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The final state proposal [G. T. Horowitz and J. M. Maldacena, J. High Energy Phys. 04 (2004) 008] is an
attempt to relax the apparent tension between string theory and semiclassical arguments regarding the unitarity
of black hole evaporation. Authors Bousso and Stanford [Phys. Rev. D 89, 044038 (2014)] analyze thought
experimentswhere an infalling observer first verifies the entanglement between early and lateHawkingmodes
and then verifies the interior purification of the same Hawking particle. They claim that “probabilities for
outcomes of these measurements are not defined” and therefore suggest that “the final state proposal does not
offer a consistent alternative to the firewall hypothesis.” We show, in contrast, that one may define all the
relevant probabilities based on the so-called ABL rule [Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz,
Phys. Rev. 134, B1410 (1964)], which is better suited for this task than the decoherence functional. We thus
assert that the analysis of Bousso and Stanford cannot yet rule out the final state proposal.
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I. INTRODUCTION

The discovery that black holes evaporate [1] has led in
the past decades to an intense debate. Semiclassical argu-
ments, such as the original one due to Hawking [2], suggest
that during evaporation pure states evolve into a mixed state
and thus unitarity breaks. There is some evidence in string
theory, however, that the evaporation of black holes should
be unitary [3–6]. As an approach for addressing this
apparent contradiction, Horowitz and Maldacena (HM)
suggested to impose a final boundary state at the black
hole singularity [7]. This state entangles the infalling matter
and infalling radiation, thus allowing teleportation of
information outside the black hole via the outgoing
Hawking modes. Several authors have further contributed
to this approach, e.g. [8–10]. On the other hand, Almheiri,
Marolf, Polchinski and Sully (AMPS) [11] pointed out a
fundamental conflict that arises in the description of the
infalling observer who sees violation of entropy subaddi-
tivity. Rather than breakdown of unitarity, they proposed as
a resolution a singular “firewall” at the horizon.
Bousso and Stanford [12] have recently analyzed the

final state proposal employing the AMPS scenario. They
considered an infalling observer trying to assign a prob-
ability to a history with a pair of definite entanglement
verifications—first between an early and a late Hawking
outgoing modes rb and b, respectively and then between b
and its interior partner b̃. Based on their analysis, they
concluded that such a probability does not exist. However,

this analysis crucially depends on the decoherence func-
tional formalism that was used.
In what follows, we will claim that the inexistence of

probabilities is a direct result of the decoherent histories
formalism, incorporating a strong consistent histories con-
dition, rather than of the final state proposal. Hence, we
believe that the latter cannot be excluded on these grounds.
Moreover, following [13] we show explicitly that the
various probabilities can be calculated using the ABL rule
[14] within a different time-symmetric framework known
as the two-state vector formalism (TSVF) [15].

II. TWO APPROACHES, DIFFERENT
NOTIONS OF PROBABILITY

To prepare the grounds for our conclusions regarding the
final state proposal, we shall now briefly discuss the
conceptual and quantitative differences between the con-
sistent histories (CH) formalism and the TSVF.

A. The consistent histories formalism

The CH approach as an interpretation of quantum
mechanics was introduced by Griffiths in 1984 [16], and
later discussed by Omnés [17]. The decoherent histories
approach due to Gell-Mann and Hartle [18] is based on
similar ideas. This approach is broadly compatible with
standard quantum mechanics. However, the notion of
measurement, through which probabilities are introduced
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in standard quantum theory, no longer plays a fundamental
role. Instead, the time dependence of quantum systems is
inherently stochastic, with probabilities given by the Born
rule or its extensions.
The ordinary formula for transition probabilities in

quantum mechanics is generalized to yield conditional
probabilities for sequences of events at several different
times, called “consistent histories,” via a criterion ensuring
(with some limits) that classical rules for calculating
probabilities, which are explicitly defined within the
formalism, are satisfied. The resulting interpretive scheme
applicable to closed quantum systems is explicitly time
symmetric and treats wave function collapse as a mere
calculational tool [19]. It is important for the purposes of
our Comment to note that the consistent histories formal-
ism, mainly due to its projective tensor structure and
consistency conditions, is a local theory.
This approach gives the same predictions as textbook

quantum mechanics in the domain where the textbook rules
can be properly applied, but in addition allows a “paradox-
free” discussion of microscopic properties and events. As
will be clarified later, paradox-free importantly means in
many cases avoiding an unambiguous prediction.
Within this formulation, classical mechanics emerges as

a useful approximation of quantum mechanics under
certain conditions. The price to be paid for this [19] is a
set of rules for reasoning resembling, but also significantly
different from, those which comprise quantum logic. An
implication is the lack of a single universally true state of
affairs at each instant of time. However, there is a
correspondence limit in which the new quantum logic
becomes standard logic in the macroscopic world of
everyday experience. The proposed quantum logic pro-
vided by the CH interpretation reduces to the familiar
classical propositional logic in the same domain where
classical mechanics serves as a good approximation to
quantum mechanics. Throughout the years, there have been
many criticisms, e.g. [20–24], as well as replies [25,26].
Bousso and Stanford claim that the complications with

probability assignment in the HM setup “can be treated
carefully using the decoherence functional formalism.” We
believe this is incorrect, but let us first outline their method
as previously suggested by Gell-Mann and Hartle [18]. The
decoherence functional Dðα; α0Þ depends on a pair of
histories from an arbitrarily chosen family of histories,
each described by a product of projection operators: Cα ¼
ΠαnΠαn−1…Πα1 and C0

α ¼ Πα0nΠα0n−1
…Πα0

1
. It is defined by

Dðα; α0Þ ¼ tr½ρfCαρiC0
α
†�; ð1Þ

where ρi=ρf are respectively the initial/final states of the
system, normalized such that tr½ρiρf� ¼ 1. Crucially, only
when the decoherence functional is diagonal (in the case of
the strong consistency condition imposed on the accessible
family of histories), probabilities can be assigned to the
particular histories using the rule

PðαÞ ¼ Dðα; αÞ: ð2Þ

The purpose of the diagonality is ensuring consistency
when calculating marginals:

X

β

Pðα; βÞ ¼ PðαÞ: ð3Þ

Therefore, according to this approach, when the
decoherence functional is not diagonal, probabilities cannot
be meaningfully assigned. Occasionally, the implementa-
tion of the measurement with the addition of an ancillary
pointer helps to diagonalize the decoherence functional, but
then the histories are changed as well. Both methods turn
out to be problematic when applied to the scenario in [12]
and we will focus on the first which can be most easily
analyzed within the TSVF.
We note that there are different consistency conditions

for the discussed decoherence functional Dðα; βÞ,
including the weaker condition Dðα; βÞ ≈ δαβPðαÞ [known
as medium decoherence [27] where PðαÞ stands for the
probability of a history Hα] or the linear positivity con-
dition by Goldstein and Page [28]. However, as Wilczek
and Cotler observe [29,30], it is currently unclear if these
variants are physically meaningful.

B. The TSVF

The sources of the TSVF date back to the 1964 paper
[14] by Aharonov, Bergman and Lebowitz (ABL) who
derived a probability rule concerned with measurements
performed on preselected and postselected systems, i.e.
systems with a final state specified in addition to the
ordinary initial state. Given an initial state jψ ii and a final
state jψfi, the probability that an intermediate measure-
ment of the nondegenerate operator A ¼ P

kakAk charac-
terized by the projectors Ak yields the eigenvalue ak is

Prðakjψ i;ψfÞ ¼
jhψfjAkjψ iij2P
jjhψfjAjjψ iij2

: ð4Þ

The counterfactual use of this formula is controversial
[31,32], but to the best of our knowledge it is widely
accepted in cases where an actual measurement of A is
carried out, such as the case analyzed in [12].
In subsequent works, the utility of the ABL rule was

further understood. It was thus broadened to a new
formulation of quantum mechanics—the TSVF [15] and
a new interpretation of it—the two-time interpretation
[33–35]. The latter can be thought of as a subtle kind of
hidden variables theory where the so-called measurement
problem is solved when imposing a special boundary
condition on the Universe.
In contrast to the CH formalism and Eq. (2), the ABL

rule can be applied as long as the denominator is nonzero.
This reflects the natural tendency of the TSVF to encounter
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all scenarios, even paradoxical ones, and provide unam-
biguous (although sometimes surprising) predictions. This
formalism directly addresses cases where entanglement
monogamy seems to be violated [36], and was claimed to
do so in a paradox-free manner [13].
The generalized form of the ABL rule which will be used

next reads

PrðkjΠi;ΠfÞ ¼
trðPkΠiρΠfÞP
jtrðPjΠiρΠfÞ

; ð5Þ

where ρ is the state of the system, Πi=Πf are projections on
the initial/final states, respectively, and Pk are the various
projection operators that can be measured at any inter-
mediate time.

C. A recent discrepancy

For a long time these two formulations of quantum
mechanics coexisted peacefully. However, two recent
papers [37,38] have exposed and made accentuated the
crucial differences between them. The consistent histories
rules were built to avoid paradoxes when thinking classi-
cally about quantum experiments [38]. Therefore the
predictions of this formalism were shown to be different
than those of the TSVF when a specific setup employing a
nested-Mach-Zehnder interferometer was examined [37].
Moreover, the CH approach seems to capture less than the
TSVF does in this specific experimental scenario with weak
measurements [37,38]. However, it seems that predictions
of the entangled histories formalism [39,40] for the nested-
Mach-Zehnder interferometer are in agreement with those
of TSVF.

III. COMPARING THE PREDICTIONS
OF CH AND TSVF

Let us start with the introductory example of Bousso and
Stanford [12]: A qubit is prepared with a definite spin along
the x direction, that is ρ ¼ jþihþj. As correctly denoted by
Bousso and Stanford, if we consider histories that begin
with this state, have definite values of the z spin, and then
definite values of the x spin again, we easily find (in the
case of no intermediate dynamics) that the decoherence
functional is not diagonal. Hence, according to this
approach, probabilities for the z spin at intermediate times
cannot be assigned. However, the ABL rule does allow to
assign probabilities to spin measurements along the z-axis
(denoted here by ↑ and ↓) during intermediate times,
simply by calculating according to Eq. (4):

Prð↑jþ;þÞ ¼ jhþjΠ↑jþij2
jhþjΠ↑jþij2 þ jhþjΠ↓jþij2 ¼ 1=2; ð6Þ

where Π↑ and Π↓ are projectors onto the eigenspaces of ↑
and ↓ respectively. Similarly, Prð↓jþ;þÞ ¼ 1=2.

Hence, we already see at this point that the ABL rule can
unambiguously provide probabilities for measurement out-
comes in a preselected/postselected system, even in cases
where the decoherence functional cannot do so. We shall
use that now for analyzing the AMPS scenario within a
postselected model.
Let us repeat the details of the HM model, and within it

the specific measurements which according to Bousso and
Stanford have no probabilities. Similarly to the latter we
shall denote by b the Hawking quantum still in the near
horizon zone, its interior partner by b̃, forming together the
infalling vacuum, and a subsystem rb of the early Hawking
radiation that purifies b in the unitary out-state, with its
interior partner r̃b. The initial and final states of the black
hole are

ρi ¼ jΦihΦjr̃b;rb ⊗ jΦihΦjb̃;b ð7Þ

and

ρf ¼ d2jΦihΦjr̃b;b̃ ⊗ Ib;rb ; ð8Þ

respectively, where I is the identity and jΦix;y is
the maximally entangled state jΦix;y ¼ ðdimðxÞÞ1=2×
PdimðxÞ

i¼1 jiijii. An observer now tries to assign probabilities
to a history with definite b,rb result, followed by a definite
b̃,b result. In Table I of [12], the 4 × 4 decoherence
functional is calculated and shown to be nondiagonal.
For instance, when the histories are C1 ≡ Πb̃;bΠrb;b and
C2 ≡ ð1 − Πb̃;bÞΠrb;b the decoherence functional is
Dð1; 2Þ ¼ 1=d2 − 1=d4 ≠ 0. Therefore, according to this
set of assumptions, probabilities cannot be assigned to the
various histories.
According to the ABL rule, however, these probabilities

can be calculated straightforwardly by applying Eq. (5):

Prð1jΠi;ΠfÞ ¼
1

3d4 − 6d2 þ 4
ð9Þ

Prð2jΠi;ΠfÞ ¼
ðd2 − 1Þ2

3d4 − 6d2 þ 4
ð10Þ

Prð3jΠi;ΠfÞ ¼
ðd2 − 1Þ2

3d4 − 6d2 þ 4
ð11Þ

Prð4jΠi;ΠfÞ ¼
ðd2 − 1Þ2

3d4 − 6d2 þ 4
; ð12Þ

where Πi=Πf project on the initial/final states in Eq. (7)/
Eq. (8), respectively, and k ¼ 1, 2, 3, 4 correspond to
projectionsPk on historiesCk, whenC1 andC2 were defined
above and C3 ¼ Πb̃;bð1 − Πrb;bÞ, C4 ¼ ð1 − Πb̃;bÞð1 −
Πrb;bÞ (in accordance with the scenario in [12]).
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It can be easily seen that the probabilities in Eqs. (9)–
(12) sum up to 1 as required, and the nondiagonal terms
appearing in the CH approach do not play any role.
We stress again that one may doubt the application of the

ABL rule when the decoherence functional fails to provide
an unambiguous result, but as explained in [38], it is very
common for the former to have a greater explanatory power
than the latter. In contrast to the decoherence functional,
which carries with it some philosophical interpretations, the
ABL rule is part and parcel of quantum mechanics and we
do not see how one can deny its outcomes. In fact, we know
that the specific type of measurements needed in this
scenario is possible in principle without any violation of
causality [41] (see also [42]). Although the special post-
selection implied by the final state proposal complicates
this state of affairs, it does not imply cloning nor violation
of monogamy, but rather a temporal product structure
between events, which is allowed by quantum theory [13].

IV. CONCLUSION

To critically analyze a recent paper by Bousso and
Stanford [12], we compared in this Comment the CH with
the TSVF approach. We have seen that while the assign-
ment of probabilities within the first could be problematic
in several cases, the second always allows to assign them.
Therefore, the problem identified by Bousso and Stanford

[12] when applying the CH approach to the final state
proposal seems to originate from the shortcomings of this
approach, and not from the proposal itself. It is worth
mentioning that the TSVF approach naturally deals with
apparent violations of entanglement monogamy [13,36]
and provides interesting predictions regarding the values
attained by Tμν on the horizon [43,44]. Furthermore, the
entangled histories formalism [40,45], allowing for a
complex superposition of histories, reveals a nonlocal
behavior in time and thus may overcome the setbacks of
the CH approach. Unsurprisingly, it bears close similarly to
the TSVF [46].
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