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We calculate graviton multipoint amplitudes in an anti–de Sitter black brane background for higher-
derivative gravity of arbitrary order in numbers of derivatives. The calculations are performed using tensor
graviton modes in a particular regime of comparatively high energies and large scattering angles. The
regime simplifies the calculations but, at the same time, is well suited for translating these results into
the language of the dually related gauge theory. After considering theories whose Lagrangians consist
of contractions of up to four Riemann tensors, we generalize to even higher-derivative theories by
constructing a “basis” for the relevant scattering amplitudes. This construction enables one to find the basic
form of the n-point amplitude for arbitrary n and any number of derivatives. Additionally, using the four-
point amplitudes for theories whose Lagrangians carry contractions of either three or four Riemann tensors,
we reexpress the scattering properties in terms of the Mandelstam variables.
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I. INTRODUCTION

The gauge-gravity duality enables one to describe
a d-dimensional gauge theory in terms of a (dþ 1)-
dimensional gravitational theory [1]. Importantly, the
duality relates a strongly coupled field theory to a weakly
coupled theory of gravity. Since strongly coupled gauge
theories are not very well understood, the duality provides a
means for making analytical statements about them. One
application of this framework [2] is the correspondence
between stress-energy tensor correlation functions in the
relevant gauge theory and graviton scattering amplitudes in
its gravitational dual [3].
In the earliest investigations into the duality—which

mostly focused on five-dimensional anti–de Sitter (AdS)
space and four-dimensional super Yang-Mills theory—the
rank of the gauge theory N is taken to infinity, which then
corresponds to Einstein’s theory of gravity [4]. (On the other
hand, the ’t Hooft coupling λ ¼ g2sN, where gs is the string
coupling, is regarded as large but finite in the standard limit.)
With deviations to large but finite values of N, the gravita-
tional dual can be expected to include higher-derivative
corrections in addition to Einstein’s (two-derivative)

Lagrangian and two-derivative field equation [5]. If the
interest is only in gauge-invariant quantities (such as scatter-
ing amplitudes), then one can limit considerations to the
multiderivative terms in the Lagrangian which are strictly
composed of contractions between “proper” four-index
Riemann tensors (i.e., two-index tensors and scalars are
excluded). This simplification was recently discussed in [6]
and can be shown through a gauge transformation of the
graviton that involves the Ricci scalar and tensor [7,8].
A brief note on conventions: A theory of gravity whose

Lagrangian consists solely of terms containing contractions
of k Riemann tensors will be called Riemk gravity. The field
equation for such a theory could have up to 2k derivatives
in any given term, but its highest-order term could still have
less than 2k derivatives (with Gauss-Bonnet gravity serving
as a case in point; see below).
In this paper, we calculate graviton scattering amplitudes

for higher-derivative theories of gravity in an AdS black
brane background, that is, a black hole with a flat horizon
living in an asymptotically AdS spacetime. Our approach is
similar to that of [9], where the focus is on Einstein (Riem1)
and Gauss-Bonnet (Riem2) gravity. However, those scat-
tering amplitudes could be substantially simplified by
enforcing on-shell conditions. In the case of Einstein’s
gravity, the field equation can be used to eliminate
amplitudes with two derivatives acting on a single graviton.
Meanwhile, any formulation of Riem2 gravity can always
be gauge transformed to a Gauss-Bonnet theory by using
the “inverse” of the aforementioned transformation. As
any Lovelock extension of Einstein’s theory [10], Gauss-
Bonnet gravity has a field equation that has at most two
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derivatives per term irrespective of how many Riemann
tensors are carried in the Lagrangian. Thus, the very same
logic and simplification applies in this case as well. (See the
appendix in [9] for further details.) In the current work, we
do not have the luxury of restricting to Lovelock theories or
theories that are related to Lovelock via a gauge trans-
formation,1 meaning that the previous simplification can
no longer be relied upon. It follows that terms with two
derivatives acting on a graviton must now be included in the
calculation of amplitudes.
Starting with Riem3 and Riem4 theories in Sec. II, we

utilize what could be called “basis amplitudes” to construct
the n-point amplitudes for arbitrarily large n. The generali-
zation of these basis amplitudes mitigates the task of finding
multipoint amplitudes for theories with an arbitrary number
of Riemann tensors (see Sec. III). Finally, using 4-point
amplitudes in Sec. IV, we reexpress the scattering properties
of the Riem3 and Riem4 theories in terms of the Mandelstam
variables. (Section V contains a brief conclusion.)
Our intention is, in a later paper, to map the current results

to stress-tensor correlation functions in the dual gauge
theory. The motivation for such a treatment is to learn about
the gravitational dual to the gauge theory describing the
quark-gluon plasma and other strongly coupled gauge
theories [11]. These findings could conceivably be tested
thanks to the high-energy hadron-collider laboratories at
Brookhaven and CERN. For a detailed discussion on the
physical significance of these correlation functions and
the viability of the high-momentum regime in this context,
the reader can consult [12].
Because our long-term goal is to apply the gauge-gravity

duality for the purpose of making experimentally viable
predictions (as in [13]), we are mainly interested in the
boundary limit of the amplitudes (where thegauge theory can
be regarded as “residing”) and, moreover, only those con-
tributions that would survive holographic renormalization
[14] and could be discernible in gauge-theory correlation
functions.With this in mind, our calculations are limited to a
special kinematic region that was referred to as the “high-
momentum regime” in [9]. As discussed later, this regime
is particularly well suited for discriminating the higher-
derivative contributions in the graviton scattering amplitudes
and then, ultimately, in the dual correlation functions.

A. Summary of formalism

Much of the groundwork for the following analysis has
already been laid out in [9,13]. Here, we will summarize
some of the key elements that are necessary for the task
at hand.
The AdS black brane background in a five-dimensional

spacetime2 has a metric of the form

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2

L2
ðdx2 þ dy2 þ dz2Þ; ð1Þ

where the radial coordinate ranges from the black brane
horizon at r ¼ rh to the AdS boundary limit of r → ∞, and
the parameter L is the AdS radius of curvature. As for the
functions fðrÞ and gðrÞ, for an AdS black brane spacetime,

these would be fðrÞ ¼ gðrÞ ¼ r2

L2 ð1 − r4h
r4Þ. However, in

general, fðrÞ ≠ gðrÞ, and these are chosen so that the
metric is asymptotically pure AdS, meaning that fðrÞ
and gðrÞ necessarily have to satisfy the four conditions

limr→rhfðrÞ ¼ 0, limr→rhgðrÞ ¼ 0, limr→∞
fðrÞ
r2 ¼ 1

L2, and

limr→∞
gðrÞ
r2 ¼ 1

L2.
Metric fluctuations are represented by ḡμν ¼ gμν þ hμν,

where gμν is the AdS background metric of Eq. (1) and hμν
is a small perturbation of the background metric (i.e., a
graviton). In this analysis, the gravitons will propagate
along the z coordinate and so

hab ¼ ϕðrÞeiðωt−kzÞ; ð2Þ
where ϕðrÞ is some well-behaved function with incoming-
wave boundary conditions at the horizon of the form [15]

ϕðrÞ ¼ fðrÞ− iω
2πTψðrÞ; ð3Þ

where ψðrÞ is finite and continuous near rh, ω is the mode
frequency, and T is the Hawking temperature of the black
brane, T ¼ rh

4πL2. Near the AdS boundary, ϕðrÞ must be
finite and continuous as well as depend on some negative
power of r.
We assume a string-theory based gravitational theory

with weak coupling, gs ≪ 1, and with a small string

tension, ϵ ¼ l2s
L2 ≪ 1 (ls is the string length). The former

condition is needed to comply with the ’t Hooft limit of
large N and large but relatively smaller λ. The latter
condition allows us to consider a perturbative expansion
of the Lagrangian in terms of ϵ. The expansion can be
expressed schematically as

L ¼ ffiffiffiffiffiffi
−g

p R
16πG5

ð1þ ϵL2Rþ ϵ2L4R2 þ � � �

þ ϵkL2kRk þ � � �Þ; ð4Þ
where we have suppressed indices (all terms are contrac-
tions of 4-index Riemann tensors as previously discussed)
and G5 is Newton’s constant in five dimensions. For the
sake of brevity, the Lagrangian can also be written as

L ¼
X
k¼1

Lk; ð5Þ

where Lk ∼ Rk is meant to describe a contraction of k
Riemann tensors. So that, when referring to (e.g.) Riem3

gravity, we really mean the LagrangianL3 ¼
ffiffiffiffi−gp

R
16πG5

½ϵ2L4R2�.

1This follows from any Riemk Lovelock extension vanishing
identically in 2k − 1 or fewer dimensions [10].

2Generalizations to other dimensionalities are straightforward.
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Gravitational scattering amplitudes must be holograph-
ically renormalized if we are to make a connection with
the gauge-gravity duality. As shown in [9], this process
eliminates the need to consider the radial derivatives of
gravitons as these would lead to divergences in the
amplitude even after renormalization. Such terms would
then be discarded in the gauge theory after the standard
techniques of holographic renormalization have been
applied [14]. Hence, for the current work, only the t and
z derivatives of gravitons are considered.
Let us now clarify what is meant by the “high-momentum

regime.” Our motivation is the idealized case of a kinematic
region that is potentially accessible via experiment on the
dual gauge theory3 and that allows one to distinguish
between the contributions of the different Lk’s in Eq. (5).
The basic idea is that larger values of momenta can
compensate for larger powers of ϵ as one probes theories
that are higher order in numbers of derivatives. This is
accomplished by insisting that a contribution to amplitudes
of order ϵq always includes a total of 2qþ 2 derivatives
acting on gravitons. Contributions having fewer derivatives
are to be discarded. So that, if L2ϵω2 is not too small a
number, the surviving contributions should be prominent in
the scattering profiles (and ultimately in the gauge-theory
correlators).
Let us explain further what classifies a value of momen-

tum as “high” in this context. First, background derivatives
go as ∇r∇r ∼ 1

L2, while graviton momenta go as ∇t∇t ∼ ω2

and ∇z∇z ∼ k2; therefore, one requirement is that ω2,
k2 ≫ 1

L2. Furthermore, to apply the tools of the gauge-
gravity duality, the hydrodynamic regime must necessarily
be in effect.4 This means that ω ≪ T and, consequently,

1 ≪ Lω ≪ TL: ð6Þ

This range is indeed viable because, according to the
duality, TL ∼ rh

L ≫ 1 [3]. One then needs only to hope
that ϵðωLÞ2 is sufficiently large, for the purpose of
experimental detection (as always, on the gauge-
theory side).
We also work in the radial gauge, which means that

hra ¼ 0 for any a. This gauge divides the gravitional
perturbations into three distinct sectors: scalar, vector,
and tensor [17]. However, scalar modes do not contribute
to scattering amplitudes in the high-momentum regime.
This is because scalars need to be sourced and sources can
be expected, on general grounds, to introduce an additional
factor of ϵ. Meanwhile, vector modes are analogous to the

electromagnetic potential and, as such, can either be gauged
away or require a source when appearing in gauge-invariant
combinations. Hence, these modes can also be discounted.
Other fields can only couple to the gravitons through a
stress tensor, which will invoke additional powers of ϵ.
This leaves only the tensor modes hxy as relevant in the
high-momentum regime.
Given that the number of derivatives acting on gravitons

has been maximized, the only other type of tensor-mode
amplitude requiring suppression is one that includes the
on-shell constraint □hxy ¼ 0þOðϵÞ, since this adds an
extra factor of ϵ. Note though that an expression such as
gabgcd∇a∇chxy would survive (with the free indices suit-
ably contracted). We should also add that, to maintain
general covariance, tensor modes must come in pairs (see
below). And so, with the restriction to tensor modes, any
nontrivial scattering amplitude will necessarily be even.
Finally, we will perturbatively expand the metric deter-

minant and contravariant metrics by adopting the conven-
tions of [18]. To briefly review, a perturbed covariant
metric goes as

ḡμν ¼ gμν þ hμν; ð7Þ

which is to be viewed as an exact statement up to any order
in h. This expansion has a contravariant counterpart of
the form

ḡμν ¼ gμν − hμν þ hμρhρν þOðh3Þ; ð8Þ

and the metric determinant is then

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffi
−g

p �
1þ1

2
hμμ−

1

4
hμρh

ρ
μþ1

8
ðhμμÞ2þOðh3Þ

�
: ð9Þ

Since our interest is in the tensor modes hxy, only
expressions with an even number of gravitons will survive
in Eqs. (8) and (9), and undifferentiated gravitons will have
to come from either

ḡxx ¼ gxx þ hxyhyx þ ðhxyhyxÞ2 þ � � � þ ðhxyhyxÞp ð10Þ

or

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffi
−g

p �
1−

1

2
hxyh

y
x−

1

222!
ðhxyhyxÞ2þ���þΘðpÞðhxyhyxÞp

�
;

ð11Þ

where

ΘðpÞ ¼ −
Γ½p − 1

2
�

2
ffiffiffi
π

p
p!

; for p ∈ Z: ð12Þ

As for the differentiated gravitons, these will, of course,
come from expansions of the Riemann tensors (see below).

3The viability of experimental accessibility hinges on having ϵ
small but not too small. Essentially ϵ ∼Oð10−1Þ, although this
number depends very much on parameters of the particular
experiment. See [12] for further details.

4For another study on brane hydrodynamics in the context of
higher-derivative gravity, see (e.g.) [16].
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II. MULTIPOINT AMPLITUDES

A. Basis multipoint amplitudes

Using the standard definition of Riemann tensors and
Eq. (7), we start here by introducing some shorthand
notation for perturbations of the Riemann tensor while
considering only the highest momentum terms,

δð1ÞRabcd ¼ ∇bΓdacðhÞ −∇cΓdabðhÞ; ð13Þ

δð2ÞRabcd ¼ gef½ΓeacðhÞΓfbdðhÞ − ΓeadðhÞΓfbcðhÞ�; ð14Þ

where

ΓabcðhÞ ¼
1

2
ð∇bhac þ∇chab −∇ahbcÞ: ð15Þ

Given that the high-momentum regime is in effect (so
that the background contributions from any Riemann tensor
can be ignored), then each Riemann tensor effectively
contributes

Rabcd → Rabcd ≡ δð1ÞRabcd þ δð2ÞRabcd ∼∇∇hþ∇h∇h:
ð16Þ

Note that additional derivatives on a graviton would only be
possible through an integration by parts, which is incon-
sequential to on-shell amplitudes.Also, as any term in a strictly
covariant Riemann tensor consists of at most two differ-
entiated covariantmetrics and zero differentiated contravariant
metrics, there are no higher-order corrections to the above
expressions [cf. Eq. (7) and the comment that follows it].
Nonetheless, higher-order terms in the complete amplitudes
will come about from the expansions in Eqs. (8)–(11).
Recalling that gravitons can only be differentiated with

respect to t and z, one can observe that any perturbed
Riemann tensor must have a specific arrangement of indices.
Up to symmetries,5 these would be δð1ÞRaxby for a; b ¼
ft; zg and δð2ÞRcxdx for c; d ¼ ft; z; yg, where x and y are
interchangeable.
With the high-momentum regime in mind, we will define

basis amplitudes as multipoint amplitudes for which all of
the included gravitons are differentiated. Each such basis
amplitude then represents a different combination of
δð1ÞR’s and δð2ÞR’s. Furthermore, in constructing a general
2n-point amplitude, we will use the notation hh2ni2p to
indicate a 2n-point amplitude constructed from a 2p-point
basis amplitude (n ≥ p). For instance, the basis amplitudes
themselves are denoted by hh2pi2p.

B. Multipoint amplitudes from
Riem3 (ϵ2-order) gravity

To begin, Riem3 gravity can be defined, up to gauge
transformations, as

L3 ¼
ffiffiffiffiffiffi
−g

p ½αRabcdRab
mnRmncd þ βRabcdRmn

adRmncb�;
ð17Þ

where ϵ2L4

16πG5
has now been absorbed into the model-

dependent constants α and β.
In this theory, there two types of basis amplitudes,6

the 4- and 6-point amplitudes. The basis 4-point amplitude
has six derivatives and four gravitons; schematically it can
written in terms of the previously introduced shorthand
[cf. Eqs. (13) and (14)],

hh4i4 ∼ 3ðαþ βÞδð1ÞRδð1ÞRδð2ÞR; ð18Þ

where the tensor indices have been suppressed and the “3”
counts the number of ways of choosing one of the tensors to
carry two gravitons.
Similarly, the 6-point amplitude with six derivatives and

six gravitons takes the schematic form

hh6i6 ∼ ðαþ βÞδð2ÞRδð2ÞRδð2ÞR: ð19Þ

Now more explicitly, the 4-point amplitude of Eq. (18)
can be expressed as

hh4i4 ¼ 3ðαþ βÞ23½RtxtyRtxtyRtx
tx þRtxzyRtxzyRtx

tx

þRtxzyRzxzyRtx
zx þ ft ↔ zg� þ fx ↔ yg; ð20Þ

where fa ↔ bg is shorthand for the interchange of a and b
in the preceding expression and the 23 accounts for the
symmetries of the Riemann tensors. Even more explicitly,
in terms of gravitons (and with the help of the equations
in Sec. II A),

hh4i4 ¼ −6ðαþ βÞ ffiffiffiffiffiffi
−g

p ðgxxgyyÞ2
× ½ðω1gttω2 þ k1gzzk2Þðω1gttω3 þ k1gzzk3Þ
× ðω2gttω4 þ k2gzzk4Þ�
× hð1Þxy h

ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy ; ð21Þ

where each factor of ðωigttωj þ kigzzkjÞ is a product of the
momenta for gravitons hðiÞxy and h

ðjÞ
xy , and the symmetrization

of the gravitons is always implied.
Using similar reasoning, one finds that the basis 6-point

amplitude translates into

5In particular, Rabcd ¼ Rcdab and Rabcd ¼ −Rabdc.

6Here, we will be disregarding 2-point amplitudes because
they are not really of interest from the viewpoint of someone
discriminating between different theories.
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hh6i6 ¼ −
3

2
ðαþ βÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ3½ðω1gttω2 þ k1gzzk2Þðω3gttω4 þ k3gzzk4Þðω5gttω6 þ k5gzzk6Þ�

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy : ð22Þ

The utility of the basis amplitudes in Eqs. (21) and (22) is that one can use these to construct 2n-point amplitudes by
drawing out additional pairs of gravitons from the metric determinant and the contravariant metrics gxx and gyy. Let us begin
with Eq. (21) and suppose that p pairs are drawn from the metric determinant and n − 2 − p pairs from the four
contravariant metrics. Recalling that the number of ways of drawing q identical objects from m distinct boxes is

ð qþm − 1
m − 1

Þ, we then have that, for any n ≥ 2,

hh2ni4 ¼ −6ðαþ βÞ
�
2n

4

�Xn−2
p¼0

�
nþ 1 − p

3

�
ΘðpÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ2

× ½ðω1gttω2 þ k1gzzk2Þðω1gttω3 þ k1gzzk3Þðω2gttω4 þ k2gzzk4Þ�

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy

Yn
j¼3

½ðhxyÞð2j−1ÞðhyxÞð2jÞ�; ð23Þ

where the combinatorial factor before the summation represents the number of ways of choosing the four differentiated
gravitons from the total of 2n and the summation itself accounts for all possible ways of drawing gravitons from the
contravariant metrics and metric determinant.
In similar fashion, 2n-point amplitudes can be constructed from the basis 6-point amplitude of Eq. (22) for any n ≥ 3.

The result of this is

hh2ni6 ¼ −
3

2
ðαþ βÞ

�
2n

6

�Xn−3
q¼0

�
n − qþ 2

5

�
ΘðqÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ3

× ½ðω1gttω2 þ k1gzzk2Þðω3gttω4 þ k3gzzk4Þðω5gttω6 þ k5gzzk6Þ�

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy

Yn
k¼4

½ðhxyÞð2k−1ÞðhyxÞð2kÞ�: ð24Þ

As Eqs. (23) and (24) now make clear, the 4- and 6-point amplitudes of Eqs. (21) and (22) form the basis for the 2n-point
amplitudes of Riem3 gravity in the high-momentum regime. The complete 2n-point amplitude for Riem3 gravity is then
given by the linear combination

hh2niRiem3 ¼ hh2ni4 þ hh2ni6: ð25Þ

C. Multipoint amplitudes from Riem4 (ϵ3-order) gravity

First consider that Riem4 gravity is expressible, up to gauge transformations, as

L4 ¼ ½αRabcdRabmnRmn
pqRpq

cd þ βRabcdRab
qpRmndqRmn

cp þ γRabcdRpd
mnRabcqRpq

mn

þ μRabcdRmnpqRancqRmbpd þ νRabcdRna
pqRmbpdRmn

qc þ ρRabcdRabcdRmnpqRmnpq�: ð26Þ

Here, as before, ϵ3L6

16πG5
has been absorbed into the model-dependent constants.

With the very same reasoning as in the previous section, we can call on Eq. (26) to construct three types of basis
amplitudes; the 4-, 6-, and 8-point amplitudes. In terms of the Riemann tensor in Sec. II A, these can be schematically
written as

hh4i4 ∼ ðαþ β þ γ þ μþ νþ ρÞδð1ÞRδð1ÞRδð1ÞRδð1ÞR; ð27Þ

hh6i6 ∼ 6

�
αþ β þ γ þ μþ νþ 1

3
ρ

�
δð1ÞRδð1ÞRδð2ÞRδð2ÞR; ð28Þ
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hh8i8 ∼ ðαþ β þ γ þ μþ νþ ρÞδð2ÞRδð2ÞRδð2ÞRδð2ÞR: ð29Þ

Expanding Eq. (27), one finds that

hh4i4 ¼ 4ðαþ β þ γ þ μþ νþ ρÞ ffiffiffiffiffiffi
−g

p ðgxxgyyÞ2½ðω1gttω2 þ k1gzzk2Þðω2gttω3 þ k2gzzk3Þ
× ðω3gttω4 þ k3gzzk4Þðω1gttω4 þ k1gzzk4Þ�hð1Þxy h

ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy ; ð30Þ

which can then be used to construct a 2n-point amplitude for any n ≥ 2,

hh2ni4 ¼ 4ðαþ β þ γ þ μþ νþ ρÞ
�
2n

4

�Xn−2
p¼0

�
nþ 1 − p

3

�
ΘðpÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ2

× ½ðω1gttω2 þ k1gzzk2Þðω2gttω3 þ k2gzzk3Þðω3gttω4 þ k3gzzk4Þðω1gttω4 þ k1gzzk4Þ�

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy

Yn
j¼3

½ðhxyÞð2j−1ÞðhyxÞð2jÞ�; ð31Þ

where the combinatoric factors (here and below) are handled similarly to those in Eq. (23).
As for the basis 6-point amplitude, this goes as

hh6i6 ¼ ð4ρþ 6ðαþ β þ γ þ μþ νÞÞ ffiffiffiffiffiffi
−g

p ðgxxgyyÞ3
× ½ðω1gttω2 þ k1gzzk2Þ2ðω3gttω4 þ k3gzzk4Þðω5gttω6 þ k5gzzk6Þ�
× hð1Þxy h

ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy ; ð32Þ

from which one can construct a 2n-point amplitude for any n ≥ 3,

hh2ni6 ¼ ð4ρþ 6ðαþ β þ γ þ μþ νÞÞ
�
2n

6

�Xn−3
q¼0

�
n − qþ 2

5

�
ΘðqÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ3

× ½ðω1gttω2 þ k1gzzk2Þ2ðω3gttω4 þ k3gzzk4Þðω5gttω6 þ k5gzzk6Þ�

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy

Yn
k¼4

½ðhxyÞð2k−1ÞðhyxÞð2kÞ�: ð33Þ

Finally, the basis 8-point amplitude is of the form

hh8i8 ¼
�
ρþ 1

2
ðαþ β þ γ þ μþ νÞ

�
ðgxxgyyÞ4ðω1gttω2 þ k1gzzk2Þðω3gttω4 þ k3gzzk4Þ

× ðω5gttω6 þ k5gzzk6Þðω7gttω8 þ k7gzzk8Þhð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy h

ð7Þ
xy h

ð8Þ
xy ; ð34Þ

and the corresponding 2n-point amplitude for any n ≥ 4 is then

hh2ni8 ¼
�
ρþ 1

2
ðαþ β þ γ þ μþ νÞ

��
2n

8

�Xn−4
r¼0

�
n − rþ 3

7

�
ΘðrÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞ4

× ðω1gttω2 þ k1gzzk2Þðω3gttω4 þ k3gzzk4Þðω5gttω6 þ k5gzzk6Þðω7gttω8 þ k7gzzk8Þ

× hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy h

ð5Þ
xy h

ð6Þ
xy h

ð7Þ
xy h

ð8Þ
xy

Yn
l¼5

½ðhxyÞð2l−1ÞðhyxÞð2lÞ�: ð35Þ

As before, the complete 2n-point amplitude for the Riem4 theory in the high-momentum regime is a linear combination
of the basis amplitudes in Eqs. (31), (33), and (35). That is,

hh2niRiem4 ¼ hh2ni4 þ hh2ni6 þ hh2ni8: ð36Þ

M.M.W. SHAWA and A. J. M. MEDVED PHYS. REV. D 97, 086002 (2018)

086002-6



III. MULTIPOINT AMPLITUDES FROM Riemq

(ϵq − 1-ORDER) GRAVITY

In this section, wewill find the basic form of the 2n-point
amplitude in the high-momentum regime when the most
general type of gravitational theory is considered, namely,
one whose Lagrangian is composed of q contracted
Riemann tensors for arbitrary q.
This task appears to be quite arduous, as one would

expect that the number of gauge-invariant terms in the
Lagrangian grows exponentially with q.7 On the other
hand, as shown in Sec. II C, each of the six invariants makes
essentially the same contribution to any one of the three
basis amplitudes [cf. Eqs. (30), (32), and (34)]—although
the different basis amplitudes will indeed have different
forms. It is not difficult to convince oneself that the
relative simplicity of the high-momentum regime is

enough to ensure that these trends will persist to higher
orders in q.
Since any single graviton can carry zero, one, or two

derivatives, there are many ways to obtain a 2n-point
amplitude from a Riemq theory depending on the size and
parity ofq. Let us suppose that this is aq-odd theory; then the
set of basis amplitudes (i.e., those with only differentiated
gravitons) is the setPq¼fhhqþ1iqþ1;hhqþ3iqþ3;…;hh2qi2qg
with cardinality qþ1

2
. The reasoning here is that, for an odd

value of q, hhqþ1iqþ1 has the maximum possible number of
gravitons carrying two derivatives with the remainder carry-
ing one, whereas hh2qi2q has all gravitons carrying a single
derivative.
To elaborate further, let us consider the following arrange-

ments of q contracted Riemann tensors [while keeping in
mindEqs. (13) and (14) and that the gravitons come in pairs]:

hhqþ1iqþ1 ∼ δð1ÞRδð1ÞR � � � δð1ÞRδð2ÞR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q products of Riemann tensors

a single δð2ÞR term and an even number of δð1ÞR terms; ð37Þ

hhqþ3iqþ3∼ δð1ÞRδð1ÞR � � �δð2ÞRδð2ÞRδð2ÞR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qproducts of Riemann tensors

threeδð2ÞR terms and an even number of δð1ÞR terms;

..

. ..
. ..

. ..
. ..

. ð38Þ

hh2qi2q ∼ δð2ÞRδð2ÞR � � � δð2ÞRδð2ÞR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q products of Riemann tensors

all δð2ÞR terms: ð39Þ

A similar argument can be used for q-even theories, in which case, the set of basis amplitudes is Qq ¼
fhhqiq; hhqþ2iqþ2;…; hh2qi2qg with cardinality qþ2

2
. In both cases, the key point is that there should be either zero or an

even number of δð1ÞR’s in any basis amplitude.
The next step involves reformulating the different basis amplitudes in terms of gravitons rather than Riemann tensors.

It is clear that each such basis amplitude will be a polynomial in ω’s and k’s of degree 2q. Since either one or two derivatives

can act on a graviton, each term in the polynomial must contain one of ωi, ki, ωiki;ω2
i ; k

2
i for each graviton hðiÞxy . Then as

long as q ≤ 2p < 2q for some p ∈ Nþ, a basis amplitude for Riemq can be expressed somewhat schematically as8

hh2pi2p ¼ Aq2
qþ2−2p ffiffiffiffiffiffi

−g
p ðgxxgyyÞpCð1;2ÞCð3;4Þ � � �Cð2p−1;2pÞCð1;2pÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q contractions of derivatives

hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy � � � hð2p−1Þxy hð2pÞxy ; ð40Þ

where Cði;jÞ ≡ Ki · Kj ¼ ðωigttωj þ kigzzkjÞ with Ki ¼ ðωi; 0; 0; 0; kiÞ and Aq ∼OðeqÞ is a numerical coefficient. For
2p ¼ 2q, the basis amplitude should rather be written as

hh2qi2p ¼ Aq2
2−q ffiffiffiffiffiffi

−g
p ðgxxgyyÞqCð1;2ÞCð3;4Þ � � �Cð2q−1;2qÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q contractions of derivatives

hð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy � � � hð2q−1Þxy hð2qÞxy : ð41Þ

7It is amusing to note that the number of gauge-invariant terms grows exactly as ðq − 1Þ! for q ≤ 4, which then grows roughly as eq
for large q.

8This form assumes that the gravitons can be freely labeled.
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Now each basis amplitude hh2pi2p—for which q ≤ 2p ≤ 2q if q is even or qþ 1 ≤ 2p ≤ 2q if q is odd—will contribute
to the 2n-point amplitude in accordance with

hh2ni2p ¼ Aq2
qþ2−2p

�
2n

2p

�Xn−p
r¼0

�
nþ p − rþ 1

2p − 1

�
ΘðrÞ ffiffiffiffiffiffi

−g
p ðgxxgyyÞpCð1;2ÞCð3;4Þ � � �Cð2p−1;2pÞCð1;2pÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q contractions

× hð1Þxy h
ð2Þ
xy � � � hð2p−1Þxy hð2pÞxy

Yn
m¼pþ1

½ðhxyÞð2m−1ÞðhyxÞð2mÞ�; ð42Þ

for all n ≥ p, and the combinatoric factors follow the same logic as in the analysis from Sec. II.
Finally, we can use Eq. (42) to express the complete 2n-point for any Riemq theory gravity as the sum of contributions

from the various basis amplitudes,

hh2niRiemq ¼
8<
:

Pq
2

m¼0hh2ni2mþq with q even and 2n ≥ 2mþ q for everym;
Pq−1

2

m¼0hh2ni2mþqþ1 with q odd and 2n ≥ 2mþ qþ 1 for everym:
ð43Þ

It should again be emphasized that the validity of these results depends upon the restriction to the high-momentum
regime.

IV. SCATTERING PROPERTIES OF 2n-POINT AMPLITUDES

Our next order of business is to look at the scattering properties of some of these amplitudes. We will restrict to the cases
with four gravitons (all of which are differentiated) as then the results can be expressed directly in terms of the familiar
Mandelstam variables [see Eqs. (46) to (48) below]. However, it can be expected that the same basic theme—each theory
carrying its own characteristic signature for scattering experiments in the high-momentum regime—will persist to more
complicated scenarios.
Let us begin with the 4-point amplitude of Riem3 gravity as depicted in Sec. II B. It is convenient to express the products

of momenta in terms of the condensed notation Ki · Kj ¼ ðωigttωj þ kigzzkjÞ, in which case,

hh4i ¼ −6ðαþ βÞ ffiffiffiffiffiffi
−g

p ðgxxgyyÞ2Kð1 · K2K3 · K4K1 · K4Þh
ð1Þ
xy h

ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy : ð44Þ

It should be noted that the symmetrized product of momenta in Eq. (44) is really a shorthand for the symmetrization of all
possible products in a particular way,

Kð1 · K2K3 · K4K1 · K4Þ → Kð1 · K2K3 · K4K1 · K4Þ þ Kð1 · K2K3 · K4K1 · K2Þ þ Kð1 · K2K3 · K4K1 · K3Þ

þ Kð1 · K2K3 · K4K2 · K3Þ þ Kð1 · K2K3 · K4K2 · K4Þ þ Kð1 · K2K3 · K4K3 · K4Þ: ð45Þ

To better appreciate Eq. (45), one can take note that each of the momenta has an equal opportunity of appearing either once
or twice in any given permutation of the four gravitons.
Let us now recall the Mandelstam variables,

s ¼ ðK1 þ K2Þ2 ¼ ðK3 þ K4Þ2 ¼ 2K1 · K2 ¼ 2K3 · K4; ð46Þ

t ¼ ðK1 − K3Þ2 ¼ ðK2 − K4Þ2 ¼ −2K1 · K3 ¼ −2K2 · K4; ð47Þ

u ¼ ðK1 − K4Þ2 ¼ ðK2 − K3Þ2 ¼ −2K1 · K4 ¼ −2K2 · K3; ð48Þ
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where the two rightmost pairs of expressions on each line
represents the case of massless particles, which is the case
of current interest and for which sþ tþ u ¼ 0. In terms of
its dependency on the Mandelstam variables, Eq. (44) can
be expressed as

hh4iRiem3 ∝ ðs− t−uÞðs2þ t2þu2Þhð1Þxy h
ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy : ð49Þ

In the interest of making a connection with the gauge
theory, it should be emphasized that Eq. (49) is only valid
at the AdS boundary where gzz ¼ jgttj holds true. But, since
the idea is to translate these expressions into statements
in the dual gauge theory (as in [13]), the boundary limit is
sufficient. Indeed, we expect to observe a related signature
for the stress-energy correlators in the gauge theory. This is
because of the observation in [9] that the amplitudes which
survive in the high-momentum regime are mostly unaf-
fected by the process of holographic renormalization.
We can similarly apply this process to the 4-point

amplitude from Riem4 gravity, which leads to

hh4iRiem4 ∝ ðs4 þ t4 þ u4 þ s2t2 þ s2u2 þ u2t2Þ
× hð1Þxy h

ð2Þ
xy h

ð3Þ
xy h

ð4Þ
xy : ð50Þ

In view of Eqs. (49) and (50), two conclusions immedi-
ately follow: The first is that the two theories have very
distinct scattering signatures, and the second is that s, t,
and u appear democratically in both cases. The latter is a
consequence of the high-momentum regime favoring no
particular scattering channel, meaning that, in general, this
is also a regime of large-angle scattering.

V. CONCLUSION

In this paper, we have computed graviton multipoint
scattering amplitudes for higher-derivative theories in an

AdS black brane background. All computations were carried
out in the so-called high-momentum regime as was first
introduced in [9]. This regime allows for higher-curvature
corrections to contribute significantly to higher-point
amplitudes provided that sϵ≲ 1, where ϵ is the perturbative
(α0 orRegge slope) expansion parameter. Alongwith explicit
calculations for six- and eight-derivative theories, we were
able to generalize the formalism to higher-derivative gravity
of arbitrary order. A critical element of this generalization
was the construction of a certain class of basis amplitudes.
We proceeded to demonstrate the scattering properties

of Riem3 and Riem4 gravity in terms of the Mandelstam
variables s, t, and u by using their respective 4-point
amplitudes. Our expectation is that this procedure can be
generalized to higher-point scattering amplitudes and
higher-derivative theories with some amount of work.
The graviton multipoint amplitudes in this paper should

correspond to stress-tensor correlators in the gauge theory.
This means, for instance, that the stress-energy tensor
4-point correlators should include, in addition to the distinct
signatures of Einstein gravity and four-derivative gravity
[9,13], those of six and eight-derivative gravity as depicted
in Eqs. (49) and (50). Note, however, that, to make contact
with actual experiments, it is the connected functions in the
gauge theory that are required, whereas the amplitudes in
this paper would correspond to one-particle-irreducible
functions. This point is currently under investigation by
the current authors.
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