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We use gauge/gravity duality to write down an effective low energy holographic theory of charge density
waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory
in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents.
We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We
show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation
invariant states and to stable phases breaking translations spontaneously. We compute analytically the
real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating
quantum critical ground states breaking translations spontaneously. At these critical points, the real part of
the dc conductivity can be metallic or insulating.
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I. INTRODUCTION

Many condensed matter systems are described by non-
relativistic effective Hamiltonians, due to the breaking of
translations by the underlying ionic lattice. The standard
approach to consider the effects of the lattice on the
electronic subsystem is to treat it as an external explicit
source of momentum relaxation. In many cases of interest
(e.g. high Tc superconductors), the strongly coupled
electronic fluid also tends to break translations sponta-
neously, developing spatial modulations with a periodicity
incommensurate to that of the ionic lattice. This includes
the formation of charge density wave (CDW) and spin
density wave orders. Constructing effective strongly inter-
acting field theories for spontaneous symmetry breaking of
translations is therefore extremely relevant to understand
the behaviour of these systems.
Reliable theoretical descriptions of these phenomena are

challenging at strong coupling. Field theory approaches

exist (see [1] for a review and references therein), which
typically couple a gapless, critical boson to a Fermi
surface. In d ¼ 2, such theories are strongly coupled in
the IR and can only be analyzed in certain limits.
Alternatively, long wavelength effective field theories
(EFT) of CDWs [2–4] have been written down.
However, they are limited to the low frequency, low
wavevector regime and do not provide a microscopic
description of the ground state.
Gauge/gravity duality offers an intermediate approach

[5–7] by mapping the problem to a weakly-coupled,
classical theory of gravity. Top-down constructions corre-
spond to specific field theory duals, but are usually less
tractable, and only exist for particular values of the low
energy couplings, e.g. [8–12]. Bottom-up models [13]
offer less control over the microscopic content of the dual
field theory, but allow to scan more easily for interesting
phenomenology. Dynamical instabilities of translation-
invariant holographic states towards phases with spatial
modulation have been thoroughly characterized [8,14–20].
The corresponding spatially modulated solutions in a
variety of holographic setups have also been constructed
[10,11,21–27], dual to various kinds of density waves.
Progress on the understanding of their transport properties
has been slower. This is in part because most of the
work has focussed either on models based on the homo-
geneous Bianchi VII0 subgroup [28], which is special to
five-dimensional bulks and leads to fairly complicated
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solutions; on probe brane models, where it can be hard to
understand the precise consequences of freezing the metric
degrees of freedom or taking the probe limit [11,29]; or on
inhomogeneous geometries [30], which are more realistic
but for the most part can only be studied numerically
(though see [31,32]). In contrast, much has been under-
stood about explicit translation symmetry breaking by
thoroughly studying conceptually simpler homogeneous
models, based on massive gravity, Q-lattices or Stückelberg
scalars [33–45].
In the present paper, we explore a class of holographic

models akin to those of [36–39], but where translations
are broken spontaneously [46] rather than explicitly. As
in the explicit case, the simplicity of the model allows us
to go quite far in understanding its properties analyti-
cally. Instead of considering inhomogeneous states that
break spontaneously the translations and later taking the
long wavelength limit, we directly describe the coupled
dynamics of conserved densities (energy, momentum,
density) and Nambu-Goldstone modes. Such Goldstones
are the fundamental constituents of the low energy EFT
description and are essential to the dynamics [47,48]. We
show that our model reproduces correctly various aspects
of the EFT of CDW states [2,3], including transport
properties.
The plan of this paper is as follows. In Sec. II we

construct the effective holographic theory, explain how
translations are broken spontaneously in the boundary
dual field theory and compute the holographic on-shell
action at quadratic order in fluctuations and one-point
functions. We first focus on a two-derivative model,
which contains unstable phases with non-zero strain. We
explain how stable phases can be captured when quartic-
derivative terms are included in the EFT, and find they
source dynamical instabilities of translation invariant
phases. We show explicitly that the equilibrium holo-
graphic stress-energy tensor agrees with that of an
isotropic crystal. In Sec. III we compute analytically
the low frequency limit of the real part of the electric
conductivity using Kubo formulas. In Sec. IV we con-
struct quantum critical CDW phases, which can have
nontrivial Lifshitz dynamical and hyperscaling violating
exponents [39]. By combining with the results obtained
in Sec. III, we give a prediction for the low temperature
scaling of the real part of the dc conductivity. Next, in
Sec. V we construct numerically homogeneous black
holes dual to finite temperature states breaking trans-
lations spontaneously with nonzero strain, with either
finite or vanishing entropy at zero temperature. We
conclude with some further discussion and future direc-
tions in Sec. VI.
In a companion paper [49], we explain the relevance of

our results to charge transport at a weakly pinned CDW
quantum critical point and connections to transport in
cuprate high Tc superconductors.

II. HOMOGENEOUS SPONTANEOUS
TRANSLATION SYMMETRY BREAKING

We first present our effective holographic theory of
long wavelength dynamics of CDW states. Then we
explain how including subleading, quartic derivative terms
triggers dynamical instabilities of translation-invariant
states towards phases breaking translations spontaneously.

A. Two-derivative model: Excited phases
with nonzero strain

1. Setup

In a CDW state, the charge density is expressed as
ρðx; tÞ ¼ ρ0 þ ρ1ðx; tÞ cosðkxþΨðx; tÞÞ [3]. In the EFT,
the order parameter is described by means of a complex
scalar [50] whose phase is expanded at linear order around
equilibrium as kxþ Ψðx; tÞ. ρ1 models amplitude fluctua-
tions of the order parameter, Ψ phase fluctuations. The
latter are gapless modes, i.e. the phonons of spontaneous
translation symmetry breaking. Above Tc, both type of
fluctuations are expected and part of the EFT. However,
below Tc, the long wavelength dynamics is described
by the interplay between conserved quantities and the
phonons [2].
This motivates us to consider a generalized complex

scalar action [37]

S ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
R − YΦðjΦIjÞδIJ∂ΦI∂Φ�

J

−
1

4
ZΦðjΦIjÞF2 − VΦðjΦIjÞ

�
; ð1Þ

where I, J ¼ 1…d run over the spatial coordinates of the
boundary. This gravitational model is dual to a CFT
deformed by complex scalar operators.
The model has a global U(1) symmetryΦI →ΦI expðicIÞ

where cI is just a constant, which can also be viewed as a
shift symmetry of the phase of the complex field.
Following [37], we adopt the following background
Ansatz for the complex scalars ΦI ¼ φðrÞ expðikδIixiÞ.
It breaks both spatial translations xi → xi þ ai and the
shift symmetry, but preserves a diagonal subgroup [51].
Thus, it is consistent to assume the other fields in the
bulk not to depend on xi, which considerably simplifies
solving the model.1 From now on, we no longer need to
distinguish between i and I indices. The (real) scalar φ has
the following asymptotic expansion at the anti de Sitter
boundary r → 0

1Isotropy also follows from a similar breaking of internal
rotations of the ΦI and spacetime rotations down to a diagonal
subgroup.
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φðr → 0Þ ¼ φðsÞrdþ1−Δ þ φðvÞrΔ þ � � � ;
m2

Φ ¼ ΔðΔ − d − 1Þ; ð2Þ

where mΦ is the mass of the scalars ΦI (which we take to
be the same for all ΦI , for simplicity), which is related to
V 00
Φð0Þ in the usual fashion. If φðsÞ ≠ 0, translations are

broken explicitly by the background, while if φðsÞ ¼ 0, the
breaking is spontaneous. Our interest is in the second case.
In this work, we are mostly interested in linear response

at zero wave vector, so it is enough to consider linear
fluctuations around the background. The scalar fluctuations
which enter the calculation of the conductivities and
preserve the homogeneity of the eoms are

δΦI ¼ δφðrÞeikδIixie−iωt ð3Þ

and can be rewritten in a “polar” decomposition

ΦI þ δΦI ¼ φðrÞeikδIixiþiδψ Iðr;tÞ;

δψ Iðr; tÞ ¼ −i
δφðrÞ
φðrÞ e−iωt; ð4Þ

or

ΦI þ δΦI ¼ φðrÞeiψ Iðr;x;tÞ;

ψ Iðr; tÞ ¼ kδIixi þ δψ IðrÞe−iωt: ð5Þ

This allows to focus on the dynamics of the phase of the
original complex scalars, that is on the phonon dynamics.
Plugging the Ansatz ΦI ¼ φðrÞeiψ Iðr;x;tÞ into the complex
scalar action (1) and expanding in terms of the fields φ, ψ I ,
we restrict our attention to the simplified holographic
theory:

S ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂ϕ2 −

1

4
ZðϕÞF2 − VðϕÞ

−
1

2
YðϕÞδIJ∂ψ I∂ψJ

�
; ð6Þ

which is a generalization of [36]. We have redefined the
scalar φ ↦ ϕðφÞ so that it has a canonically normalized
kinetic term. Asymptotically, ϕðφÞ ∼ φ but is in general a
nontrivial function. The scalar couplings V, Z and Y can be
related to the couplings in the original action (1) VΦ, ZΦ
and YΦ. The full background Ansatz is

ds2 ¼ −DðrÞdt2 þ BðrÞdr2 þ CðrÞdx⃗2; A ¼ AðrÞdt;
ϕ ¼ ϕðrÞ; ψ I ¼ kδIixi: ð7Þ

The scalar couplings are arbitrary, we just specify their UV
(ϕ → 0) behavior:

VUV ¼ −dðdþ 1Þ þ 1

2
m2ϕ2 þ � � � ;

ZUV ¼ 1þ z1ϕþ � � � ; YUV ¼ y2ϕ2 þ � � � ð8Þ

which ensures the existence of asymptotically locally
AdSdþ2 black holes geometry when r → 0. The UV
behavior of YðϕÞ is motivated by the complex scalar
construction above and is crucial in order to allow for
translations to be broken spontaneously. Close to the
boundary r → 0, the scalar ϕ behaves as

ϕðr → 0Þ ¼ ϕðsÞrdþ1−Δ þ ϕðvÞrΔ þ � � � ;
m2 ¼ ΔðΔ − d − 1Þ: ð9Þ

By convention, Δ > ðdþ 1Þ=2 is the largest root of the
quadratic polynomial, so ϕðsÞ is the source (the slowest
decaying mode) and ϕðvÞ the vev (the fastest decaying
mode). From our previous discussion, it is clear that when
ϕðsÞ ¼ 0, translations are broken spontaneously, [46,52].
When YðϕÞ¼ϕ2 exactly, the dþ 1 scalars can be

combined into d complex scalars ΦI ¼ϕexpði ffiffiffi
2

p
ψ IÞ=

ffiffiffi
2

p
,

and the action (6) can be rewritten as an action for d complex
scalar contained within (1). (8) shows this mapping can
always be performed asymptotically and so our simplified
action (6) can still be thought of as a CFT deformed by
complex operators.2

We also emphasize that we do not expect the global shift
symmetry to be an exact symmetry of the system at all
energy scales. It represents an emergent low energy
symmetry related to the dynamics of the Goldstones.
Indeed it is absent from the holographic actions where
inhomogeneous spatially modulated phases have been
studied. Nevertheless, since we focus on low energy
dynamics in this work, we regard this symmetry as an
exact symmetry at all energy scales.
The Goldstone modes can be identified by acting on the

background with the Lie derivative along ∂=∂ x⃗. It leaves all
fields invariant except the ψ I’s. This confirms that phonon
dynamics will be captured by the fluctuations δψ I. As we
have chosen the same value of k in all spatial directions, the
dual state preserves isotropy. Clearly this can be relaxed,
with translations spontaneously broken anisotropically
along one or several spatial directions.
In the remainder of this work, we set d ¼ 2. Assuming

the existence of a regular horizon at r ¼ rh, the temperature
T and the entropy density s are given by:

s ¼ 4πCðrhÞ; T ¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
B0ðrÞD0ðrÞ

BðrÞ2
s 0�����

r¼rh

; ð10Þ

2In general, the ΦI can always be defined in terms of a formal
integral in the target space over ðϕ;ψ IÞ, but this integral cannot
always be evaluated exactly in terms of a simple function.
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with the following near-horizon expansion

ds2 ¼ −4πTðrh − rÞdt2 þ dr2

4πTðrh − rÞ
þ s
4π

ðdx2 þ dy2Þ þ � � � ;
At ¼ Ahðrh − rÞ þ � � � ; ϕ ¼ ϕh þ � � � : ð11Þ

2. Holographic renormalization, one-point functions
and Ward identities

In this section we employ holographic renormalization
techniques [53] to compute the dual one-point functions
and Ward identities. For simplicity, we set m2 ¼ −2.
Restricting to the spontaneous case ϕðsÞ ¼ 0, the UV
expansion of the background in Fefferman-Graham gauge
reads:

DðrÞ¼ 1

r2
ð1þd3r3þOðr4ÞÞ; BðrÞ¼ 1

r2
;

CðrÞ¼ 1

r2

�
1−

d3
2
r3þOðr4Þ

�
; ϕðrÞ¼ϕðvÞr2þOðr4Þ;

AðrÞ¼μ−ρrþOðr3Þ; ψ I ¼ kδIixi ð12Þ

where subleading coefficients are fixed in terms of the
vevs ρ, ϕðvÞ, d3.
In order to obtain the pressure, we need to compute the

background renormalized on-shell action. The necessary
boundary counterterms are

Sc:t: ¼
Z
r¼ϵ

d3x
ffiffiffiffiffiffi
−γ

p �
2Kþ 4þ R½γ� þ 1

2
ϕ2

−
1

2
YðϕÞ

X2
I¼1

ðψ I − kδIixiÞ2
�
; ð13Þ

where γμν is the induced metric at r ¼ ϵ where ϵ is a UV
regulator andK is the trace of the extrinsic curvature. As we
now explain, the form of the scalar counterterms in (13) can
be worked out in two ways: (i) either in accordance with
the symmetries preserved by the background ansatz (7),
(ii) or by mapping the scalars asymptotically to the
complex parameterization (i.e. like in the Q-lattice studied
for instance in [46]).
The background Ansatz (7) breaks the original shift and

translational symmetries to their diagonal subgroup. The
last counterterm in (13) does respect this symmetry: the
shifts of the ψ I’s are compensated by how kxi transforms
under spatial translations. Holographic renormalization
requires that the divergences at first and second order in
the fluctuations cancel and that the coefficients of the
counterterm do not depend on the asymptotic modes of the

background fields. This fixes the form of (13) and the
values of the numerical coefficients univocally.
As we already explained, due to the UV behavior of the

couplings (8), the model is asymptotically equivalent to the
theory of two complex scalar fields ΦI ¼ ϕeiψ I , I ¼ ðx; yÞ.
One can therefore consider the standard counterterm Φ�

IΦI

needed to renormalize the theory of two massive complex
scalars. Specifically, one must first take the variations of
Φ�

IΦI and then rewrite the fluctuations of the complex
fields in terms of the fluctuations of the modulus ϕ and
phases ψ I .

3 This procedure yields scalar counterterms that
agree with the last one in (13) order by order in those
fluctuations.
The renormalized on-shell action for the background is

Sren ¼ lim
ϵ→0

Z
r¼ϵ

d3x

�
−k2IYðϵÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðϵÞDðϵÞ

p �
4CðϵÞffiffiffiffiffiffiffiffiffi
BðϵÞp

þ C0ðϵÞ
BðϵÞ þ

CðϵÞD0ðϵÞ
BðϵÞDðϵÞ

�
þ 1

2

ffiffiffiffiffiffiffiffiffiffi
DðϵÞ

p
CðϵÞϕðϵÞ2

�
;

ð14Þ

where

IYðrÞ ¼
Z

r

rh

ffiffiffiffiffiffiffi
BD

p
YðϕÞ: ð15Þ

Note that the scalar counterterms in (13) do not contribute
at the background level, but are necessary to renormalize
the action at quadratic order in the fluctuations. Evaluating
(14) on the background (12) and continuing through
Euclidean signature t ¼ −iτ, Sren ¼ iIren, we obtain for
the Euclidean on-shell action:

Iren ¼ βVð2Þ

�
−k2IYð0Þ þ

3d3
2

�
; ð16Þ

where Vð2Þ is the boundary spatial volume and β the inverse
temperature. The pressure is obtained from:

p ¼ −w ¼ −
Iren
βVð2Þ

¼ −
3d3
2

þ k2IYð0Þ: ð17Þ

In order to compute the energy density we work out the
renormalized on-shell action at linear level in the fluctua-
tions. We consider the following perturbation of the back-
ground fields:

3Performing these steps in the reverse order leads to a different
(wrong) result. In fact, if we express Φ�

IΦI in polar parametriza-
tion (i.e. in terms of ϕ and ψ I) before considering its variation, we
only obtain a counterterm ϕ2 which does not renormalize the ψ I
sector.
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gμν ¼ gbμνðrÞ þ hμνðxMÞ; ð18Þ

Aμ ¼ Ab
μðrÞ þ δAμðxMÞ; ð19Þ

ϕ ¼ ϕbðrÞ þ δϕðxMÞ; ð20Þ

ψ I ¼ ψb
I ðrÞ þ δψ IðxMÞ; ð21Þ

where the fields with the apex b are the background (7), the
Greek indices run over the boundary coordinates, and the
capital Latin indices run over the whole bulk coordinates
(note that we fixed the radial gauge). Using the background
EOMs one can easily verify that the action (6) reduces to a
boundary term:

Sð1Þreg ¼
Z
r¼ϵ

d3x
ffiffiffiffiffiffiffiffi
−gb

q �
∇νhrν −∇rhνν − δϕ∂rϕb

− YðϕÞ
X
I

δψ I∂rψb
I − ZðϕÞδAνFrν

�
; ð22Þ

where the covariant derivatives and the raising/lowering of
indices are both done with the background metric gbμν. The
action must be renormalized by adding the counterterms
(13) expanded to linear order in the fluctuations. Focusing
on the Ansatz (7) and on the asymptotic UVexpansion (12),
the fluctuations behave asymptotically as:

hμν ¼
1

r2
ðhð0Þμν ðxμÞ þ hð1Þμν ðxμÞrþ hð2Þμν ðxμÞr2

þ hð3Þμν ðxμÞr3 þ � � �Þ; ð23Þ

δAμ ¼ δAð0Þ
μ ðxμÞ þ δAð1Þ

μ ðxμÞrþ � � � ; ð24Þ

δϕ ¼ δϕðsÞrþ δϕðvÞr2 þ � � � ; ð25Þ

δψ I ¼
δψ ðsÞ

I

r
þ δψ ðvÞ

I þ � � � : ð26Þ

Notice the unusual asymptotic expansion of δψ I , [46,52].
Recalling that in the complex parameterization, δψ IðrÞ ¼
−iδϕðrÞ=ϕðrÞ, we see that it is a direct consequence of

ϕðsÞ ¼ 0. If ϕðsÞ ≠ 0, then we would have δψ I ¼ δψ ðsÞ
I þ

δψ ðvÞ
I r3 þ � � �, as expected for explicit translation

breaking [36].
Then, the renormalized action reads:

Sð1Þren ¼
Z

d3x

�
3

2
d3h

ð0Þ
tt þ 3d3

4
hð0Þxx þ 3d3

4
hð0Þyy

− ρδAð0Þ
t − ϕðvÞδϕðsÞ

�
: ð27Þ

From (27) one can compute the expectation value of the
stress-energy tensor, current and scalars4:

hTtti ¼ ϵ ¼ −3d3;

hTxxi ¼ hTyyi ¼ −
3

2
d3 ¼ p − k2IYð0Þ;

hJti ¼ ρ;

hOϕi ¼ ϕðvÞ; ð28Þ

as well as the one-point Ward identities:

hTμ
μi ¼ 0; ∂μhTμνi ¼ 0; ∂μhJμi ¼ 0; ð29Þ

where d3 is defined in (12), the pressure p is given by (17)
and IYð0Þ by (15). The vanishing of the right-hand side in
theWard identities (29) is consistent with translations being
broken spontaneously (though homogeneity of our setup
makes this somewhat trivial for the background [46]).
The equilibrium stress-tensor of an isotropic, conformal

crystal is [2,4]:

hTij
eqi¼ ½pþðGþKÞ∂ ·hΨi�δijþ2G½∂ðihΨjÞi−δij∂ ·hΨi�;

ð30Þ

with K and G the bulk and shear moduli respectively.
The bulk modulus only contributes to diagonal elements,
the shear modulus only to off-diagonal elements. We find
that (28) is compatible with (30) provided we consider a
uniform, nonzero strain (phase gradient) ∂ · hΨi ¼ ū. Then,

Kū ¼ −
k2

2

Z
0

rh

dr
ffiffiffiffiffiffiffi
BD

p
Y ð31Þ

which is positive with our choice of bounds on the integral.
This expression is exact in k. This state bears some
similarity with a superfluid state with a nonzero, uniform
superfluid velocity, which also features a nonzero phase
gradient. These states have typically a higher free energy
than states with no superfluid velocity. Clearly, from our
result (17), the same is true in our case: the free energy is
minimized by setting k ¼ 0. In this case, there would be
no translation breaking left at all. As we will discuss in
Sec. II B, stable phases with k ≠ 0 can be found by
including higher-derivative corrections to our original
model (6). In [49], we comment on the potential relevance
of these unstable equilibrium states to the strange metals.

4Recalling the asymptotic relation between the polar scalar
fields ðϕ;ψ IÞ to the complex ones ΦI , one can see the vanishing
of hOψ I

i as a consequence of a nontrivial cancellation between
two contributions with opposite signs to the linear on-shell action
(27). This result is in harmony with previous analyses of the
Q-lattice [46]. The correct intuition comes from observing that
the Q-lattice can be equivalently thought of as a theory of O
or O�.
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We can now boost the stress-energy tensor at rest (28)
with a quadrivelocity uμ ¼ ð1; v⃗Þ:

hTμνi ¼ ðpþ 2KūÞημν þ ðϵþ pþ 2KūÞuμuν;
ϵ ¼ 2pþ 4Kū: ð32Þ

The last equation encodes tracelessness of the dual stress-
energy tensor due to conformal symmetry of the dual field
theory in the UV. It manifestly differs from the equivalent
equation for a 2þ 1-dimensional conformal fluid or solid
without strain, which would read ϵ ¼ 2p.
The background EOMs give rise to two radially con-

served quantities. The first simply gives the UV charge
density and relates it to the electric flux emitted from the
horizon:

hJti ¼ ρut ¼ ρ ¼ ffiffiffiffiffiffi
−g

p
ZðϕÞFrt

¼ −
CZðϕÞffiffiffiffiffiffiffi

BD
p A0 ¼ lim

r→0

1

r3
ZðϕÞnMFMt; ð33Þ

where at equilibrium uμ ¼ ð1; 0; 0Þ and by convention
nM ¼ ð0; 1; 0; 0Þ is the unit (outward-pointing) vector
normal to the boundary. The second radially conserved
quantity is defined by the relation:

�
ρAðrÞ þ C2ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrÞDðrÞp �
DðrÞ
CðrÞ

�0
− k2IYðrÞ

�0
¼ 0: ð34Þ

This is the Noether charge associated to the bulk time-like
Killing vector [54]. Evaluating (34) both at the horizon and
at the boundary using the background asymptotics (12), we
obtain:

sT ¼ −μρ −
9d3
2

þ k2IYð0Þ; ð35Þ

recovering the usual Smarr law ϵþ p ¼ μρþ Ts.

B. Higher-derivative model:
Thermodynamically stable phases

1. A model for thermodynamically stable phases

As discussed below (31), the two-derivative model (6)
does not allow for classical solutions to the eoms which
both have k ≠ 0 and minimize the free energy. This
deficiency can be remedied by adding to the action the
following higher-derivative terms

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂ϕ2 − VðϕÞ − 1

4

�
Z1ðϕÞ þ λ1Z2ðϕÞ

X2
I¼1

∂ψ2
I

�
F2 −

1

2

X2
I¼1

ðY1ðϕÞ∂ψ2
I þ λ2Y2ðϕÞð∂ψ2

I Þ2Þ
�
: ð36Þ

Here there is no implicit summation on I indices. The equations of motion are

0 ¼ Gμν −
1

2

�
Z1ðϕÞ þ λ1Z2ðϕÞ

X2
I¼1

∂ψ2
I

�
FμρFν

ρ −
1

2
∇μ∇νϕ −

1

2

X2
I¼1

∂μψ I∂νψ I

�
Y1ðϕÞ þ 2λ2Y2ðϕÞ∂ψ2

I þ
λ1
2
Z2ðϕÞF2

�

þ gμν
4

�
2VðϕÞ þ ∂ϕ2 þ 1

2
Z1ðϕÞF2 þ

X2
I¼1

∂ψ2
I

�
Y1ðϕÞ þ λ2Y2ðϕÞ∂ψ2

I þ
λ1
2
Z2ðϕÞF2

��
; ð37Þ

0 ¼ ∇μ

��
Z1ðϕÞ þ λ1Z2ðϕÞ

X2
I¼1

∂ψ2
I

�
Fμν

�
; ð38Þ

0 ¼ □ϕ −
1

4

�
Z0
1ðϕÞ þ λ1Z0

2ðϕÞ
X2
I¼1

∂ψ2
I

�
F2

− V 0ðϕÞ − 1

2

X2
I¼1

ðY 0
1ðϕÞ∂ψ2

I þ λ2Y 0
2ðϕÞð∂ψ2

I Þ2Þ; ð39Þ

0¼∇μ

��
Y1ðϕÞþ∂ψ2

I

�
2λ2Y2ðϕÞþ

λ1
2
Z2ðϕÞF2

��
∇μψ I

�
;

I¼1;2: ð40Þ

Following our previous logic, the extra terms are inspired
by expanding extra higher-derivative terms ð∂ΦI∂Φ�

I ÞF2

and ð∂ΦI∂Φ�
I Þ2 in a complex scalar action like (1). In the

UV, we assume that V, Z1 and Y1 behave as in (8) while

Z2ðϕÞ ∼ z2;2ϕ2 þ � � � ; Y2ðϕÞ ¼ y2;2ϕ2 þ � � � ð41Þ

We have slightly relaxed the UV behaviour of Y2 compared
to the parent complex scalar term, which would dictate
Y2ðϕÞ ∼ ϕ4. To the best of our knowledge, this does
not affect the holographic renormalization and one-point
functions. A coupling Y2ðϕÞ as in (41) allows to trigger
k ≠ 0 instabilities of the Reissner-Nordström black hole.
Y2ðϕÞ ∼ ϕ4 would not allow for instabilities of RN-AdS,
though we expect it would lead to instabilities of black
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holes with ϕ ≠ 0. However, they are technically more
complicated to exhibit, so we choose (41) for simplicity.
With ϕ ¼ 0, the effects of the term with coupling λ1 on

the conductivity and charge diffusivity have been consid-
ered previously with explicit translation symmetry breaking
boundary conditions [55,56] (see also [57]). To our knowl-
edge, the λ2 coupling has not been explicitly considered in
previous works, but it is implicitly included in models of
holographic massive gravity with a general potential for the
Stückelberg scalars [58–61]. We emphasize though that our
setup differs in that the UV boundary conditions are such
that translations are spontaneously broken rather than
explicitly.
Mutatis mutandis, the holographic renormalization of the

model proceeds as in Sec. II A 2. We find the same result
for the one-point functions:

hTtti¼−3d3¼2hTiii; hJti¼ρ; hOϕi¼ϕðvÞ: ð42Þ

However, the free energy now receives extra contributions

w¼−p¼−
Iren
βVð2Þ

¼3

2
dð3Þ−k2IY1

ð0Þ−2λ2k4IY2
ð0Þþλ1ρ

2k2IZ2
ð0Þ; ð43Þ

where we have defined

IY1
ðrÞ ¼

Z
r

rh

ffiffiffiffiffiffiffi
BD

p
Y1ðϕÞ; IY2

ðrÞ ¼
Z

r

rh

ffiffiffiffiffiffiffi
BD

p

C
Y2ðϕÞ;

IZ2
ðrÞ ¼

Z
r

rh

Z2ðϕÞA02ffiffiffiffiffiffiffi
BD

p : ð44Þ

The free energy should be minimized with respect to k to
find the most stable phase. This is equivalent to imposing
periodic boundary conditions on the spatial coordinates xi,
with periodicity Lx ¼ 2π=k. Indeed, this is exactly what we
want to describe CDW states. Taking into account isotropy,
this leads to w ¼ −hTiii [62–64]. Using (43) and (42),
we get

IY1
ð0Þ þ λ2k2IY2

ð0Þ − 1

2
λ1IZ2

ð0Þ ¼ 0; ð45Þ

so that in the end

w ¼ −p ¼ −hTiii ¼ 3

2
d3: ð46Þ

The stress-tensor now matches that of an isotropic crystal
without an equilibrium phase gradient. As before, we can
boost the stress tensor at rest and obtain

hTμνi ¼ pημν þ ðϵþ pÞuμuν; ϵ ¼ 2p; ð47Þ

which agrees with similar expressions in [62–64].
For future reference, we also collect the following

expressions

ρ ¼ −
CðrÞA0ðrÞffiffiffiffiffiffiffi

BD
p

�
Z1ðϕÞ þ 2λ1k2

Z2ðϕÞ
C

�����
r¼rh

; ð48Þ

sT ¼ −ρAðrÞ − C2ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞDðrÞp �

DðrÞ
CðrÞ

�0
þ k2IY1

ðrÞ

þ 2λ2k4IY2
ðrÞ − λ1k2IZ2

ðrÞ
����
r¼rh

: ð49Þ

We now turn to the question of how these phases
breaking translations spontaneously arise as the endpoint
of instabilities of the (translation invariant) Reissner-
Nordström black hole.

2. Dynamical instabilities of the
Reissner-Nordström black hole

For simplicity, we require that Reissner-Nordström is a
solution of the equations of motion derived from (36). To
this end, we consider the following IR expansions of the
couplings around ϕ ¼ 0:

VðϕÞ ∼ −6þ 1

2
m2ϕ2 þ � � � ; Z1ðϕÞ ∼ 1þ z2ϕ2 þ � � � ;

Z2ðϕÞ ∼ z2ϕ2 þ � � � ; Y1ðϕÞ ¼ Y2ðϕÞ ∼ y2ϕ2 þ � � �
ð50Þ

In the IR, it becomes an AdS2 × R2 geometry:

ds2 ¼ −
dt2

ξ2
þ dξ2

6ξ2
þ dx2 þ dy2;

ϕ ¼ 0; At ¼
ffiffiffi
2

p

ξ
; ψ I ¼ 0: ð51Þ

Importantly, we are setting k ¼ 0 (or equivalently ψ I ¼ 0)
in the solution (51), as our starting point are translation
invariant solutions.
We now consider radial perturbations of the scalar fields

ϕ, ψ I around this solution

δϕ ¼ ϕ0ξ
δϕ ; δψ I ¼ kδIixi: ð52Þ

The equations of motion for the ψ I’s are automatically
satisfied by our Ansatz. Having ϕ ¼ 0 in the background
simplifies our task as the radial perturbations involving the
scalar decouple from those of other fields. However, there
is no conceptual obstacle to repeating this procedure over
an AdS2 × R2 domain-wall with ϕ ≠ 0. The main technical
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obstacle is that perturbations of the scalars do not decouple
from other fields, and solving the resulting system of linear
equations is somewhat involved.
The IR dimension δϕ of the operator dual to ϕ is easily

obtained from the equation of motion for ϕ

δϕ¼−
1

2

þ1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ6m2−72z2þ12k2ðy2−12z2λ1Þþ12y2λ2k4

q
:

ð53Þ

Equation (53) matches the one in Sec. III of [38] after
suitable identifications of the parameters and setting
λ1 ¼ λ2 ¼ 0.
There is an instability whenever the radicand Δ changes

sign from positive to negative. In order for this instability to
be towards a phase with k ≠ 0 (and so breaking translations
spontaneously), we need ΔðkÞ < 0 for 0 < k− < k < kþ
where Δðk�Þ ¼ 0.
It is straightforward to check that this can easily happen

in the allowed parameter space on λ1;2, depending on the
specific choice of scalar couplings. The couplings λ1;2 are
constrained by causality: [55] found a necessary condition
on λ1, −1=6 < λ1 < 1=6. We take λ2 > 0 and defer a more
thorough analysis to future work. These couplings do not
result into Shapiro time advances [65], as they do not
involve derivatives of the metric.
For concreteness, we consider a model inspired by [38]:

VðϕÞ¼−6cosh
�

ϕffiffiffi
3

p
�
; Z1ðϕÞ¼ coshγ=3ð

ffiffiffi
3

p
ϕÞ;

Z2ðϕÞ¼
1

2
γsinh2ðϕÞ; Y1;2ðϕÞ¼12sinh2

�
ϕffiffiffi
3

p
�
; ð54Þ

for which the regime of dynamical instability is

γ < −4; −
1

6
< λ1 <

2

3γ
;

0 < λ2 < −
ð2 − 3γλ1Þ2
ð1þ 12γÞ ; k̃− < k̃ < k̃þ;

k̃� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γλ1
λ2

−
2

λ2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9γ2λ21 þ 12γλ2 − 12γλ1 þ λ2 þ 4

p
λ2

s
:

ð55Þ

It is interesting to note that the new couplings λ1;2, even
for small values, have changed the range of values of γ
where the dynamical instability lies (which for λ1;2 ¼ 0 is
γ > −1=12 [38]).
In such a case, we also expect a dynamical instability of

the nonzero temperature translation-invariant black hole
towards a spatially modulated phase, which can be diag-
nosed by constructing the corresponding normalizable

mode at k ≠ 0, see e.g. [15] for a concrete example.
The outcome of this computation is a so-called “bell
curve” which shows the evolution of the critical temper-
ature below which the condensate forms as a function of k.
The most stable phase is found for k⋆ such that Tcðk⋆Þ is
maximum.
We now turn to the construction of such a bell

curve in our model (36) with couplings given by (54).
This implies constructing the unstable mode at nonzero
temperature in the Reissner-Nordström black hole
background:

ds2 ¼ −r2fðrÞdt2 þ dr2

r2fðrÞ þ r2ðdx2 þ dy2Þ

At ¼ μ

�
1 −

rh
r

�
;

fðrÞ ¼ 1 −
r3h
r3

þ μ2rh
4r3

�
1 −

rh
r

�
;

ϕ ¼ ψ I ¼ 0: ð56Þ

As for zero temperature, the unstable mode obeys a
decoupled equation of motion:

δϕ00 þ
�
4

r
−
f0

f

�
δϕ0 þ

�
−m2 −

2Y2k2

r2
þ 2r2hμ

2Z2λ1k2

r6

þ −2k4Y2λ2 þ r2hμ
2Z2

r4

�
δϕ

r2f
¼ 0: ð57Þ

We impose regularity at the horizon and spontaneous
boundary conditions in the UV. We pick values of γ and
λ1;2 satisfying (55) and find that this mode exists below a
certain critical temperature TcðkÞ, see Fig. 1. TcðkÞ has
the bell shape typical in holography. It peaks at a certain
critical value k⋆, which we expect to be the dynamically
preferred value for the backreacted black holes.
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0.0000

0.0002

0.0004
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0.0008

0.0010

0.0012
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/

FIG. 1. Instability curve TcðkÞ of the Reissner-Nordström black
brane for parameters γ ¼ −6, λ1 ¼ −0.13, λ2 ¼ 5.10−4.
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III. THE ELECTRIC CONDUCTIVITY

A. Two-derivative model

When translations are broken spontaneously rather than
explicitly, the conductivity carries a pole at ω ¼ 0 and takes
the general form at low frequencies [3,4,66,67]:

σðωÞ≡ i
ω
GR

JJðω; q ¼ 0Þ⟶
ω→0

σo þ
χ2JP
χPP

i
ω
: ð58Þ

σo is a first-order transport coefficient which appears
in the constitutive relation of the current as Jμ ¼ ρuμ −
Tσo∇μðμ=TÞ þ � � � [4], neglecting terms which do not enter
in the computation of the conductivity. χJP and χPP are the
current-momentum and momentum-momentum static sus-
ceptibilities. With relativistic symmetry, χJP ¼ ρ is simply
the charge density. Similarly, using (32), the momentum
susceptibility χPP is given by:

χPP ≡ δhPxi
δvx

¼ δhTtxi
δvx

¼ ϵþ pþ 2Kū ¼ sT þ μρþ 2Kū;

ð59Þ

where in the last step we have used the Smarr relation.
Notice the extra contribution compared to the usual
expression in relativistic hydrodynamics.
From (58), σo is given by the Kubo formula

σo ¼
1

ðχPPÞ2
lim
ω→0

i
ω
GR

JincJinc
ðω; q ¼ 0Þ: ð60Þ

Jinc is the incoherent current orthogonal to momentum P:

Jinc ≡ χPPJ − χJPP; χjincP ¼ 0: ð61Þ

σo is an incoherent conductivity, which captures the
contribution to (58) of processes which do not drag
momentum. [68–71] computed σo analytically for trans-
lation-invariant states. It takes a simple form in terms of
the background classical solutions to the class of theories
(6) with the fields ψ I turned off. Here we generalize this
computation to the case with spontaneous translation
symmetry breaking.
Before we turn to the holographic computation, we must

find a set of boundary conditions for which the incoherent
current (61) is sourced but the momentum is not. In order
to do this, we note that, by rotating the linear transport
relation:

�
J

JQ ≡ P − μJ

�
¼
�

σ αT

αT κ

� 
E⃗

− ∇⃗T
T

!
ð62Þ

by the matrix:

M ¼
�
χPP − μρ −ρ

μ 1

�
ð63Þ

we obtain:

�
Jinc
P

�
¼ M

�
σ αT

αT κ

�
MTðMTÞ−1

 
E⃗

− ∇⃗T
T

!
: ð64Þ

This shows that we should impose a set of boundary
conditions for which

ðMTÞ−1
 

E⃗

− ∇⃗T
T

!
¼
�
Ē

0

�
; ð65Þ

where Ē is the source for the incoherent current.
We now proceed with the holographic computation.

Taking inspiration from [71,72], we turn on the following
set of boundary conditions:

δaxðrÞ ¼ aðrÞ − p1ðrÞt; δhtx ¼ h1ðrÞ − p2ðrÞt;
δhrx ¼ h2ðrÞ; δψx ¼ χðrÞ: ð66Þ

Note that we could in principle add a δψ0t term in the
fluctuation for ψx, since in this setup this is a vev and does
not introduce a new source in the boundary. This term is
precisely what acting on the background with the Lie
derivative along x would generate, and which we previ-
ously identified as the bulk dual to the boundary phonon.
However, we find that it does not contribute to σo and so
do not turn it on to avoid cluttering our expressions. This
seems consistent with the intuition that σo captures the
contribution of processes which do not drag momentum,
and so should also be insensitive to phonon dynamics.
The t dependence drops out from the linearized equa-

tions, provided

p1ðrÞ ¼ pð0Þ
1 þ ĒρA; p2ðrÞ ¼ −ĒρD; ð67Þ

where pð0Þ
1 is a constant which will be fixed shortly.

We can now show that the following UV boundary
conditions are consistent

aðrÞ ¼ að1Þ þOðr2Þ; h1ðrÞ ¼ hð1Þ1 rþOðr2Þ;
hrx ¼ OðrÞ; χðrÞ ¼ χ1 þOðr3Þ; ð68Þ

provided we set

pð0Þ
1 ¼ −Ē

�
9

2
d3 þ ρμ

�
¼ ĒðsT − k2IYð0ÞÞ: ð69Þ

This condition follows from requesting δhrx to fall off
sufficiently fast in the UVand is the key difference with the
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computations in [38,40], which hold for explicit symmetry
breaking.
The boundary sources are [73,74]

Ex ¼ −lim
r→0

∂tðaxðr; tÞ þ μhxt ðr; tÞÞ;
1

T
∇xT ¼ lim

r→0
∂thxt ðr; tÞ ð70Þ

or, plugging in our boundary expansions

Ex ¼ ĒðsT − k2IYð0ÞÞ; ∇xT ¼ ĒρT ð71Þ

which verify (65) as expected.
We now need to find a radially conserved quantity which

asymptotes to Jinc. The x component of Maxwell’s equation
reads

�
Z

ffiffiffiffi
D

pffiffiffiffi
B

p a0 −
ρ

C
h1

�0
¼ 0; ð72Þ

while the tx component of the Einstein equations is

�
C2ffiffiffiffi
B

p ffiffiffiffi
D

p
�
h1
C

�0
− ρa

�0
− k2

ffiffiffiffi
B

pffiffiffiffi
D

p Yh1 ¼ 0: ð73Þ

Taking our cue from the definition of Jinc (61), we identify
JincðrÞ ¼ ðsT − k2IYð0ÞÞ (72) −ρD=C (73), which is
obviously radially conserved J0incðrÞ ¼ 0. Explicitly,

JincðrÞ ¼ −
�
C2ðD=CÞ0ffiffiffiffi

D
p ffiffiffiffi

B
p þ k2ðIYð0Þ − IYðrÞÞ

� ffiffiffiffi
D

pffiffiffiffi
B

p Za0

þ ρC

ffiffiffiffi
D

pffiffiffiffi
B

p ðh1=CÞ0 þ ρk2ðIYð0Þ − IYðrÞÞ
h1
C

ð74Þ

Let us now check that this does asymptote to the cor-
rect Jinc.
At the boundary, the fluctuations have the following

behavior:

h1ðrÞ ¼ hð1Þ1 rþ ρað1Þ

4
r2 þOðr3Þ; ð75Þ

h2ðrÞ ¼ hð1Þ2 rþ hð2Þ2 r2 þOðr3Þ; ð76Þ

aðrÞ ¼ að1ÞrþOðr3Þ: ð77Þ

The electric current is defined by

Jx ¼ ffiffiffiffiffiffi
−g

p
ZðϕÞFrx ¼ lim

r→0

1

r
ZðϕÞnMFMx ¼ að1Þ: ð78Þ

To define the heat current, it is useful to consider the
following antisymmetric 2-form:

GMN ¼ 2∇MkN þ ZðϕÞkMFN
SAS þ

1

2
ZðϕÞðΞ − 2ΘÞFMN

ð79Þ

where kM ¼ ð1 − ρĒx; 0; 0; 0Þ is the timelike Killing vector
and Ψ, Θ are defined from

LkA ¼ dΞ; kMFMN ¼ ∇NΘ ð80Þ

such that

Ξ ¼ −p1
ð0Þx; Θ ¼ −A − p1x: ð81Þ

This 2-form obeys the following equation on-shell [40]

∇MGMN ¼ −VðϕÞkN: ð82Þ

which follows from the conservation of the bulk Noether
charge associated to the timelike Killing symmetry [54].
Projecting this equation on N ¼ t and reabsorbing the
right-hand side inside the radial derivative, we recover
the radially conserved quantity (34) [72]. This leads us to
identifying the heat vector as JQM ¼ −GrM. Projecting on
M ¼ t and keeping in mind the sign convention ut ¼ 1,
JQt ¼ sTut ¼ sT. Also the heat current reads

JQx ¼ −Grx ¼ −3hð1Þ1 − μað1Þ: ð83Þ

Finally, we evaluate the incoherent current (74) asymptoti-
cally and find:

Jinc ¼ −
9

2
d3að1Þ þ 3ρhð1Þ1

¼ ðsT þ 2KūÞJ − ρJQ ¼ χPPJ − ρP ð84Þ

as it should be. The middle equality shows that χPJQ ¼
sT þ 2Kū in the unstable case, different from the
translation-invariant case where k ¼ 0.
We can now evaluate (74) on the horizon, imposing

regularity of the perturbations in Eddington-Finkelstein
coordinates [40]:

a ¼ −Ē
sT þ 2Kū

4πT
logðrh − rÞð1þOðrh − rÞÞ;

h1 ¼
2ρĒKū
k2Y

þOðrh − rÞ;

h2 ¼
h1

4πTðrh − rÞ þOð1Þ: ð85Þ
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Plugging this into JincðrhÞ and dividing by the source Ē, we
get the zero frequency limit of the retarded Green’s function
of the incoherent current and thus, from (60) we get:

σo¼
ðsTþ2KūÞ2Zh

ðsTþμρþ2KūÞ2þ
16πðKūÞ2ρ2

sYhk2ðsTþμρþ2KūÞ2 : ð86Þ

Recalling that Kū ∼ k2, the k → 0 limit is smooth and
matches previous results [68–71]. An important difference
when k ≠ 0 is that now σo is not solely expressed in terms
of horizon data, but also involves an integral over the whole
spacetime.
We will see that both (58) together with (86) and (59)

perfectly match our numerical results in Sec. V.

B. Higher-derivative model

It is now straightforward to repeat this calculation in the
higher-derivative model (36). There are two main
differences. First, from (47), we find that the momentum
static susceptibility now reads

χPP ¼ δhTtii
δvi

¼ −
9

2
d3 ¼ ϵþ p ¼ sT þ μρ: ð87Þ

once the free energy is minimized with respect to k. So the
incoherent current will be

Jinc ¼ χPPJ − ρP ¼ sTJ − ρJQ: ð88Þ

Second, the expressions for the radially conserved bulk
currents have to be updated:

JxðrÞ ¼
ffiffiffiffi
D
B

r �
Z1 þ λ1k2

Z2

C

�
a0 − ρ

h1
C
; ð89Þ

GMN ¼ 2∇MkN þ
�
Z1ðϕÞ þ λ1Z2ðϕÞ

X2
I¼1

∂ψ2
I

�
kMFN

SAS

þ 1

2

�
Z1ðϕÞ þ λ1Z2ðϕÞ

X2
I¼1

∂ψ2
I

�
ðΞ − 2ΘÞFMN

ð90Þ

which leads to the heat current

JxQðrÞ ¼ −Grx ¼ AA0

ρBC
a0 þ

�
ρA
C

þ D0ffiffiffiffiffiffiffi
BD

p
�
h1 −

ffiffiffiffi
D
B

r
h01:

ð91Þ

The incoherent combination of bulk currents

JincðrÞ ¼ sTJxðrÞ − ρJxQðrÞ ð92Þ

is manifestly radially conserved and asymptotes to the
incoherent current Jinc ¼ sTJx − ρJxQ at the boundary.
We can now evaluate (92) on the horizon, imposing

regularity of the perturbations in Eddington-Finkelstein
coordinates [40]:

a ¼ −Ē
s
4π

logðrh − rÞð1þOðrh − rÞÞ;
h1 ¼ Oðrh − rÞ;
h2 ¼ Oððrh − rÞ0Þ: ð93Þ

We find that

JincðrhÞ ¼ ĒðsTÞ2
�
Z1;h þ λ1k2

4πZ2;h

s

�
ð94Þ

which leads to

σinc ¼
Jinc
Ē

¼ ðsTÞ2
�
Z1;h þ λ1k2

4πZ2;h

s

�
ð95Þ

and

σo ¼
σinc

ðχPPÞ2
¼ σinc

ðsT þ μρÞ2 : ð96Þ

This matches the results of [62]. Remarkably (95) has
exactly the same functional dependence on horizon data
as when translations are explicitly broken (of course the
dependence on boundary data T, μ and k will differ since
the states are different).
Reference [67] pointed out that once translations are

weakly broken, the dc conductivity of weakly-disordered,
non-Galilean invariant CDWs is precisely given by σo
above, computed directly in the clean theory: this is the
physical content of our formula (96).

IV. QUANTUM CRITICAL CDW PHASES

A. Two-derivative model

T ¼ 0 solutions solving the equations of motion deriving
from the action (6) and modeling holographic quantum
critical phases were thoroughly studied in [39] (see also
[38]). The analysis only relies on assuming the following
IR behavior ϕ → ∞ for the scalar couplings:

VIR¼V0e−δϕ; ZIR¼Z0eγϕ; YIR¼Y0eνϕ; ð97Þ

and, in principle, is valid irrespectively of the UV boundary
conditions.5 It carries through in our setup, and allows us to
describe quantum critical phases with spontaneous trans-
lation symmetry breaking.

5Of course, a UV completion is necessary to actually realize
these phases.
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The leading order behavior of the fields in the IR is

ds2 ¼ ξθ
�
−fðξÞdt

2

ξ2z
þ L2dξ2

ξ2fðξÞ þ
dx⃗2

ξ2

�
; A ¼ A0ξ

ζ−zdt;

ψ I ¼ kδIixi; ϕ ¼ κ log ξ; fðξÞ ¼ 1−
�
ξ

ξh

�
2þz−θ

:

ð98Þ

ξh is the location of a Killing event horizon, with the
associated Hawking temperature T ∼ ξ−1=zh and Hawking-
Bekenstein entropy s ∼ ξθ−2h . Combining both formulas the

entropy density scales as s ∼ T
2−θ
z .

There are four classes of solutions, which differ by
whether the fields ψ I and At are related to a marginal or
irrelevant deformation of the IR solution. At the level of
equations, plugging in a solution of the form (98) returns a
system of equations with terms depending on powers of ξ.
The couplings (97) are either such that all terms in the eoms
depend on the same power of ξ, and then the eoms reduce to
algebraic equations. Or terms involving the Maxwell or ψ I
fields scale with a subleading power of ξ compared to other
terms. In this case, they parameterize irrelevant deforma-
tions of the leading IR solution, which is then obtained by
setting the irrelevant terms to zero in the eoms and solving
them. The full IR solution is now a series expansion, where
subleading terms are obtained order by order by back-
reacting the irrelevant terms in the eoms on the leading
order solution.
The generic consistency conditions (valid for all

classes) are
(i) Null energy condition:

ð2− θÞð2z− 2− θÞ ≥ 0; ðz− 1Þð2þ z− θÞ ≥ 0:

ð99Þ

(ii) Positivity of the specific heat:

2 − θ

z
≥ 0: ð100Þ

(iii) Marginal or irrelevant deformation sourced by
the ψ I:

−
2þ κν

z
≥ 0: ð101Þ

This corresponds to an IR operator of dimension
Δ̃ψ ¼ 2þ z − θ − κν

2
. The tilde is to emphasize that

this is an IR dimension, not the UV engineering
dimension of the field ψ I. Still we denote it by Δ̃ψ as
the source of this IR operator is proportional (but not
equal) to k. The operator is marginal when κν ¼ −2.

When it is irrelevant, it backreacts on the leading
solution as

Σ ¼ Σk¼0ð1þ cΣk2ξ2þκν þOðk4ξ2ð2þκνÞÞÞ ð102Þ

where Σ is a placeholder for the metric, gauge field
or scalar ϕ and cΣ is a coefficient whose precise form
is not important for our discussion. The leading
order solution Σk¼0 is obtained by solving the eoms
with the Ansatz (98) setting k ¼ 0. We see clearly
that in the marginal limit κν ¼ −2 the operator does
not source any additional ξ dependence.

(iv) Marginally relevant or irrelevant deformation
sourced by At:

−
ζ − θ þ 2

z
≥ 0: ð103Þ

This corresponds to an IR operator of dimension
Δ̃A ¼ zþ 1 − ðζ þ θÞ=2. It is marginal when
ζ ¼ θ − 2. Similarly to above, when it is irrelevant,
it backreacts on the leading solution as

Σ ¼ ΣA0¼0ð1þ cΣA2
0ξ

ζ−θþ2 þOðA4
0ξ

2ðζ−θþ2ÞÞÞ
ð104Þ

The leading order solution ΣA0¼0 is obtained by
solving the eoms with the Ansatz (98) setting
A0 ¼ 0. We see clearly that in the marginal limit
ζ ¼ θ − 2 the operator does not source any addi-
tional ξ dependence.

The dimensions of the IR operators obey:

Δ̃ψ ≥ 3þ z − θ; Δ̃A ≥ 2þ z − θ; ð105Þ

as expected for irrelevant (marginal) operators. The shift in
the condition on Δ̃ψ originates from the spatial dependence
of the source of the IR operator. Only the sources of these
IR operators can be turned on, as the vev term would spoil
the IR asymptotics [72].
Next, we discuss the low temperature asymptotics of

the incoherent conductivity (86). The integral IYð0Þ ≠ 0 is
dominated by the UVof the geometry at T ¼ 0. This can be
seen by plugging in the IR geometry (98) and observing
that the integrand vanishes in the IR limit. This means
that IYð0Þ is going to some constant at T ¼ 0 which is
expressed in terms of UV data and cannot be evaluated
solely by the knowledge of the near-horizon region. This is
generally the case of static susceptibilities in holography,
except for a few special cases [72,75]. The incoherent
conductivity (86) becomes in the low temperature limit

σoðT → 0Þ ¼ 4ðKūÞ2
ðμρþ 2KūÞ2

�
Zh þ

4πρ2

sk2Yh

�
; ð106Þ
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where we have neglected the sT terms which are sublead-
ing compared to μρ or K at T ¼ 0. It is interesting to
note that the expression inside the parentheses is precisely
the dc conductivity that would follow from explicit trans-
lation symmetry breaking boundary conditions [38,39].
Consequently, since the prefactor approaches a constant at
T → 0, the low T dependence of σo is still completely
governed by the near-horizon region. Plugging in the
scaling solutions (98), we find

σo ∼
4ðKūÞ2

ðμρþ 2KūÞ2 T
2z−θ−2Δ̃

z ; ð107Þ

where Δ̃ ¼ max ðΔρ̃;Δψ̃ − 1Þ. This is the same temperature
scaling that was determined in [39], assuming explicit
translation symmetry breaking.
We conclude this section by taking the “semilocally

critical” limit where z → þ∞, θ → −∞ with θ̃ ¼ −θ=z
fixed. The scaling (107) now becomes

σo ∼
4ðKūÞ2

ðμρþ 2KūÞ2 T
−θ̃: ð108Þ

We note two particularly interesting cases: θ̃ ¼ 0 and
θ̃ ¼ 1. When θ̃ ¼ 0, the scalar is just a constant in the

IR, the entropy and the incoherent conductivity of the state
are finite at zero temperature (i.e. it is AdS2 × R2). When
θ̃ ¼ 1, the entropy and 1=σo are both linear in temperature
for low temperatures.

B. Higher-derivative model

Scaling solutions of the higher-derivative model can be
analyzed along the same lines as in Sec. IVA. We assume
the following behavior of the scalar couplings as ϕ → ∞

VIR ¼ V0e−δϕ; ZIR;i ¼ Zi;0eγiϕ;

YIR;i ¼ Yi;0eνiϕ; i ¼ 1; 2: ð109Þ

Then we look for solutions of the form (98). We need
to decide whether the higher derivative terms parame-
terize marginal or irrelevant deformations of the leading
IR solution. The number of classes is combinatorially
larger, and we leave a full analysis of all classes to
future work. It is enough for now to comment on a few
special cases.
First, we address the case when all terms in the eoms

scale with the same power of ξ: in this case there are only
marginal deformations. Then the solution reads

γ1 ¼ −ν2 ¼ −δ − 2ν1; κν1 ¼ −κγ2 ¼ −2; κδ ¼ θ; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ − 2Þð2 − 2zþ θÞ

p
; ζ ¼ θ − 2;

L2 ¼ −
−2λ1λ2k6Y2;0Z2;0 þ 2V0ðλ1k2Z2;0 þ Z1;0Þ þ k2Y1;0Z1;0

2ð−θ þ zþ 2Þðλ1k2Z2;0ð2z − θÞ þ Z1;0ð−θ þ zþ 1ÞÞ ;

A2
0 ¼

2k2ð2λ2k2Y2;0ð−θ þ zþ 1Þ þ Y1;0ð2z − θÞÞ þ 4V0ðz − 1Þ
ð−θ þ zþ 2Þð−2λ1λ2k6Y2;0Z2;0 þ 2V0ðλ1k2Z2;0 þ Z1;0Þ þ k2Y1;0Z1;0Þ

: ð110Þ

Plugging this in the formula for the incoherent conductivity
(95) returns

σinc ¼ 16π2T2ξθhðZ1;0 þ 2λ1k2Z2;0Þ
∼ ðZ1;0 þ 2λ1k2Z2;0ÞT2−θ

z: ð111Þ

What this result shows is that the low temperature depend-
ence of the incoherent conductivity is set by the two-
derivative coupling Z1 of the scalar ϕ to the gauge field.
The higher derivative coupling λ1Z2 modifies the prefactor,
but not the temperature dependence. It will not cancel out
the leading two-derivative term, except in extremely fined
tuned circumstances where the prefactor Z1;0 þ 2λ1k2Z2;0
happens to vanish. This is a generic phenomenon: extra
higher derivative terms in the EFT sourcing marginal
deformations in the IR will act in a similar way.
Let us now address the case where terms coming from Y1

are irrelevant compared to other terms. These terms will act

on the leading solution with k ¼ 0 as in (102). We can
readily see how this affects the entropy density:

s ¼ 4πξθ−2h ð1þ csk2ξ
2þκν
h þOðk4ξ2ð2þκνÞ

h ÞÞ
∼ T

2−θ
z ð1þ csk2T

−2þκν
z þOðk4T−22þκν

z ÞÞ: ð112Þ

Z1;h and Z2;h are affected in a similar way through their
dependence on ϕ. By the constraint (101), the subleading
term vanishes faster than the leading term at low temper-
atures. It is natural to request that terms coming from Y2

cannot vanish slower in the IR than terms coming from
Y1. Otherwise, this would contradict EFT principles.
Thus, it is enough to comment on the behaviour of the
Y1 terms. Putting together (112) and (95), we find again
that σinc ∼ T2−θ

z.
A more interesting case is when terms coming from Z1

are irrelevant. This can be anticipated, since whether these
terms are marginal or irrelevant affects the leading order
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scaling of At through the value of the exponent ζ. It is
natural to expect this should have an important conse-
quence on the conductivity. In this case, as in (104), the
leading order solution is found by setting At ¼ 0 in the
eoms and solving them:

ν2 ¼ δþ 2ν1; κν1 ¼ −2;

κδ ¼ θ; κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ − 2Þð2− 2zþ θÞ

p
;

L2 ¼ λ2k4Y2;0 þ k2Y1;0 þ V0

ðθ − 2Þð−θþ zþ 2Þ ;

2λ2k4Y2;0ð−θþ zþ 1Þ þ k2Y1;0ð2z− θÞ þ 2V0ðz− 1Þ ¼ 0:

ð113Þ

The last equation does not mean that k is fixed in the IR
solution. There is a scaling symmetry x → Lxx which is
actually necessary to connect to an asymptotically AdS4
spacetime. The leading behaviour of At is found by plugging
in the At ¼ 0 solution in the t component of Maxwell
equation, and solving it for At. For now we assume that Z2

terms scale the same as Z1 terms. This returns

At ¼ A0ξ
ζ−z; κγ1 ¼ 2 − ζ; κγ2 ¼ θ − ζ: ð114Þ

Plugging into (95), we find

σinc ∼ T2þζþ2ð1−θÞ
z ð1þOðT−ζ−θþ2

z ÞÞ; ð115Þ

where the subleading terms come from backreacting (114)
on (113) and indeed vanish faster than the leading ones
at low temperature given (103). The same arguments will
apply if Z2 terms are subleading compared to Z1 terms (then
the condition on γ2 in (114) is relaxed). Notice that setting
ζ ¼ θ − 2 recovers the previous scaling (111) we obtained in
the case of a marginal deformation.
As we elaborate further on in [49], we can use this result

to predict the scaling of the dc conductivity of the same
phase weakly pinned by disorder. Indeed, [4,67] found that
the dc conductivity of a pinned CDW is σo to leading order

in the disorder strength, and so can be evaluated in the
clean theory. Since χPP asymptotes to a constant at zero
temperature, its low temperature behavior will be the same
as in (115)

σo ∼ T2þζþ2ð1−θÞ
z : ð116Þ

This is one of the main results of our work. Taking into
account the various constraints on the exponents mentioned
in Sec. IVA, this can vanish or diverge at low temperatures,
i.e. the CDWs can be either insulating dσo=dT > 0jT→0 or
conducting dσo=dT < 0jT→0.

V. HOMOGENEOUS BLACK HOLES WITH
NONZERO STRAIN

In this section, we construct numerically some examples
of homogeneous, finite temperature black holes dual to
phases spontaneously breaking translations and with
nonzero strain. For this, we restrict to the two-derivative
model (6). For illustrative purposes, we consider two
models, one which contains black holes where the entropy
density does not vanish at T ¼ 0, and another where it
does. The first is simply (54) with γ ¼ f1; 4g. The second is

VðϕÞ ¼ −6 cosh
�

ϕffiffiffi
3

p
�
; ZðϕÞ ¼ exp

�
−

ϕffiffiffi
3

p
�
;

YðϕÞ ¼ ð1 − expϕÞ2: ð117Þ

The UV boundary conditions for these black holes are
given in (12). Their near-horizon expansion is as in (11).
For each model, we construct a spontaneous solution (at
k ¼ 0.1 for (54) and k ¼ 0.01 for (117) and display the
temperature dependence of the condensate, defined as
hOi ¼ ϕðvÞ from (9), in Fig. 2. Observe that the condensate
for the second solution exists at all temperatures. This k ≠ 0
solution is smoothly connected to the k ¼ 0 solution which
also has a condensate and exists at all temperatures. In this
theory, the Reissner-Nordström black hole is not a solution
of the classical equations of motion.
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FIG. 2. Plots of the scalar condensate versus temperature. Left: model (54). Right: model (117).
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FIG. 3. Plots demonstrating the low temperature behavior of the entropy density. Left: the AdS2 × R2 zero temperature solution of the
model (54) with nonvanishing entropy. Right: the semilocally critical zero temperature solution of the model (117) with linearly
vanishing entropy.
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FIG. 4. Plots demonstrating the agreement of the numerically computed optical conductivity (red, dashed) with the analytical prediction
(58) (black, solid). Left: the zero frequency limit of the real part of the conductivity. Right: The weight of the ω ¼ 0 pole. Top: model (54)
with γ ¼ 4; the zero temperature geometry is AdS2 × R2, σo is nonvanishing at T ¼ 0 and “metallic” dσo=dT < 0jT→0. Middle: model
(54) with γ ¼ 1; the zero temperature geometry is AdS2 × R2, σo is nonvanishing at T ¼ 0 and “insulating” dσo=dT > 0jT→0. Bottom:
model (117); the zero temperature geometry is conformal to AdS2 × R2 with θ̃ ¼ 1 and σo as 1=T at low temperature.
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We show the entropy density in Fig. 3. The solution of
the model (54) has nonvanishing zero temperature entropy
and interpolates between a UV z ¼ 1 and an IR z ¼ þ∞
(AdS2 × R2) fixed point. The entropy density of the
solution of the model (117) vanishes linearly with temper-
ature and interpolates to a hyperscaling violating, semi-
locally critical IR with θ̃ ¼ 1.
Next, we compute the optical conductivity of the black

holes, by perturbing the background with the Ansatz

δAxðr; tÞ ¼ aðrÞe−iωt; hxt ðr; tÞ ¼ h1ðrÞe−iωt;
δψxðr; tÞ ¼ χðrÞe−iωt; ð118Þ

which is a consistent set of perturbations. In the UV, we
wish to impose boundary conditions turning on an oscil-
lating electric field. The UV expansion of the perturbation
as r → 0 is

a ¼ að0Þ þ að1ÞrþOðr2Þ; h1 ¼ hð0Þ þ hð3Þr3 þOðr3Þ;
χ ¼ χð0Þ

r
þ χð1Þ þOðrÞ: ð119Þ

In contrast to [37], and due to our boundary conditions (12),
we can consistently set χð0Þ ¼ 0 (we can use a gauge
transformation to set hð0Þ to zero, which shifts χð1Þ and not
χð0Þ). The conductivity reads

σðωÞ ¼ −
i
ω

að1Þ
að0Þ

: ð120Þ

In Fig. 4, we show that it agrees with (58). In particular,
its real part at zero frequency agrees with our analytical
result (86), and the weight of the ω ¼ 0 pole of the
imaginary part is ρ2=χPP, with ρ and χPP given in (33)
and (59), respectively.

VI. DISCUSSION AND OUTLOOK

We have presented an effective holographic theory of
CDW states. We have implemented spontaneous breaking
of translations in a homogeneous manner, which corre-
sponds to considering directly the low energy dynamics
of the phonons coupled to conserved currents. At two-
derivative level, our model captures excited equilibrium
states with nonzero strain. By adding higher-derivative
terms, we also capture thermodynamically stable phases
which minimize the free energy. Our model contains
quantum critical CDW zero temperature states for both
cases. We computed the conductivity of these holographic
CDWs, finding complete agreement between our analytic
formulas and our numerics for strained phases, and with
other literature [62] for stable phases. As we explain in
[49], the real part of the dc conductivity may be used to
predict the temperature scaling of the resistivity of CDWs
with weak disorder. The zero temperature state can be

insulating or metallic, depending on the details of the
model. In [49], we also connect our results with the
phenomenology observed in underdoped cuprates with
static charge order, and speculate on the potential relevance
of the strained phases to the strange metallic region.
We have focused only on a subset of the observables that

can be computed in a state breaking translations sponta-
neously. It would be worthwhile to look at the spectrum of
collective excitations (e.g. transverse sound modes) and
compare it to hydrodynamic expectations [4] as well as
previous holographic results [28–30,46,76,77].
References [28,30] found that the low temperature

resistivity of weakly-pinned holographic spatially modu-
lated states scales with temperature. Our calculation of the
incoherent conductivity, together with the quantum critical
zero temperature states, could shed light on these results.
More generally, it would be interesting to work out how our
holographic EFT can be related to the low wavelength
dynamics of inhomogeneous holographic states [32]. This
would provide a derivation of which higher derivative terms
could arise.
It would also be interesting to revisit the analyses of

commensurability effects (or lack thereof) [78,79] in our
improved model with quartic derivatives. We observed
that these terms could trigger dynamical instabilities of
translation-invariant phases. The higher derivative terms we
consider might also inspire kinetic Mexican-hat construc-
tions for non-holographic EFTs avoiding kinetic terms with
the ‘wrong sign’.
Many spatially-modulated instabilities are measured in a

magnetic field [80–82]. Parity-violating spatially modu-
lated phases have also been constructed in holography. It
should be possible to extend previous holographic studies
of magnetotransport of disordered metallic phases [83–87]
to holographic CDW states.
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Note added.—As this work was in the final stages, we
became aware of [88] which also studies a homogeneous

model of spontaneous translation symmetry breaking in
holographic massive gravity, following earlier work in [76].
After this work appeared as a preprint, [62] emphasized
how considering thermodynamically stable phases affects
the incoherent conductivity. The new version of this work
reflects this improved understanding.
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[44] R. A. Davison and B. Goutéraux, J. High Energy Phys. 01

(2015) 039.
[45] R. A. Davison and B. Goutéraux, J. High Energy Phys. 09
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[56] M. Baggioli, B. Goutéraux, E. Kiritsis, and W.-J. Li, J. High
Energy Phys. 03 (2017) 170.

[57] M. Baggioli and O. Pujolas, J. High Energy Phys. 01 (2017)
040.

[58] M. Baggioli and O. Pujolas, Phys. Rev. Lett. 114, 251602
(2015).

[59] L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolas, J.
High Energy Phys. 02 (2016) 114.

[60] L. Alberte, M. Baggioli, and O. Pujolas, J. High Energy
Phys. 07 (2016) 074.

[61] A.M. García-García, B. Loureiro, and A. Romero-Bermúdez,
Phys. Rev. D 94, 086007 (2016).

[62] A. Donos, J. P. Gauntlett, T. Griffin, and V. Ziogas, arXiv:
1801.09084.

[63] A. Donos and J. P. Gauntlett, J. High Energy Phys. 10
(2013) 038.

[64] A. Donos and J. P. Gauntlett, J. High Energy Phys. 03
(2016) 148.

[65] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A.
Zhiboedov, J. High Energy Phys. 02 (2016) 020.

[66] S. A. Hartnoll and D. M. Hofman, Phys. Rev. Lett. 108,
241601 (2012).
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