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We present an analytic representation of Fg /F , as calculated in three-flavor two-loop chiral perturbation
theory, which involves expressing three mass scale sunsets in terms of Kampé de Fériet series.
We demonstrate how approximations may be made to obtain relatively compact analytic representations.
An illustrative set of fits using lattice data is also presented, which shows good agreement with existing fits.
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I. INTRODUCTION

The spectrum of QCD contains as lightest particles the
pseudoscalar octet, and their properties provide a test of its
nonperturbative features, including chiral symmetry break-
ing. Of particular importance is the ratio Fx/F;, which has
been investigated on the lattice even at quark masses that
include the physical values [1]. In chiral perturbation theory
(ChPT) [2] at two-loops, expressions for F, and Fg involve
certain integrals (sunsets) that are evaluated numerically
[3]. In this work, we provide an analytic expression for
Fy/F,, which uses double series derived using Mellin-
Barnes (MB) representations of the sunsets, providing a
template for easy fitting to lattice simulations.

II. METHODOLOGY
The ratio Fg/F, in two-loop SU(3) ChPT is given by:

F F F
_K:1+(_K _Fx )
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The decay constants Fp (P = z, K) may be decomposed
as:

F
Ff’; =1+ F)) + (Fp)& + (Fp)imy + O(p%).  (2)
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The O(p®) contribution can be subdivided as:

6
F?r(FP)l(o())p = ds['ilnset + d{c’)gxlog + d{())g + dlfc))g xL;
dp o dl (3)

dh .« comprises of the pure sunset integral terms, which
are not available fully analytically, and whose determi-
nation is the goal of this work. The sunset integral is
defined as:

Hiypyy (o3, m3: )
_ (l/i)z/ diqdir
Qapt ) [g*=mi)*[r? —=m3[(q+r—p)* —m3]

Aside from this basic scalar integral, tensor integrals in
which the momenta g, and g,q, appear in the numerator,
and derivatives of both the scalar and tensor integrals w.r.t.
p? contribute to d% ... [3]. The tensor and derivative
integrals, as well as all the derivatives, may be reduced
into a linear combination of scalar integrals using the
methods given in [4].

The full list of sunset integrals contributing to df
can thus all be expressed in terms of a set of four master
integrals and the one-loop tadpole integral. The problem
reduces to solving these analytically in the required mass
configurations. For Fg/F,, seven distinct three mass scale
MI need evaluation.

MB theory leads to representations of these MI where
each integral consists of at least one double complex plane
integral. These double MB integrals are evaluated using the
method proposed in [5] and fully systematized in [6] to
obtain results in the form of sums of single and double
infinite series [7-9].
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III. THE ANALYTIC REPRESENTATION

Using Eq. (3), we obtain the following representation of
Fyg/Fy:
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F 1 consists of terms arising from pure sunset contributions. The split between the K, terms and F is not unique: one
convenient decomposition, that takes into account the freedom to distribute the chiral logs while keeping the final result

unchanged, is
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The MI are denoted by HS PHOCR =

HY, , o (mp.my, mg; p* = m3), the “bar” indicating that

the chiral subtraction prefactor (u? e’:ﬂ 1)4 “ has been taken

into account, and that the chiral logarithms have been
extracted and included in the log terms of Eq. (2).
Expressions for the two mass scale MI are given in [10],
and those for the three mass scale are given below in terms
of generalized hypergeometric (,F q) and Kampé de Fériet
(KdF) series. The three mass scale MI not explicitly
presented here can be derived from the following by

differentiation w.r.t the appropriate square propagator
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FIG. 1. Region of convergence of Egs. (15)—(17) (blue region).
The red dot marks the physical values of the meson masses.

mass. The validity of Eqs. (15)—(17) is dictated by the
region of convergence of the KdF and ,F g series, which is

given by (m, <m,) A (m, +m, <2mg) and shown
in Fig. 1.
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values is <1% for most of the sets of masses used in the (18)
lattice study of [1]. We get:
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The range of validity of Egs. (18)—(20) is shown in
Fig. 2, in which the exact value of F is plotted against
X = ,/p, as are the approximate F' retained up to various

orders of p. The expansion up to O(p*) approximates the
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FIG. 2. Comparison of the exact and approximate Fp.

|
exact value of Fy to 1% for m,/mg <3 and to 6% for
m,/mg < 0.5. One may obtain a representation with
greater accuracy by truncating the series with a larger
number of terms.

For the reader to be able to verify the implementation of
these expressions, we give the numerical values of Fg/F,
coming from both exact and approximate expressions
and obtained with physical values m, = 0.1350 GeV,
mg = 0.4955 GeV, F,=0.0922 GeV, as well as the
LEC values of the BE14 fit of [11]. We get, using Eq. (8),

Fy/F,=1.19897, (20)
and using the approximation of Eqs. (18)—(20),

Fy/F, = 1.20071. (21)
IV. ILLUSTRATIVE LATTICE FITS

We present an exploratory numerical study based on our
analytical representation by fitting Eq. (5) with the data of
the lattice study [1] to determine best-fit values of the NLO
LEC L% and the NNLO LEC combinations C7, + C{s and

091502-5
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TABLE 1. Correlation values of the fit in (22).

Ls Ciu+Cys
Cis+ Cis -0.93 1.00
Ci5+2C; 0.35 —0.66

Cis +2C';. We perform the fit (using [12]) on the mass
sets for which m, < 0.40 GeV. We do the fit on the ‘exact’
Fp, i.e. truncating the KdF series after 1000% terms and the
oF g series after 1000 terms, and cross-check by fitting the

exact purely numerical version of Eq. (3) with CHIRON [13].
The fit on the approximate version presented in Eq. (18)
gives compatible results.

The uncertainties on the values of the LEC given in this
section derive from the errors of the Fg/F, data of the
lattice study, but do not take into account other uncertain-
ties. As detailed in [1], systematic effects due to lattice
artificats can arise from correlator fit time choices, lattice
spacings, renormalization and finite volume corrections,
among other things. When these effects are taken into
account, using e.g. [14,15], the values of the LEC presented
in this section are likely to change. However, determining
the exact nature and magnitude of the change involves a
detailed study that is outside the scope of this paper.

We fix the renormalization scale u at m, = 0.77 GeV,
and use the values of the BE14 fit [11] for the other L. In
addition we fix F, in the determination of &, and &g to
92.2 MeV and obtain:

L =(3.9240.55)10™

T+ Cls = (2.59 £ 0.63)107°
Cis+2C; = (6.10 £ 1.41)107°. (22)
The correlation parameters are given in Table I and the
quality of the fit is shown in Fig. 3 (Left). The correlation is
shown graphically in Fig. 3 (Middle, Right) by plotting a
number of random points in a distribution given by the

correlation matrix of the fit projected on the two different
planes.

1.24

With these LEC values and the physical meson masses as
inputs, we get for the value of F/F:

Fy/F,=1.194, (23)
which agrees well with the literature value of [11].

The values of Eq. (22) differ from those of the BE14
exact fit (Ls = 10.1 x 107*, Cy4 + C;5 = —4.00 x 107,
Cys +2Cy; = =5.00 x 107%) significantly, but are more
compatible with those of [16] (Ls=0.76x 1073,
Cis+ Cis =3.15x107%, Cy5+2Cy7 = 10.96 x 107 in
dimensionaless units) and [17] (Ls=0.75x 1073,
C14 + C15 = 1.70 x 10_6, C15 —+ 2C17 = 6.04 x 10_6).

A similar fit, but now with F, also varied in &,, &g
requires the use of lattices common to [1,18] to obtain the
values of F, for each lattice. This fit gives:

L = (0.49 + 1.08)10
Cly+ Cls = (559 +1.08)107°
Cls +2C;, = (39.7 +2.10)107°. (24)

The change in the values above arises primarily due to
the variation of F,. Keeping F, fixed at 92.2 MeV but with
the set of inputs used to calculate Eq. (24) results in changes
of 2#20%, 35% and 10% in the Eq. (22) values of the L.,
Ci4 + Ci5 and Ci5 + 2C74, respectively. As the difference
in the inputs for Egs. (22) and (24) is primarily the data
from the coarsest lattices, it seems that the lattice data has a
significant impact on fitting the LECs.

V. CONCLUSIONS

The ratio Fg/F, is a quantity at the heart of chiral
symmetry breaking, a fundamental property of the strong
interactions that is measured in ab initio calculations on the
lattice. An analytic expansion for this quantity in quark or
meson masses is the order of the day. Using modern loop
calculation techniques, we have achieved this goal. At
present, two-loop precision is sufficient to fit the lattice
data; this might change when the lattice precision improves
in the future. While there exist three-loop results in two-
flavor ChPT [19], in three-flavor ChPT two-loops is state of
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C4+Cls [109

Left: Quality of the fit. “Values BE14’ plots use the BE14 numbers for L, Ci,, Ci5 and C{;. Middle: Correlation of L§ and
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the art, adding to the significance of the results presented
herein. We hope this work encourages similar cross-
disciplinary studies of other quantities of interest.
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