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We investigate subregion holographic complexity in the context of renormalization group flow
geometries. We use both the Poincaré slicing and the Janus ansatz as holographic duals to renormalization
group flows in the boundary conformal field theory. In the former metric, subregion complexity is
computed for a disc and a strip shaped entangling region. For the disc shaped region, consistent emergence
of length scales for flow to the deep infrared is established. In the case of a strip shaped entangling region
for both sharp and smooth domain walls, we compute the complexity and contrast its behavior with the
holographic entanglement entropy. Finally, the complexity is computed numerically using the Janus ansatz.
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I. INTRODUCTION

The statistics of information, popularly known as
“information theory” is an old topic that has attracted great
interest in diverse areas of science over the last few
decades. Its more recent avatar, the quantum theory of
information promises to be a leading character in the study
of the quantum computer. While in its initial form,
information theory was devised to deal with questions
related to the “closeness” of statistical distributions; in
quantum theories, it broadly attempts to understand the
following question: How close are two quantum states? For
pure states, this question was addressed in [1]. This was
following an earlier work, which had dealt with a similar
issue in the context of thermal states in an equilibrium
thermodynamic system (for a review, see [2]). The thermal
metric (characterizing the closeness of two equilibrium
thermodynamic states) is known to be related [3] to the
Fisher information metric, popularly studied in the statistics
community. Broadly, the work of [1] developed a notion of
a quadratic form, or a Riemannian metric on the space of
parameters of the system where two pure quantum states
are infinitesimally separated.
In the context of many body quantum systems at zero

temperature, such discussions are relatively recent. Indeed,
as is known by now, there are several measures of informa-
tion in this context, one of them being the proposal of [4],
which, given two quantum ground states in a many-body

system denoted by jg1i and jg2i, the overlap function
jhg1jg2ij provides a characterization of quantum phase
transitions. In [5], the work of [4] was cast in a language
similar to that of [1] and a “quantum information metric”
was constructed for the transverse XY spin chain in a
homogeneous magnetic field. It was shown that this metric
(or more appropriately the scalar curvature associated to it)
was indeed an effective measure to characterize quantum
phase transitions in the model. A flurry of activity followed
soon after, and the information metric and a related quantity
known as the fidelity susceptibility were calculated in a
variety of examples and remain two of the most popular
information theoretic quantities (for a review, see [6]).
In quantum field theories, information theoretic studies

have a long history, and it was realized sometime back that
the renormalization group equations can be written in a
geometric framework; see, e.g., [7–10]. A natural issue that
then arises is the application of similar ideas in the context
of string theory. While a study of overlaps between string
states (in lines with [4]) might require a deeper under-
standing of string field theory and could be somewhat
complicated, nonetheless, the anti–de Sitter/conformal
field theory (AdS=CFT) correspondence provides a new
approach to understanding the origins of quantum infor-
mation in the context of quantum field theories, via
gravity duals.
Indeed, there has been a recent upsurge of interest in

using the AdS=CFT correspondence to elucidate several
key concepts which are essentially quantum information
theoretic in nature. Starting from the celebrated Ryu-
Takayanagi (RT) conjecture for the entanglement entropy
in quantum field theories [11], one such issue of current
interest is the complexity of a quantum state. This quantity
may roughly be defined as the least possible number of
steps needed to construct the state from a given reference
(thus capturing the “difficulty” in creating a quantum state).
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There are currently several proposals in the literature for
calculating quantum complexity using the dual holo-
graphic route.
The first proposal, popularly known in the literature as

the complexity ¼ volume (CV) conjecture [12,13], states
that the complexity of a given quantum state on a time slice
of the boundary CFT is dual to the volume of the maximal
hypersurface in the bulk of codimension one, which is
matched to the boundary at the given time. The second
proposal is the complexity ¼ action (CA) conjecture [14].
This states that the holographic complexity can be evalu-
ated by calculating the gravitational action on a Wheeler-de
Witt patch of the bulk spacetime.
A related proposal, which will be the focus of this paper,

was put forward in [15], based on the CV conjecture of
[12]. It deals with holographic complexity (in the sense of a
“reduced fidelity susceptibility”) of subregions of the
boundary CFT (for related works, see, e.g., [16–21]).
This is, in some sense, a generalization of the CV
conjecture to specific subregions in the boundary and
relates to the volume of the bulk spacetime enclosed by
a Ryu-Takayanagi minimal surface (called RT surface in
the sequel) of codimension two. We will interchangeably
call this the “complexity” or equivalently the “RT volume”
in sequel.
The proposal of [15] for subregion holographic complex-

ity reads

Csubregion ¼
VðγÞ

8πGLAdS
ð1Þ

where VðγÞ is the volume of a minimal Ryu-Takayanagi
surface, G is the Newton’s constant in appropriate dimen-
sion, and LAdS is an AdS length scale. Various aspects of
this quantity have been studied in the literature by now,
including low and high temperature expansions in a thermal
setting (see, e.g., [22]).
In this paper, we consider renormalization group (RG)

flow scenarios in the context of subregion holographic
complexity. For the CFT, adding a relevant operator
triggers a RG flow to either an IR conformal fixed point,
or the theory becomes massive. We study holographic RG
flow geometries using both the Poincaré slicing and the
Janus ansatz. Similar studies have been undertaken for
the entanglement entropy in the past (see, for example,
[23–25]). It is also relevant to mention that much of the
work done in the context of the holographic entanglement
entropy has been motivated by providing a holographic
description for the c functions and its proposed variants
[26,27]. The Janus ansatz, which is the holographic dual of
interface and boundary CFTS (ICFTS and BCFTs), has
been treated in [25]. Although complexity does not
naturally have an analogue of c functions, this study is
physically interesting in its own right. One can ask if, for
example, what physical features of the system are captured

by subregion complexity along RG flows. In particular, a
natural question is whether complexity encodes informa-
tion regarding holographic phase transitions (as discussed
in [27]). It is also interesting to understand the emergence
of different length scales in complexity along a RG flow,
akin to what had been discussed in the context of
entanglement entropy in [23]. Further, in line with a recent
proposal of [28], this might provide useful information for
geometric quantities along a RG flow.
With the above motivations in mind, in this paper we

initiate a study of how holographic complexity behaves in a
RG flow scenario. The paper is organized as follows: in
Sec. II, we first compute the complexity for d ¼ 3, 4
dimensional CFTs for a disc shaped entangling region (and
assuming a sharp domain wall), for which the expressions
are analytically simple and amenable to physical interpre-
tation. We point out some differences between the com-
plexity and the entanglement entropy in such a scenario and
how different scales emerge in the context of the RG flows.
We then proceed to calculate the complexity for an abrupt
domain wall type of geometry for a strip shaped boundary
subsystem and point out some of its aspects. It is known
that this setup exhibits a phase transition for certain values
of the parameters and we track the behavior of the
complexity at this point. Next, we generalize to a smooth
domain wall and numerically calculate the complexity and
analyze the issue of phase transitions in the system. In
Sec. III, we consider the Janus ansatz, and compute the
complexity of ICFT and BCFT numerically. Finally, in
Sec. IV, we conclude with a summary of results and future
directions.

II. HOLOGRAPHIC RG FLOW GEOMETRIES

As mentioned in the Introduction, in the context of the
AdS=CFT correspondence, a RG flow is triggered by a
relevant operator in the CFT. The holographic dual to this
operator is a bulk geometry which incorporates a scalar
field. The resulting bulk action is given by (we follow the
notations of [27])

S ¼ 1

2κ2

Z
dðdþ1Þx

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
: ð2Þ

It is assumed that the scalar potential VðϕÞ has stationary
points such that δVδϕ jϕi

¼ 0where the spacetime is AdS, with

a negative potential energy VðϕiÞ ¼ − dðd−1Þ
L2 α2i . Here, L is

the fundamental length scale in the theory and αi are
dimensionless constants which are different for various
fixed points. At the fixed points, the AdS curvature scale is
given by L̃ ¼ L=αi. It is well known that the metric
representing a holographic RG flow is given by [29]

ds2 ¼ dr2 þ e2AðrÞηijdxidxj: ð3Þ
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In these coordinates, the UV is located at r → ∞ and the IR
is at r → −∞. At both the IR and the UV fixed points, the
conformal factor AðrÞ takes the simple form r

L̃
. Note that the

AdS length L̃ is different for the IR and the UV, with
LUV > LIR. Of course, it is necessary to introduce a UV
cutoff r∞ to obtain a finite result in holographic calcu-
lations. This cutoff has the expression r∞ ¼ LUV logðLUV

δ Þ,
which is related to the standard cutoff zmin ¼ δ for the AdS
metric in the Fefferman-Graham coordinates [27].
We note here that that the conditions AðrÞ∼r as r→�∞

and A00ðrÞ ≤ 0 (required to rule out further AdS boundaries
[29]) are quite restrictive and one is limited to few
consistent choices for AðrÞ. One of these is the step profile
that we will consider in the next subsection, and an example
of a continuous profile will be subsequently considered. We
will now calculate the volume VΣ enclosed by the RT
surface for various forms of the factor AðrÞ and for various
types of entangling surfaces. We begin with a disc shaped
entangling region in a sharp domain wall geometry. Note
that the sharp domain wall geometry is not an exact
supergravity solution. Nonetheless, this is a good model
to study as it offers an analytical handle which is difficult
elsewhere.

A. A sharp domain wall: Disc shaped
entangling region

The explicit form for the conformal factor AðrÞ is taken
as [23,27]

AðrÞ ¼
(
AIRðrÞ ¼ r−r0

LIR
þ r0

LUV
for r ≤ r0

AUVðrÞ ¼ r
LUV

for r ≥ r0
: ð4Þ

This is a step profile, which is continuous at r ¼ r0,
the radius at which two AdS metrics with different
curvatures are sewn together. We investigate the disc
shaped entangling regions for the bulk metric of Eq. (3)
starting with (a ball shaped region in) AdS5. We denote1

by r ¼ rðρÞ the embedding of the ball shaped region in
AdS5, and take the entangling region to be ρ ≤ l. Then the
area of the RT surface that extends into the bulk in this case
is given by

Area ¼ 4π

Z
l

0

dρρ2e3AðrÞð1þ e−2AðrÞr0ðρÞ2Þ12: ð5Þ

The solution to the equations of motion are obtained
by minimizing this area functional. Introducing an UV
cutoff δ, which cuts off the integral for r at r∞ ¼
−LUV logðδ=LUVÞ, this solution is given by [23]

rðρÞ ¼

8>><
>>:

rIRðρÞ ¼ − LIR
2
log

�
l2þδ2−ρ2þc2IR

L2
IR

�
for ρ ≤ ρ0

rUVðρÞ ¼ − LUV
2
log

�
l2þδ2−ρ2

L2
UV

�
for ρ > ρ0;

ð6Þ

where rðρ0Þ ¼ r0 and position of the domain wall is
given by

ρ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ δ2 − L2

UVe
−2r0=LUV

q
: ð7Þ

The constant cIR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
IRe

−2r0=LIR − L2
UVe

−2r0=LUV

q
is deter-

mined by the requirement rUVðρ0Þ ¼ rIRðρ0Þ. We find that,
as in the case of the entanglement entropy in this setup, the
RT volume comes out in terms of some combinations of
parameters, and for convenience, we define an effective
length scale

leff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − L2

UVe
−2r0=LUV

q
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − l2

cr þOðδ2Þ
q

ð8Þ

which is reminiscent of an effective radius of the entangling
disc as seen from the IR, with l2

cr ¼ L2
UVe

−2r0=LUV þOðδ2Þ
being the minimum disc radius for the minimal surfaces to
penetrate into the IR [23]. The equation which gives the
expression for the volume is given schematically as

VΣ ¼ 4π

Z
l

0

dρρ2
Z

r∞

rðρÞ
dre3AðrÞ: ð9Þ

Recall at this point that the definition of the conformal
factor [Eq. (4)] and the subsequent solutions for the profile
of the RT surface are given by rðρÞ [see Eq. (6)]. The
volume VΣ is the sum of contributions from both the UV
and IR regions, which are evaluated as separate terms,

VΣ ¼ 4π

Z
ρ0

0

dρρ2
�Z

r0

rIRðρÞ
dre3AIRðrÞ þ

Z
r∞

r0

dre3AUVðrÞ
�

þ 4π

Z
l

ρ0

dρρ2
Z

r∞

rUVðρÞ
dre3AUVðrÞ: ð10Þ

Now, the volume as computed from Eq. (10) evaluates to a
lengthy expression, which is best presented by defining2

ϵ̃ ¼ LIRe−r0=LIR , in which case it reads, in terms of leff of
Eq. (8),

1ρ is a boundary radial coordinate here, and is not to be
confused with the notation of the density matrix in the last
section.

2As explained in [23], ϵ̃ plays a similar role as the UV cutoff δ;
however, it does not necessarily have to be small.
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VΣ ¼ 2π2L4
UV

3
þ 4πL4

UV

9

�
l
δ

�
3

−
4πL4

UV

3

�
l
δ

�

−
4πL4

UV

9

�
leff

lcr

�
3

þ 4π

9
L4
IR

�
leff

ϵ̃

�
3

þ 4π

3
L4
UV

�
leff

lcr

�

−
4π

3
L4
IR

�
leff

ϵ̃

�

−
4π

3
L4
UVtan

−1
�
leff

lcr

�
þ 4π

3
L4
IRtan

−1
�
leff

ϵ̃

�
þOðδÞ:

ð11Þ

We also record here the volume enclosed by the RT surface
in the case when the geodesics do not penetrate into the IR,
i.e., lie purely in the UV. In this case, it is easy to show that
this volume is simply the first line of Eq. (11), i.e.,

VUV
Σ ¼ 2π2L4

UV

3
þ 4πL4

UVl
3

9δ3
−
4πL4

UVl
3δ

: ð12Þ

Expectedly, this is also the result for leff ¼ 0, i.e., when the
geodesics do not penetrate into the IR.
There are a couple of things to be noted here. First, the

divergence structure of the volume in the above expression
is ∼Oðδ−3Þ þOðδ−1Þ, which is as expected for a bulk
AdS5, and gives the familiar “volume law” (the strongest
divergence structure). Second, let us consider the limit
leff=ϵ̃ ≫ 1; i.e., the effective length is much greater than
the IR cutoff. Then, it is not difficult to see that the terms
involving LIR in Eq. (11) precisely go over to their UV
counterparts in the first line of that equation, with the
replacement ðl=δÞ → ðleff=ϵ̃Þ. This is what one would
obtain if one is purely in the IR.
Before we end this subsection, we briefly comment on

the case of bulk AdS4. A similar calculation for AdS4 yields
(with lcr, leff , and ϵ̃ being defined in the sameway as in the
AdS5 case)

VΣ ¼ πL3
UV

2

�
l
δ

�
2

− πL3
UV log

�
lcr

δ

�

−
πL3

UV

2

�
leff

lcr

�
2

þ πL3
IR

2

�
leff

ϵ̃

�
2

−
π

2
L3
IR log

�
1þ l2

eff

ϵ̃2

�
ð13Þ

and the RT volume for geodesics that lie purely in the UV
region and does not see the domain wall is a purely
divergent piece,

VUV
Σ ¼ π

2
L3
UV

�
l
δ

�
2

− πL3
UV log

�
l
δ

�
: ð14Þ

Let us note some salient features of these equations as well.
The volume law is again satisfied, as expected. Next, we

note that for leff ¼ 0, the pure UV contribution matches
with the first line of Eq. (13). Then, we consider the
case l=lcr ∼ 1. Again, if we assume in the spirit of our
previous discussion that leff=ϵ̃ ≫ 1, then we see that
the terms involving LIR are again similar in form to their
UV cousins in the first line of Eq. (13), with the replace-
ment ðl=δÞ → ðleff=ϵ̃Þ.

B. A sharp domain wall: Strip shaped
entangling region

We now briefly consider a sharp domain wall with a
strip shaped entangling region. In this subsection, we will
restrict ourselves to a bulk AdS3, and take the entangling
surface to be a strip of length l. This geometry was
considered in [27], where it was shown that this geometry
shows an interesting phase behavior with a holographic
phase transition (as a function of the strip length). In the
initial part of this subsection, we briefly review the results
contained therein. We remind the reader that the conformal
factor AðrÞ is taken to be of the form of Eq. (4) with the
location of the domain wall at r ¼ r0, and as mentioned in
the previous subsections, this profile is not a solution of the
Einstein’s equations resulting from Eq. (2), but we use it
here as a toy model in conjunction with a strip shaped
entangling region. We record the expression for the area
functional,

A ¼
Z ðl−ϵÞ=2

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0Þ2 þ e2AðrÞ

q
: ð15Þ

The fact that the integrand does not depend on xðrÞ
translates into

dx
dr

¼ e−2AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 − e−2AðrÞ
q ð16Þ

where we will consider only the branch for which the
derivative of Eq. (16) is positive. Here, K2 ≡ K2ðlÞ is a
conserved quantity that is determined by demanding x ¼ 0
at r ¼ r�, which is the turning point of the minimal surface.
There are two types of minimal surfaces for the geometry
denoted by Eqs. (3) and (4), namely, those surfaces that stay
purely in the UV region and those that penetrate deeper into
the bulk and reach the IR region. For the ones that are
entirely in the UV region, Eq. (16) is integrated to give

xðrÞ ¼ LUV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

UV − e−2r=LUV

q
: ð17Þ

According to the boundary condition mentioned before,
KUV ¼ e−r�=LUV . One also demands that x ¼ l=2 as
r → ∞, so that l ¼ 2LUVe−r0=LUV . Since the turning point
of the minimal surface lies in the UV region, we may define
a relation l ≤ l2, where l2 ¼ 2LUVe−r0=LUV .

PRATIM ROY and TAPOBRATA SARKAR PHYS. REV. D 97, 086018 (2018)

086018-4



The second, and more interesting class of surfaces,
penetrate into the IR, implying that r� < r0. The conserved
quantity in this case is

K2 ¼ KIR ¼ e−AIRðr�Þ: ð18Þ

The value of x for which the minimal surface encounters the
domain wall is denoted by, xt ¼ xIRðr0Þ ¼ xUVðr0Þ. The
parts of the geodesic lying in the UV and IR regions (xUV
and xIR, respectively) may readily be found by directly
integrating Eq. (16) to obtain

xIR ¼ LIR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

IR − e−2AIRðrÞ
q

;

xUV ¼ LUV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

IR − e−2AUVðrÞ
q

þ cUV: ð19Þ

Here, cUV is an integration constant. By imposing the
conditions, xIRðr�Þ ¼ 0 and xUVðrÞ ¼ l=2, cUV is found
to be

cUV ¼ l
2
− LUVKIR: ð20Þ

Expressions for the length of the strip and location xt of
the domain wall may be found from the above equations
and give

l ¼ 2LUVKIR − 2ðLUV − LIRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

IR − e−2r0=LUV

q
xt ¼

LIR

LUV − LIR

�
LUVKIR −

l
2

�
: ð21Þ

From this, we may solve for KIR to obtain

KIR� ¼ LUVl�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 4LIRð2LUV − LIRÞe−2r0=LUV

p
2LIRðLUV − LIRÞ

:

ð22Þ

It may be noted that for the KIR� to have real roots, we must
have l ≥ lcr with

lcr ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LIRð2LUV − LIRÞe−2r0=LUV

q
: ð23Þ

Here, lcr is interpreted as the critical strip length so that the
geodesics penetrate into the IR. This is similar to the critical
length encountered for the disc shaped entangling region in
the previous subsections.
From the above discussions, it follows that as far as

the entanglement entropy is concerned, in the region
lcr < l < l2, there are three valid solutions of the entan-
glement entropy. The pure UV part of the entropy is valid
for l < l2, whereas for l > l2, the root KIRþ corresponds
to consistent solutions, with KIR− being ruled out as dx=dr
becomes negative here.

With these necessary ingredients from [27], we will now
set up the expression for the volume enclosed by the
minimal RT surface given from Eq. (3). The volume is
given by an expression analogous to Eq. (10), and reads

VΣ ¼
Z

dxdreAðrÞ

¼
Z

xt

0

dx

�Z
r0

rIRðxÞ
dreAIRðrÞ þ

Z
r∞

r0

dreAUVðrÞ
�

þ
Z ðl−ϵÞ=2

xt

dx
Z

r∞

rUVðxÞ
dreAUVðrÞ: ð24Þ

Here, the UV cutoff r∞ ¼ LUV logðLUV=δÞ. Note that
we are using a separate cutoff ϵ for x, which may
simply be related to the UV cutoff δ by the relation
rðx ¼ ðl − ϵÞ=2Þ ¼ r∞ yielding [27]

ϵ ¼ δ2

LUVKIR
: ð25Þ

It is easier to present the results by setting, without loss of
generality, r0 ¼ 0, and with this, the expression for the
complexity reads

VΣ ¼ L2
UVl
2δ

þ LIR

2
ðl − 2KIRLUVÞ

þ ðL2
UV − L2

IRÞtan−1

×

�
2KIRLUV − lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2KIRLIR − lÞð2KIRðLIR − 2LUVÞ þ l

p �
:

ð26Þ

Note that the divergent piece comes purely from the UV
contribution (this can also be understood by evaluating the
volume in the case that the geodesics do not penetrate into
the IR). One can now use Eq. (22) to compute the
complexity. Note that in the case of entanglement entropy,
the pure UV contribution ∼ logðl=δÞ, so that one could
consistently subtract out the divergent piece by consider-
ing, for example, the difference in the entropy for two
different strip lengths. In our case, it is more useful to look
at the finite part of the volume under the RT surface, by
subtracting the divergent part from Eq. (26).
The behavior of the complexity can be easily gleaned

by substituting the values of KIR� from Eq. (22) in the
finite part of Eq. (26). These are called VΣþ and VΣ− in
sequel. From Eq. (22), it is seen that these match at l ¼ lcr
and that at l ¼ l2, VΣ− ¼ 0. Also, it can be checked that
VΣþ − VΣ− is a monotonically increasing function in the
interval lcr < l < l2. From considerations of the entan-
glement entropy, it has been shown in [27] that there is a
first order phase transition in the interval lcr < l < l2,
when the entropy from the pure UV part equals that coming
from the branch KIRþ. Our discussion above, coupled with
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the fact that in this case, there is no nontrivial dependence
of the complexity on the strip length in the pure UV region,
leads to the conclusion that there is a discontinuous jump in
the complexity at such a transition, but the precise location
of this jump is determined from the holographic entangle-
ment entropy.

C. A smooth domain wall: Strip shaped
entangling region

So far, we have considered a sharp domain wall for
simplicity. We now consider a more realistic profile for the
warp factor AðrÞ considered in [27], which has continuous
interpolation between the IR and UV regions. Our aim in
this subsection is to understand the nature of the RT volume
for these theories and contrast it with the entanglement
entropy. Similar to our previous example of a sharp domain
wall, this solution also exhibits a phase transition, but in a
more physically reasonable setup.
For a smooth domain wall, the functional form chosen

for the profile is3

eAðrÞ ¼ er=Lð2 coshðr=RÞÞ−γ: ð27Þ
The AdS length scales at the UV and IR fixed points are
given by

1

LUV
¼

�
1

L
−
γ

R

�
;

1

LIR
¼

�
1

L
þ γ

R

�
: ð28Þ

As before, the equation determining the minimal surfaces is
given by

dx
dr

¼ e−2AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 − e−2AðrÞ
q : ð29Þ

With the AðrÞ chosen according to Eq. (27), an analytic
solution to the above equation is no longer possible.

However, one determines that xðrÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffi
r − r�

p
as r → r�.

With this asymptotic behavior, we may develop a series
solution of xðrÞ in the neighborhood of the point r ¼ r�.
The series solution can be treated as the initial condition
for numerically finding the solution of xðrÞ by shooting
from a point close to r ¼ r�. To track the behavior of the
complexity across a phase transition, it is necessary to plot
the strip length l as a function of r�. We may obtain l from
the relation,

lðr�Þ ¼ 2 lim
r→∞

xðrÞ: ð30Þ

As discussed in [27], specific choices of the parameters L,
γ, and R can produce different types of solutions for the
strip length l. In particular, we will focus here on a choice
of parameters that can produce multiple valued l (for some
range of r�) as a function of r�. It is known that such
solutions of l might indicate first order phase transitions in
the theory, as a function of the strip length. In Fig. 1(a), we
present such a solution, for L ¼ 0.66, γ ¼ 0.5 R, R ¼ 0.02
(γ=R is fixed).4 As we will see, the results are independent
of the UV cutoff δ. It may be seen from Fig. 1(a) that the
specific values of the parameters chosen produce a kink in
l for a range of r�. The physical consequence of this kink is
that there are multiple values of r� that are valid for a
particular value of l within a certain range of the strip
length. This, of course, is analogous to the range of l in the
previous subsection (lcr ≤ l ≤ l2) for which there are
multiple choices of the minimal surface. In the present case,
we need to determine the values of lcr and l2 numerically.
The values of lcr and l2 can be determined from the

solution of lðr�Þ by solving dl
dr�

¼ 0 numerically. Having
solved for lcr and l2, we are in a position to compute the
volume numerically from the integral,

VΣ ¼
Z

r∞

rðxÞ
dreAðrÞxðrÞ: ð31Þ

(a) (b)

FIG. 1. Panel (a) l is plotted as a function of er�=LUV . Panel (b) VΣ is plotted as a function of er�=LUV . Both (a) and (b) have the following
parameter values: L ¼ 0.66, γ ¼ 0.5 R, R ¼ 0.02.

3The symbol L used in Eq. (27) should not be confused with L
or LUV=IR used previously.

4For ease of comparison with existing literature, we choose the
same values of the parameters as in [27].
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The expression for the volume implicitly depends on r�,
since l≡ lðr�Þ. Now, since we have both VΣ and l as a
function of er�=LUV (which is a convenient scale for the x
axis), it is not difficult to express VΣ as a function of l. A
word on regulating the volume is in order. It can be verified
that the factor AðrÞ behaves as AðrÞ ∼ r

L −
γr
R as we

approach r → ∞. Evaluating the above integral in the limit
r → ∞ (which is responsible for the UV divergence in the
volume) yields the divergent contribution

VΣ;div ¼
l
2

1

ð1L − γ
RÞ

er∞ð1L−γ
RÞ ð32Þ

that has to be subtracted out from Eq. (31) to obtain a finite
expression. Indeed, this is the only divergence in the theory
and has the expected l=δ behavior. There is therefore no
problem in regulating the complexity (numerically) in a
consistent manner throughout the flow. As we have
mentioned, it may be observed from Fig. 1(a) that there
are three possible branches of r� for a fixed value of l (for a
range of l). Figure 1(b) shows VΣ as a function of er�=LUV .
Figures 2(a) and 2(b) show the entanglement entropy and
the complexity as a function of l. In the case of the former,
we see the typical swallow-tail behavior as observed for the
sharp domain wall in [27]. As far as VΣ is concerned, it
shows a multivalued behavior with respect to l. In this
figure, the vertical dashed line denotes the phase transition,
l ≈ 1.79. As before, we see that the complexity shows a
discontinuous jump across the phase transition.

III. COMPLEXITY WITH THE JANUS ANSATZ

Having computed the complexity for the RG flow in the
Poincaré slicing, we now proceed to the Janus solution. The
Janus solution was first introduced in the literature in [30]
and was a nonsupersymmetric deformation of AdS result-
ing in a dual field theory which had a codimension one
defect. The defect separated the field theory into two
regions with different Yang-Mills couplings. Conformal
field theories of this type which have an interface or a
boundary have been extensively studied in the context of

holography (see, for example, [25,31,32]). In the sub-
sequent discussion, we shall mainly follow the conventions
of [25].
The Janus solution is an ansatz where AdSdþ1 is foliated

using AdSd slices. Let us take the Poincaré sliced metric of
AdSdþ1,

ds2 ¼ 1

z2

�
dz2 þ dx2⊥ − dt2 þ

Xd−1
i¼2

dx2i

�
: ð33Þ

The above metric can be mapped to the Janus ansatz by the
following transformation:

x⊥ ¼ y cos μ z ¼ y sin μ ð34Þ

resulting in

ds2 ¼ 1

sin2μ

�
dμ2 þ dy2 − dt2 þP

d−1
i¼2 dx

2
i

y2

�
: ð35Þ

In contrast to the Poincaré sliced metric where the
boundary is located at z ¼ 0, the above metric has three
distinct components which can be interpreted as bounda-
ries, namely, μ ¼ 0, π and y ¼ 0. We can interpret the
μ ¼ 0, π as half-spaces corresponding to two different
CFTs and the y ¼ 0 as the codimension one defect where
the two half-spaces and joined together. Motivated by the
prospect of studying how the complexity behaves in a
boundary/interface CFT, we compute the volume of the
Janus solution in the subsequent discussion, restricting
ourselves to d ¼ 2.
Since we are interested in a RG flow scenario, we make

the following slight change to the Janus ansatz:

ds2 ¼ fðμÞ
�
dμ2 þ dy2 − dt2 þP

d−1
i¼2 dx

2
i

y2

�
ð36Þ

where the factor fðμÞ equals fðμÞ ¼ 1
sin2μ at the fixed points

where the space is AdS. To solve for the geometry
numerically, we shall need the Einstein equations resulting

(a) (b)

FIG. 2. Panel (a) Entanglement entropy is plotted as a function of l. Panel (b) VΣ is plotted as a function of l. Both (a) and (b) have the
following parameter values: L ¼ 0.66, γ ¼ 0.5 R, R ¼ 0.02. The dashed vertical line denotes the point of phase transition l ≈ 1.79.
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from Eq. (2), with ϕ≡ ϕðμÞ. Plugging in the metric (36),
one obtains the following equations [25]:

ϕ00 − fV̂ 0ðϕÞ þ d − 1

2

f0

f
ϕ0 ¼ 0

f00

f
−
3

2

f02

f2
þ 4

d − 1
ϕ02 − 2 ¼ 0

1

4
ϕ02 −

dðd − 1Þ
32

f02

f2
−
dðd − 1Þ

8
þ dðd − 1Þ

8
f −

1

2
fV̂ ¼ 0

ð37Þ

where we have written the potential as

VðϕÞ ¼ −
dðd − 1Þ

4
þ V̂ðϕÞ: ð38Þ

Out of the three equations in Eq. (37), we treat the first
two as independent equations and the third as a con-
straint. While seeking solutions to the above equations that
specify the geometry, we take a toy model for the potential
of the form,

V̂ðϕÞ ¼ 1

2
m2ϕ2 þ 1

4!
λ4ϕ

4: ð39Þ

According to the holographic dictionary, the mass of the
scalar field m is related to the conformal dimension in the
dual field theory as

m2 ¼ ΔðΔ − dÞ: ð40Þ

Since our motivation is to study RG flows, which flow to IR
fixed points, we choose the conformal dimensions such that
the scalar operator is relevant in the IR, i.e.,

−
d2

4
< m2 < 0

d
2
< Δ < d: ð41Þ

In the AdSd slicing, ϕ can be shown to have the near
boundary behavior,

ϕðμÞ ¼ αμΔ þ βμd−Δ þ � � � ð42Þ

This behavior is actually analogous to the well-known
behavior of the scalar field, the Poincaré slicing [25], and α
and β may be identified with the expectation value and the
source of the operator respectively.
With Eq. (37) fully specified, the initial conditions for

ϕðμÞ and fðμÞ can now be specified. We take the boundary
of one half-space to be located at μ ¼ 0. As this is a fixed
point in the RG flow, the space is in AdS and so fðμÞ ¼ 1

μ2

to leading order in μ. Going beyond the leading order, the
asymptotic behavior of the fields is given by [25]

fðμÞ ¼ 1

μ2
þ 1

3
þ 1

15
μ2 − 2β2

Δ − 2

2Δ − 5
μ2−2Δ þ � � � ð43Þ

ϕðμÞ ¼ βμ2−Δ −
1

12
βðΔ − 1Þμ4−Δ þ � � � ð44Þ

It may be noted here that we have set the expectation value
of the scalar field α ¼ 0.
Similar to the calculation for entanglement entropy, we

consider a strip entangling surface of length l. The minimal
surfaces are those that intersect the constant time slice of
the geometry

ds2Σ ¼ fðyÞ
�
dμ2 þ dy2

y2

�
ð45Þ

and are parametrized by y≡ YðμÞ. The area functional is
given by

Area ¼
Z

dμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðμÞ

�
1þ Y 0ðμÞ2

YðμÞ2
�s
: ð46Þ

The geodesic equation that minimizes the above functional
is given by

f0Y 0ðY2 þ Y 02Þ þ 2fYðYY 00 − Y 02Þ ¼ 0: ð47Þ

Using the asymptotic behaviors of fðμÞ and ϕðμÞ from
Eq. (43), we get the initial data for YðμÞ as

YðμÞ ¼ lþ ŷμ2 þ β2ŷðΔ − 2Þ
ðΔ − 3Þð2Δ − 5Þ μ

6−2Δ: ð48Þ

Now, we proceed to solve the set of Eqs. (37) and (47)
numerically using a shooting method. The characteristics of
the solutions are discussed at length in [25], but we include
some brief remarks here for completeness. Whether the
geometry is dual to an ICFT or a BCFT depends on the
source strength β of the scalar operator in the conformal
field theory. It can be found that the solution blows up if the
magnitude of β is increased beyond a certain critical value
(which, of course, depends on the two other constants
which have to be fixed, namely, λ4 andΔ). Numerically, we
monitor the value of fðμÞ while integrating the system of
equations. For a value of β below the critical value, we find
that fðμÞ may again be approximated by 1

sin2 μ at μ ¼ μ�,
indicating that the geometry has flowed into another AdS
region. This is thus an example of an ICFT. For values of β
greater than the critical value, fðμÞ blows up at μ ¼ μ�,
indicating that the theory has acquired a mass.
The geodesic solutions are also obtained from Eqs. (37)

and (47) and it may be readily verified that for the BCFT
geometry, which is singular at μ ¼ μ�, there is only one
geodesic YðμÞ ¼ l, which reaches the singularity. All other
geodesics are repelled and do not reach the singularity.
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So, this unique geodesic is the one which is used to
calculate the complexity. In the ICFT case, of course,
there is an infinite class of geodesics which reaches the
point μ ¼ μ�.
With the numerical solutions of fðμÞ and YðμÞ in

hand, we proceed to calculate the complexity, which is
given by

VΣ ¼
Z

μ�

μϵ

dμfðμÞ
Z

YðμÞ

ϵ

dy
y
: ð49Þ

Here, μϵ ¼ ϵ
l is the counterpart of the UV cutoff in the

Poincaré slicing. Following [33,34], we note that, strictly
speaking, we should impose a separate cutoff (say δ) for the
coordinate y. However, since we concentrate on a purely
numerical treatment (and moreover we have set l ¼ 1
throughout) it is not difficult to see that this does not affect
any of our results below.
Similar to the entanglement entropy, the complexity is a

divergent quantity due to the the behavior fðμÞ ∼ 1
μ2

as

μ → 0. The expression for the volume may be regulated by
subtracting out the divergent part, which may be evaluated
to be l

ϵ logðlϵÞ. By inspection of Eq. (49), it is seen that the
finite part of the complexity is independent of l.
Figures 3 and 4 show our numerical results. Here, we

have plotted VΣ as a function of β, λ4, andm2. Note that the
complexity is a monotonically decreasing function of β.
This is similar in nature to the behavior of the entanglement
entropy (or more appropriately the “g function”) studied for
BCFTs in d ¼ 2 [25].

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have initiated a study of subregion
holographic complexity for renormalization group flow
scenarios. We have considered two distinct cases here.
First, we studied this quantity for a domain wall setup, both
with a sharp and a smooth domain wall. Next, we computed
the complexity for the case of the Janus solution.
Our computation of the complexity or the RT volume for

a sharp domain wall scenario was carried out for both a disc
shaped and a strip shaped entangling region. Indeed, this
analysis revealed some interesting properties, for example
the emergence of consistent length scales, which could be
contrasted with the behavior of the entanglement entropy.
For both the sharp as well as the smooth domain wall, we
noticed that at the holographic phase transition (revealed by
the analysis of [27]), the complexity undergoes a discon-
tinuous jump. Finally, we computed the complexity for the
Janus solution and obtained its variation with respect to the
system parameters.
A deeper understanding of subregion complexity and its

relation to the Fisher information metric is of great interest.
We have taken the initial steps in this paper, and hope to
report on further progress in a forthcoming work.
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(a) (b) (c)

FIG. 3. VΣ as a function of (a) β, (b) λ4, and (c) m2 for BCFTs. For (b) and (c), β ¼ 1.4.

(a) (b) (c)

FIG. 4. VΣ as a function of (a) β, (b) λ4, and (c) m2 for ICFTs. For (b) and (c), β ¼ 0.4.
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