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Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations
and disorder variables in low dimensional field theories. In recent years they received a new incarnation
within the framework of geometric entropy and strong coupling limit of four-dimensional scattering
amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory,
namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the
properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path
integral, to the study of spectral determinants on surfaces with conical points, which are then computed
exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a
massive complex scalar by means of the Lifshitz-Krein trace formula.
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I. INTRODUCTION

Two-dimensional conformal field theory on a (say,
hyperelliptic) Riemann surface R can be reformulated as
a theory on a branched covering of the complex plane,
where each branch point zi corresponds to an insertion of a
conformal primary field VðziÞ [1–3], known as the branch
point twist field. The argument goes as follows [1–3].
Consider a small vicinity of the branch point zj of order N
(with a cut emanating to infinity) on the covering of the
original Riemann surface with N consecutive sheets
enumerated by l ¼ 1;…; N and parametrized by the
single-valued coordinate ζ,

ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
z − zjN

p
: ð1:1Þ

When a point z ¼ zj þ εeiφ is taken around zi, i.e., from
φ ¼ 0 to φ ¼ 2π, the coordinate ζ moves from the lth to
ðlþ 1Þst sheet. Let the field theory on each sheet l be
described by an action SðlÞ ¼ S½XðlÞ�. The complex fields
XðlÞ belonging to different sheets do not interact with each
other. We identify them across the cuts ½zi;∞Þ,

XðlÞðzÞjz∈½zj;∞Þ ¼ Xðlþ1ÞðzÞjz∈½zj;∞Þ; ð1:2Þ

and obviously cyclically identify N þ 1 ¼ 1. This corre-
sponds to gluing sheets together into the original Riemann

surface. The Boltzmann weight e−S in the partition function
is then given by the sum of N copies of the model
on a single complex plane S ¼ P

N
l¼1 SðlÞ and enjoys ZN

permutation symmetry σXðlÞ ¼ Xðlþ1Þ. The latter can be
diagonalized by forming a linear combination of fields of
the N copies,

X½k� ¼
XN
l¼1

e2πi
kl
NXðlÞ; σX½k� ¼ e2πi

k
NX½k�: ð1:3Þ

The action can be equivalently written in terms of N still
decoupled copies of these, i.e., S ¼ P

N−1
k¼0 S½X½k��. The

above equation immediately implies that the new fields
X½k� are not single valued but acquire a phase as their
argument crosses the cuts

X½k�ðz↺j
Þjz∈½zj;∞Þ ¼ e2πi

k
NX½k�ðzÞjz∈½zj;∞Þ: ð1:4Þ

This information can be encoded into the operator product
expansion of the field X½k�ðzÞ with a twist field Vk=NðzjÞ,
such that

X½k�ðzÞVk=NðzjÞ¼ðz−zjÞk=N∶X½k�Vk=N∶ðzÞþ��� : ð1:5Þ

For the entire R, the integrand in the path integral is given
by the product of Boltzmann weights e−S ¼ Q

N−1
k¼0 e

−S½X½k��

and one introduces the corresponding branch point twist
field by forming the product of twist fields over all N
copies,

VðzjÞ ¼
YN−1

k¼1

Vk=NðzjÞ: ð1:6Þ
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Here we accounted for the fact that V0 ¼ 1. Consequently,
the field theory on the original Riemann surface is
reformulated in terms of the N decoupled copies on the
complex plane but with insertions of branch point twist
fields,

Z
½DX�Re−SR ¼

Z YN−1

k¼0

ð½DX½k��e−S½X½k��Þ
Y
j

VðzjÞ

≡
�Y

j

VðzjÞ
�
: ð1:7Þ

We implicitly imply that some (or all) of the fields can be
branch point antitwists V̄ðzjÞ ¼

Q
N−1
k¼1 V−k=NðzjÞ.

The consideration that follows is done having two parti-
cular applications of the branch point twist fields in mind.
The first one is the calculation of von Neumann SvN geo-
metric (or entanglement) entropy [4] for a one-dimensional
observer residing on a single interval A ¼ ½0; x� with the
rest of the real line B ¼ RnA being unattainable,

SvN ¼ −trAρA ln ρA; ρA ¼ trBjψihψ j: ð1:8Þ
Here jψi is a pure state of the quantum system on R and
traces are taken over the degrees of freedom on the labeled
intervals. A standard technique for computation of SsV is
the replica trick [4,5]: introducing N copies of the system,
computing the Renyi entropy SR and constructing its proper
analytic continuation in N allows one to compute its
derivative,

SRðNÞ ¼ trAρNA ; SvN ¼ −
dSRðNÞ
dN

����
N→1

: ð1:9Þ

The Renyi entropy can be cast in a form of the path integral
over a hyperelliptic Riemann surface, ζN ¼ zðz − xÞ, with a
branch cut ½0; x�. Then according to the previous discus-
sion, it admits (up to an overall, possibly divergent,
constant) the form of the correlation function of a branch
point twist field at z1;μ ¼ ðx; 0Þ and antitwist at z2;μ ¼
ð0; 0Þ [6],

SRðNÞ ¼ cNhV̄ð0ÞVðxÞi: ð1:10Þ

The second application pertains to the recent use of the
pentagon form factor program [7–9] for computation of
L-particle scattering amplitudes AL in four-dimensional
maximally supersymmetric Yang-Mills theory. The formal-
ism relies on a dual description of on-shell massless
amplitudes in terms of expectation values of Wilson loops
stretched on a null polygonal contour tracing the path
formed by the particles’ momenta [10–12]. Dynamical
information is then encoded through the physics of exci-
tations ψ propagating on the two-dimensional world sheet
ending on the four-dimensional boundary. The amplitudes
admit the following schematic representation,

AL ¼
XZ

1;2;…L−5
h0jP̂jψL−5ie−τL−5EL−5þiσL−5PL−5þiφL−5mL−5…

× hψ2jP̂jψ1ie−τ1E1þiσ1P1þiφ1m1hψ1jP̂j0i; ð1:11Þ

as a sum over an infinite number of the so-called flux-tube
excitations and their bound states with external geometrical
data ðτj; σj;φjÞ included through the phase factors para-
metrized by total energy Ej, momentum Pj and (twice the)
helicity mj of the intermediate state jψ ji. The physics of
transitions between adjacent intermediate states is deter-
mined by matrix elements of pentagon operators P̂. At
strong ’t Hooft coupling g2, integrating out all heavy
fermionic and gauge modes, the only propagating degrees
of freedom that remain are the six nearly massless scalars.
They are described by the O(6) nonlinear sigma model [13].
In the ultraviolet regime, due to asymptotic freedom of the
theory, the sigma model coupling vanishes and one ends up
with a free theory of five massless real scalars. These
propagate on a background with conical singularities at the
space-time positions of pentagon operators zj ¼ ðσj; τjÞ on
a two-dimensional plane [14]. Each cone has an excess
angle of π=2 as it corresponds to folding the pentagon on a
time-space square [15]. Thus, in the vicinity of each cone,
we are dealing with ð1þ 1

4
Þ-sheeted Riemann surface. As a

consequence, the pentagon operators P̂ take on the mean-
ing of (fractional) branch point twist fields V. One subtle
point that one has to keep in mind is that the introduction of
twist fields requires operating with complex rather than real
fields so one effectively doubles the number of degrees of
freedom to construct a microscopic definition of pentagon
operators. This is a common trick, successfully employed
in many different circumstances, e.g., in the Ising model
[16]. Merely taking the square root at the end reduces this
number in half. In this manner, the (square of the) scattering
amplitudes as strong coupling are given by the (L − 5)-
point correlation function of branch point twist fields
[15,17,18],

A2
L ¼g2→∞hVðzL−5Þ…Vðz1ÞVð0Þi: ð1:12Þ

In what follows, we focus on the simplest L ¼ 6 case, i.e.,
the hexagon.
The focus of our current study is on two-point correlation

functions in free theories of an elementary massless
complex scalar field. Our subsequent presentation is
organized as follows. In the next section, we recall the
definition of twist fields within the formalism of the path
integral. In Sec. III, we compute the twist-twist and then, in
Sec. IV, twist-antitwist correlator in massless theories by
reducing them to the calculation of spectral determinants
regularized by means of the zeta function. While the twist-
twist sector enjoys the conventional powerlike scaling with
the distance typical for theories with infinite correlation
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length, the latter one acquires an additional logarithmic
factor intrinsic to logarithmic conformal field theories [19].
Finally, we conclude and provide a sketch for generaliza-
tion of the current techniques to massive noninteracting
theories as well as to multipoint correlators. The appendix
contains information on elementary mathematical aspects
of q-series relevant to proper analysis of twist-antitwist
functions.

II. TWIST FIELDS AND THEIR CORRELATORS

The field theoretical definition of the twist field Vα was
proposed in Refs. [16,20] within the framework of the two-
dimensional Ising model as a continuum analogue of lattice
(dis)order operators [21]. They were further generalized
within the formalism of the path integral to field models
with scalars and fermions [22,23], where Vα was shown to
be defined by nonpolynomial and not manifestly local
composite operators built up from elementary quantum
fields, namely,

VαðzÞ ¼ exp

�
2πiα

Z
C½z;∞�

dz0μεμνjνðz0Þ
�
: ð2:1Þ

Here the integral runs along an arbitrary contour C½x;∞�
from the position of the operator insertion to infinity with
the integrand determined by the U(1) current, which for the
complex scalar reads

jμ ¼ ð∂μϕ
�Þϕ − ϕ�ð∂μϕÞ: ð2:2Þ

Its conservation implies the path independence of the
definition (2.1),

Z
C½z;∞�

dz0μεμνjνðz0Þ ¼
Z
S
d2z0∂μjμðz0Þ þ

Z
C0
½z;∞�

dz0μεμνjνðz0Þ;

where the first term vanishes upon the application of the
Stokes theorem with ∂S ¼ C ∪ ð−C0Þ. In the above equa-
tion, it is assumed that 0 < α < 1, which is all one needs
for calculation of branch point twist fields from α ¼ k=N
and 0 ≤ k < N.
As was demonstrated in Ref. [22], the correlation

functions of twist fields in two-dimensional quantum field
theory can be reformulated as statistical mechanics of
matter fields in the external field of Dirac strings (or
Aharonov-Bohm vortices after a gauge transformation).
Namely, it is given by the functional integral

�Y
j

VαjðzjÞ
�

¼
Z

½DϕDϕ�� exp
�
−
Z

d2zjDμϕðzÞj2
�.

Z
½DϕDϕ�� exp

�
−
Z

d2zj∂μϕðzÞj2
�
;

ð2:3Þ

where the gauge field in the covariant derivative Dμ ¼
∂μ − iAμðzÞ is determined by the potential

AμðzÞ ¼ 2π
X
j

αj

Z
½zj;∞Þ

dz0νενμδð2Þðz0 − zÞ: ð2:4Þ

See Fig. 1 for a graphical representation.
The path independence in the definition of the twist

fields is traded off for the gauge invariance of the path
integral. Then, making use of this freedom, we can choose
all the paths as straight lines aligned with the x axis.
Without lost of generality, we place all operators along the
x axis, such that the vector potential is

AxðzÞ ¼ 0; AyðzÞ ¼ 2πδðzyÞ
X
i

αiθðzx − xjÞ; ð2:5Þ

where the components of any two-vector are zμ ¼ ðzx; zyÞ.
Performing a gauge transformation, the external field takes
on a form of a collection of the Aharonov-Bohm fluxes,

AμðzÞ ¼ ενμ
X
j

αj
ðz − zjÞν
ðz − zjÞ2

: ð2:6Þ

We do not use this form in the current paper though.
The resulting path integrals for the correlation function

(2.3) being Gaussian in nature can immediately be evalu-
ated and yield

�Y
j

VαjðzjÞ
�

¼ detΔ0;0;…

detΔα1;α2;…
; ð2:7Þ

with Δα1;α2;… ¼ jDμj2. The problem is thus reformulated as
a spectral problem for the Laplace operator in the external
field of Dirac strings (2.5). Since the latter field exists only
on the x axis, one solves the free-space Laplace eigenvalue
equation

Δ0;0;…ΦðzÞ ¼ −E2ΦðzÞ; z ∉ ∪j½zj;∞Þ; ð2:8Þ

with eigenfunctions possessing nontrivial monodromies
around each point zj,

FIG. 1. Generic correlation function of twist operators at
insertion points zj and discontinuity contours C½zj;∞�, with
eigenfunctions of the corresponding Laplace equation developing
twisted periodicity conditions (2.9).
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Φðz↺j
Þ ¼ e2πiαjΦðzÞ; ð2:9Þ

with z↺j
denoting a 2π rotation of z ¼ zx þ izy around zj;

see Fig. 1.
Equivalently, the spectral problem can be viewed as the

one for a Laplacian on Euclidean space with conical points
fzjg. One peculiarity of this is that a choice has to be made
in order to make it a self-adjoint operator. There are
infinitely many possibilities to achieve it and they are
driven by the prescription of a particular asymptotic
behavior near the conical points from the functional space
of the Laplacian. In the current paper, we consider
Friedrichs extension, which, in physical terms, merely
implies that its eigenfunctions are bounded near the conical
points; see, e.g., Ref. [24] for a comprehensive discussion.
For the gauge transformed configuration (2.6), it means that
the Aharonov-Bohm vortices are impenetrable and, thus,
the eigenfunctions of the Laplace operator vanish there. Let
us point out that other self-adjoint extensions were dis-
cussed in Refs. [25,26].
In order to properly calculate the determinants, we

employ the zeta regularization [27,28] such that

detΔ ¼ exp ð−Z0ð0ÞÞ; ð2:10Þ

and the zeta function

ZðsÞ ¼
X
n

E−2s
n ð2:11Þ

sums up all strictly positive eigenvalues of the spectral
problem

ΔΦn ¼ −E2
nΦn: ð2:12Þ

It is regular in the vicinity of s ¼ 0. Recently, this technique
was used to compute the vacuum expectation value of twist
fields on a disk [29] and the explicit normalization
coefficient naturally arises from that calculation. In the
next two sections, we extend the corresponding consid-
eration to two-point functions.

III. MASSLESS TWIST-TWIST CORRELATOR

Let us start our analysis with the two-point correlation
function of twist operators in free massless theory.
According to our previous discussion it is given by the
ratio of determinants of Laplace operators in free space and
in the presence of two Dirac strings,

hVs
αð0ÞVs

αðxÞi ¼
detΔ0;0

detΔα;α
: ð3:1Þ

Making use of the path independence of twist operators,
their contours are chosen as in Fig. 2 (top left panel). The
coordinate transformation

zx →
zx

x − zx
ð3:2Þ

leaves the twist operator at zx ¼ 0 intact, while moving the
one at zx ¼ x to infinity. This map eliminates all scales
from the problem, however. Therefore, one has to tread
more carefully and introduce a regulator by cutting out an
infinitesimal ε-vicinity around insertions before performing
(3.2), i.e., take jzxj ≥ ε and jzx − xj ≥ ε. The resulting

FIG. 2. Cut structure from the insertion of twist-twist (left panel) and twist-antitwist operators (right panel) in the complex plane.
Below each case is a graphical representation under the regularized form of the map (3.2), when the twist operator at z ¼ x moves to
infinity and explicitly exhibited twisted periodicity conditions.
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geometry takes on the form shown in Fig. 2 (bottom
left panel).
To compute the determinant of the Laplacian Δα;α, we

have to solve the corresponding spectral problem. In polar
coordinates, zx þ izy ¼ reiϑ, the equation admits the form

� ∂2

∂ðln rÞ2 þ
∂2

∂ϑ2
�
Φðr; ϑÞ ¼ −E2r2Φðr; ϑÞ: ð3:3Þ

Separating the variables

Φðr;θÞ ¼ RðrÞΘðϑÞ; RðrÞ ¼ JjνjðErÞ; ΘðϑÞ ¼ eiνϑ;

ð3:4Þ

the twisted periodicity condition on the angular function
ΘðπÞ ¼ e2πiαΘð0Þ provides the quantization condition for
ν ¼ 2mþ 2α with integer m ¼ 0;�1;�2;…. The require-
ment of the bounded behavior at the position of the twist
fields fixes the radial wave function to the Bessel function
of the first kind and yields the eigenvalues

EðαÞ
m;n ¼ jj2mþ2αj;n=ðx=εÞ; ð3:5Þ

in terms of the positive roots jj2mþ2αj;n of Jj2mþ2αj. Making
use of the zeta function regularization, we can rewrite this
as

ln
detΔ0;0

detΔα;α
¼ Z0

1ð0; αÞ þ Z0
2ð0;αÞ þ Z0

2ð0;−αÞ

− Z0
1ð0; 0Þ − 2Z0

2ð0; 0Þ; ð3:6Þ

where the prime stands for the derivative with respect to the
first argument and we introduced one- and two-dimensional
Bessel zeta functions,

Z1ðs;αÞ ¼
X∞
n¼1

ðEðαÞ
0;nÞ−2s; Z2ðs;αÞ ¼

X∞
m¼1

X∞
n¼1

ðEðαÞ
m;nÞ−2s:

ð3:7Þ

A. One-dimensional contribution

To start with, let us analyze the one-dimensional con-
tribution. In fact, we do not even have to introduce Z1 as
the determinant for the m ¼ 0 case can be easily deduced
from the application of the Gelfand-Yaglom theorem [30]
(see Ref. [31] for a comprehensive introduction) since the
problem is reduced to the one-dimensional radial problem.
Let us start with this simple calculation and regularize the
Laplacian with a mass M, Δα;α → Δα;α þM2, such that a
regular solution at the originΨαðrÞ ¼ J2αðMrÞ of the initial
value problem

ðΔα;α þM2Þjm¼0ΨαðrÞ ¼ 0 ð3:8Þ

provides the value of the regularized determinant,

det ðΔα;α þM2Þjm¼0 ¼ Ψαðx=εÞ: ð3:9Þ

Multiplying the right-hand side by the renormalization
factor and taking the limit M → 0, we immediately find

detΔ0jm¼0

detΔαjm¼0

¼ lim
M→0

M2αΨ0ðx=εÞ
Ψαðx=εÞ

¼ 22αΓð1þ 2αÞ
�
ε

x

�
2α

:

ð3:10Þ

To verify this result, we now repeat it within the
formalism of the zeta function regularization. To avoid
dealing with the Bessel spectrum, Z1 is rewritten in terms
of the resolvent

Z1ðs; αÞ ¼
Z
Cþ

dσ
2πi

σ−sR1ðσ; αÞ ð3:11Þ

over a Hankel-like contour Cþ running counterclockwise
to the left of all poles of the integrand but to the right of
the origin. Here R1ðσ;αÞ ¼ −U 0

1ðσ; αÞ is traded for the
potential U1,

U1ðσ; αÞ ¼ − ln
Y∞
n¼1

�
1þ

� ffiffiffiffiffiffi
−σ

p
j2α;n

x
ε

�
2
�

¼ − ln I2α

� ffiffiffiffiffiffi
−σ

p
x

ε

�
þ 2α ln

ffiffiffiffiffiffi
−σ

p
x

2ε

− lnΓð1þ 2αÞ; ð3:12Þ

and we employed the classic infinite series representation
of the modified Bessel function I2α due to Watson [32]. The
function U1 vanishes at the origin σ ¼ 0. It admits a
systematic expansion in terms of powers and logarithms
of σ [33,34]. In fact, the constant and logð−σÞ term in its
expansion determine the leading two terms in the small-s
expansion of the Bessel zeta function. Moving the deriva-
tive off U1 onto the function to its left and exponentiating
σ−s by means of the Schwinger formula, we find

ΓðsÞZ1ðs;αÞ ¼ −s
Z

1

0

dtts−1
Z
C−

dσ
2πi

e−tσ

σ
U1ðσ;αÞ þOðsÞ:

ð3:13Þ

Here, we deformed the integration contour Cþ to the left of
the origin and, since U1ð0; αÞ ¼ 0, the C− becomes the true
Hankel contour. We also restricted the integration with
respect to the Schwinger time over the half line to the
interval [0, 1] which holds up to higher order powers of s.
The large-σ asymptotics of the potential reads

U1ðσ; αÞ ¼ U1;1ðαÞ lnð−σÞ þ U1;0ðαÞ þ � � � ; ð3:14Þ
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with

U1;1ðαÞ ¼
1

4
þ α;

U1;0ðαÞ ¼ 2

�
1

4
þ α

�
ln
x
ε
− ln

22α−1=2Γð1þ 2αÞffiffiffi
π

p : ð3:15Þ

Evaluating the σ and t integrals, we find

ΓðsÞZ1ðs; αÞ ¼ U1;1ðαÞγE − U1;0ðαÞ −
1

s
U1;1ðαÞ þOðsÞ;

ð3:16Þ

such that the expansion in s yields

Z0
1ð0; αÞ ¼ −2

�
1

4
þ α

�
ln
x
ε
þ ln

22α−1=2Γð1þ 2αÞffiffiffi
π

p ;

ð3:17Þ

and coincides with Eq. (3.10) obtained with the help of the
Gelfand-Yaglom theorem and mass regularization.

B. Two-dimensional contribution

Turning to the two-dimensional Bessel zeta function, we
cast Z2 into the form

Z2ðs; αÞ ¼ −s
X∞
m¼1

ðmþ αÞ−2s
Z
Cþ

dσ
2πi

σ−s−1U2ðσ; mþ αÞ;

ð3:18Þ

with the potential

U2ðσ; mþ αÞ ¼ − ln
Y∞
n¼1

�
1þ

�ðmþ αÞ ffiffiffiffiffiffi
−σ

p
j2mþ2α;n

x
ε

�
2
�

¼ − ln I2mþ2α

�
ðmþ αÞ

ffiffiffiffiffiffi
−σ

p
x

ε

�

þ 2ðmþ αÞ ln ðmþ αÞ ffiffiffiffiffiffi
−σ

p
x

2ε

− lnΓð1þ 2mþ 2αÞ: ð3:19Þ

The calculation of the Kronecker limit formula for the
double Bessel zeta function follows the footsteps of Ref. [29]
for twist operator on a disk. Since the sum accompanying the
factor of s in Eq. (3.18) is not analytic in s in the vicinity of
s ¼ 0, we split U2 into two contributions,

U2ðσ; mþ αÞ ¼ V2ðσ; mþ αÞ þ 1

mþ α
W2ðσÞ: ð3:20Þ

Notice that only the second term can generate a pole at s ¼ 0.
The accompanying function W2 can be found from the
uniform expansion of the Bessel function [35],

IνðνzÞ ¼ν→∞ eν½
ffiffiffiffiffiffiffiffi
1þz2

p
þln z=ð1þ

ffiffiffiffiffiffiffiffi
1þz2

p
Þ�ffiffiffiffiffiffiffiffi

2πν
p ð1þ z2Þ1=4

�
1þ 1

ν
U1ðzÞ þOðν−2Þ

	
;

where

U1ðzÞ ¼
1

8
ð1þ z2Þ−1=2 − 5

24
ð1þ z2Þ−3=2; ð3:21Þ

such that

W2ðσÞ ¼ −
1

2
U1

� ffiffiffiffiffiffi
−σ

p
x

2ε

�
: ð3:22Þ

The calculation of the integral associated with this contribu-
tion can be done immediately with the result

Z
Cþ

dσ
2πi

σ−s−1W2ðσÞ ¼ −
Γðsþ 1

2
Þ

24ΓðsÞΓð1
2
Þ
�
1

s
þ 5

��
x
2ε

�
2s
:

ð3:23Þ

The integral with V2 is evaluated analogously to the one-
dimensional case, namely,

Γðsþ1Þ
Z
Cþ

dσ
2πi

σ−s−1V2ðσ;mþαÞ¼−V2ð0;mþαÞ

−
�
γE−

1

s

�
V2;1ðmþαÞþV2;0ðmþαÞþOðsÞ; ð3:24Þ

where V2;n are extracted from the large-σ expansion

V2ðσ; mþ αÞ ¼ V2;1ðmþ αÞ lnð−σÞ þ V2;0ðmþ αÞ þ � � � ;
ð3:25Þ

with

V2;1ðmþ αÞ ¼ 1

4
þmþ α; ð3:26Þ

V2;1ðmþ αÞ ¼ 2

�
1

4
þmþ α

�
ln

�
ðmþ αÞ x

ε

�

−
22mþ2α−1=2Γð1þ 2mþ 2αÞffiffiffi

π
p : ð3:27Þ

Putting these together, we obtain

A. V. BELITSKY PHYS. REV. D 97, 086008 (2018)

086008-6



ΓðsÞZ2ðs; αÞ ¼
X∞
m¼1

ðmþ αÞ−2s
�
V2ð0; mþ αÞ

þ
�
γE −

1

s

�
V2;1ðmþ αÞ − V2;0ðmþ αÞ

	

þ ð1þ 5sÞΓðsþ
1
2
Þ

24Γð1
2
Þ
�
x
2ε

�
2s

×
X∞
m¼1

ðmþ αÞ−2s−1 þOðsÞ: ð3:28Þ

Performing the sums, the double zeta functions admit the
form

ΓðsÞZ2ðs;αÞ¼2ζ0ð2s−1;1þαÞþ1

2
ζ0ð2s;1þαÞ

−
1

2
lnð4πÞζð2s;1þαÞþ

�
γE−

1

s
−2 ln

x
2ε

�

×

�
ζð2s−1;1þαÞþ1

4
ζð2s;1þαÞ

	

þΓðsþ 1
2
Þ

24Γð1
2
Þ ð1þ5sÞζð2sþ1;1þαÞ

�
x
2ε

�
2s

þχ2ðs;αÞþOðsÞ; ð3:29Þ

in terms of the Hurwitz zeta functions and the function

χ2ðs; αÞ ¼
X∞
m¼1

ðmþ αÞ−2s lnΓð1þ 2mþ 2αÞ

−
1

24
ζð2sþ 1; 1þ αÞ; ð3:30Þ

analytic at the origin s ¼ 0. For the two-point twist-twist
correlator (3.1), we get

hVs
αð0ÞVs

αðxÞi ¼ csα;α

�
ε

x

�
2hsα

; ð3:31Þ

with the normalization constant being

csα;α ¼ 4αð1−αÞΓð1þ 2αÞ exp
�
χ2ð0; αÞ þ χ2ð0;−αÞ

− 2χ2ð0; 0Þ −
1

24
½ψð1 − αÞ þ ψð1þ αÞ þ 2γE�

�
;

ð3:32Þ

and the well-known scaling dimension

hsα ¼ αð1 − αÞ; ð3:33Þ

of the scalar twist field [1,2].

IV. MASSLESS TWIST-ANTITWIST
CORRELATOR

We turn now to the twist-antitwist correlator, determined
through the ratio

hVs
−αð0ÞVs

αðxÞi ¼
detΔ0;0

detΔ−α;α
: ð4:1Þ

Now, compared to the just analyzed two-point function, the
cut does not extend past the position of the (anti)twist fields;
see the right panel in Fig. 2. Therefore, one can use the
conformal map ϱ ¼ ln r from the annulus fε=x ≤ r ≤ x=ε;
0 ≤ ϑ ≤ 2πg to the cylinder f−ϱ0 ≤ ϱ ≤ ϱ0; 0 ≤ ϑ ≤ 2πg
with ϱ0 ≡ lnðx=εÞ. It changes the metric by an overall factor
dr2 þ r2dϑ2 ¼ e2ϱðdϱ2 þ dϑ2Þ and allows one to rewrite the
determinant on the annulus in terms of the one on the cylinder
making use of the Polyakov formula [36–38],

ln detΔjann ¼ ln detΔjcyl −
1

3
ϱ0: ð4:2Þ

The Jacobian however cancels between the vortex-dependent
Δ−α;α and the free Δ0;0 Laplacians. The eigenspectrum
equation on the cylinder is

� ∂2

∂ϱ2 þ
∂2

∂ϑ2
�
Φðϱ; ϑÞ ¼ −E2Φðϱ; ϑÞ; ð4:3Þ

with eigenfunctions in the separated variables being

Φðϱ; ϑÞ ¼ RðϱÞΘðϑÞ; RðϱÞ ¼ sinðKðϱ − ϱ0ÞÞ;
ΘðϑÞ ¼ eiνϑ; ð4:4Þ

obeying the boundary conditions, Rðϱ0Þ ¼ Rð−ϱ0Þ ¼ 0 and
Θð2πÞ ¼ e2πiαΘð0Þ. The latter provide the quantization
conditions for the integration constants

ν ¼ mþ α; K ¼ κn; κ ¼ π

2ϱ0
; ð4:5Þ

with integer 0 < n, −∞ < m < ∞ and omission of the
m ¼ 0, for which the wave function vanishes identically.
The eigenspectrum is thus

EðαÞ
n;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ αÞ2 þ ðκnÞ2

q
: ð4:6Þ

The correlation function of twist-antitwist operators is then
determined in its terms by the infinite product

hVs
−αð0ÞVs

αðxÞi ¼
Y∞

m¼−∞

0 Y∞
n¼1

�
Eð0Þ
n;m

EðαÞ
n;m

�2

: ð4:7Þ

The prime on the product stands for the omission of the zero
mode m ¼ 0.
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A. From twists to branch point twists

Due to simplicity of the spectrum (4.6), the resulting
products can be analyzed directly without the use of the
zeta function regularization. And one can deduce two
different single-product representations which are ame-
nable to further analysis. First, evaluating the product with
respect to the index n first, we obtain a representation

hVs
−αð0ÞVs

αðxÞi

¼
Y∞

m¼−∞

0 Y∞
n¼1

ðκnÞ2 þm2

ðκnÞ2 þ ðmþ αÞ2

¼ sinðπαÞ
πα

Y∞
m¼1

ð1 − e−4mϱ0Þ2
ð1 − e−4ðmþαÞϱ0Þð1 − e−4ðm−αÞϱ0Þ ; ð4:8Þ

where the products can be reexpressed in terms of
Lambert’s series. We provide, however, an equivalent
representation by first calculating the product in m to
make connection with previous analyses. Namely,
rearranging the factors as

Y∞
m¼−∞

0 Y∞
n¼1

ðκnÞ2þm2

ðκnÞ2þðmþαÞ2

¼
Y∞
n¼1

Y∞
m¼1

�
1−

α2

ðm− iκnÞ2
�

−1
�
1−

α2

ðmþ iκnÞ2
�

−1
; ð4:9Þ

then making use of

Y∞
m¼1

�
1−

α2

ðmþκÞ2
�
¼ Γ2ð1þκÞ
Γð1−αþκÞΓð1þαþκÞ; ð4:10Þ

and eventually simplifying the product by means of
Γð1þ YÞΓð1 − YÞ ¼ ðπYÞ= sinðπYÞ. These manipulations
immediately yield

hVs
−αð0ÞVs

αðxÞi ¼
Y∞
n¼1

ð1 − qnÞ2
ð1 − e2πiαqnÞð1 − e−2πiαqnÞ ð4:11Þ

where we introduced a compact notation

q ¼ e2πκ: ð4:12Þ

Since this correlator plays a distinguished role in defin-
ing the geometric entropy [6] according to Eq. (1.10), let us
pass from the (anti)twist fields to branch point (anti)twist
operators. We use Eq. (1.6) to find

hV̄sð0ÞVsðxÞi¼
YN−1

k¼1

hV−k=Nð0ÞVk=NðxÞi¼
�Y∞
n¼1

ð1−qnÞN
ð1−qnNÞ

	
2

;

ð4:13Þ

where we made use of the fact that

YN−1

k¼1

ð1 −Qe�2πik=NÞ ¼ 1 −QN

1 −Q
: ð4:14Þ

This was the starting point of the analysis in Ref. [4]. The
infinite products in the above equation can be cast in terms
of the well-studied q-Pochhammer symbol, see, e.g., [39],

Y∞
n¼1

ð1 −QnÞ ¼ ðQ;QÞ∞; ð4:15Þ

such that

hV̄sð0ÞVsðxÞi ¼ ðq; qÞ2N∞
ðqN; qNÞ2∞

: ð4:16Þ

Then its ultraviolet asymptotics as ε → 0 can be easily read
off from the well-known behavior of the q-Pochhammer
symbols as q → 1− due to Watson estimation [40,41] (see
also Refs. [42] for recent accounts),

ðq; qÞ∞ ¼
�

2π

1 − q

�
1=2

exp

�
ζð2Þ
ln q

�
½1þOðqÞ�: ð4:17Þ

Then the two-point function on an N-sheeted Riemann
surface reads

hV̄sð0ÞVsðxÞi ¼ N

�
ln x

ε

2π

�
N−1

�
ε

x

�1
6
ðN−1

NÞ
; ð4:18Þ

and acquires a multiplicative logarithmic dependence,
which is typical of logarithmic CFTs [19]. Making use
of the definitions (1.9) and (1.10), this fact implies the
emergence of an additive ln ln-correction to the famous
entanglement entropy scaling

SvN ∼
c
6
ln
x
ε
− ln ln

x
ε
þ const:; ð4:19Þ

with ultraviolet cutoff ε due to Ref. [4]. Here c ¼ 2 is the
central charge of a complex scalar studied in this work. The
second term in the above equation was recently noticed by
numerically resumming form factor expansion to two-point
functions in Ref. [43] and via analytical methods in Ref. [44],
though our sign is opposite to the one in the first study.
The asymptotic scaling of the correlation function (4.11)

can be analyzed in a similar fashion. However, before we
do it, in a general spirit of this paper, we provide the
derivation of (4.11) within the framework of zeta function
regularization in the next section. This analysis is of interest
in its own right as it provides a derivation of the Kronecker
limit formula [38,45] for the double spectral series in
question.

B. Zeta function regularization

Let us calculate the two-point correlation function (4.1)
by means of the zeta function regularization. We introduce
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Zðs; αÞ ¼
X∞
n;m¼1

½ðmþ αÞ2 þ ðκnÞ2�−s; ð4:20Þ

which is a generalization of the Epstein zeta function [46]. As in Sec. III B, we write it as a contour integral

Zðs; αÞ ¼ −s
X∞
m¼1

ðmþ αÞ−2s
Z
Cþ

dσ
2πi

σ−s−1Uðσ; mþ αÞ; ð4:21Þ

in terms of the potential

Uðσ; mþ αÞ ¼ − ln
Y∞
n¼1

�
1þ ðmþ αÞ2ð−σÞ

ðmþ αÞ2 þ ðκnÞ2
�

¼ lnð1 − σÞ þ ln
Γði ffiffiffiffiffiffiffiffiffiffiffi

1 − σ
p ðmþ αÞ=κÞΓð−i ffiffiffiffiffiffiffiffiffiffiffi

1 − σ
p ðmþ αÞ=κÞ

Γðiðmþ αÞ=κÞΓð−iðmþ αÞ=κÞ : ð4:22Þ

First, one notices that Uð0; mþ αÞ ¼ 0, so there is no contribution from the residue at σ ¼ 0 in Eq. (3.24). Second, since the
argument of the logarithm is an even function of (mþ α), the application of the Stirling formula with the first power
correction accounted for, i.e., lnΓðYÞ ¼ � � � þ 1=ð12YÞ þOð1=Y3Þ, implies that W ¼ 0 in the analogue of Eq. (3.20) for
the case at hand. One finds

Γðsþ 1Þ
Z
Cþ

dσ
2πi

σ−s−1Uðσ; mþ αÞ ¼ −
�
γE −

1

s

�
U1ðmþ αÞ þ U0ðmþ αÞ þOðsÞ; ð4:23Þ

where the coefficients U1=0 accompanying ln1=0ð−σÞ
dependence in the asymptotic large-σ expansion (3.25) are

U1ðmþ αÞ ¼ 1

2
; ð4:24Þ

U0ðmþ αÞ ¼ ln

�
2 sinh

πðmþ αÞ
κ

�
: ð4:25Þ

The Kronecker-like limit formula then reads

ΓðsÞZðs;αÞ ¼
X∞
m¼1

ðmþ αÞ−2s
��

γE −
1

s

�
U1ðmþ αÞ

− U0ðmþ αÞ
	
þOðsÞ: ð4:26Þ

In its terms, the correlation function is

lnhVs
−αð0ÞVs

αðxÞi ¼ Z0ð0; αÞ þ Z0ð0;−αÞ − 2Z0ð0; 0Þ;
ð4:27Þ

and can immediately be found to coincide with Eq. (4.8).
Let us conclude this section with the ultraviolet asymp-

totics of twist-antitwist correlator as ε → 0. Making use of
expansion formulas as q → 1− derived in the Appendix, we
find the logarithmically enhanced behavior

hVs
−αð0ÞVs

αðxÞi ¼ cs−α;α

�
ε

x

�
2hsα

ln
x
ε
; ð4:28Þ

with the normalization constant

cs−α;α ¼
4 sinðπαÞ

π
: ð4:29Þ

It is important to realize that the logarithms stem from the
determinant of the free LaplacianΔ0;0, i.e., the numerator in
Eq. (4.1), providing proper normalization for the correla-
tion function in question. The result of Ref. [44] obtained
within the formalism of the angular quantization [47]
agrees with this expression.

V. INSTEAD OF A CONCLUSION

In the main body of this paper, we focused on two-point
twist-(anti)twist correlations for a massless free scalar. The
massive case can be analyzed in a similar manner. To
provide a sketch of the treatment, we limit ourselves to the
expectation value of twist field. The solutionsΦðr;ϑÞ to the
eigenvalue equation with a singe twist, decaying at infinity
as Φðr → ∞; ϑÞ ∼ e−Mr, admit the form (when cast in a
contour integral form)

Φðr; ϑÞ ¼
Z

dκcðκÞKiκðrÞe−κϑ: ð5:1Þ

It endows the system with a discrete spectrum by imposing
quasiperiodicity conditions on the angular dependence and
the Dirichlet boundary condition Φðr ¼ ε; ϑÞ ¼ 0 on the
circular domain r ¼ ε in the vicinity of the vortex Vαð0Þ.
The vacuum average of the scalar twist field then reads
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lnhVs
αiM ¼

X∞
n¼1

ln
ðEð0Þ

0;nÞ2 þM2

ðEðαÞ
0;nÞ2 þM2

þ
X∞
m¼1

X∞
n¼1

ln
ðEð0Þ

m;nÞ2 þM2

ðEðαÞ
m;nÞ2 þM2

ðEð0Þ
m;nÞ2 þM2

ðEð−αÞ
m;n Þ2 þM2

;

ð5:2Þ

where as in the massless case, we separated the m ¼ 0
eigenvalue. According to Ref. [22], the second term
involving the double sum can be related to the determinant
of the Dirac operator with the Atiyah-Patodi-Singer spec-
tral boundary conditions [22,48,49] and, bosonizing the
fermion, it can then be reduced to the analysis of the
vacuum average of a vertex operator in the dual picture of
the massive sine-Gordon model [47]. Presently, we do not
address this term within the zeta function regularization,
but the corresponding inhomogeneous double spectral
series is of interest in its own right and requires a separate
study. Here, we merely provide the result for the single
spectral series associated with the m ¼ 0 term since it is
responsible for logarithmic dependence of the vacuum
expectation value in ultraviolet cutoff ε. The use of the
Gelfand-Yaglom theorem immediately yields the following
expression:

Y∞
n¼1

ðEð0Þ
0;nÞ2 þM2

ðEðαÞ
0;nÞ2 þM2

¼ K0ðMεÞ
KαðMεÞ ≃ε→0 ðMεÞα

2α−1ΓðαÞ ln
�
2e−γE

Mε

�
:

ð5:3Þ

In complete analogy to the massless case, discussed in
Ref. [29], the double product develops ðMεÞ−α2 depend-
ence on ultraviolet cutoff completing the exponent of the
M-dependence to the conformal dimension of the scalar
twist field hα. The resulting functional dependence on the
parameterMε is in agreement with previous studies, where
the logarithmic corrections due to conformal symmetry
breaking by mass perturbations were observed from analy-
ses of the Painlevé equation [20,50,51], form factor
resummation [43] and angular quantization [44].
The ratio of determinants defining correlators in ques-

tion, also known as the relative spectral determinants [52],
can be equivalently (and more efficiently) studied in
noncompact space by means of the Lifshitz-Krein trace
formula [53,54]. For a function f of a self-adjoint operator
A0 and its perturbation A, with their difference A − A0

being of the trace class,

tr½fðAÞ − fðA0Þ� ¼
Z

dκfðEκÞ∂κξðκÞ: ð5:4Þ

Here, the spectral shift function ξðEÞ, associated with the
pair ðA0; AÞ, is given by the Birman-Krein formula [55]

ξðκÞ ¼ 1

2πi
ln det SðκÞ; ð5:5Þ

in terms of the scattering matrix SðEÞ on the perturbation
A − A0 (for a review, see [56]). Then, taking the function f
in the form of the heat kernel fðAÞ ¼ expð−tAÞ, the
vacuum expectation is given by the relative determinant
regularized by means of the zeta function [52],

lnhVαð0Þi ¼ −Z0ð0;Δα;Δ0Þ; ð5:6Þ
where

Zðs;Δα;Δ0Þ ¼
Z

dκ
2πi

E−s
κ ∂κ ln det SðκÞ: ð5:7Þ

The scattering matrix on one vortex can be easily found
from the asymptotic behavior of the eigenfunction (5.1) in
the vicinity of the vortex r ¼ 0 as a ratio of coefficient
between left and right movers,

Φðr → 0; ϑÞ ∼ ðr=2Þ−iκ þ SðκÞðr=2Þiκ; ð5:8Þ
with

SðκÞ ¼ Γð1 − iκÞ
Γð1þ iκÞ : ð5:9Þ

With this input and explicit form of the resummed energy
spectrum, see Eq. (4.11) above, one can immediately see
that the expectation value (5.6) is the same as obtained with
the formalism of the angular quantization advocated in
Ref. [47] for fermions and recently applied to scalars
in Ref. [44].
In light of the representation (5.7), one could find it

instructive to explore a connection to scattering matrices on
Aharonov-Bohm vortices (2.6) as a tool to compute multi-
twist correlators. Recently, scattering amplitudes on two
fluxes were found explicitly as a solution to Painlevé V
equations [57]. This formulation allows for an extension to
systems with multiple vortices, i.e., surfaces with multiple
conical singularities [25], and it provides a natural geo-
metric interpretation to the gluing of conical manifolds [26]
via analytic surgery procedure of Burghelea et al. [58] by
interpreting the S-matrix as a kind of limiting Dirichlet-to-
Neumann operator. The application of these considerations
to the current setup of correlation functions of twist
operators will be discussed elsewhere.

ACKNOWLEDGMENTS

This work was completed during the author’s visit to
ENS (Paris) and IPhT (Saclay). We thank Benjamin Basso
and Gregory Korchemsky for the warm hospitality at the
respective institutions, and Leonid Friedlander, Ivan
Kostov, Didina Serban and Frank Wilczek for discussions.
This research was supported by the U.S. National Science
Foundation under Grant No. PHY-1403891.

A. V. BELITSKY PHYS. REV. D 97, 086008 (2018)

086008-10



APPENDIX: ASYMPTOTIC EXPANSION

Let us calculate the asymptotic expansion of the product

Y∞
k¼1

ð1 − aqkÞ ¼ ða; qÞ∞
1 − a

; ðA1Þ

contributing to the cylinder partition function in the q → 1−
limit and a ≠ 1. This can be done by elementary methods.
The first step consists in exponentiating the terms in the
product and expanding the logarithm in the region of its
convergence in the Taylor expansion and then exchanging
the two sums. This yields

Y∞
k¼1

ð1 − aqkÞ ¼ exp

�X∞
l¼1

1

l
al

1 − q−l

�
: ðA2Þ

Then adopting the second representation, the q → 1−
expansion can be easily performed with the following
chain of transformations:

ln
Y∞
k¼1

ð1 − aqkÞ ¼
X∞
l¼1

al

l

�
1 −

X∞
n¼0

ln

n!
lnn

1

q

�−1

¼ −
1

ln 1
q

Li2ðaÞ −
1

2
lnð1 − aÞ þO

�
ln
1

q

�
:

The second factor in the correlation function (4.11) can be
obtained by the inversion a → 1=a. Thus, combining them
together and making use of the obvious relations,

Li2ðe2πiαÞ þ Li2ðe−2πiαÞ ¼ 2π2
�
1

6
− αð1 − αÞ

�
; ðA3Þ

lnð1 − e2πiαÞ þ lnð1 − e−2πiαÞ ¼ 2 ln ð2 sinðπαÞÞ; ðA4Þ

one can find the scaling dimension and the normalization
constant in Eq. (4.28). The a ¼ 1 case has to be studied
separately, as one can see the appearance of divergences in
the expansion (A3). In this regime, we merely quote the
result by Kluyver [40],

ln
Y∞
k¼1

ð1−qkÞ¼−
ζð2Þ
ln1

q

−
1

2
lnln

1

q
þ1

2
lnð2πÞþ 1

24
ln
1

q
þ���;

ðA5Þ

which was a predecessor to the Watson estimation [41],
i.e., Eq. (4.17).
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