x2Þ.

B. The transversity system

The event plane is now in the ðx; yÞ plane and the z axis
is defined by the normal to the event plane as shown in
Fig. 2(b). The angles in the helicity system and the
transversity system are related by

cosϑP ¼ sin θP sinϕ

sinϑP sinφ ¼ sin θP cosϕ

sin ϑP cosφ ¼ cos θP ð41Þ

These relations can be obtained by geometric reasoning or,
more directly, by evaluating the scalar products ðpl · stÞ,
ðpb · stÞ and εðpt; pl; pb; stÞ in the two systems using the
momentum representation in helicity system Ib listed in
Eq. (27) and the corresponding representation in the
transversity system

pt ¼ mtð1; 0; 0; 0Þ
pl ¼ mt

2
xlð1; 1; 0; 0Þ

pν ¼
mt

2
ð1 − xl þ x2Þð1; cos θν;− sin θν; 0Þ

pb ¼
mt

2
ð1 − x2Þð1; cos θb; sin θb; 0Þ

st ¼ ð0; sinϑP cosφ; sinϑP sinφ; cosϑPÞ ð42Þ

The angular decay distribution in the transversity system
can be obtained by substituting the angle relations (41) into
the decay distribution (31). One obtains

WðϑP;φÞ ¼ Aþ BPt sin ϑP cosφ

þ CPt sin ϑP sinφþDPt cosϑP ð43Þ

We conclude this section by taking a closer look at the
two polar correlations in helicity system I (31) and the
transversity system (43) where we include also the NLO
QCD corrections as listed e.g. in [36]. In helicity system I,
one has

WðθPÞ ∼ 1þ ð1 −OðΔÞÞPt cos θP ð44Þ

where Δ ¼ ðδðAÞ − δðBÞÞ=ðδðAÞ þ δðBÞÞ ¼ 0.00178 quanti-
fies the NLO corrections to the LO result Δ ¼ 0. The

values for δðAÞ ¼ Að1Þ=Að0Þ ¼ −0.0846955 and δðBÞ ¼
Bð1Þ=Að0Þ ¼−0.0863048 have been taken from Ref. [36].
The NLO corrections to the LO distribution WðθPÞ ∼ 1þ
Pt cos θP in Eq. (44) can be seen to be very small even if
one includes the non-SM couplings RefL and RegR.
In the transversity system, one has the polar distribution

WðϑPÞ¼ 1þ 1

Fð1ÞðRefL;RegRÞ
3πð1−x2Þ
4ð1þ2x2ÞPtImgR cosϑP

ð45Þ

where

Fð1ÞðRefL;RegRÞ¼ 1þδðAÞ þ2RefL−
6x

1þ2x2
RegR

≈ ð1þδðAÞÞ
�
1þ2RefL−

6x
1þ2x2

RegR

�

¼ð1þδðAÞÞFð0ÞðRefL;RegRÞ ð46Þ

The usefulness of the transversity frame polar distribu-
tion is hampered by the appearance of the unknown
quantities RefL and RegR in the denominator of
Eq. (45). As is frequently done when analyzing the impact
of more than one non-SM parameters on a given decay
distribution one adopts a strategy to allow one non-SM
coupling at a time. For example, one can set RefL ¼ 0 and
RegR ¼ 0 and keep only the non-SM coupling ImgR. In this
case, Fð1ÞðRefL;RegRÞ ¼ 1þ δðAÞ. One finds that the
analyzing power of the distribution (45) is quite large in
that 3πð1 − x2Þð1þ δðAÞÞ=4ð1þ 2x2Þ ¼ 1.41. Since the
analyzing powers of both the helicity and transversity polar
distributions are quite large, this two-fold set of measure-
ments must be judged to be a very promising tool to
simultaneously determine Pt and ImgR.

IV. POSITIVITY BOUNDS IN THE
HELICITY SYSTEM

First observe that the structure of the differential angular
decay distribution in helicity system I leaves little room for
the contributions of the structure functions C and D if the
differential rate is to remain positive definite. The LO
differential decay distribution is given by

1

Γ
dΓ

d cos θdϕ
¼ 1

4π
ðAð0Þ þ Bð0ÞPt cos θP

þ Cð0ÞPt sin θp cosϕþDð0ÞPt sin θp sinϕÞ
ð47Þ

where Að0Þ ¼ Bð0Þ in helicity system I. The LO polar
analyzing structure in helicity system I is maximal with
WðθPÞ ∼ 1þ Pt cos θp. It is heuristically clear that forPt ¼
1 one can immediately conclude that the structure functions
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C and D must vanish as, in fact, is the case for the LO
values of Cð0Þ andDð0Þ. At NLO QCD the equality of A and
B is slightly off-set where one now has WðθPÞ ∼ 1þ
0.9982 cos θp (setting again Pt ¼ 1) allowing for small
contributions of C and D.
Technically this is done by expanding cos θP and sin θP

around θP ¼ π up to second order in δ ¼ π � θP. The
vanishing of the discriminant of the corresponding quad-
ratic equation defines the boundary of the allowed values of
the coefficients of the quadratic equation.
In Ref. [36], this technique was applied to the distribu-

tion (47) to derive a positivity bound on the T-odd coupling
factor ImgR. Including contributions from RefL and RegR,
one has

jImgRj ≤
4ð1þ 2x2

3πð1 − x2Þ ð1þ δðAÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð1 − ΔÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð0ÞðRefL;RegRÞ

q
ð48Þ

where we have used

1þ δðBÞ þ 2RefL −
6x

1þ 2x2
RegR

≈ ð1þ δðBÞÞ
�
1þ 2RefL −

6x
1þ 2x2

RegR

�
ð49Þ

For RefL ¼ RegR ¼ 0 one has Fð0ÞðRefL;RegRÞ ¼ 1 and
one recovers the bound given in Ref. [36]. As noted above,
at LO one has Δ ¼ 0 such that ImgR ¼ 0 at LO regardless
of what values RefL and RegR take.
Setting sinϕ ¼ 0 in Eq. (47) one can derive a similar

bound on the T-even structure function C. One has

				
�
3πð1−x2Þ
4ð1þ2x2

RegR−δðCÞ
�				

≤ ð1þδðAÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð1−ΔÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð0ÞðRefL;RegRÞ

q
ð50Þ

The NLO contribution δðCÞ to the T-even structure function
C appearing in Eq. (50) was calculated before in Ref. [23].
One has

δðCÞ ¼Cð1Þ

Að0Þ ¼−CF
αs
4π

3

4
π

1

ð1−x2Þ2ð1þ2x2Þ
�
4xð4þ3x2−3x4ÞðLi2ð−xÞ−Li2ð−1ÞÞ

−2ð1−x2Þð8−7xþ8x2−5x3Þ lnð1þxÞ− ð1−x2Þ3
x

lnð1−x2Þþ2xð1−xÞ2ð1−x−2x2ÞÞ
�
¼−0.0024 ð51Þ

As already demonstrated in Ref. [23], the NLO SM value
for δðCÞ ¼ −0.0024 easily satisfies the SM positivity bound
given by

jδðCÞj ≤ ð1þ δðAÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δð1 − ΔÞ

p
¼ 0.0542 ð52Þ

More straightforward bounds can be obtained from the
various polar distributions

WðθPÞ ¼ ð1þ κiPt cos θPÞ ð53Þ
in form of the constraint jκij ≤ 1 valid for Pt ¼ 1. For
example, for helicity system I one finds

κI ¼ Δ
1

Fð1ÞðRefL;RegRÞ
ð54Þ

The corresponding bound is much weaker than the
bound in Eq. (48). For helicity system II one obtains

(δðBÞII ¼Bð1Þ
II =B

ð0Þ
II )

κII ¼
ð1 − 2x2Þ

ð1þ 2x2ÞFð1ÞðRefL;RegRÞ

×

�
1þ δðBÞII þ 2RefL þ 2x

1 − 2x2
RegR

�
ð55Þ

where, in system II, δðBÞII ¼ −0.12 [18,19]. We do not
explicitely list the asymmetry parameter for helicity
system III since the corresponding bound is not very
illuminating. Finally, the asymmetry parameter in the trans-
versity system reads

κT ¼ 3πð1 − x2Þ
4ð1þ 2x2ÞFð1ÞðRefL;RegRÞ

ð56Þ

Again, the bound resulting from jκT j ≤ 1 is much weaker
than the bound in Eq. (48).
Common to all the bounds discussed in this section is the

necessity to prevent the denominator factorFð1ÞðRefL;RegRÞ
from vanishing. This gives a nontrivial restriction on the
parameter space ðRefL;RegRÞ which would, for example,
further restrict the bounds onRefL andRegR derived from the
weak radiative B decays which read −0.13 < RefL < 0.03
and −0.15 < RegR < 0.57 [37].

V. CALCULATION OF THE IMAGINARY
CONTRIBUTION ImgR FROM

ELECTROWEAK CORRECTIONS

There are altogether 18 Feynman vertex diagrams that
contribute to the decay t → bþWþ at NLO of the
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electroweak interactions. Of these 18 diagrams, seven
diagrams admit absorptive parts. Three of these seven
absorptive diagrams give vanishing contributions for
mb ¼ 0. One finally remains with four absorptive contri-
butions which are depicted in Fig. 4. In the terminology of
Ref. [17], the four diagrams are labeled by ðA;B;CÞ ¼
ðb;W; γðZÞÞ and ðb; χ; γðZÞÞ. Note that the contribution of
the right diagram in Fig. 4 involving the Goldstone boson χ
is needed to render the on-shell gauge bosonWþ in the left
diagram to be four-transverse.
We have done a careful analysis of the absorptive parts of

the diagrams in Fig. 4 and their contributions to the two
invariant amplitudes fL and gR. Note that there are no
contributions to fR and gL in the limit mb ¼ 0. We have
found ImfL to be IR-divergent which is of no concern since
ImfL does not contribute to physical observables at NLO.
The reason is that ImfL multiplies the same covariance
structure as the Born term. In the following, we concentrate
on the evaluation of ImgR. The imaginary part can be
extracted from the logarithms appearing in the loop
calculation. As to be expected, ImgR is infrared and
ultraviolet finite. The result is given by

ImgRðγþZÞ

¼ α

4π

�
Qbxð2−x2Þ− ð1þ2Qbsin2θWÞ

sin2θW

1

2xð1−x2Þ4
×fð1−x2Þ2ðx2ð1−x2Þ2ð2−x2Þ−2ð1−3x2−x4Þx2ZÞ

þðð1−x2Þ2ð1−5x2Þx2Zþ2ð1−3x2−x4Þx4ZÞlZg
�
π

ð57Þ

where the numerically dominant logarithmic factor reads

lZ¼ ln

� ðx2Zþð1−x2Þ2Þ2
ðx2Z−x2ð1−x2ÞÞðx2Zþð1−x2Þð1−2x2ÞÞ

�
ð58Þ

The scaled masses of the Z and W boson are denoted by
xZ ¼ mZ=mt and x ¼ mW=mt, as before. The first term in
Eq. (57) proportional to Qb ¼ −1=3 is due to γ exchange
while the remaining contribution is due to Z exchange. The

analytical form of the γ-exchange contribution agrees with
the corresponding result in Ref. [17] whereas the closed-
form expression for the Z-exchange contribution in
Eq. (57) is new.
Numerically one finds (α ¼ 1=128, sin θW ¼ 0.23126,

mt ¼ 173.21 GeV, mZ ¼ 91.1876, mW ¼ 80.385 [38])

this calculation∶ ImgRðγÞ ¼ −0.539 × 10−3

ImgRðZÞ ¼ −1.636 × 10−3

½17�∶ ImgRðγÞ ¼ −0.509 × 10−3

ImgRðZÞ ¼ −0.726 × 10−3

½24�∶ ImgRðγÞ ¼ −0.503 × 10−3

ImgRðZÞ ¼ −1.601 × 10−3 ð59Þ

Up to small numerical differences we agree with
Refs. [17,24] on the γ-exchange contribution and with
Ref. [24] on the Z-exchange contribution after taking into
account that we are using a running αðm2

ZÞ ¼ 1=128. The
present calculation on the Z-exchange contribution settles
the factor 2 discrepancy between the results of Ref. [17] and
Ref. [24] in favor of the result of Ref. [24]. The remaining
small numerical differences are very likely to result from
inaccurate numerical integrations in Refs. [17,24]. Our
combined result, finally, is

ImgRðγ þ ZÞ ¼ −2.175 × 10−3 ð60Þ

The result on ImgRðγ þ ZÞ is quite small. The result easily
fits into the experimental bound by ATLAS [9]

ImgR ∈ ½−0.18; 0.06� ð61Þ

and the theoretical positivity bound

ImgR ∈ ½−0.0420; 0.0420� ð62Þ

derived in Ref. [36].

VI. SUMMARY AND CONCLUSION

We have identified the T-odd structure functions that
appear in the description of polarized top quark decays and
have written down the angular factors that multiply them in
the angular decay distribution. There are two variants of
angular decay distributions that have been used in the
literature to describe polarized top quark decays. These
are the sequential decay tð↑Þ → Xb þWþð→lþ þ νlÞ and
the quasi-three-body decay tð↑Þ → Xb þ lþ þ νl. The
number of structure functions needed to describe the
quasi-three-body decay is smaller than the number needed
to describe the sequential decay. In this sense, the analysis
of the quasi-three-body decay tð↑Þ → Xb þ lþ þ νl

t

W+

b

W

γ, Z

b

t

W+

b

χ

γ, Z

b

FIG. 4. Absorptive parts of the four Feynman diagrams that
contribute to T-odd correlations in polarized top quark decays.
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constitutes a more inclusive measurement than the analysis
of the sequential decay tð↑Þ → Xb þWþð→lþ þ νlÞ.
A convenient measure of the size of the T-odd contri-

butions can be written down in terms of the contribution of
the imaginary part of the right-chiral coupling gR appearing
in the expansion of the general matrix element hbjJeff jti.
Contributions to ImgR can either arise from CP-violating
interactions for which there is no SM source or from CP-
conserving final state interactions. In fact, within the SM
there exist four NLO electroweak one-loop contributions
which admit absorptive cuts. We have provided analytical
and numerical results for these absorptive cuts which we
present in terms of their contributions to ImgR. The size of
these absorptive contributions are rather small and easily fit
into the existing experimental [9,10] and theoretical [36]
bounds on ImgR.
We have elaborated on a possible simultaneous meas-

urement of the polarization of the top quark and ImgR using
a set of two independent polar decay distributions involving
the helicity and transversity systems in the quasi-three-
body decay. We have also commented on the bounds on the
non-SM coupling factors that result from the positivity of
the differential angular rate. To our knowledge these
bounds have not been considered so far in global analysis’

of the allowed values of the non-SM coupling parameters
(RefL, RegR, ImgR). In our analysis, we have used the xl-
integrated forms of the structure functions. It would be
worthwhile to similarly analyze the decay distributions and
bounds using the unintegrated forms of the structure
functions.
We mention that when going from top quark decays to

antitop quark decays one can distinguish the two sources of
CP-violating phases. One has a phase change eiχ → e−iχ

for CP-violating phases and no phase change eiχ → eiχ for
CP-conserving final state interactions where we assume
that the final state interactions are CP-conserving (see e.g.
Refs. [14,15]).
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