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It is well known that, because of the axial anomaly in QCD, mesons with JP ¼ 0− are close to SUð3ÞV
eigenstates; the η0ð958Þmeson is largely a singlet, and the ηmeson an octet. In contrast, states with JP ¼ 1−

are flavor diagonal; e.g., the ϕð1020Þ is almost pure s̄s. Using effective Lagrangians, we show how this
generalizes to states with higher spin, assuming that they can be classified according to the unbroken chiral
symmetry of Gfl ¼ SUð3ÞL × SUð3ÞR. We construct effective Lagrangians from terms invariant under Gfl

and introduce the concept of hetero- and homochiral multiplets. Because of the axial anomaly, only terms
invariant under the Zð3ÞA subgroup of the axial Uð1ÞA enter. For heterochiral multiplets, which begin with
that including the η and η0ð958Þ, there are Zð3ÞA invariant terms with low mass dimension which cause
states to mix according to SUð3ÞV flavor. For homochiral multiplets, which begin with that including the
ϕð1020Þ, there are no Zð3ÞA invariant terms with low mass dimension, and so states are diagonal in flavor.
In this way, we predict the flavor mixing for the heterochiral multiplet with spin 1 as well as for hetero- and
homochiral multiplets with spin 2 and spin 3.
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I. INTRODUCTION

The theory of quarks and gluons, QCD, has two
symmetries. There is an exact local symmetry of SUð3ÞC
color, which is responsible for the confinement of quarks
and gluons into hadrons. For the light quark flavors of up,
down, and strange quarks, (u, d, and s), there is also an
approximate chiral symmetry [1]. This is spontaneously
broken in vacuum to a residual symmetry of SUð3ÞV flavor.
The up and down quarks are much lighter than hadronic
scales, with the breaking of SUð3ÞV flavor dominated by
the effects of the strange quark, the mass of which is
comparable to hadronic scales. Chiral symmetry is respon-
sible for the most evident feature of hadrons, that, when it is
spontaneously broken in vacuum, there is an octet of light
pseudo-Goldstone bosons with spin parity JP ¼ 0−, which
are pions, kaons, and the η meson. Because of the mass of
the strange quark, kaons, which include strange quarks, are
heavier than pions.
This leaves a puzzle: why is there not a ninth light state,

a SUð3ÞV singlet? Instead, the corresponding state, the

η0ð958Þ meson, is unexpectedly heavy. Indeed, why should
the pseudo-Goldstone bosons form states in representations
of SUð3ÞV flavor? Since the strange quark is so much
heavier than the up and down quarks, why are the π0 and η
not composed just of up and down quarks and the η0ð958Þ
purely strange [2]? The solution to these puzzles involves a
global, axial symmetry of Uð1ÞA, which, while valid
classically, is reduced by quantum effects to a discrete
subgroup of Zð3ÞA [3]. This reduction in symmetry both
pushes the mass of the η0ð958Þ up and forces it to be close
to a singlet under SUð3ÞV flavor [2]. [In fact, the ηN ¼
ðūuþ d̄dÞ= ffiffiffi

2
p

and ηS ¼ s̄s do mix because of the strange
quark mass.] This can be demonstrated in effective models,
either nonlinear or linear [1–4].
What about other hadronic states? The lightest vector

multiplet has JP ¼ 1−. This includes the ρð770Þ and
ωð782Þ mesons, which are composed almost exclusively
of up and down quarks, and the ϕð1020Þ meson, which has
mainly strange quarks. This difference can also be under-
stood in effective models, such as through the Wess-
Zumino-Witten Lagrangian, in which effects due to the
axial anomaly do not appear in mass terms, but only those
of relatively high mass dimension.
This leads to the question which we address in this work:

how does this striking difference in flavor mixing show up
in hadronic multiplets with higher spin? We consider the
case of the multiplet with JP ¼ 1þ and multiplets with spin
2 and 3. At the outset, we stress that our basic assumption is
that we can classify the transformation properties of these
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multiplets according to the unbroken chiral symmetry.
This is not self-evident for such heavy states, which
experimentally have masses between 1 and 2 GeV.
Nevertheless, this assumption allows us to make numerous
predictions for their masses, flavor mixing, and decay
modes. While most of the states which we discuss are not
well measured experimentally, we hope that our comments
might contribute to their further study.
In this work, we assume that the resonances under

considerations are predominantly q̄q states (see Table I).

This is not trivial, since in principle each resonance is not a
simple q̄q object but a superposition of various compo-
nents, which include meson-meson bound states, tetra-
quarks, gluons, etc. Moreover, different approaches give
rise to different interpretations of many resonances, e.g.
Refs. [5–7]. For definiteness, we use the assignment
presented in the “Quark Model” review of the Particle
Data Group (PDG) [8]. While the nature of some reso-
nances is disputed and certain parts of this assignment may
change in the future, it gives us a valuable basis to start

TABLE I. Chiral multiplets, their currents, and transformations up to J ¼ 3. [ ⋆ and/or f0ð1500Þ; ⋆⋆a mix of.] The first two columns
correspond to the assignment suggested in the Quark Model review of the PDG [8], to which we refer for further details and references
(see also the discussion in the text).

JPC, 2Sþ1LJ

8<
:

I ¼ 1ðūd; d̄u; d̄d−ūuffiffi
2

p Þ
I ¼ 1ð−ūs; s̄u; d̄s; s̄dÞ
I ¼ 0ðūuþd̄dffiffi

2
p ; s̄sÞ⋆⋆ Microscopic currents Chiral multiplet

Transformation under
SUð3ÞL × SUð3ÞR × ×Uð1ÞA

0−þ, 1S0

( π
K
η; η0ð958Þ

Pij ¼ 1
2
q̄jiγ5qi

Φ ¼ Sþ iP
ðΦij ¼ q̄jRq

i
LÞ Φ → e−2iαULΦU†

R

0þþ, 3P0

( a0ð1450Þ
K�

0ð1430Þ
f0ð1370Þ; f0ð1710Þ⋆

Sij ¼ 1
2
q̄jqi

1−−, 1S1

( ρð770Þ
K�ð892Þ
ωð782Þ;ϕð1020Þ

Vij
μ ¼ 1

2
q̄jγμqi Lμ ¼ Vμ þ Aμ

ðLij
μ ¼ q̄jLγμq

i
LÞ

Lμ → ULLμU
†
L

1þþ, 3P1

( a1ð1260Þ
K1;A

f1ð1285Þ; f1ð1420Þ

Aij
μ ¼ 1

2
q̄jγ5γμqi Rμ ¼ Vμ − Aμ

ðRij
μ ¼ q̄jRγμq

i
RÞ

Rμ → URRμU
†
R

1þ−, 1P1

( b1ð1235Þ
K1;B

h1ð1170Þ; h1ð1380Þ
Pij
μ ¼ − 1

2
q̄jγ5Dμ

↔
qi

Φμ ¼ Sμ þ iPμ

ðΦij
μ ¼ q̄jRiDμ

↔
qiLÞ

Φμ → e−2iαULΦμU
†
R

1−−, 3D1

( ρð1700Þ
K�ð1680Þ
ωð1650Þ;ϕð?Þ

Sijμ ¼ 1
2
q̄jiDμ

↔
qi

2þþ, 3P2

( a2ð1320Þ
K�

2ð1430Þ
f2ð1270Þ; f02ð1525Þ

Vij
μν ¼ 1

2
q̄jðγμiDμ

↔ þ � � �Þqi Lμν ¼ Vμν þ Aμν

ðLij
μν ¼ q̄jLðγμiDν

↔ þ � � �ÞqiLÞ
Lμν → ULLμνU

†
L

2−−, 3D2

( ρ2ð?Þ
K2ð1820Þ
ω2ð?Þ;ϕ2ð?Þ

Aij
μν ¼ 1

2
q̄jðγ5γμiDν

↔ þ � � �Þqi Rμν ¼ Vμν − Aμν

ðRij
μν ¼ q̄jRðγμDν

↔ þ � � �ÞqiRÞ
Rμν → URRμνU

†
R

2−þ, 1D2

( π2ð1670Þ
K2ð1770Þ
η2ð1645Þ; η2ð1870Þ

Pij
μν ¼ − 1

2
q̄jðiγ5Dμ

↔
Dν

↔ þ � � �Þqi
Φμν ¼ Sμν þ iPμν

ðΦij
μν ¼ q̄jRðDμ

↔
Dν

↔ þ � � �ÞqiLÞ
Φμν → e−2iαULΦμνU

†
R

2þþ, 3F2

( a2ð?Þ
K�

2ð?Þ
f2ð?Þ; f02ð?Þ

Sijμν ¼ − 1
2
q̄jðDμ

↔
Dν

↔ þ � � �Þqi

3−−, 3D3

( ρ3ð1690Þ
K�

3ð1780Þ
ω3ð1670Þ;ϕ3ð1850Þ

..

. ..
. ..

.
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with. Moreover, our general considerations still apply, even
if some of the specific assignments may change.

II. CHIRAL SYMMETRY

Suppressing color (indices), we denote quark fields as
qi ¼ ðu; d; sÞ. Left- and right-handed quarks fields are
defined as

qL;R ¼ PL;Rq; q̄L;R ¼ q̄PR;L; ð1Þ
where PL;R ¼ ð1 ∓ γ5Þ=2 are orthogonal projectors, with
P2

L;R ¼ PL;R and PLPR ¼ 0, taking ðγ5Þ2 ¼ 1. Since
q̄ ¼ q†γ0, in Eq. (1) the antiquark has a projector opposite
to that of the quark. Under the global chiral symmetry of
Gfl ×Uð1ÞA ¼ SUð3ÞL × SUð3ÞR ×Uð1ÞA,

qL;R → e∓iα=2UL;RqL;R; ð2Þ

whereUL;R are rotations in SUð3ÞL;R and α is the parameter
for an axial rotation in Uð1ÞA. The flavor symmetry Gfl is
exact in the limit that all quark masses vanish. It is
spontaneously broken in the QCD vacuum to the diagonal
subgroup of SUð3ÞV, under which UL ¼ UR ¼ UV. This
generates an octet of massless Goldstone bosons.
The flavor symmetry is approximate once current

quark masses are included. In QCD, the masses of the
up, down, and strange quarks are mu ∼ 5, md ∼ 10, and
ms ∼ 100 MeV, respectively. Symmetry breaking generates
pseudo-Goldstone bosons, with the mass squared of the
pionm2

π ∝ ðmu þmdÞ and that of the kaonm2
K∝ðmuþmsÞ.

The axial symmetry is special. While the currents for Gfl
are conserved in the limit of vanishing quark masses, that
for the axialUð1ÞA is proportional to the topological charge
density [3,9,10],

∂μðq̄iγμγ5qiÞ ¼
3g2

16π2
εμνρσtrðGμνGρσÞ: ð3Þ

This reduces the Uð1ÞA symmetry to one of Zð3ÞA. This
residual symmetry can be understood from the vertex
generated by the zero modes of a single instanton, which
for three flavors couples uL, dL, and sL with ūR, d̄R, and s̄R.
Under qL;R → e∓iπ=3qL;R, this vertex changes as e2πi, and so
is Zð3ÞA invariant. The same applies to all multi-instanton
interactions.

III. HETEROCHIRAL SCALARS

We begin by reviewing the effect of the axial anomaly
on scalar fields. Because of confinement, we form fields
which are color singlets (and so always implicitly sum
over color indices) but transform nontrivially under flavor
transformations. The simplest is to form a scalar by
pairing a quark and an antiquark. Since the chiral
projectors are orthogonal, pairing a quark and antiquark

with the same chirality automatically vanishes, e.g.,
q̄LqL ¼ q̄PRPLq ¼ 0. Instead, we must take

Φij ≡ q̄jPLqi ¼ q̄jRq
i
L; ð4Þ

which under Gfl ×Uð1ÞA transforms as

Φ → e−iαULΦU†
R: ð5Þ

Since we pair fields with opposite chirality, we term Φ as a
heterochiral field. Consequently, the transformation of Φ
under the flavor group involves both UL and UR.
The components of Φ with JP ¼ 0−, given by P ¼

ðΦ −Φ†Þ=2i, are π, K, η, and η0ð958Þ; those with JP ¼ 0þ,
denoted as S ¼ ðΦþΦ†Þ=2, are assigned to a0ð1450Þ,
K�

0ð1430Þ, f0ð1370Þ, and f0ð1710Þ. In the quark
model, their quantum numbers are 2Sþ1LJ ¼ 1S0 and 3P0,
respectively.
Here, we assume that the 0þ states below 1 GeV are

predominantly four-quark states [5–7,11–14], but this is
secondary to our analysis. However, the nonstandard nature
of the light scalar states is confirmed by various works, e.g.
Refs. [5–7,11,12], where they emerge as dynamically
generated states. The large-NC behavior of the correspond-
ing pole confirms this feature [15]. Yet, mixing is possible,
and hence a certain q̄q amount into light scalars is present,
but, as argued above, we regard it as subleading. While here
we concentrate on predominantly q̄q states, the axial
anomaly can play a role also for four-quark states [16];
this study is left for the future. Similarly, the above-listed
scalar states above 1 GeV are not simple q̄q resonances;
mixing with four-quark components and with a scalar
glueball is expected [11,12,17–20]. Due to all these
complications, we do not attempt to study the anomaly-
driven mixing of the scalar-isoscalar q̄q components.
When spontaneous symmetry breaking occurs, we take

the expectation value of Φ to be approximately diagonal
in flavor, hΦi ¼ ffiffiffiffiffiffiffiffi

3=2
p

ϕ01, where ϕ0 ¼ fπ ∼ 93 MeV,
which is a consequence of flavor symmetry.
In constructing an effective model of QCD at low

energies, one includes all terms which are symmetric under
Gfl [16,18,21–25]. The simplest is to take traces of powers
of Φ†Φ, such as trðΦ†ΦÞ, trðΦ†ΦÞ2, etc. These are all
invariant under Uð1ÞA. Terms which are only invariant
under Zð3ÞA begin with detðΦÞ. This is generated by the
zero modes of an instanton and so transforms as detðΦÞ →
e−3iα detðΦÞ under Uð1ÞA [3]. The polynomial terms with
the lowest mass dimension which are Zð3ÞA invariant,
Hermitian, and parity invariant are

Lanomaly
Φ ¼ −að1ÞA ½detðΦÞ þ c:c:� − að2ÞA ½detðΦÞ þ c:c:�2

− að3ÞA ½detðΦÞ − c:c:�2 − � � � ð6Þ
The first term is cubic in the fields and, when ϕ0 ≠ 0, drives
the mass for the singlet pseudoscalar up, and that for the
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singlet scalar down [3,16,23,24,26]. The third term affects
only isoscalar-pseudoscalar states, contributing to their
mass squared as

−αAη20 ¼ −
αA
3
ð

ffiffiffi
2

p
ηN þ ηSÞ2 ð7Þ

where αA ∼ að3ÞA ϕ4
0 [18,22,25]. It is in agreement with the

Witten-Veneziano mass formula [27,28] and arises natu-
rally when integrating out a pseudoscalar glueball [29]. The

term ∼að3ÞA contributes to the mixing angle between the ηN
and the ηS as 2θP ¼ − arctanð2 ffiffiffi

2
p

αA=ðm2
K −m2

π − αAÞ.
For realistic values of αA [30], this explains the negative
value of θP ∼ −42° observed experimentally [31]. The
second term in Eq. (6) complicates the analysis. See also
Refs. [4,31–33] for further phenomenological studies on
the η and η0ð958Þ.

IV. HOMOCHIRAL VECTORS

Vector mesons are formed by pairing a quark and an
antiquark with a Dirac matrix γμ. Since γ5 anticommutes
with γμ, we must pair a quark and antiquark with the same
chirality

Lij
μ ≡ q̄jLγμq

i
L; Rij

μ ≡ q̄jRγμq
i
R: ð8Þ

The left- and right-handed vector fields transform under the
flavor group Gfl × Uð1ÞA as

Lμ → ULLμU
†
L; Rμ → URRμU

†
R: ð9Þ

We term these fields as homochiral, with Lij
μ transforming

as a two-index tensor under SUð3ÞL, and similarly for Rij
μ

under SUð3ÞR.
The vector fields themselves are automatically invariant

under the axialUð1ÞA symmetry, and so it is not possible to
write a term which involves the axial anomaly using only
these fields. Such effects are included by the coupling of the
vector fields to theΦ’s [34], such as throughWess-Zumino-
Witten type terms,

εμναβtr½LμΦð∂νΦ†ÞΦð∂αΦ†ÞΦð∂βΦ†Þ
þ RμΦ†ð∂νΦÞΦ†ð∂αΦÞΦ†ð∂βΦÞ�: ð10Þ

Experimentally, the homochiral vector multiplet is well
known. The vectors with negative parity, JP ¼ 1−, are given
by Vμ ¼ ðLμ þ RμÞ=2; these are the ρð770Þ, K�ð892Þ,
ωð782Þ, and ϕð1020Þ. Axial vectors with positive parity,
JP ¼ 1þ, are Aμ ¼ ðLμ − RμÞ=2 and comprise a1ð1260Þ,
K1;A, f1ð1285Þ, and f1ð1420Þ. In the quark model, their
quantum numbers are 2Sþ1LJ ¼ 3S1 and 3P1, respectively.
Note, the nature of axial-vector mesons is not yet clarified.
As e.g. discussed in Refs. [35–37], a1ð1260Þ can be
described as a dynamically generated state rather than a

standard q̄q state. For other phenomenological studies of
(axial-)vector mesons (with emphasis on the mixing
between the K1;A and the K1;B states), see Refs. [38–42].
There are three direct mass terms for the homochiral

vector multiplets,

m2
V trðL2

μ þ R2
μÞ þ κtr½m2

qkðL2
μ þ R2

μÞ�
þ g21tr½ðΦ†Lμ − RμΦ†ÞðLμΦ −ΦRμÞ�: ð11Þ

The first term, ∼m2
V , is invariant under the full flavor group

of Gfl; note that parity requires the masses of the left- and
right-handed fields to be equal. The second term involves a
diagonal matrix proportional to the current quark masses,
mqk ¼ diagðmu; md; msÞ, and breaks the SUð3ÞV symmetry
for unequal quark masses. The third term generates the
(standard) mass difference between chiral partners. For
Φ ≃ ϕ0, it reduces to ϕ2

0trðA2
μÞ, and hence a mass term

(proportional to ϕ0) is acquired by the axial-vector mesons
only. Thus, the mass splitting among e.g. ρð770Þ and
a1ð1260Þ is generated by a nonvanishing condensate (just
as for the splitting between the pion and fN); see e.g.
Refs. [43–45] for a detailed discussion.
Since these are homochiral fields, there is no term

analogous to the Zð3ÞA invariant terms for heterochiral
fields, as in Eq. (6). Consequently, the mass eigenstates are
naturally those of flavor and not of SUð3ÞV. ρð770Þ and
ωð782Þ are dominantly composed of up and down quarks,
and the ϕð1020Þ, mainly strange; the associated mixing
angle between the pure strange and nonstrange states is
very small, θV ≃ −3.2° [8]. The same seems to hold for
axial-vector mesons. Although the nature of these states is
still subject to ongoing debate [35–37,46], the states
f1ð1285Þ and f1ð1420Þ appear to be predominantly non-
strange and strange, respectively [47]. Beyond these
complications, which should be carefully addressed both
theoretically and experimentally in the future, a small
strange-nonstrange mixing of the underlying q̄q in the
axial-vector channel is expected.
We now generalize this analysis to multiplets with higher

spin. Assuming that we can classify states according to the
unbroken chiral symmetry, we find that heterochiral states
are mainly eigenstates of SUð3ÞV, and homochiral states, of
flavor.
(In order to make the following argumentation as clear as

possible, we provide Table I, where we list all chiral
multiplets, their quark-antiquark currents, their transforma-
tion under Gfl ×Uð1ÞA, and their assignments to physical
fields).

V. HETEROCHIRAL VECTORS

Instead of inserting a Dirac matrix between a quark
and antiquark, we can use a gauge-covariant derivative,
Dμ ¼ ∂μ − igGμ,
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Φij
μ ≡ q̄jRðDμ

↔ þ � � �ÞqiL; ð12Þ
whereGμ is the SUð3ÞC gauge vector field (the gluon). As it
is necessary to pair a left-handed quark with a right-handed
antiquark, Φμ is a heterochiral field, which transforms
exactly like Φ in Eq. (5),

Φμ → e−iαULΦμU
†
R: ð13Þ

Similarly, it is natural to form anomalous terms which are
invariant under Gfl and Zð3ÞA but not under Uð1ÞA. Three
terms analogous to Eq. (6) are

Lanomaly
Φμ

¼ −bð1ÞA ½trðΦ ×Φμ ·ΦμÞ þ c:c:�
− bð2ÞA ½trðΦ × ∂μΦ ·ΦμÞ þ c:c:�
− bð3ÞA ½trðΦ ×Φ ·ΦμÞ − c:c:�2 þ � � � ð14Þ

plus other terms at sixth order, which we do not list here,
and with the notation

ðA × BÞii0 ¼ 1

3!
ϵijkϵi

0j0k0Ajj0Bkk0 : ð15Þ

The vector multiplet decomposes into Φμ ¼ Sμ þ iPμ

[48]. The Pμ’s have JPC ¼ 1þ− and may be the b1ð1235Þ,
K1;B, h1ð1170Þ, and h1ð1380Þ; in the quark model, they
have 2Sþ1LJ ¼ 1P1. The Sμ’s, with JPC ¼ 1−−, may be the
ρð1700Þ, K�ð1680Þ, ωð1650Þ, and an excited ϕð?Þ [49]; in
the quark model, they have 2Sþ1LJ ¼ 3D1. Many of these
states are controversial, e.g., the h1ð1380Þ is not listed
in Ref. [8].
Our predictions for these states are clear: if the first term

in Eq. (14) dominates, both heterochiral vectors should be
close to eigenstates of SUð3ÞV and not diagonal in flavor.
The second term contributes to decay channels for one Φμ

to two Φ’s. The third term only contributes to the Pμ states,

∼ − bð3ÞA ϕ4
0ðhμ1;0Þ2 [hμ1;0 is the singlet, a mixture of h1ð1170Þ

and h1ð1380Þ]. The complete form of the effective
Lagrangian will allow one to make detailed predictions
for the mixing angles driven by the anomaly. As for the
heterochiral scalars and tensors [see Eq. (23) below], we
expect a non-negligible negative mixing angle for the
heterochiral vectors.

VI. HOMOCHIRAL TENSORS

Multiplets with spin 2 are formed by combining Dirac
matrices and covariant derivatives. If we use one of each,
we obtain left- and right-handed fields,

Lij
μν ≡ q̄jLðγμDν

↔ þ γνDμ

↔ þ � � �ÞqiL;
Rij
μν ≡ q̄jRðγμDν

↔ þ γνDμ

↔ þ � � �ÞqiR: ð16Þ

These homochiral fields are invariant under Uð1ÞA and
transform under Gfl as the homochiral vectors in Eq. (9),

Lμν → ULLμνU
†
L; Rμν → URRμνU

†
R: ð17Þ

As for the homochiral vector multiplet, the anomalous
terms involve at least two derivatives.
The states Vμν ¼ðLμνþRμνÞ=2 with JPC ¼ 2þþ include

the a2ð1320Þ, K�
2ð1430Þ, f2ð1270Þ, and f02ð1525Þ, with

2Sþ1LJ ¼ 3P2 in the quark model. There is also Aμν with
JPC ¼ 2−−, with 2Sþ1LJ ¼ 3D2 in the quark model. These
states are not well measured, except for the K2ð1820Þ. For
an overview of tensor mesons, see Refs. [17,50–54].
Our analysis predicts that the effects of the anomaly are

small and that these states are eigenstates of flavor. This
agrees with experiment [8] and recent lattice studies [55],
where the f2ð1270Þ and f02ð1525Þ correspond, to a very
good approximation, to unmixed nonstrange and strange
states, with a small mixing angle θT ≃ 3.2° [8]. In general,
masses and decays fit very nicely into the quark-nonet
paradigm without any effect of the anomaly [56–58].

VII. HETEROCHIRAL TENSORS

We cannot use two Dirac matrices to form spin-2
mesons, since the product of two Dirac matrices is
γμγν ¼ gμν − iσμν. The first term is a scalar and equivalent
to previous fields. As σμν is antisymmetric, this reduces to a
vector field (for details, see Refs. [59,60]). We can also use
two covariant derivatives,

Φij
μν ≡ q̄jRðDμ

↔
Dν

↔ þDν

↔
Dμ

↔ þ � � �ÞqiL: ð18Þ

To have spin 2, we must take the traceless part of Φμν [61].
This field is heterochiral and transforms like Φ, with

Φμν → e−iαULΦμνU
†
R: ð19Þ

Terms which are invariant under Gfl × Zð3ÞA but not under
Uð1ÞA begin with

Lanomaly
Φμν

¼ −cð1ÞA ½trðΦ ×Φμν ·ΦμνÞ þ c:c:�
− cð2ÞA ½trð∂μΦ × ∂νΦ ·ΦμνÞ þ c:c:�
− cð3ÞA ½trðΦ ×Φ ·ΦμνÞ − c:c:�2 þ � � � ð20Þ

in analogy with Eqs. (6) and (14).
The parity eigenstates are given by Φμν ¼ Sμν þ iPμν.

The odd parity states, Pμν, have JPC ¼ 2−þ and 2Sþ1LJ ¼
1D2 in the quark model. Candidates are the π2ð1670Þ,
K2ð1770Þ, η2ð1645Þ, and η2ð1870Þ [62–64]. The even
parity states, Sμν, have JPC ¼ 2þþ and 2Sþ1LJ ¼ 3F2 in
the quark model. These are not well known experimentally
and should be some sort of a2, K�

2, f2, and f02 states.

HOW THE AXIAL ANOMALY CONTROLS FLAVOR MIXING … PHYS. REV. D 97, 091901 (2018)

091901-5



As before, the first term contributes to masses for Φμν

and will lead to the multiplet being close to eigenstates of
SUð3ÞV. The second term contributes to decays of one Φμν

to two Φ’s. The third term affects only pseudotensor
mesons and delivers a contribution to the mass of the
singlet state proportional to

−γAðη2;0;μνÞ2 ¼ −
γA
3
ð

ffiffiffi
2

p
η2;N;μν þ η2;S;μνÞ2; ð21Þ

with γA ≃ cð2ÞA ϕ4
0. Indeed, a phenomenological study of

known experimental widths and ratios [61] finds
θPT ≃ −42°, and hence a surprisingly large mixing,

�
η2ð1645Þ
η2ð1870Þ

�
¼

�
cos θPT sin θPT
− sin θPT cos θPT

��
η2;N

η2;S

�
; ð22Þ

where η2;N ¼ ðūuþ d̄dÞ= ffiffiffi
2

p
and η2;S ¼ s̄s. This result can

be nicely explained by the presence of the axial anomaly in
that sector. Moreover, considering only the third term in
Eq. (20), the corresponding mixing angle θPT turns out to
be negative (for realistic values of γA) just as for hetero-
chiral scalars,

θPT ≃ −
1

2
arctan

"
2

ffiffiffi
2

p
γA

ðm2
K2ð1770Þ −m2

π2ð1670Þ − γAÞ

#
: ð23Þ

This result is approximate, since we neglect cð1ÞA and other
mixing effects which are suppressed for a large number of
colors. A more precise determination is possible with more
experimental input.

VIII. HOMOCHIRAL MESONS WITH J = 3

It is possible to extend our considerations to higher spin.
As a further example, upon introducing the J ¼ 3 homo-
chiral objects,

Lij
μνρ ≡ q̄jLðγμDνDρ þ � � �ÞqiL;

Rij
μνρ ≡ q̄jRðγμDνDρ þ � � �ÞqiR; ð24Þ

the nonet Vμνρ ¼ ðLμνρ þ RμνρÞ=2 corresponds to the rather
well-known mesons with JP ¼ 3− (2Sþ1LJ ¼ 3D3) includ-
ing ρ3ð1690Þ, K�

3ð1780Þ, ω3ð1670Þ, and ϕ3ð1850Þ. Similar

to the pseudotensor mesons, the chiral partners of the 3−−

are not yet known. The strange-nonstrange mixing angle
leading to ω3ð1670Þ and ϕ3ð1850Þ is listed by the PDG as
∼3° [8], hence very small, in agreement with our expect-
ations for homochiral multiplets.

IX. CONCLUSIONS

Assuming that higher-spin states can be categorized
according to the unbroken chiral symmetry, they can be
classified according towhether they are homo- or heterochiral
states. The principal prediction iswhether the flavormixingof
strangeness follows SUð3ÞV symmetry, for heterochiral
multiplets, or just flavor, for homochiral multiplets.
Higher-spin states are usually classified using models of

constituent quarks. Such a framework will automatically
yield multiplets classified according to flavor. Thus homo-
chiral multiplets should agree with the predictions of quark
models.
In contrast, our analysis yields qualitatively new pre-

dictions for the heterochiral multiplets. There is evidence
for this in the heterochiral tensor multiplet [61].
Besides masses and mixing, in the future, one can study

also various decay channels by using Eqs. (14) and (20).
Similar studies can be performed with other approaches,
such as lattice gauge theory [55], chiral perturbation theory
[17,53,54], Schwinger-Dyson equations, and so on. Our
predictions can be tested experimentally at the ongoing
effort at BESIII [65,66], as well as GlueX [67–69] and
CLAS12 [70], both of which will start measurements soon,
and later with PANDA at FAIR [71].
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