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We present here a novel method for computing spectral distances in the doubled Moyal plane in a
noncommutative geometrical framework using Dirac eigenspinors, while solving the Lipschitz ball
condition explicitly through matrices. The standard results of longitudinal, transverse, and hypotenuse
distances between different pairs of pure states have been computed and the Pythagorean equality between
them has been reproduced. The issue of the nonunital nature of the Moyal plane algebra is taken care of
through a sequence of projection operators constructed from Dirac eigenspinors, which plays a crucial role
throughout this paper. At the end, a toy model for a “Higgs field” has been constructed by fluctuating the
Dirac operator and the variation on the transverse distance has been demonstrated, through an explicit
computation.
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I. INTRODUCTION

Alain Connes, through his non commutative geometry,
provided a new insight into the structure of the standard
model of particle physics [1] (see [2] for a review). Here
one essentially captures the whole gauge symmetry of the
standard model (which is formulated using the “Almost
commutative spacetime” model) through the group of
inner-automorphism of the algebra

A ¼ C ⊕ H ⊕ M3ðCÞ: ð1Þ
One of the most remarkable features of this formulation is
that the Higgs field arises naturally here, along with the other
gauge fields of Yang Mills theory, thus providing a unified
conceptual perspective regarding their geometrical origin.
This formulation, although quite successful in predicting or
postdicting almost all the phenomenological observations
made so far, including the computation of Higgs mass of
125 GeV [3], is not equipped yet to address the issues of
quantum gravity, which is expected to play a key role only in
the vicinity of the Plank energy scale∼1019 GeV. One rather
expects the differentiable manifold M, representing the
(Euclidianized) spacetime, to be replaced by a truly non-
commutative space as follows from some plausibility argu-
ments due to Doplicher, fredenhagen, and Roberts, 1995 [4].
The simplest of such model noncommutative spaces are

Moyal plane ðR2�Þ∶ ½x̂1; x̂2� ¼ iθ;

Fuzzy sphere ðS2�Þ∶ ½x̂i; x̂j� ¼ iλϵijkx̂k: ð2Þ

The computation of distances on a generic noncommu-
tative space has to be performed with the formalism of
noncommutative geometry as pioneered by Connes [5]. In
this context the computation of spectral distances for which
the algebra of the spectral triple is given by (1) can be
shown to be equivalent to a particular spectral triple where
the algebra in (1) is replaced by just C2 [6,7]. This results
from the fact that the incorporation of the experimental data
on the Dirac operator causes the distance between any pair
of states in M3ðCÞ to diverge and that the algebra of
quarternions H has only one state [6]. Besides, the algebra
A ¼ C2 was used by Dungen & Suijlekom, 2013 [8] to
discuss electrodynamics in a noncommutative geometric
setup. The internal space, described by the algebraA ¼ C2

along with other data for spectral triple [see (A1) and for
other details regarding this spectral triple see the Appendix
A], when composed with that of the Moyal plane R2� [see
(10)] describes the doubled Moyal plane R2� ∪ R2� [see
(25)] for the corresponding spectral triple.
The question of the computability of spectral distances

between pair of states associated to the same or different
manifold arises naturally in this context. This is an
important question in its own right as it may reveal some
geometrical features of the Higgs field. This is so because
the presence or absence of the Higgs field can have a
nontrivial impact on these distances. These questions were
addressed already in the literature [6–8]. One is particularly
interested in computing the distance between states belong-
ing to one of the copies of algebra and its “clone” (the more
precise meaning of this terminology will be explained in
subsequent sections) belonging to the other algebra. We
refer to such a distance as “transverse.” On the other hand
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distance between a pair of states belonging to the same
algebra to be referred as “longitudinal.” Finally, distance
between any pair of pure states which are not clones of each
other but belong to different algebras will be referred to as
the “hypotenuse” distance. In [6] the authors have proved
various theorems and laid down the conditions for the
Pythagoras theorem to hold for commutative manifold M,
described by a commutative C�-algebra and also extended
them to noncommutative spaces like the doubled Moyal
plane [7], which is necessarily described by a noncommu-
tative C�-algebra. Eventually, these analyses were also
extended to study distances between the nonpure states
involving more general spectral triples to find that in the
generic cases the Pythagoras equalities are replaced by
corresponding inequalities [9] and analyzed their relation-
ships with Wasserstein distanceW of order 1, which occurs
in the theory of optical transport [10].
Here we would like to revisit the problem by explicitly

constructing suitable Dirac eigenspinors for the doubled
Moyal plane, by making use of the corresponding eigens-
pinors for single Moyal plane, introduced in [11] through a
Hilbert-Schimdt operator formulation to describe non
relativistic noncommutative quantum mechanics [12].
This has the advantage that it involves a purely operator
formulation and is quite transparent in execution as one has
to deal with matrices only, albeit, big ones some times. We
were therefore forced to make use of the computer algebra
system Mathematica and with its help could reproduce all
the existing results of the distances and eventually verify
the Pythagoras theorem. At the end, we have explicitly
shown the variation of transverse distance in the presence of
a prototype “Higgs” field, which arises when the Dirac
operator is fluctuated using a general one-form.
The paper is organized as follows. In Sec. II we have set

up the framework of our calculation, namely the Hilbert-
Schmidt operatorial formulation using which the spectral
triple for the Moyal plane has been introduced. Moreover, a
review of the computation of the spectral distance on the
Moyal plane using Dirac eigenspinors [11] along with the
aspects of translational invariance on the Moyal plane has
been provided here. Then in Sec. III, the notion of doubling
the spectral triple for the Moyal plane by composing it with
that of the two-point space has been introduced. We then
introduce the concept of the restricted spectral triple using
suitable projection operator, using which the individual
spectral triples of Moyal plane and that of the two-point
space can be recovered. The construction of the eigenspi-
nors corresponding to the Dirac operator of the doubled
Moyal plane has been taken up in Sec. IV which has then
been used extensively in Sec. V to compute distances in all
the three cases viz. transverse, longitudinal, and hypotenuse
ones. In Sec. VI the Dirac operator has been fluctuated
using an one-form arising solely from a prototype “Higgs”
field and then the variation of the transverse distance has
been studied by restricting the spectral triple to that of the

two-point space again using a projection operator built out
of the Dirac eigenspinors. Finally we conclude in Sec. VII.

II. REVIEW OF THE HILBERT-SCHMIDT
OPERATOR FORMALISM AND THE SPECTRAL

DISTANCE ON THE MOYAL PLANE ðR2�Þ
The Hilbert space Hq furnishing a representation of the

entire noncommutative Heisenberg algebra

½X̂i; X̂j� ¼ iθϵij; ½X̂i; P̂j� ¼ iδij; ½P̂i; P̂j� ¼ 0 ð3Þ

for the Moyal plane is given by the space of Hilbert-
Schmidt (HS) operators ψðx̂1; x̂2Þ ∈ Hq, which consists of
composite algebra elements generated by the position
operators ðx̂1; x̂2Þ, subject to the above coordinate sub-
algebra, i.e., the commutation relations ½x̂1; x̂2� ¼ iθ in (2),
on which the above operators X̂i and P̂j act as:

X̂iψðx̂1; x̂2Þ ¼ x̂iψðx̂1; x̂2Þ;

P̂iψðx̂1; x̂2Þ ¼
1

θ
ϵij½x̂j;ψðx̂1; x̂2Þ�: ð4Þ

These operators x̂i and therefore ψðx̂1; x̂2Þ, in turn, act on
an auxiliary Hilbert space Hc, which furnishes a repre-
sentation of just this coordinate sub-algebra (2) and is
defined by

Hc ¼ Span

�
jni ¼ ðb̂†Þnffiffiffiffiffi

n!
p j0i; b̂j0i ¼ 0; b̂ ¼ x̂1 þ ix̂2ffiffiffiffiffi

2θ
p

�∞

n¼0

;

½b̂; b̂†� ¼ 1: ð5Þ

Note that here Hc is isomorphic to the Hilbert space of the
1-D harmonic oscillator where the role of momentum is
played by another spatial coordinate operator x̂2 and that of
ℏ by θ. The inner product on Hq is defined through Hc as

ðψ1ðx̂1; x̂2Þ;ψ2ðx̂1; x̂2ÞÞ ¼ TrHc
ðψ†

1ðx̂1; x̂2Þ;ψ2ðx̂1; x̂2ÞÞ

¼
X∞
n¼0

hnjψ†
1ðx̂1; x̂2Þ;ψ2ðx̂1; x̂2Þjni:

ð6Þ

This is clearly well-defined, as Hq is necessarily, by
definition, a Hilbert space itself and consists of elements
which are necessarily compact and have finite Hilbert-
Schmidt norms associated with this inner product (6). In
fact, the space of trace-class operators forms a dense
subspace of this Hilbert space, i.e., the completion of
the space of trace-class operators with HS norm becomes
identical to the Hilbert space of HS operators Hq. Further,
the product of two HS operators is a trace-class operator
and this fact is used to define the inner product (6) of Hq.
Also note that we make a distinction here between X̂i and
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x̂i, depending upon their domains of action, i.e., onHq and
Hc, respectively. In a sense, the former can be regarded as a
representation of the latter. On the other hand, the momen-
tum operator P̂i has action onHq only, as is clear from (4),
where it is identified through the adjoint action of ϵijx̂j and
therefore corresponds to the difference between left and
right actions on ψðx̂1; x̂2Þ. Finally, the vectors ofHq andHc

are distinguished by using round j:Þ and angular j:i kets,
respectively.
In view of the noncommutative (i.e., θ ≠ 0) nature of the

coordinate algebra, the common eigenstates of x̂1 and x̂2
simply cannot exist. One is therefore forced to introduce a
coherent state

jzi ¼ e−z̄ b̂þzb̂† j0i ¼ e−jzj2=2ezb̂
† j0i ∈ Hc; b̂jzi ¼ zjzi;

z ¼ x1 þ ix2ffiffiffiffiffi
2θ

p ð7Þ

with maximal localization: Δx1Δx2 ¼ θ=2. As is well
known, this provides an overcomplete and nonorthonormal
basis inHc: hz0jzi ¼ e−jz0−zj2=2. The above inner product (6)
can therefore be expressed alternatively as

ðψ1ðx̂1; x̂2Þ;ψ2ðx̂1; x̂2ÞÞ

¼
Z

d2z
π

hzjψ†
1ðx̂1; x̂2Þψ2ðx̂1; x̂2Þjzi

¼
Z

d2x
2πθ

TrHc
ðρzψ†

1ðx̂1; x̂2Þψ2ðx̂1; x̂2ÞÞ;

ρz ¼ jzihzj ∈ Hq: ð8Þ

Here we have introduced the density matrix ρz ∈ Hq, as
viewed from Hc and can be associated with the pure state
ωρz corresponding to the �-algebra Hq ¼ AM and defined
as a linear functional onAM∶ ωρzðaÞ ∈ C of the norm one.
As explained in detail in [13], here too we shall be working
with normal states, so that the states can be represented by
density matrices: ωρzðaÞ ¼ TrHc

ðρzaÞ. This, in fact, fol-
lows from the fact that the representation of the algebraAM
on Hc (5) is irreducible, as Hc carries an irreducible
representation of the oscillator (b̂, b̂†) algebra. This implies,
in turn, that the von Neumann algebra generated by AM in
BðHcÞ is the whole of BðHcÞ itself. For brevity, therefore,
the states will be denoted just by density matrices them-
selves as ρðaÞ ¼ TrðρaÞ. Finite distance, à la Connes,
between the pair of pure states ρ0 ≔ j0ih0j and ρz has
already been computed in [7] to be

dðρ0; ρzÞ ¼
ffiffiffiffiffi
2θ

p
jzj: ð9Þ

This was also rederived via a somewhat different approach
in [11] by employing the following spectral triple

AM ¼ Hq; DM ¼
ffiffiffi
2

θ

r �
0 b̂†

b̂ 0

�
;

HM ¼ Hc ⊗ C2 ¼ Span

�� jψi
jϕi

�
∶ jψi; jϕi ∈ Hc

�
ð10Þ

where the action of the algebraAM on the Hilbert spaceHM
is given by the diagonal representation π:

πðaÞ ¼
�
a 0

0 a

�
ð11Þ

whereas the Dirac operatorDM acts onHM—the module of
spinorial sections from the left. This spectral triple is even
as it admits grading or chirality operator γM ¼ σ3 which
commutes with πðaÞ for all a ∈ AM and anticommutes
with the Dirac operatorDM. The chirality operator splits the
Hilbert space into positive and negative sectors as

HM ¼ Hþ ⊕ H− ¼
�
Hc ⊗

�
1

0

��
⊕

�
Hc ⊗

�
0

1

��
:

Let us recall, in this context, that the spectral distance
between a pair of states ρ1 and ρ2, which by definition are a
pair of linear functionals over the algebra AM, is given by

dðρ1; ρ2Þ ¼ sup
a∈B

jρ1ðaÞ − ρ2ðaÞj;

B ¼ fa ∈ AM∶ k½DM; πðaÞ�kop ≤ 1g: ð12Þ

In [11], in particular, the computation of the operator norm
was carried out in the eigenspinor basis jm⟫� ∈ HM (10)

j0⟫� ¼
� j0i

0

�
; jm⟫� ¼ 1ffiffiffi

2
p

� jmi
�jm − 1i

�
with

m ∈ f1; 2; 3…g ð13Þ

of the Dirac operator DM with eigenvalues λðmÞ
� , given by

DMjm⟫� ¼ λ�mjm⟫�; λðmÞ
� ¼ �

ffiffiffiffiffiffiffi
2m
θ

r
with

m ∈ f0; 1; 2…g: ð14Þ

They satisfy the following orthonormality and complete-
ness relations

�⟪mjn⟫� ¼ δmn; þ⟪mjn⟫− ¼ 0;X∞
m¼0

jm⟫��⟪mj ¼ 1HM
: ð15Þ

It was also necessary to introduce a projector PN of rank
(2N þ 1) into the (2N þ 1) dimensional subspace of HM
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PN ¼
XN
m¼0

jm⟫��⟪mj ¼
�
PN 0

0 PN−1

�
;

PN ¼
XN
m¼0

jmihmj ð16Þ

with PN being the projector for the N þ 1 dimensional
subspace of Hc. Following [7], the distance in (9) was first
shown to be an upper bound and subsequently an optimal
element

as ¼
ffiffiffi
θ

2

r
ðb̂eiα þ b̂†e−iαÞ; ð17Þ

saturating the right-hand side (RHS) of (9) as the
upper bound was identified (see Appendix B). Besides,
it was found to saturate the ball condition as well:
½DM; πðasÞ� ¼ 1. With this one can indeed recognize the
RHS of (9) as the true distance itself. We would like to
mention in this context that, although as ∉ Hq ¼ AM, it
nevertheless belongs to the multiplier algebra and can be
shown [7] to correspond to the limit point of a sequence
whose elements are in Hq. In an alternative approach,
proposed in [11], the projected element

PNπðasÞPN ∈ Hq ⊗ M2ðCÞ; N ≥ 2 ð18Þ
was shown to satisfy the ball condition

k½DM;PNπðasÞPN �kop ¼ 1 ∀ N ≥ 2; ð19Þ

and shown to yield the correct infinitesimal distance
dðρ0; ρdzÞ ¼

ffiffiffiffiffi
2θ

p jdzj by taking appropriate inner product
in Hq ⊗ M2ðCÞ. Eventually this could be “integrated” to
get (9) as the finite distance. Although the conventional
notions of points and geodesics do not exist in the Moyal
plane in view of the uncertainty Δx1Δx2 ≥ θ

2
stemming

from the noncommutative coordinate subalgebra (3), the
notion of geodesics in the form of a straight line can be
retrieved in some sense by explicitly constructing a
one-parameter family of pure states ρzt ≔ jztihztj with
t ∈ ½0; 1� interpolating the extremal pure states ρ0 and ρz,
where the triangle inequality is saturated to an equality:
dðρ0; ρztÞ þ dðρzt; ρzÞ ¼ dðρ0; ρzÞ. This is of course an
exception; such a feature does not persist in generic
noncommutative spaces. Indeed, for fuzzy sphere S2� the
interpolating states satisfying a similar “triangle-equality”
are necessarily mixed [11,14].
Note that in order to compute the spectral distance

between a pair of pure states on the Moyal plane,
we focus our attention on the coherent states jzi (7)
obtained by translating j0i ∈ Hc to jzi ¼ Uðz; z̄Þj0i, where
Uðz; z̄Þ ≔ e−z̄ b̂þzb̂† provides a projective unitary represen-
tation of the group of translation. Conversely, by the unitary
transformation U−1ðz; z̄Þ, it is always possible to translate

jzi back to j0i such that the density matrix will transform
adjointly as

ρz ¼ jzihzj → U−1ðz; z̄ÞjzihzjUðz; z̄Þ ¼ j0ih0j ¼ ρ0; ð20Þ

furnishing a proper representation of the group of trans-
lation. This transformation acts on the Dirac operator (10)
of the single Moyal plane as

DM → U−1ðz; z̄ÞDMUðz; z̄Þ ¼
ffiffiffi
2

θ

r �
0 b̂† − z̄

b̂ − z 0

�

ð21Þ

where ðb̂ − zÞjzi ¼ 0 can be rewritten as

ˆ̃bj0̃i ¼ 0; ˆ̃b ¼ b̂ − z; j0̃i ¼ jzi; ð22Þ

so that jzi can be identified as the new and shifted
“vacuum” j0̃i. Indeed, we can write ðb̂† − z̄Þjzi ¼
ˆ̃b
†j0̃i ¼ j1̃i, and higher tower of states can be constructed

by repeated actions of the new creation operator ˆ̃b
†
:

jñi ¼ 1ffiffiffiffiffi
n!

p ð ˆ̃b†Þnj0̃i: ð23Þ

This shows that the new Fock space can be defined by
translating the “vacuum” by a c-number, which would then
be annihilated by the “translated” lowering operator.
Finally note that the change in DM under translation
(21) is again given by an element

−
ffiffiffi
2

θ

r �
0 z̄

z 0

�
∈ M2ðCÞ

which commutes with the diagonal representation of any
algebra element πðaÞ ∀ a ∈ AM. This implies in turn that
½U−1ðz; z̄ÞDMUðz; z̄Þ; πðaÞ� ¼ ½DM; πðaÞ� so that this uni-
tary transformation has no impact on the ball condition B
occurring in (12). The spectral distance, therefore, remains
invariant under the translation [11].

III. DOUBLING THE SPECTRAL TRIPLE
FOR THE MOYAL PLANE

In noncommutative geometry the notion of a usual
manifold is generalized by the spectral triple T ¼
ðA;H;DÞ which obeys some axioms [5]. If we have
two such spectral triples T1 and T2 associated with given
two spaces, then the composite spectral triple denoted also
by the tensor product notation T1 ⊗ T2

1 generalizes the

1Although T1 and T2 are not vector spaces by themselves, we
still use this convention of notation as in [6].
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notion of the fiber bundle over a manifold [6]. If one of the
spectral triples is taken to be that of a finite discrete space,
say, for example the simplest known finite discrete space of
the commutative two-point space for which the spectral
triple is given by (A brief review of this two-point space has
been provided in Appendix A, where the relevant notations
are also introduced):

T2 ¼
�
A2 ¼ C2 ≃Md

2ðCÞ;H2 ¼ C2;D2 ¼
�
0 Λ
Λ̄ 0

��
;

Λ ∈ C; ð24Þ

then, one can take the product of any even spectral triple T1

with that of two-point space so that the resulting composite
spectral triple can be written as,

T ≔ T1 ⊗ T2 ¼ ðA ¼ A1 ⊗ C2;H ¼ H1 ⊗ C2;

D ¼ D1 ⊗ 12 þ γ1 ⊗ D2Þ;
γ1 is the grading operator ofT1: ð25Þ

This corresponds to the space M ∪ M where M is the
space associated with the spectral triple T1. In particular,
if the spectral triple T1 is that of the Moyal plane (10),
i.e., M ¼ R2�, with the grading operator γ1 ¼ γM ¼ σ3,
then the product space T ≔ T1 ⊗ T2, is known as the
doubled Moyal plane and the spectral triple for which is
given by

AT ¼ Hq ⊗ Md
2ðCÞ; HT ¼ ðHc ⊗ C2Þ ⊗ C2;

DT ¼ DM ⊗ 12 þ σ3 ⊗ D2: ð26Þ

Here the subscript T stands for total. Further, the total
grading operator here takes the form

γT ¼ γM ⊗ γ2 ¼ σ3 ⊗ σ3; ð27Þ

as the grading operator for the two-point space is also the
same as that for the Moyal plane, i.e., γ2 ¼ γM ¼ σ3. The
pure states in the doubled Moyal plane (see Fig. 1),
between which we shall be computing the distances, also
comes in a tensor product form

ΩðzÞ
i ¼ ρz ⊗ ωi; i ∈ f1; 2g; ð28Þ

where ω1 and ω2 are the only two pure states of the two-
point space [see (A5) in Appendix]. The fact that the

“composite” pure states ΩðzÞ
i also remains pure is because

of the fact that the algebra A2 ¼ C2 is Abelian. In Fig. 1,
the two copies of the Moyal plane ðR2�Þ are denoted by Σi
based on the pure states ωi. It was shown in [7] for the
unital doubled Moyal plane that the transverse distance dt
between a state ρz of the single Moyal plane and its “clone”
belonging to the other Moyal plane is the same as that of the

distance between states ω1 and ω2 of the two-point space
(see Appendix A)2

dtðΩðzÞ
1 ;ΩðzÞ

2 Þ ¼ dtðρz ⊗ ω1; ρz ⊗ ω2Þ

¼ dD2
ðω1;ω2Þ ¼

1

jΛj : ð29Þ

Analogously, the longitudinal distance dl computed
between the states ρ0 and ρz belonging to the same copy
of the Moyal plane Σi is equal to the distance between ρ0
and ρz on the same Moyal plane

dlðΩð0Þ
i ;ΩðzÞ

i Þ ¼ dDM
ðρ0; ρzÞ ¼

ffiffiffiffiffi
2θ

p
jzj: ð30Þ

Distance, dh, between the pair of states like ΩðzÞ
1 and Ωð0Þ

2 ,
as shown in Fig. 1, is known as the hypotenuse distance. In
case of a commutative and unital spectral triple, these
distances obey the Pythagoras equality

fdhðΩ1 ¼ ρ ⊗ ω1;Ω2 ¼ ρ0 ⊗ ω2Þg2
¼ fdtðΩ1 ¼ ρ ⊗ ω1;Ω2 ¼ ρ ⊗ ω2Þg2
þ fdlðΩ1 ¼ ρ ⊗ ω1;Ω2 ¼ ρ0 ⊗ ω1Þg2: ð31Þ

This Pythagoras theorem is shown to be valid even for
certain noncommutative but unital spectral triple [6]. In
fact, by unitizing the algebra associated with the Moyal
plane it was shown that the Pythagoras theorem is obeyed
on the doubled unitized Moyal plane [7]. Here, one of our
aims is to compute the above spectral distances on the
doubled Moyal plane, in the context of the Hilbert-Schmidt
operatorial formulation of the noncommutative quantum
mechanics [12], by making use of the Dirac eigenspinors,
and verify the Pythagoras equality without unitizing the
algebra Hq.

FIG. 1. R2� ∪ R2�, Space associated with the doubled Moyal
plane.

2This distance was used in [7] to reconcile the nonvanishing
nature of the “quantum length” between a state and itself [15]
with the spectral distance between a state and its clone, thereby
identifying 1

jΛj ∼
ffiffiffi
θ

p
∼ Lp -the Planck length. This issue, how-

ever, is beyond the scope of this paper.
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Just as the algebra elements of the Moyal plane act on its
Hilbert space elements through diagonal representation
(11), a generic element of

aT ¼ jψÞ ⊗
�
λ1 0

0 λ2

�
∈ AT ¼ Hq ⊗ Md

2ðCÞ

(25), where Md
2ðCÞ is the c-valued 2 × 2 diagonal matrix

[see (A2) in Appendix A], acts on a generic element

jΦiT ¼
� jϕ1i
jϕ2i

�
⊗

�
μ1

μ2

�
∈ HT ¼ ðHc ⊗ C2Þ ⊗ C2

(With λ1, λ2, μ1, μ2 ∈ C) as

πðaTÞjΦiT ¼
�� jψÞ 0

0 jψÞ

�
⊗

�
λ1 0

0 λ2

���� jϕ1i
jϕ2i

�

⊗
�
μ1

μ2

��
¼

� jψÞjϕ1i
jψÞjϕ2i

�
⊗

�
λ1μ1

λ2μ2

�
:

ð32Þ

Moreover, the total Dirac operator DT (26) is obtained by
substituting the forms of DM from (10) and D2 (A1) in
Appendix A to get,

DT ¼
ffiffiffi
2

θ

r �
0 b̂†

b̂ 0

�
⊗

�
1 0

0 1

�

þ
�
1 0

0 −1

�
⊗

�
0 Λ
Λ̄ 0

�
: ð33Þ

By writing Λ ¼ jΛjeiϕ, we can carry out a unitary trans-
formation of the above Dirac operator:
DT → UðϕÞDTU†ðϕÞ, where UðϕÞ is given by

UðϕÞ ¼
� 1Hq

0

0 1Hq

�
⊗

�
e
−iϕ
2 0

0 e
iϕ
2

�
; ð34Þ

so that the Dirac operator becomes

DT ¼
ffiffiffi
2

θ

r �
0 b̂†

b̂ 0

�
⊗

�
1 0

0 1

�

þ jΛj
�
1 0

0 −1

�
⊗

�
0 1

1 0

�
: ð35Þ

The first slot of UðϕÞ in (34), which is the representation of
1Hq

is, however, a bit troubling since the Moyal plane
algebra AM ¼ Hq is nonunital: 1Hq

∉ Hq. The way out is
provided by the sequence of projection operators PN (16),
all of which lie in BðHMÞ (10) and can be considered to
reproduce the identity element in the N → ∞ limit:

lim
N→∞

PN ¼ πð1Hq
Þ: ð36Þ

This identification relies on the fact that the composite
operators formed by multiplying any compact operators,
like a Hilbert-Schmidt operator ∈ Hq by PN, is same as that
of multiplication with the identity operator in the limit
N → ∞. Note that in order to arrive at a “unitary equiv-
alent” spectral triple, i.e., ðAT;HT; UðϕÞDTU†ðϕÞ), with
UðϕÞ as in (34), one needs to make a simultaneous unitary
transformation of πðaTÞ using thisUðϕÞ. This simultaneous
transformation ensures that the ball condition (B) in (12)
remains invariant. It is, however, quite straightforward to
verify that πðaTÞ as given in (32) remains invariant under
such a unitary transformation and therefore we need not
worry about this issue any more. From this point onward,
unless mentioned otherwise, we will therefore take Λ ∈ R
and positive, Λ > 0, without loss of generality in order to
avoid clutter in the notation. Moreover, such a unitary
equivalent spectral triple is a part of several other trans-
formations which preserves the metric properties of the
triple (see [6]).
Before concluding this section, we would like to

mention that it is also possible to retrieve individual spectral
triples T1 or T2 along with their respective distances from
the composite one T (25), provided certain conditions are
satisfied. For the spectral triple (26) these conditions are
indeed satisfied, as we shall exhibit now. To that end,
we begin with a brief review of the concept of the restricted
spectral triple as introduced in [6]. For a given spectral
triple ðA;H;DÞ, let us consider the action of a self-adjoint
element ρ ∈ A, satisfying the property of a projector:
ρ2 ¼ ρ ¼ ρ�, on an arbitrary algebra element a ∈ A
through the following map

αρ∶ A → A; a ↦ αρðaÞ ¼ ρaρ: ð37Þ

This transformation gives rise to the following “restricted”
spectral triple

AðρÞ ¼ αρðAÞ; HðρÞ ¼ πðρÞH; DðρÞ ¼ πðρÞDπðρÞ;
ð38Þ

where πðρÞ indicates that the domain of representation π
has been restricted to πjHðρÞ . For a pair of pure states ω1 and
ω2 of AðρÞ, the corresponding spectral distance remains
unaffected by projection (see, e.g., Lemma 1 in [6]), i.e.,

dðρÞðω1;ω2Þ ¼ dðω1∘αρ;ω2∘αρÞ ∀ ω1; ω2 ∈ PðAðρÞÞ;
ð39Þ

provided

½D; πðρÞ� ¼ 0: ð40Þ

This condition implies that πðρÞ should correspond to a
projection operator built out of the eigenspinors of the
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Dirac operator. In the case of the spectral triple (26)
for example, this should involve PN (16) and ωi (A5).
Indeed, it can be verified in a straightforward manner that

the projection operators PðtransÞ
Tð0Þ and PðlongÞ

TðiÞ ðNÞ, defined as

PðtransÞ
Tð0Þ ≔ P0 ⊗ 12 ¼

� j0ih0j 0

0 0

�
⊗ 12 ∈ AT

PðlongÞ
TðiÞ ðNÞ ≔ PN ⊗ ωi ¼

�
PN 0

0 PN−1

�
⊗ ωi;

i ¼ 1; 2 ð41Þ

can be used to construct the following two spectral triples
from (26). The first one yields

PðtransÞ
Tð0Þ ATP

ðtransÞ
Tð0Þ ¼

� j0ih0j 0

0 0

�
⊗ Md

2ðCÞ;

PðtransÞ
Tð0Þ HT ¼

� j0i
0

�
⊗ C2;

PðtransÞ
Tð0Þ DTP

ðtransÞ
Tð0Þ ¼ P0 ⊗ D2; ð42Þ

which is clearly identical to the one involving two-point
space (24). Note that in this case the role of representation π
becomes redundant. Essentially following the same
approach one can also retrieve the unitized version of
the spectral triple for the single Moyal plane (10) by

making use of the projector PðlongÞ
TðiÞ ðNÞ in the limit N → ∞.

Moreover, for any finite Nð0 < N < ∞Þ this does not
belong toAT . This stems from the fact that the projector PN
(16) by itself can not be identified with the diagonal
representation π of AM ¼ Hq (10). It is also easily
verifiable that either of the projectors (41) commute with
the total Dirac operator DT (26):

½DT; P
ðtransÞ
Tð0Þ � ¼ ½DT; P

ðlongÞ
TðiÞ ðNÞ� ¼ 0: ð43Þ

This is precisely the condition (40) so that the results (29),
(30), regarding the transverse and longitudinal distances,
follow trivially from (39). Further, the fact that the RHS of
(29) is independent of “z” can be seen easily by first

considering a slight variant of the projector PðtransÞ
Tð0Þ viz.

PðtransÞ
TðzÞ ¼ P0̃ ⊗ 12 ¼

� j0̃ih0̃j 0

0 0

�
⊗ 12 ð44Þ

where the states j0̃ih0̃j can be thought to be anchored to the
“shifted” origin (in the spirit of Gelfand and Naimark) as
discussed earlier (22) and then invoking the translational
invariance of the spectral distance of the coherent states,
parametrized by the complex plane [see the discussion
below (22)].

IV. CONSTRUCTION OF EIGENSPINORS
OF THE TOTAL DIRAC OPERATOR DT

Looking at the total Dirac operator (35), we realize that its
eigenspinors would belong to a space spanned by the tensor
product of the Moyal plane eigenspinors (13) on the left slot
and eigenspinors 1ffiffi

2
p ð 1

�1
Þ of σ1 ¼ ð0

1
1
0
Þ on the right slot. One

is immediately tempted to work with the irreducible sub-
spaces of the eigenspinors viz. spin up (↑) subspace

SpanfVðmÞ
þþ; V

ðmÞ
−þg, formed by tensoring with j↑i ≔ 1ffiffi

2
p ð1

1
Þ

where σ1j↑i ¼ þj↑i and spin down (↓) subspace

SpanfVðmÞ
þ− ; V

ðmÞ
−− g, formed by tensoring with j↓i ≔

1ffiffi
2

p ð 1
−1Þ satisfying σ1j↓i ¼ −j↓i where the (unnormalized)

spinors VðmÞ
�� are given by

VðmÞ
�� ¼

� jmi
�jm − 1i

�
⊗

�
1

�1

�
: ð45Þ

To that end, we consider an arbitrary linear combination of

spinors from the spin up subspace, i.e., C1
mV

ðmÞ
þþ þ C2

mV
ðmÞ
−þ

and require it be an eigenspinor of the total Dirac operator
(35). This yields the following eigenvalue equation0

B@
ffiffiffiffiffi
2m
θ

q
Λ

Λ −
ffiffiffiffiffi
2m
θ

q
1
CA�

C1
m

C2
m

�
¼ λðmÞ

�
C1
m

C2
m

�
; ð46Þ

whose eigenvalues are

λðmÞ
� ¼ �Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p
; κ ¼ 2

θΛ2
; ð47Þ

and eigenspinors are (up to appropriate normalization)

jΦðmÞ
þ↑ i ¼ VðmÞ

−þ þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p þ ffiffiffiffiffiffi
κm

p ÞVðmÞ
þþ;

jΦðmÞ
−↑ i ¼ VðmÞ

−þ − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p
−

ffiffiffiffiffiffi
κm

p ÞVðmÞ
þþ: ð48Þ

Here the subscript þ and − stands for the eigenvalue being

λðmÞ
þ andλðmÞ

− , respectively.Repeating thesameexercise for the
spin down subspace we obtain the same set of eigenvalues
(47), while the corresponding eigenspinors are as follows:

jΦðmÞ
þ↓ i ¼ VðmÞ

−− − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p þ ffiffiffiffiffiffi
κm

p ÞVðmÞ
þ− ;

jΦðmÞ
−↓ i ¼ VðmÞ

−− þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p
−

ffiffiffiffiffiffi
κm

p ÞVðmÞ
þ− : ð49Þ

However, these subspaces are not invariant under the
action of the algebra AT (26) as some of the algebra
elements (e.g., in the case of transverse distance) mixes the
eigenspinors of the two subspaces and one has to work with
all the four of them anyway. It turns out that working with
the following (symmetric) linear combination of the
eigenspinors, rather than the ones obtained earlier (48)–
(49), simplifies our calculations drastically:
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jΨðmÞ
þ i ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κmþ 1
p

−
ffiffiffiffiffiffi
κm

p ÞjΦðmÞ
þ↑ i þ jΦðmÞ

þ↓ i; jΨðmÞ
− i ¼ jΦðmÞ

−↓ i − ð ffiffiffiffiffiffi
κm

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p ÞjΦðmÞ
−↑ i;

jΨ̃ðmÞ
þ i ¼ jΦðmÞ

þ↑ i − ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p
−

ffiffiffiffiffiffi
κm

p ÞjΦðmÞ
þ↓ i; jΨ̃ðmÞ

− i ¼ jΦðmÞ
−↑ i þ ð ffiffiffiffiffiffi

κm
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κmþ 1
p ÞjΦðmÞ

−↓ i: ð50Þ

One can write a normalized version of these eigenspinors in the following compact form

jΨðmÞ
� i ¼ Nm½VðmÞ

þþ þ VðmÞ
−− � VðmÞ

−þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p ∓ ffiffiffiffiffiffi
κm

p Þ ∓ VðmÞ
þ−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p � ffiffiffiffiffiffi
κm

p Þ�

jΨ̃ðmÞ
� i ¼ Nm½VðmÞ

þ− þ VðmÞ
−þ � VðmÞ

þþð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p � ffiffiffiffiffiffi
κm

p Þ ∓ VðmÞ
−− ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p ∓ ffiffiffiffiffiffi
κm

p Þ�; Nm ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κmþ 1

p ð51Þ

where m ∈ f1; 2; 3…g and Nm is the normalization constant. Moreover the case of m ¼ 0 is 2 dimensional, unlike the
eigenspinors in (51), which are 4 dimensional for each m. The m ¼ 0 case can be written after normalization as

jΨð0Þ
� i ¼ 1ffiffiffi

2
p

� j0i
0

�
⊗

�
1

�1

�
: ð52Þ

Here again the subscript � represents the eigenvalues λð0Þ� ¼ �Λ. The whole set (51), (52) furnishes a complete and an
orthonormal basis for the entire space:

hΨðmÞ
� jΨðnÞ

� i ¼ hΨ̃ðmÞ
� jΨ̃ðnÞ

� i ¼ δmn; hΨð0Þ
� jΨð0Þ

� i ¼ 1; m; n ∈ f1; 2; 3…g
hΨðmÞ

� jΨðnÞ∓ i ¼ hΨ̃ðmÞ
� jΨ̃ðnÞ∓ i ¼ hΨ̃ðmÞ

� jΨðnÞ
� i ¼ hΨ̃ðmÞ

� jΨðnÞ∓ i ¼ 0

hΨðmÞ
� jΨð0Þ

� i ¼ hΨðmÞ
� jΨð0Þ∓ i ¼ hΨ̃ðmÞ

� jΨð0Þ
� i ¼ hΨ̃ðmÞ

� jΨð0Þ∓ i ¼ 0: ð53Þ

V. COMPUTING SPECTRAL DISTANCES IN THE
DOUBLED MOYAL PLANE

In this section we will compute the exact distances for all
the three cases and reproduce the results obtained by
Martinetti and Tomassini, 2013 [7] including the
Pythagoras equality for the doubled Moyal plane. We will
do so by making explicit use of the Dirac eigenspinors
(51)–(52) that we have just constructed. This will involve
making the right ansätze regarding the structure of the
optimal algebra elements belonging to AT (26). Necessary
hints for the same can be obtained from the corresponding
structure of (17) for the single Moyal plane. In an
alternative approach, we show how the projection operators
built out of these same Dirac eigenspinors can be used to
compute the transverse distance, instead of unitizing the
algebra A as in [7].

A. Longitudinal distance

To start with, we consider a generic algebra element
aT ∈ AT ¼ Hq ⊗ Md

2ðCÞ, which can be written in a
separable form as aT ¼ a ⊗ a2 where a ∈ Hq and

a2 ≔
�
c1 0

0 c2

�
∈ C2:

Since the search for the optimal algebra element can be
restricted to the ones which are self-adjoint: a†T ¼ aT [7],

we can set a† ¼ a and restrict c1 and c2 to the real numbers:
c1, c2 ∈ R. To compute the longitudinal distance dPQ ¼
dP0Q0 as shown in Fig. 2, we substitute the states ΩðzÞ

i and

Ωð0Þ
i from (28) in the Connes distance formula (12), along

with the algebra element aT to obtain

dlðΩðzÞ
i ;Ωð0Þ

i Þ ¼ sup
aT∈BT

jΩðzÞ
i ðaTÞ −Ωð0Þ

i ðaTÞj ð54Þ

¼ sup
aT∈BT

jTrHM
ðdΩiaTÞj; dΩi ¼ ΩðzÞ

i − Ωð0Þ
i ð55Þ

¼ sup
aT∈BT

jcij · jTrHc
ððρz − ρ0ÞaÞj ð56Þ

FIG. 2. Different states belonging to the same Moyal plane.
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¼ sup
aT∈BT

jcij · jρzðaÞ − ρ0ðaÞj: ð57Þ

Moreover, the ball condition BT is built from the total Dirac
operator DT (35), i.e., k½DT; πðaTÞ�kop ≤ 1 of the doubled
Moyal plane and upon simplification looks like

½DT; πðaTÞ� ¼ ½DM; πðaÞ� ⊗ a2 þ aðc1 − c2Þσ3 ⊗ D2:

ð58Þ

Now, the symmetry of the doubled Moyal plane requires
the longitudinal distance be same on both the sheets. By
imposing this requirement on (57), we get jc1j ¼ jc2j or
c1 ¼ �c2. It is clear from (58) that the condition c1 ¼
c2 ¼ X (say) makes the total ball condition BT identical to
the ball condition BM of the single Moyal plane, thus
yielding the Moyal plane distance (9). The other case: c1 ¼
−c2 gives a distance which is lower than

ffiffiffiffiffi
2θ

p jzj (9), as we
will demonstrate shortly using an algebra element al, and
therefore will be rejected.

Let us now take as an ansatz the optimal element

aðlÞs ≔ ðbþ b†Þ ⊗ a2 ∈ AT ð59Þ

(superscript “l” stands for longitudinal) for the computation
of the longitudinal distance. This is motivated from (17)
where we have set the phase α of z ¼ jzjeiα to α ¼ 0 by
invoking the rotational symmetry on the Moyal plane (see
Appendix B). This means that the longitudinal distance will
be computed along the real axis only. A simple calculation
then yields the following trace

TrHM
ðdΩiðaðlÞs ÞÞ ¼ 2ciz: ð60Þ

The matrix representation of ½DT; πðaðlÞs Þ� is, in general,
infinite dimensional and one needs to project it onto some
finite dimensional subspace (see, e.g., the case of single
Moyal plane in [11]) in order to get hold of the ball
condition BT . There is a natural way to achieve this by
using the projection operators

PN ¼ jΨð0Þ
þ ihΨð0Þ

þ j þ jΨð0Þ
− ihΨð0Þ

− j þ
XN
m¼1

½jΨðmÞ
þ ihΨðmÞ

þ j þ jΨðmÞ
− ihΨðmÞ

− j

jΨ̃ðmÞ
þ ihΨ̃ðmÞ

þ j þ jΨ̃ðmÞ
− ihΨ̃ðmÞ

− j� ∈ ðHq ⊗ M2ðCÞÞ ⊗ M2ðCÞ; ð61Þ

constructed from the Dirac eigenspinors (51), (52). These projection operators PN belong to the same space where
πðaTÞ ∀ aT ∈ AT belong, which is ðHq ⊗ Md

2ðCÞÞ ⊗ Md
2ðCÞ. After explicit calculation the projection operator, quite

remarkably, split as

PN ¼ PN ⊗ 12 ð62Þ

where the projection operator PN is given by (16). We can make use of (61) to obtain various finite dimensional matrix

representations of ½DT; πðaðlÞs Þ� in the form of ½DT;PNπðaðlÞs ÞPN �, by varying N. For P2 and c1 ¼ c2 ¼ X (one of the two

cases of c1 ¼ �c2 as discussed earlier), the matrix ½DT;P2πðaðlÞs ÞP2�≕Ml (say) takes the following form

Ml¼

0
BBBBBBBBBBBBBBBBBBB@

0 0 γ−δ3 γþδ4 γ−δ1 γþδ2 0 0 0 0

0 0 −γþδ4 −γ−δ3 −γþδ2 −γ−δ1 0 0 0 0

−γ−δ3 γþδ4 0 0 0 0 ηðβ−−ϵþÞ −ηðβþþϵ−Þ −ηðβ−þϵ−Þ ηðβþ−ϵþÞ
−γþδ4 γ−δ3 0 0 0 0 ηðβþþϵ−Þ −ηðβ−−ϵþÞ −ηðβþ−ϵþÞ ηðβ−þϵ−Þ
−γ−δ1 γþδ2 0 0 0 0 ηðβ−−ϵ−Þ −ηðβþþϵþÞ −ηðβ−þϵþÞ ηðβþ−ϵ−Þ
−γþδ2 γ−δ1 0 0 0 0 ηðβþþϵþÞ −ηðβ−−ϵ−Þ −ηðβþ−ϵ−Þ ηðβ−þϵþÞ

0 0 −ηðβ−−ϵþÞ −ηðβþþϵ−Þ −ηðβ−−ϵ−Þ −ηðβþþϵþÞ 0 0 0 0

0 0 ηðβþþϵ−Þ ηðβ−−ϵþÞ ηðβþþϵþÞ ηðβ−−ϵ−Þ 0 0 0 0

0 0 ηðβ−þϵ−Þ ηðβþ−ϵþÞ ηðβ−þϵþÞ ηðβþ−ϵ−Þ 0 0 0 0

0 0 −ηðβþ−ϵþÞ −ηðβ−þϵ−Þ −ηðβþ−ϵ−Þ −ηðβ−þϵþÞ 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCA

;

ð63Þ
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where the rows and columns are labeled by jΨð0Þ
þ i, jΨð0Þ

− i, jΨð1Þ
þ i, jΨð1Þ

− i, jΨ̃ð1Þ
þ i, jΨ̃ð1Þ

− i, jΨð2Þ
þ i, jΨð2Þ

− i, jΨ̃ð2Þ
þ i, and jΨ̃ð2Þ

− i of
(51)–(52), respectively. The coefficients β�, γ�, η, ϵ� and δi for i ∈ f1; 2; 3; 4g are given as follows:

β� ¼ Λ
4
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ þ 1
p � ffiffiffiffiffiffiffiffiffiffiffi

κ þ 1
p Þ; γ� ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffi

κ þ 1
p Þ; ϵ� ¼ Λ

4
ð

ffiffiffiffiffi
2κ

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 1

p � ffiffiffi
κ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ þ 1

p Þ; ð64Þ

η ¼ X
ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðκ þ 1Þð2κ þ 1Þp ; δ1 ¼
XΛ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðκ þ 1Þp ð1þ ffiffiffi

κ
p þ ffiffiffiffiffiffiffiffiffiffiffi

κ þ 1
p Þ; δ2 ¼

XΛ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðκ þ 1Þp ð1þ ffiffiffi

κ
p

−
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 1

p Þ;

δ3 ¼
XΛ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðκ þ 1Þp ð1 − ffiffiffi

κ
p þ ffiffiffiffiffiffiffiffiffiffiffi

κ þ 1
p Þ; δ4 ¼

XΛ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðκ þ 1Þp ð1 − ffiffiffi

κ
p

−
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 1

p Þ: ð65Þ

Now the largest eigenvalue of the matrix corresponding to
M†

l Ml (Using Mathematica) comes out to be X2Λ2κ.
Therefore, by using the C� algebra property kM†

l Mlkop ¼
kMlk2op, the ball condition (BT) becomes

k½DT;P2πðaðlÞs ÞP2�kop ¼ XΛ
ffiffiffi
κ

p
≤ 1: ð66Þ

Now substituting this and (60) in (55), while noting that
κ ¼ 2

θΛ2 we obtain the Moyal plane distance (9) as expected.
Moreover, as we increase the rank of the projection
operators PN from N ¼ 2 to N ¼ 3 and so on, we find
that the ball condition (66) remains unaffected and so does
the distance (9) for all orders in N.
As for the case of c1 ¼ −c2 ¼ X we find, after

following the same procedure, that the ball condition gets
modified to

k½DT;P2πðaðlÞS ÞP2�kop ¼ XΛ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ κ þ 4

ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

pq
≤ 1:

ð67Þ

This, together with (60) and (55), gives the following
estimate of the distance

dðΩðzÞ
i ;Ωð0Þ

i Þest ¼
2jzj

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ κ þ 4

ffiffiffiffiffiffiffiffiffiffiffi
1þ κ

pp ; ð68Þ

which is clearly less than (9) and is therefore rejected.

B. Transverse distance

For the transverse case, we take aðtÞs ≔ 1Hq
⊗ a2 as an

ansatz for the optimal algebra element (superscript “t”
stands for transverse) such that its representation looks like

πðaðtÞs Þ ¼
� 1Hq

0

0 1Hq

�
⊗

�
c1 0

0 c2

�
: ð69Þ

The transverse distance dPP0 (see Fig. 3) between the states

ΩðzÞ
1 and ΩðzÞ

2 , when computed using this at, i.e.,

dtðΩðzÞ
1 ;ΩðzÞ

2 Þ ¼ sup
at∈BT

jTrHM
ðdΩðzÞatÞj;

dΩðzÞ ¼ ρz ⊗ ðω1 − ω2Þ ð70Þ

comes out to be same as the spectral distance on the two-
point space (29). However, the algebra of the Moyal plane
is nonunital and thus 1Hq

∉ AM ¼ Hq. In order to get
around this problem, we again make use of the projection

operator PN (16) as in (36) and instead of πðaðtÞs Þ (69) we
work with

πNðaðtÞs Þ ¼
�
PN 0

0 PN−1

�
⊗

�
c1 0

0 c2

�
: ð71Þ

With this choice of representation we get the trace
in (70), as

TrHM
ðdΩðzÞaðtÞs Þ ¼ 1

2
TrHT

ðπðdΩðzÞÞπNðaðtÞs ÞÞ ¼ c1 − c2

ð72Þ

where the extra factor of 1
2
takes care of the double counting

stemming from the diagonal representation (11).

Now the matrix representation of ½DT; πNðaðtÞs Þ�≕Mt
(say) comes out to be a block-diagonal matrix

FIG. 3. Identical (cloned) states belonging to different Moyal
planes.
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Mt ¼

0
BBBBB@

Q 02×4 � � � 02×4

04×2 Rð1Þ � � � 04×4

..

. ..
. . .

.

04×2 04×4 RðNÞ

1
CCCCCA; ð73Þ

where 0m×n are them × n null rectangular matrices whereas
the square matrices Q and RðmÞ are given by

Q ¼
�

0 ΛY
−ΛY 0

�
;

RðmÞ ¼ ΛYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mκ þ 1

p

0
BBB@

0 −
ffiffiffiffiffiffi
mκ

p
0 1ffiffiffiffiffiffi

mκ
p

0 −1 0

0 1 0
ffiffiffiffiffiffi
mκ

p

−1 0 −
ffiffiffiffiffiffi
mκ

p
0

1
CCCA;

Y ¼ c1 − c2; ð74Þ

where m is a positive integer in the range 1 ≤ m ≤ N. With
this the matrix M†

t Mt becomes proportional to the identity
matrix

M†
t Mt ¼ Λ2Y2

0
BBBBB@

12×2 02×4 � � � 02×4

04×2 14×4 � � � 04×4

..

. ..
. . .

.

04×2 04×4 14×4

1
CCCCCA ð75Þ

enabling us to just read off the operator norm as
kM†

t Mtkop ¼ jYj2Λ2, which is independent of both m
and N. We, therefore, get the ball condition (BT) for
arbitrarily large N, as

k½DT; πNðaðtÞs Þ�kop ¼ jYjΛ ≤ 1: ð76Þ

By substituting this and (72) in (70), we obtain the
transverse distance (29). Finally, in the limit N → ∞ the

representation (71) becomes diagonal: πNðaðtÞs Þ → πðaðtÞs Þ,
enabling us to recover the same result as in [7]. Note,
however, that we have achieved this result without explic-
itly unitizing the Moyal plane algebra.

C. Hypotenuse distance

To find the hypotenuse distance dP0Q, we consider the

states ΩðzÞ
1 and Ωð0Þ

2 as shown in Fig. 4. We then proceed by

making an ansatz about the optimal element aðhÞs of the
algebra AT (superscript “h” stands for hypotenuse), as a
linear combination of the optimal elements of the longi-
tudinal (59) and the transverse (71) cases, so that its
representation takes the form:

πNðaðhÞs Þ ¼
�
bþ b† 0

0 bþ b†

�
⊗

�
X 0

0 X

�

þ
�
PN 0

0 PN−1

�
⊗

�
c1 0

0 c2

�
: ð77Þ

Note that we have only considered the case c1 ¼ c2 ¼ X, as

discussed in Sec. VA. With this πNðaðhÞs Þ we obtain, after a
bit of calculation, the following trace

TrHT
ðπNðaðhÞs ÞπðΩðzÞ

1 − Ωð0Þ
2 ÞÞ

¼ 4zX þ 2c1e−jzj
2

�
1þ jzj2 þ � � � þ jzj2N

N!

�
− 2c2; ð78Þ

which in the limit N → ∞, takes the form

TrHT
ðπðaðhÞs ÞπðΩðzÞ

1 −Ωð0Þ
2 ÞÞ ¼ 2ð2zX þ YÞ ð79Þ

where Y is same as in (74). Therefore, the spectral distance
(12), in this case, takes the following form

dhðΩðzÞ
1 ;Ωð0Þ

2 Þ ¼ sup
aðhÞs ∈BT

jTrHM
ððΩðzÞ

1 − Ωð0Þ
2 ÞaðhÞs Þj ð80Þ

¼ sup
aðhÞs ∈BT

1

2
jTrHT

ðπðΩðzÞ
1 −Ωð0Þ

2 ÞπðaðhÞs ÞÞj ð81Þ

¼ sup
aðhÞs ∈BT

j2zX þ Yj: ð82Þ

Now the matrix representation of ½DT;PNπNðaðhÞs Þ×
PN �≕Mh is just the sum of the matrices appearing
in the longitudinal (63) and transverse (73) cases. The
largest eigenvalue of the matrix M†

hMh comes out to
be Λ2ðκX2 þ Y2Þ thus, yielding the following ball
condition (BT):

k½DT;PNπðaðhÞs ÞPN �kop ¼ Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κX2 þ Y2

p
≤ 1: ð83Þ

In order to solve the expression (82), subject to the ball
condition (83), let us consider the following lemma which
can easily be proven (see, e.g., Lemma 7 of [9]).

FIG. 4. Different states belonging to different Moyal planes.
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Lemma: For any α, β ≥ 0,

sup
x2þy2≤1

ðαxþ βyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
ð84Þ

Now, by appropriately identifying the symbols in the

above lemma as α ≔ 2jzjffiffi
κ

p
Λ ¼ ffiffiffiffiffi

2θ
p jzj, β ≔ 1

Λ, x ≔ Λ
ffiffiffi
κ

p
X and

y ≔ ΛY, we obtain the following hypotenuse distance:

dhðΩðzÞ
1 ;Ωð0Þ

2 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2θjzj2 þ 1

jΛj2
s

: ð85Þ

Now, by making use of (30), (29), this can be recasted as

dhðΩðzÞ
1 ;Ωð0Þ

2 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdlðΩðzÞ

i ;Ωð0Þ
i ÞÞ2 þ ðdtðΩð0Þ

1 ;Ωð0Þ
2 ÞÞ2

q
;

ð86Þ

which is exactly the Pythagoras equality (see Fig. 4) that we
discussed earlier (31).

VI. HIGGS FIELD FROM THE INTERNAL
FLUCTUATION OF THE TOTAL

DIRAC OPERATOR

In this penultimate section, we first provide a brief
review of the fluctuated Dirac operator. We then discuss the
emergence of a “Higgs field” in the framework of non-
commutative geometry and its impact on the metric. For
this, we follow [2,6] in particular. The notion of the Higgs
field emerges automatically, along with the other gauge
fields, when the tensor product of the spectral triples like
the one which describes the doubled Moyal plane (25) are
considered. The concept of the charge conjugation operator
in the spectral triple ðA;H;DÞ, is brought about by the so-
called real structure J which is an antiunitary operator onH
satisfying J2 ¼ ϵ, JD ¼ ϵ0DJ and Jγ ¼ ϵ00γJ, where ϵ, ϵ0
and ϵ00 are restricted to the values �1 only. The KO-
dimension3 n ∈ Z8 is then determined by the values of ϵ, ϵ0
and ϵ00 according to a standard table (see [2]). To preserve
the operator J under a unitary transformation u ∈ A,
satisfying u�u¼ uu� ¼ 1 of πðAÞ, as in Sec. III, one has
to use U ≔ uJuJ−1, which fluctuates the Dirac operator as

DA ¼ UDU† ¼ Dþ Aþ ϵ0JAJ−1;

A ¼ πðaiÞ½D; πðbiÞ� with ai; bi ∈ A: ð87Þ

Here A0s are nothing but the Clifford algebra valued one-
forms of the triple ðA;H;DAÞ. We suppress the summation

index “i” from now on for brevity. The last term JAJ−1 in
(87) plays no role in the distance calculation, as it
commutes with πðaÞ ∀ a ∈ A as can be shown easily
by employing the so-called first order axiom and the
axiom of reality (see, for instance, Lemma 5 in [6]).
This leaves the ball condition B (12) unchanged and we
therefore drop this term. Actually, the charge conjugation
operator J maps an algebra element a ∈ A to the opposite
algebra element ao, satisfying ðabÞo ¼ boao, so that
πðaoÞ ≔ JπðaÞ†J−1 ∀ a ∈ A can act from the right on
the elements of the Hilbert space H.
This, however, is not allowed in the present construction

of the spectral triple (26) as here we have only a left
module, whereas we need a bi-module where both the left
and the right actions are defined. To this end, consider the
following spectral triple

ÃT ≔ AT ¼ Hq ⊗ Md
2ðCÞ;

H̃T ¼ ðHq ⊗ M2ðCÞÞ ⊗ Md
2ðCÞ ∋ Ψ̃;

D̃TΨ̃ ¼ DTΨ̃þ Ψ̃DT; ð88Þ

instead of (26). Note that we have just replaced HT in (26)
by H̃T here, by replacing the two factors of C2 in HT by
M2ðCÞ and Md

2ðCÞ respectively. Here the representation
π is as before (32) and the grading operator γ̃TΨ̃ ¼
γTΨ̃þ Ψ̃γT , with the γT as in (27). Note that there is no
difference in the structures of DT and D̃T ; the difference
arises from their action on Ψ̃ ∈ H̃T . More precisely, the
action on the latter is given by the sum of the left and the
right actions of the former. Likewise for γT and γ̃T . On this
spectral triple we can define the charge conjugation
operator JT, as JTΨ̃ ¼ Ψ̃† (i.e., Hermitian conjugate of
Ψ̃), which implies that J−1T ¼ JT as J

†
T ¼ J−1T . With this real

structure JT the right action DT can be represented by
JTDTJ−1T Ψ̃ ¼ JTðDTΨ̃†Þ ¼ Ψ̃DT by using the fact that the
Dirac operator is Hermitian. One can now check easily
that ϵ ¼ ϵ0 ¼ ϵ00 ¼ 1 and the KO-dimension of this triple
comes out to be 0 modulo 8. We therefore have
D̃T ¼ DT þ JTDTJ−1T , which again enables us to easily
verify that ½D̃T; πðaTÞ� ¼ ½DT; πðaTÞ� for all aT ∈ AT .
In light of this we see that the ball condition B (12)
remains unaffected with the new spectral triple (88) thus
producing the same distance as in previous triple
ðAT;HT;DTÞ making the two triples equivalent. We can
therefore revert back to the previous definition of the
spectral triple of the doubled Moyal plane (26) except
that the Dirac operator is now augmented by a “Higgs”
term:

DA ¼ DT þ A: ð89Þ

To understand the splitting of the one-form A (87) in case
of the doubled Moyal plane, we consider the algebra

3KO dimension is the shift in the grading on K-theory, which is
involved in a Poincaré duality for spectral triple [16]. It perhaps
owes this terminology from the fact that the Dirac operator
defines a class in K-homology and not in the ordinary homology.
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elements to be of separable form like aT ≔ a ⊗ a2 and
bT ≔ b ⊗ b2 ∈ AT as in Sec. VA so that we get

πðaTÞ½DT; πðbTÞ� ¼ πðaÞ½DM; πðbÞ� ⊗ a2b2

þ σ3πðabÞ ⊗ a2½D2; b2�: ð90Þ

Note that we have used the fact that the chirality operator
commutes with the representation of the algebra elements
in the above calculation. The first term on the right-hand
side of (90) contains a generic one-form of the Moyal
plane, i.e., πðaÞ½DM; πðbÞ�, which gives rise to gauge fields
in the noncommutative geometry. On the other hand, the
additional second term on the RHS of (90) has the one-form
of the two-point space, i.e., a2½D2; b2�, which gives rise to a
prototype of the scalar Higgs field. For our discussion here
we only focus on the implications of this “Higgs field” on
the metric aspects particularly on the transverse distance.
We thus retain only this term so that the one-form A
becomes

A ¼ cσ3 ⊗ a2½D2; b2�; c ≔ ab ∈ Hq: ð91Þ

It is noteworthy that we can write this as A ¼ σ3 ⊗ H,
where H ¼ ca2½D2; b2� is referred to as the “Higgs field”
in the literature. This is, however, in our case just a
prototype scalar Higgs field as we are dealing only with
the 2 dimensional Moyal plane. We now want to compute
the transverse distance dtðρz ⊗ ω1; ρz ⊗ ω2Þ between a
generic state ρz ¼ jzihzj in one of the Moyal planes and its
clone on the other one, i.e., the counterpart of (29) in the
presence of the “Higgs” field. To do so we construct the
restricted spectral triple using the prescription (38), with

the projection operator PN¼0̃ (62), which is same as PðtransÞ
TðzÞ

(44). But to ensure that this transverse distance can again be
computed through this restricted triplet itself, we have to
ensure that the condition (40) is satisfied here too, i.e.,

½DA; P
ðtransÞ
TðzÞ � ¼ 0: ð92Þ

By making use of (44), (91) this essentially boils down to

½c; j0̃ih0̃j� ¼ ½c; jzihzj� ¼ 0; ð93Þ

which can easily be shown to satisfy, for example, if c
belongs to the subspace H0̃

q ≔ Spanfjm̃ihñj∶ m; n ∈
f1; 2; 3…gg. We shall, for simplicity, assume in the
following that this condition holds. Otherwise, one has
to clearly make use of complete spectral triple. Clearly,
even if (93) holds for a particular state ρz ¼ jzihzj, it does
not imply that it holds for the other states ρz0 ¼ jz0ihz0j as
well. Now, any arbitrary algebra element aT ∈ AT (26)
gets projected (for a ∈ AM and c1, c2 ∈ C) with this
projector as

πðaTÞ ¼
�
a 0

0 a

�
⊗

�
c1 0

0 c2

�
↦ PN¼0̃πðaTÞPN¼0̃

¼
� j0̃ih0̃j 0

0 0

�
⊗

�
fc1 0

0 fc2

�
;

f ¼ h0̃jaj0̃i ¼ hzjajzi: ð94Þ

Likewise, using the algebra element

a2 ¼
�
α1 0

0 α2

�
; b2 ¼

�
β1 0

0 β2

�
∈ Md

2ðCÞ

with α1, α2, β1, β2 ∈ C in (91) for the two-point space, the
fluctuated Dirac operator (89), gets projected as

DA ↦ PN¼0̃DAPN¼0̃ ¼
� j0̃ih0̃j 0

0 0

�

⊗
�

0 Λð1þ gα1ðβ2 − β1ÞÞ
Λ̄ð1þ gα2ðβ1 − β2ÞÞ 0

�
:

ð95Þ

Here g ¼ gðx1; x2Þ ¼ h0̃jcðx̂1; x̂2Þj0̃i ¼ hzjcðx̂1; x̂2Þjzi is
some function of the dimensionful coordinates x1 and x2
(7) and Λ ∈ C (Note that the unitary transformation using
UðϕÞ (34) to render Λ real, as in Sec. III, has not been
performed here). Further, the demand that the projected
Dirac operator be Hermitian yields gα1ðβ2 − β1Þ ¼
gα2ðβ1 − β2Þ. Moreover, any arbitrary element of the
Hilbert space

Ψ ≔
� jψ1i
jψ2i

�
⊗

�
c1
c2

�
∈ HT

(26), gets projected as

Ψ ↦ PN¼0̃Ψ ¼
� j0̃i

0

�
⊗

�
hc1 0

0 hc2

�
; h ¼ h0̃jψ1i:

ð96Þ

Finally, the projected spectral triple as a whole takes the
following form:

AðPN¼0̃Þ
T ¼

� j0̃ih0̃j 0

0 0

�
⊗ Md

2ðCÞ;

HðPN¼0̃Þ
T ¼

� j0̃i
0

�
⊗ C2;

DðPN¼0̃Þ
T ¼

� j0̃ih0̃j 0

0 0

�
⊗

�
0 Λðx1; x2Þ
¯Λðx1; x2Þ 0

�

ð97Þ
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where Λðx1; x2Þ ¼ Λð1þ α1ðβ2 − β1Þgðx1; x2ÞÞ is just
another complex number. This has the same form as in
(42); therefore, it essentially has the same structure as that
of the two-point space. The transverse spectral distance,
i.e., the distance between the pure states ρz and its clone is
identical to the spectral distance between the pair of states
ω1 and ω2 of the restricted spectral triple and is given, in
this case, by

dtðρz ⊗ ω1; ρz ⊗ ω2Þ ≔ dðrestÞt ðω1;ω2Þ ¼
1

jΛðx1; x2Þj
:

ð98Þ

This clearly fluctuates along the Moyal plane and repro-
duces (29) in the absence of the “Higgs” field. Thus this
variation of the transverse distance in the presence/absence
of the all pervading “Higgs” field provides an alternative
geometrical perspective about the “Higgs” field itself.

VII. CONCLUSION

Finite matrix spaces play a crucial role in the formulation
of the “standard model” in the framework of the non-
commutative geometry [1,2]. On the other hand, the Moyal
plane is one of the promising candidate for modeling the
geometry near the Planck scale. The merger of these two
spaces with the matrix space given, specifically by (A1),
yields the doubled Moyal plane which presents itself as a
very interesting toy model. We have explored its metric
structure using the Connes prescription of spectral dis-
tances in a Hilbert-Schmidt operatorial framework, which
facilitates the construction of the Dirac eigenspinors and
provides a natural basis to work with. Working with this
basis also helps us in economizing our calculations and
reproducing several results existing in the literature [6,7].
The actual calculations of various distances are done

using specific “optimal” algebra elements, which are par-
tially motivated from our previous work [11]. The distances
comes out very neatly and satisfy the Pythagorean equality
exactly as expected. We did encounter the need to introduce
the identity element of the Moyal algebra to render it unital,
but, as an alternative approach to [7], we worked with a
sequence of projection operators constructed from the
Dirac eigenspinors, which in the limiting case (N → ∞)
represents the identity element.
Finally, we fluctuate the Dirac operator and focus on the

“Higgs” field part and analyze its impact on the variation of
the transverse distance in the doubledMoyal plane. In order
to fluctuate the Dirac operator we had to modify the
spectral triple at an intermediate stage to arrive at an
equivalent triple (in the sense that the ball condition and
hence the metric is not altered), so as to be able to
incorporate the real structure. At the end, however, we
reverted back to our earlier triple, except that the Dirac
operator is now augmented with a “Higgs” term. As a

consequence, we found how the transverse distance,
obtained by constructing a suitable projection operator to
restrict the spectral triple to the two-point space, depends
on the coordinates of the Moyal plane. This projection
operator, in turn, had to be necessarily constructed with
these eigenspinors, thus illustrating the important role
played by the eigenspinors, which, we feel, were not
emphasized adequately in the literature.
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APPENDIX A: THE SPECTRAL DISTANCE ON
TWO-POINT SPACE

Two-point space is an abstract mathematical space of
two complex numbers, for which the spectral triple is given
by (see [2])

�
A2 ¼ C2;H2 ¼ C2;D2 ¼

�
0 Λ
Λ̄ 0

��
ðA1Þ

where Λ is a constant complex parameter of length-inverse
dimension. Let us consider

a ¼
�
λ1

λ2

�
¼ λ1

�
1

0

�
þ λ2

�
0

1

�
∈ A2 ¼ C2:

One can replace the canonical bases ð1
0
Þ and ð0

1
Þ of C2 ¼

Spanfð1
0
Þ; ð0

1
Þg by the matrices ð1

0
0
0
Þ and ð0

0
0
1
Þ respectively,

such that C2 ¼ Spanfð1
0

0
0
Þ; ð0

0
0
1
Þg. In this new basis, an

arbitrary element a ∈ C2 can be written as

a ¼
�
λ1 0

0 λ2

�
∈ Md

2ðCÞ; ðA2Þ

whereMd
2ðCÞ is the c-valued 2 × 2 diagonal matrix. In this

construction, we see that A2 has a manifest structure of an
algebra through usual matrix multiplication.
The action of a ∈ A2 on

�
μ1

μ2

�
∈ H2 ¼ C2
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is now given in a straightforward manner as follows:

πðaÞ
�
μ1

μ2

�
¼ a

�
μ1

μ2

�
¼

�
λ1 0

0 λ2

��
μ1

μ2

�
¼

�
λ1μ1

λ2μ2

�
:

ðA3Þ

Note that the role of representation π becomes redundant
here as before (A3). Moreover, the pure states ωiðaÞ ∈ C;
i ¼ f1; 2g of A2 ∋ a are given by

ωiðaÞ ¼ TrðωiπðaÞÞ ¼ TrðωiaÞ; ðA4Þ

so that they correspond to the evaluation maps ω1ðaÞ ¼ λ1
and ω2ðaÞ ¼ λ2 of the two points of this space. Clearly, the
choice

ω1 ¼
�
1 0

0 0

�
; ω2 ¼

�
0 0

0 1

�
ðA5Þ

does the job, as can be seen easily by using (A4). Any other
generic state are given by a convex sum of these two pure
states and therefore are necessarily mixed in nature. These
are clearly the density matrices associated to ð1

0
Þ and ð0

1
Þ and

corresponds precisely to the 2 × 2 matrix basis, chosen for
A2 ¼ C2. Now, in order to compute the distance between
these two pure states ωi, let us consider a generic algebra
element

a ¼
�
α1 0

0 α2

�
∈ C2 ≅ Md

2ðCÞ

and insert it in the distance formula (12) to obtain

dðω1;ω2Þ ¼ sup
a∈B

jω1ðaÞ − ω2ðaÞj ¼ sup
a∈B

jα1 − α2j: ðA6Þ

Moreover, the commutator ½D2; πðaÞ� takes the form

½D2; πðaÞ� ¼ ðα1 − α2Þ
�
0 −Λ
Λ̄ 0

�
ðA7Þ

where we have used πðaÞ ¼ a in ω1, ω2 basis as
before. Now invoking the C� property of the algebra A2

here, i.e., k½D2; πðaÞ�k2op ¼ k½D2; πðaÞ�†½D2; πðaÞ�kop and
noting that

½D2; πðaÞ�†½D2; πðaÞ� ¼ jα1 − α2j2jΛj2
�
1 0

0 1

�
; ðA8Þ

we obtain k½D2; πðaÞ�kop ¼ jα1 − α2jjΛj. With this the
Lipschitz ball condition yields

jα1 − α2j ≤
1

jΛj : ðA9Þ

Substituting this in (A6), we obtain the known result of
spectral distance between the pure states ω1, ω2 of the two-
point space [2], which is

dðω1;ω2Þ ¼
1

jΛj : ðA10Þ

APPENDIX B: ON THE OPTIMAL ELEMENT
FOR THE MOYAL PLANE

We provide here a brief review about how an upper
bound of the spectral distance is obtained in the case of
Moyal plane and the subsequent role of the optimal algebra
element as ∈ AM (10) (multiplier algebra), which, by
definition, saturates this bound as well as the one occurring
in the ball condition: ½DM; πðasÞ� ¼ 1. This was explained
in detail in our previous work [11]. As explained already in
Sec. II, the action of the pure state ρz, on a generic algebra
element a ∈ Hq is given by

ρzðaÞ ¼ TrHc
ðρzaÞ ¼ TrHc

ðUðz; z̄Þj0ih0jU†ðz; z̄ÞaÞ
¼ h0jðU†ðz; z̄ÞaUðz; z̄ÞÞj0i ðB1Þ

where Uðz; z̄Þ ≔ e−z̄ b̂þzb̂† and jzi is the coherent state (7).
We, therefore, get the following form of the spectral
distance (12)

dðρz; ρ0Þ ¼ dðωz;ω0Þ
¼ sup

a∈B
jh0jðU†ðz; z̄ÞaUðz; z̄ÞÞj0i − h0jaj0ij: ðB2Þ

Now let us consider a one-parameter family of density
matrices ρzt ¼ jztihztj, with a real affine parameter
t ∈ ½0; 1�, interpolating ρz and ρ0. We can then introduce
the following function:

WðtÞ ¼ ρztðaÞ ¼ TrHc
ðρztaÞ: ðB3Þ

Consequently, we have the inequality,

jωzðaÞ − ω0ðaÞj ¼
����
Z

1

0

dWðtÞ
dt

dt

���� ≤
Z

1

0

���� dWðtÞ
dt

����dt: ðB4Þ

As in Sec. VA, here also we work with a Hermitian element
ða ¼ a† ∈ AMÞ and obtain an upper bound for j dWðtÞ

dt j by
making use of the Cauchy-Schwarz inequality as���� dWðtÞ

dt

���� ¼ jz̄ρztð½b; a�Þ þ zρztð½b; a�†Þj

≤
ffiffiffi
2

p
jzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρztð½b; a�Þj2 þ jρztð½b; a�†Þj2

q
≤

ffiffiffi
2

p
jzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k½b; a�k2op þ k½b; a�†k2op

q
: ðB5Þ

The “ball” condition ½DM; πðaÞ� ≤ 1 [with the Dirac
operator DM (10)] reduces to a simpler form:
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k½b; a�kop ¼ k½b†; a�kop ≤
ffiffiffi
θ

2

r
for a ∈ B: ðB6Þ

From (B5) and (B6), one can therefore write���� dWðtÞ
dt

���� ≤ ffiffiffiffiffi
2θ

p
jzj: ðB7Þ

Hence from Eqs. (B2), (B4), and (B7) we have the
following upper bound for the Connes’ distance:

dðωz;ω0Þ ≤
ffiffiffiffiffi
2θ

p
jzj: ðB8Þ

It is now quite easy to verify the identity that
ωzðasÞ ¼ TrðρzasÞ ¼ jzj cos γ, for some angle γ, with the
optimal element being as (17), so that ω0ðasÞ ¼ 0 holds
trivially. It then clearly follows from (B4), (B8) that the
supremum is indeed reached by an optimal element as of
the form (17), so that the inequality (B8) is saturated.
Besides, it saturates the ball condition also, as mentioned
earlier. This optimal element, however, fails to be a Hilbert-
Schmidt operator. In fact it is not even a compact operator.
Consequently as ∉ Hq ¼ A, but can be thought of as
belonging to the multiplier algebra (see [7] for a resolution
of this issue and also [11] for a variant).
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