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We calculate graviton multipoint amplitudes in an anti—de Sitter black brane background for higher-
derivative gravity of arbitrary order in numbers of derivatives. The calculations are performed using tensor
graviton modes in a particular regime of comparatively high energies and large scattering angles. The
regime simplifies the calculations but, at the same time, is well suited for translating these results into
the language of the dually related gauge theory. After considering theories whose Lagrangians consist
of contractions of up to four Riemann tensors, we generalize to even higher-derivative theories by
constructing a “basis” for the relevant scattering amplitudes. This construction enables one to find the basic
form of the n-point amplitude for arbitrary n and any number of derivatives. Additionally, using the four-
point amplitudes for theories whose Lagrangians carry contractions of either three or four Riemann tensors,
we reexpress the scattering properties in terms of the Mandelstam variables.
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I. INTRODUCTION

The gauge-gravity duality enables one to describe
a d-dimensional gauge theory in terms of a (d+ 1)-
dimensional gravitational theory [1]. Importantly, the
duality relates a strongly coupled field theory to a weakly
coupled theory of gravity. Since strongly coupled gauge
theories are not very well understood, the duality provides a
means for making analytical statements about them. One
application of this framework [2] is the correspondence
between stress-energy tensor correlation functions in the
relevant gauge theory and graviton scattering amplitudes in
its gravitational dual [3].

In the earliest investigations into the duality—which
mostly focused on five-dimensional anti—de Sitter (AdS)
space and four-dimensional super Yang-Mills theory—the
rank of the gauge theory N is taken to infinity, which then
corresponds to Einstein’s theory of gravity [4]. (On the other
hand, the ’t Hooft coupling 1 = g2N, where g, is the string
coupling, is regarded as large but finite in the standard limit.)
With deviations to large but finite values of N, the gravita-
tional dual can be expected to include higher-derivative
corrections in addition to Einstein’s (two-derivative)
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Lagrangian and two-derivative field equation [5]. If the
interest is only in gauge-invariant quantities (such as scatter-
ing amplitudes), then one can limit considerations to the
multiderivative terms in the Lagrangian which are strictly
composed of contractions between “proper” four-index
Riemann tensors (i.e., two-index tensors and scalars are
excluded). This simplification was recently discussed in [6]
and can be shown through a gauge transformation of the
graviton that involves the Ricci scalar and tensor [7,8].

A brief note on conventions: A theory of gravity whose
Lagrangian consists solely of terms containing contractions
of k Riemann tensors will be called Riem* gravity. The field
equation for such a theory could have up to 2k derivatives
in any given term, but its highest-order term could still have
less than 2k derivatives (with Gauss-Bonnet gravity serving
as a case in point; see below).

In this paper, we calculate graviton scattering amplitudes
for higher-derivative theories of gravity in an AdS black
brane background, that is, a black hole with a flat horizon
living in an asymptotically AdS spacetime. Our approach is
similar to that of [9], where the focus is on Einstein (Riem!)
and Gauss-Bonnet (Riem?) gravity. However, those scat-
tering amplitudes could be substantially simplified by
enforcing on-shell conditions. In the case of Einstein’s
gravity, the field equation can be used to eliminate
amplitudes with two derivatives acting on a single graviton.
Meanwhile, any formulation of Riem? gravity can always
be gauge transformed to a Gauss-Bonnet theory by using
the “inverse” of the aforementioned transformation. As
any Lovelock extension of Einstein’s theory [10], Gauss-
Bonnet gravity has a field equation that has at most two
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derivatives per term irrespective of how many Riemann
tensors are carried in the Lagrangian. Thus, the very same
logic and simplification applies in this case as well. (See the
appendix in [9] for further details.) In the current work, we
do not have the luxury of restricting to Lovelock theories or
theories that are related to Lovelock via a gauge trans-
formation,' meaning that the previous simplification can
no longer be relied upon. It follows that terms with two
derivatives acting on a graviton must now be included in the
calculation of amplitudes.

Starting with Riem® and Riem* theories in Sec. II, we
utilize what could be called “basis amplitudes” to construct
the n-point amplitudes for arbitrarily large n. The generali-
zation of these basis amplitudes mitigates the task of finding
multipoint amplitudes for theories with an arbitrary number
of Riemann tensors (see Sec. III). Finally, using 4-point
amplitudes in Sec. IV, we reexpress the scattering properties
of the Riem? and Riem* theories in terms of the Mandelstam
variables. (Section V contains a brief conclusion.)

Our intention is, in a later paper, to map the current results
to stress-tensor correlation functions in the dual gauge
theory. The motivation for such a treatment is to learn about
the gravitational dual to the gauge theory describing the
quark-gluon plasma and other strongly coupled gauge
theories [11]. These findings could conceivably be tested
thanks to the high-energy hadron-collider laboratories at
Brookhaven and CERN. For a detailed discussion on the
physical significance of these correlation functions and
the viability of the high-momentum regime in this context,
the reader can consult [12].

Because our long-term goal is to apply the gauge-gravity
duality for the purpose of making experimentally viable
predictions (as in [13]), we are mainly interested in the
boundary limit of the amplitudes (where the gauge theory can
be regarded as “residing”) and, moreover, only those con-
tributions that would survive holographic renormalization
[14] and could be discernible in gauge-theory correlation
functions. With this in mind, our calculations are limited to a
special kinematic region that was referred to as the “high-
momentum regime” in [9]. As discussed later, this regime
is particularly well suited for discriminating the higher-
derivative contributions in the graviton scattering amplitudes
and then, ultimately, in the dual correlation functions.

A. Summary of formalism

Much of the groundwork for the following analysis has
already been laid out in [9,13]. Here, we will summarize
some of the key elements that are necessary for the task
at hand.

The AdS black brane background in a five-dimensional
spacetime” has a metric of the form

"This follows from any Riem* Lovelock extension vanishing
identically in 2k — 1 or fewer dimensions [10].
*Generalizations to other dimensionalities are straightforward.

1 2
ds* = —f(r)df* + mdﬂ + % (dx? +dy* +dz?), (1)

where the radial coordinate ranges from the black brane
horizon at r = r;, to the AdS boundary limit of » — oo, and

the parameter L is the AdS radius of curvature. As for the
functions f(r) and g(r), for an AdS black brane spacetime,

these would be f(r) =g(r) = 2—22(1 —:—%) However, in
general, f(r)# g(r), and these are chosen so that the
metric is asymptotically pure AdS, meaning that f(r)

and ¢(r) necessarily have to satisfy the four conditions

lim,_,, f(r) = 0, lim,_, g(r) =0, lim,_,’% =L, and
lim, o 25 = L.

Metric fluctuations are represented by g,, = gy + 1y
where g, is the AdS background metric of Eq. (1) and A,
is a small perturbation of the background metric (i.e., a
graviton). In this analysis, the gravitons will propagate
along the z coordinate and so

hay = ¢(r)e’ @), (2)

where ¢(r) is some well-behaved function with incoming-
wave boundary conditions at the horizon of the form [15]

¢(r) = f(r)Fry(r), (3)

where y(r) is finite and continuous near r;,, @ is the mode
frequency, and 7T is the Hawking temperature of the black
brane, 7 = ;45 Near the AdS boundary, ¢(r) must be
finite and continuous as well as depend on some negative
power of r.

We assume a string-theory based gravitational theory

with weak coupling, g, < 1, and with a small string

tension, € = Ziz‘ < 1 (¢ is the string length). The former
condition is needed to comply with the ’t Hooft limit of
large N and large but relatively smaller 4. The Ilatter
condition allows us to consider a perturbative expansion
of the Lagrangian in terms of e. The expansion can be
expressed schematically as

R
L=/- 1 L2R 2[4R? 4 ...
v gl67‘[G5( +eL’R +¢ +

+ €kL2kRk + .. .>’ (4)

where we have suppressed indices (all terms are contrac-
tions of 4-index Riemann tensors as previously discussed)
and Gs is Newton’s constant in five dimensions. For the
sake of brevity, the Lagrangian can also be written as

L= L (5)
k=1

where L, ~ R* is meant to describe a contraction of k
Riemann tensors. So that, when referring to (e.g.) Riem?

gravity, we really mean the Lagrangian L; = ]‘é;_—”GI: [€’L*R?).
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Gravitational scattering amplitudes must be holograph-
ically renormalized if we are to make a connection with
the gauge-gravity duality. As shown in [9], this process
eliminates the need to consider the radial derivatives of
gravitons as these would lead to divergences in the
amplitude even after renormalization. Such terms would
then be discarded in the gauge theory after the standard
techniques of holographic renormalization have been
applied [14]. Hence, for the current work, only the ¢ and
z derivatives of gravitons are considered.

Let us now clarify what is meant by the “high-momentum
regime.” Our motivation is the idealized case of a kinematic
region that is potentially accessible via experiment on the
dual gauge theory3 and that allows one to distinguish
between the contributions of the different L;’s in Eq. (5).
The basic idea is that larger values of momenta can
compensate for larger powers of ¢ as one probes theories
that are higher order in numbers of derivatives. This is
accomplished by insisting that a contribution to amplitudes
of order €4 always includes a total of 2¢g + 2 derivatives
acting on gravitons. Contributions having fewer derivatives
are to be discarded. So that, if LZew? is not too small a
number, the surviving contributions should be prominent in
the scattering profiles (and ultimately in the gauge-theory
correlators).

Let us explain further what classifies a value of momen-
tum as “high” in this context. First, background derivatives
go as V,V, ~ -1, while graviton momenta go as V,V, ~ @?
and V,V_~ 12; therefore, one requirement is that o,
k? > ;. Furthermore, to apply the tools of the gauge-
gravity duality, the hydrodynamic regime must necessarily
be in effect.* This means that w < T and, consequently,

l<Low<TL. (6)

This range is indeed viable because, according to the

duality, TL ~7%>> 1 [3]. One then needs only to hope

that e(wL)? is sufficiently large, for the purpose of
experimental detection (as always, on the gauge-
theory side).

We also work in the radial gauge, which means that
h,, =0 for any a. This gauge divides the gravitional
perturbations into three distinct sectors: scalar, vector,
and tensor [17]. However, scalar modes do not contribute
to scattering amplitudes in the high-momentum regime.
This is because scalars need to be sourced and sources can
be expected, on general grounds, to introduce an additional
factor of e. Meanwhile, vector modes are analogous to the

3The viability of experimental accessibility hinges on having e
small but not too small. Essentially € ~ O(107!), although this
number depends very much on parameters of the particular
experiment. See [12] for further details.

*For another study on brane hydrodynamics in the context of
higher-derivative gravity, see (e.g.) [16].

electromagnetic potential and, as such, can either be gauged
away or require a source when appearing in gauge-invariant
combinations. Hence, these modes can also be discounted.
Other fields can only couple to the gravitons through a
stress tensor, which will invoke additional powers of e.
This leaves only the tensor modes h,, as relevant in the
high-momentum regime.

Given that the number of derivatives acting on gravitons
has been maximized, the only other type of tensor-mode
amplitude requiring suppression is one that includes the
on-shell constraint [Jh,, = 04 O(e), since this adds an
extra factor of €. Note though that an expression such as
g**g°/V ,V .y, would survive (with the free indices suit-
ably contracted). We should also add that, to maintain
general covariance, tensor modes must come in pairs (see
below). And so, with the restriction to tensor modes, any
nontrivial scattering amplitude will necessarily be even.

Finally, we will perturbatively expand the metric deter-
minant and contravariant metrics by adopting the conven-
tions of [18]. To briefly review, a perturbed covariant
metric goes as

g;w = 9w + hyw (7)

which is to be viewed as an exact statement up to any order
in h. This expansion has a contravariant counterpart of
the form

g =g ="+ Wb + O(h?), (8)
and the metric determinant is then

1
4

1

hﬁh,fj+8

VEI= V|14 5 (o). ©)

Since our interest is in the tensor modes h,,, only
expressions with an even number of gravitons will survive
in Egs. (8) and (9), and undifferentiated gravitons will have
to come from either

G5 = g%+ R (RS2 - 4 ()P (10)
or

_ | I i
—9=v-9 1—Ehyhi—ﬁ(hyhﬁ)z%—“-+®(p)(hyh)yc)1’ ,

(1)

where

©(p) ——%,

As for the differentiated gravitons, these will, of course,
come from expansions of the Riemann tensors (see below).

for pe Z. (12)
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II. MULTIPOINT AMPLITUDES

A. Basis multipoint amplitudes

Using the standard definition of Riemann tensors and
Eq. (7), we start here by introducing some shorthand
notation for perturbations of the Riemann tensor while
considering only the highest momentum terms,

5<1)Rahcd = vbrdac(h) - vcrdub(h)7 (13)

S(Z)Rabcd = gef [Feac (h)rfbd(h) - Fead(h)rfbc (h)]’ (14)

where
1
rabc(h) = 5 (vbhac =+ vchab - vahbc)' (15)

Given that the high-momentum regime is in effect (so
that the background contributions from any Riemann tensor
can be ignored), then each Riemann tensor effectively
contributes

Rabcd - 7zahcd = S(I)Rabcd + 5<2)Rabcd ~VVh + VhVh.
(16)

Note that additional derivatives on a graviton would only be
possible through an integration by parts, which is incon-
sequential to on-shell amplitudes. Also, as any termin a strictly
covariant Riemann tensor consists of at most two differ-
entiated covariant metrics and zero differentiated contravariant
metrics, there are no higher-order corrections to the above
expressions [cf. Eq. (7) and the comment that follows it].
Nonetheless, higher-order terms in the complete amplitudes
will come about from the expansions in Egs. (8)—(11).

Recalling that gravitons can only be differentiated with
respect to ¢ and z, one can observe that any perturbed
Riemann tensor must have a specific arrangement of indices.
Up to symmetries,5 these would be 5(1>Ruxby for a,b =
{t,z} and 6¥ Ry, for c,d = {t.z,y}, where x and y are
interchangeable.

With the high-momentum regime in mind, we will define
basis amplitudes as multipoint amplitudes for which all of
the included gravitons are differentiated. Each such basis
amplitude then represents a different combination of
8(VR’s and ¥ R’s. Furthermore, in constructing a general
2n-point amplitude, we will use the notation (h*"),, to
indicate a 2n-point amplitude constructed from a 2 p-point
basis amplitude (n > p). For instance, the basis amplitudes
themselves are denoted by (h*7),,.

5 .
In particular, Rabcd = 7?'cdab and 7?'abcd = _Rade'

B. Multipoint amplitudes from
Riem? (¢2-order) gravity

To begin, Riem® gravity can be defined, up to gauge
transformations, as

L3 Y _g[aRahcdRabmanMd + ﬂRuhcdRmnadRman]’
(17)

2Lt
162G
dependent constants « and f.

In this theory, there two types of basis amplitudes,6
the 4- and 6-point amplitudes. The basis 4-point amplitude
has six derivatives and four gravitons; schematically it can
written in terms of the previously introduced shorthand
[cf. Egs. (13) and (14)],

where has now been absorbed into the model-

(W), ~3(a+ p)SIRSVWRSPR, (18)

where the tensor indices have been suppressed and the “3”
counts the number of ways of choosing one of the tensors to
carry two gravitons.

Similarly, the 6-point amplitude with six derivatives and
six gravitons takes the schematic form

(1% ~ (a+ PSP RSP RSDR. (19)

Now more explicitly, the 4-point amplitude of Eq. (18)
can be expressed as

<h4>4 = 3((1 + ﬁ)z’i [RtxtthX[yR[xtx + Rtxzthxzthxtx
+ Rugy RPVR”  +{t < 2} + {x <y}, (20)

where {a <> b} is shorthand for the interchange of a and b
in the preceding expression and the 2° accounts for the
symmetries of the Riemann tensors. Even more explicitly,
in terms of gravitons (and with the help of the equations
in Sec. IT A),

(h*)y = —6(a+p)v/=9(g"¢")
X [(019" @y + k1 g7 ky) (@19 03 + ki g7 ks)
X (029" w4 + kygky)
< K\ hSnSn), (21)

where each factor of (w;g"®; + k;g°k;) is a product of the

momenta for gravitons h)(c’g and h)(cjy) , and the symmetrization
of the gravitons is always implied.

Using similar reasoning, one finds that the basis 6-point
amplitude translates into

%Here, we will be disregarding 2-point amplitudes because
they are not really of interest from the viewpoint of someone
discriminating between different theories.
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3
(h°)6 = —5(a+ BIV=9(g% ") (019" @, + k1 gka) (39" @4 + k3g™ks) (059" w6 + ksg™ks )]
x By R RS RS R RS (22)

The utility of the basis amplitudes in Eqgs. (21) and (22) is that one can use these to construct 2n-point amplitudes by
drawing out additional pairs of gravitons from the metric determinant and the contravariant metrics g** and ¢*”. Let us begin
with Eq. (21) and suppose that p pairs are drawn from the metric determinant and n — 2 — p pairs from the four
contravariant metrics. Recalling that the number of ways of drawing ¢ identical objects from m distinct boxes is

(4 ;;TI ! ), we then have that, for any n > 2,

<Mw4=—aa+ﬂmff);j(”*;_p)ewxﬁammwwz

X [(019" @y + ki g7ky) (@1 9" w3 + ki g7ks) (029" w4 + kpg7ky)]

x iy RS n) T ()@ () @), (23)

=3

where the combinatorial factor before the summation represents the number of ways of choosing the four differentiated
gravitons from the total of 2n and the summation itself accounts for all possible ways of drawing gravitons from the
contravariant metrics and metric determinant.

In similar fashion, 2n-point amplitudes can be constructed from the basis 6-point amplitude of Eq. (22) for any n > 3.
The result of this is

3 2n\ =2 /n—q+2
<h2”>6:—§(a+ﬁ)< 6 )Z( 5 >®(Q)\/—g(9”9yy)3
q=0
X [(@19" @ + k1 G5y ) (036" 04 + k3 g5ks) (059" w6 + ksg=k)]
< i R B B RS T T1Ch3) @ () @9). (24)
=4

As Egs. (23) and (24) now make clear, the 4- and 6-point amplitudes of Egs. (21) and (22) form the basis for the 2n-point
amplitudes of Riem? gravity in the high-momentum regime. The complete 2n-point amplitude for Riem® gravity is then
given by the linear combination

(h*")Riems = (B*")4 + (H*")s. (25)

C. Multipoint amplitudes from Riem* (¢3-order) gravity

First consider that Riem* gravity is expressible, up to gauge transformations, as

Ly= {aRabcdRabmannququd + ﬁRabcdRahqumndquncp + yRabcddemnRabchpqmn
+ /"RabcdRmnquam'qubpd + VRabcanaqumbdemnqc + pRudeRabcdRmnqumnpq]' (26)
Lo
> 162G
With the very same reasoning as in the previous section, we can call on Eq. (26) to construct three types of basis

amplitudes; the 4-, 6-, and 8-point amplitudes. In terms of the Riemann tensor in Sec. Il A, these can be schematically
written as

Here, as before

has been absorbed into the model-dependent constants.

(WY~ (a+p+r+p+v+pdIRSVRSVRSVR, (27)

1
(0~ 6(at o r-+a-+u+ 0 ) S IRSVRSPRSIR. (28)
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(B)s ~ (@+p+71+n+v+p)sPRIDIRSIRSDR.
Expanding Eq. (27), one finds that

(W), =4(a+B+7r+u+v+p)v/=9(g"¢") (019" 0 + kiG5ky) (029" 03 + kog“ks)
X (039" wy + k3g%ky) (019" 04 + "ﬁgukzt)]h»(c;> hg‘) hg’) hg),

which can then be used to construct a 2n-point amplitude for any n > 2,

) Z( R CONE T

p=0 3

2n

<h2">4—4(a+ﬂ+y+u+u+p)< 4

X [(@19" @y + k1g7ks) (029" @3 + ky g™ ks ) (039" 04 + k3 g7k ) (019" 04 + k1g7ky)]
1D ,2) 1031 @) TTr s (2im1) /10 (2
s iR T @D () @),
=3

where the combinatoric factors (here and below) are handled similarly to those in Eq. (23).
As for the basis 6-point amplitude, this goes as

(h)s = (4p +6(a+ B +7+p+v)v=g(g"g”)’
X [(w19" s + ki gky ) (39" 04 + k3g¥ky) (wsg" w6 + ksg™ke)]
x By R RS R R RS

from which one can construct a 2n-point amplitude for any n > 3,

0= oatprrrarn)( ) S ("TET )etavEate sy
q=0

X (019" @y + k1 g%ky)* (039" w4 + k39%ky) (059" w6 + ksgke)]

D, (2)3) (41,5 1 (6) TT 1/ ey (2h— :
x by B ) RS TT 1) () 29,
k=4

Finally, the basis 8-point amplitude is of the form

2
X (59" s + ksgke) (9" s + krgks)hig) ) W W W) 1) i) A,

1
(h¥)g = (P tola+pt+r+u+t V)) (979" (@19" @y + ki g7ko) (039" 04 + k3 gks)

and the corresponding 2n-point amplitude for any n > 4 is then

1 2n\ =4 /n—r+3 -
(h°r)g = <p tolatprr+u+t v)) < g ) Z( ; )®(r)\/—g(g”g”)4
r=0
X (19" w; + k1 g%ky) (039" 04 + k397 ks ) (059" @6 + ks g% ke ) (079" w5 + k797 kg)
RO T e
=5

(29)

(30)

(31)

(32)

(33)

(34)

(35)

As before, the complete 2n-point amplitude for the Riem* theory in the high-momentum regime is a linear combination

of the basis amplitudes in Egs. (31), (33), and (35). That is,

(") Riemt = (H*")4 + (B*") + (B*")s.

086002-6
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III. MULTIPOINT AMPLITUDES FROM Riem?
(€7~ 1-ORDER) GRAVITY

In this section, we will find the basic form of the 2n-point
amplitude in the high-momentum regime when the most
general type of gravitational theory is considered, namely,
one whose Lagrangian is composed of ¢ contracted
Riemann tensors for arbitrary g.

This task appears to be quite arduous, as one would
expect that the number of gauge-invariant terms in the
Lagrangian grows exponentially with g.” On the other
hand, as shown in Sec. II C, each of the six invariants makes
essentially the same contribution to any one of the three
basis amplitudes [cf. Egs. (30), (32), and (34)]—although
the different basis amplitudes will indeed have different
forms. It is not difficult to convince oneself that the
relative simplicity of the high-momentum regime is

DRSODR ... s RSCIR

g products of Riemann tensors

<hq+1>q+l ~ ¢

<hq+3>q+3 ~ 3

g products of Riemann tensors

(h2),, ~ SPRSIR -

QRSOR

enough to ensure that these trends will persist to higher
orders in gq.

Since any single graviton can carry zero, one, or two
derivatives, there are many ways to obtain a 2n-point
amplitude from a Riem? theory depending on the size and
parity of g. Let us suppose that this is a g-odd theory; then the
set of basis amplitudes (i.e., those with only differentiated
gravitons) is the set P ={(h9t1) 11 (R s (RPD)y, )
with cardmahty ! The reasoning here is that, for an odd
value of ¢, <h‘1+1> 4+1 has the maximum possible number of
gravitons carrying two derivatives with the remainder carry-
ing one, whereas (h%4 >2q has all gravitons carrying a single
derivative.

To elaborate further, let us consider the following arrange-
ments of ¢ contracted Riemann tensors [while keeping in
mind Eqgs. (13) and (14) and that the gravitons come in pairs]:

asingle §®)R term and an even number of ()R terms, (37)

DREMDR - §ORSPDRSDR  three 5P R terms and an even number of §(VR terms,

all 5® R terms. (39)

g products of Riemann tensors

A similar argument can be used for g-even theories, in which case, the set of basis amplitudes is Q, =

{(h) 4. (hT2) -
even number of 5()R’s in any basis amplitude.

(h*7),,} with cardinality qT”. In both cases, the key point is that there should be either zero or an

The next step involves reformulating the different basis amplitudes in terms of gravitons rather than Riemann tensors.
It is clear that each such basis amplitude will be a polynomial in @’s and k’s of degree 2q Since either one or two derivatives

(i)

can act on a graviton, each term in the polynomial must contain one of w;, k;, w;k;, w?, k? for each graviton hyy. Then as

i ™

long as ¢ < 2p < 2q for some p € NT, a basis amplitude for Riem? can be expressed somewhat schematically as®

(h?P)

2p = A2 /=g(g7 ") C12)Claay -

C(Zp—l,Zp)C(llp)'” xy foxy foxy fhxy

h(l)h(z)h(3)h(4) . hgp—l)hg}’)’ (40)

q contractions of derivatives

where C(; j) =
2p = 2q, the basis amplitude should rather be written as

(?7)y, = A2%70/=g(g%¢")1C1 2 C

"C(2q—1,2q) xy Mxy fxy fxy -~

K;-K; = (0;9"0; + k;gk;) with K; = (0;,0,0,0,k;) and A, ~O(e?) is a numerical coefficient. For

h(l)h(z)h(3)h(4) _hgq—l)hglﬂ‘ (41)

g contractions of derivatives

"It is amusing to note that the number of gauge-invariant terms grows exactly as (g — 1)! for ¢ < 4, which then grows roughly as ¢4

for large q.
¥This form assumes that the gravitons can be freely labeled.
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Now each basis amplitude (A7), p,—forwhichg <2p <2qifgisevenorqg+ 1 <2p < 2qif q is odd—will contribute
to the 2n-point amplitude in accordance with

2n\ <R/ n+p—-r+1 '
(h*"),, = Aq2"+2_2"<2 ) Z( 5 >®(r)\/—9(9”9”)”c(1,2)C(3,4> o Clap12pClizp)
rJ) = p—1
g contractions
1), (2 2p-1), (2 - O\ (2m— N (2m
< hynG - nG VRGP T o) @m0 () @), (42)

m=p+1

for all n > p, and the combinatoric factors follow the same logic as in the analysis from Sec. II.
Finally, we can use Eq. (42) to express the complete 2n-point for any Riem? theory gravity as the sum of contributions
from the various basis amplitudes,

2 o(h*) oy, With  geven and2n > 2m + gfor every m,

<h2n>Riemq = q-1 (43)
>om—o(h*)migr1  With godd and2n > 2m + g + 1 for every m.

m=0

It should again be emphasized that the validity of these results depends upon the restriction to the high-momentum
regime.

IV. SCATTERING PROPERTIES OF 2r-POINT AMPLITUDES

Our next order of business is to look at the scattering properties of some of these amplitudes. We will restrict to the cases
with four gravitons (all of which are differentiated) as then the results can be expressed directly in terms of the familiar
Mandelstam variables [see Egs. (46) to (48) below]. However, it can be expected that the same basic theme—each theory
carrying its own characteristic signature for scattering experiments in the high-momentum regime—will persist to more
complicated scenarios.

Let us begin with the 4-point amplitude of Riem? gravity as depicted in Sec. I B. It is convenient to express the products
of momenta in terms of the condensed notation K; - K; = (w;9"w; + k;g*k;), in which case,

(h*) = —6(a+ B)y/=g(g" 9" PK (1 - K>Ks - K4K, - Kyyhly n3 ) ny). (44)

It should be noted that the symmetrized product of momenta in Eq. (44) is really a shorthand for the symmetrization of all
possible products in a particular way,

K- KoKy KoKy - Ky — K( - KoKs - KoKy - Ky + K(1 - KoKs - KoK - Koy + Ky - KoK - KGK - Ky
+K(1 - KoKs - KyKy - Ky + K1 - KoKy - KKy - Koy + Ky - KoKy - KuKs - Ky (45)

To better appreciate Eq. (45), one can take note that each of the momenta has an equal opportunity of appearing either once
or twice in any given permutation of the four gravitons.
Let us now recall the Mandelstam variables,

s = (K +K3)* = (K3 + K4)* = 2K, - K, = 2K3 - Ky, (46)
t= (K, —K3)* = (K — K4)* = =2K, - K3 = 2K, - K4, (47)
u= (K, —Ky)* = (K, - K3)* = =2K, - K4 = =2K; - K3, (48)
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where the two rightmost pairs of expressions on each line
represents the case of massless particles, which is the case
of current interest and for which s + ¢ + u = 0. In terms of
its dependency on the Mandelstam variables, Eq. (44) can
be expressed as

(W) gieme < (s =t =) (s2+ 2 +u2)BY DRI RS (49)

In the interest of making a connection with the gauge
theory, it should be emphasized that Eq. (49) is only valid
at the AdS boundary where g, = |g,,| holds true. But, since
the idea is to translate these expressions into statements
in the dual gauge theory (as in [13]), the boundary limit is
sufficient. Indeed, we expect to observe a related signature
for the stress-energy correlators in the gauge theory. This is
because of the observation in [9] that the amplitudes which
survive in the high-momentum regime are mostly unaf-
fected by the process of holographic renormalization.

We can similarly apply this process to the 4-point
amplitude from Riem* gravity, which leads to

(M) Riemt & (s* + 14 + u* + s22 + s*u® + u*1?)
x K\ nSnms). (50)

In view of Egs. (49) and (50), two conclusions immedi-
ately follow: The first is that the two theories have very
distinct scattering signatures, and the second is that s, f,
and u appear democratically in both cases. The latter is a
consequence of the high-momentum regime favoring no
particular scattering channel, meaning that, in general, this
is also a regime of large-angle scattering.

V. CONCLUSION

In this paper, we have computed graviton multipoint
scattering amplitudes for higher-derivative theories in an

AdS black brane background. All computations were carried
out in the so-called high-momentum regime as was first
introduced in [9]. This regime allows for higher-curvature
corrections to contribute significantly to higher-point
amplitudes provided that se < 1, where € is the perturbative
(o' or Regge slope) expansion parameter. Along with explicit
calculations for six- and eight-derivative theories, we were
able to generalize the formalism to higher-derivative gravity
of arbitrary order. A critical element of this generalization
was the construction of a certain class of basis amplitudes.

We proceeded to demonstrate the scattering properties
of Riem® and Riem* gravity in terms of the Mandelstam
variables s, f, and u by using their respective 4-point
amplitudes. Our expectation is that this procedure can be
generalized to higher-point scattering amplitudes and
higher-derivative theories with some amount of work.

The graviton multipoint amplitudes in this paper should
correspond to stress-tensor correlators in the gauge theory.
This means, for instance, that the stress-energy tensor
4-point correlators should include, in addition to the distinct
signatures of Einstein gravity and four-derivative gravity
[9,13], those of six and eight-derivative gravity as depicted
in Egs. (49) and (50). Note, however, that, to make contact
with actual experiments, it is the connected functions in the
gauge theory that are required, whereas the amplitudes in
this paper would correspond to one-particle-irreducible
functions. This point is currently under investigation by
the current authors.

ACKNOWLEDGMENTS

The research of A.J. M. M. received support from NRF
Incentive Funding Grant No. 85353 and NRF Competitive
Programme Grant No. 93595. M. M. W. S. is supported by
an NRF bursary through Competitive Programme Grant
No. 93595 and a Henderson Scholarship from Rhodes
University.

[1] J.M. Maldacena, The large N limit of superconformal
field theories and supergravity, Int. J. Theor. Phys. 38,
1113 (1999); Advances in Theoretical and Mathematical
Physics, Adv. Theor. Math. Phys. 2, 231 (1998).

[2] D.M. Hofman and J. Maldacena, Conformal collider
physics: Energy and charge correlations, J. High Energy
Phys. 05 (2008) 012.

[3] E. Witten, Anti—de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[5] C.Cheungand G. N.Remmen, Positivity of Curvature-Squared
Corrections in Gravity, Phys. Rev. Lett. 118, 051601 (2017).

[6] S. Deser, One-loop gravity divergences in D >4
cannot all be removed, Gen. Relativ. Gravit. 48, 157
(2016).

[7]1 G.’t Hooft, An algorithm for the poles at dimension four in
the dimensional regularization procedure, Nucl. Phys. B62,
444 (1973).

[8] M. D. Pollock, On the application of the field-redefinition
theorem to the heterotic superstring theory, Eur. Phys. J.
Plus 130, 87 (2015).

[9] R. Brustein and A.J. M. Medved, Graviton n-point func-
tions for UV-complete theories in anti—de Sitter space, Phys.
Rev. D 85, 084028 (2012).

[10] D. Lovelock, The Einstein tensor and its generalizations,
J. Math. Phys. 12, 498 (1971).

086002-9


https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1103/PhysRevLett.118.051601
https://doi.org/10.1007/s10714-016-2151-1
https://doi.org/10.1007/s10714-016-2151-1
https://doi.org/10.1016/0550-3213(73)90263-0
https://doi.org/10.1016/0550-3213(73)90263-0
https://doi.org/10.1140/epjp/i2015-15087-3
https://doi.org/10.1140/epjp/i2015-15087-3
https://doi.org/10.1103/PhysRevD.85.084028
https://doi.org/10.1103/PhysRevD.85.084028
https://doi.org/10.1063/1.1665613

M. M. W. SHAWA and A.J. M. MEDVED

PHYS. REV. D 97, 086002 (2018)

[11] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal,
and U. A. Wiedemann, Gauge/String Duality, Hot QCD
and Heavy Ion Collisions (Cambridge University Press,
Cambridge, UK, 2014).

[12] R. Brustein and A.J. M. Medved, Universal stress-tensor
correlation functions of strongly coupled conformal fluids,
Phys. Lett. B 724, 144 (2013).

[13] R. Brustein and A.J. M. Medved, Graviton multipoint
functions at the AdS boundary, Phys. Rev. D 87, 024005
(2013).

[14] K. Skenderis, Lecture notes on holographic renormaliza-
tion, Classical Quantum Gravity 19, 5849 (2002).

[15] P. K. Kovtun and A. O. Starinets, Quasinormal modes and
holography, Phys. Rev. D 72, 086009 (2005).

[16] S. Grozdanov and A. O. Starinets, On the universal identity
in second order hydrodynamics, J. High Energy Phys. 03
(2015) 007.

[17] G. Policastro, D. T. Son, and A. O. Starinets, From AdS/
CFT correspondence to hydrodynamics, J. High Energy
Phys. 09 (2002) 043.

[18] G. 't Hooft and M. J. G. Veltman, One loop divergencies
in the theory of gravitation, Ann. Inst. Henri Poincaré Phys.
Theor. A 20, 69 (1974).

[19] M. M. W. Shawa and A.J. M. Medved (to be published).

086002-10


https://doi.org/10.1016/j.physletb.2013.06.002
https://doi.org/10.1103/PhysRevD.87.024005
https://doi.org/10.1103/PhysRevD.87.024005
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1007/JHEP03(2015)007
https://doi.org/10.1007/JHEP03(2015)007
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2002/09/043

