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We consider aspects of the noncommutative approach to the standard model based on the spectral action
principle. We show that as a consequence of the incorporation of the Clifford structures in the formalism,
the spectral action contains an extended scalar sector, with respect to the minimal standard model. This may
have interesting phenomenological consequences. Some of these new scalar fields carry both weak isospin
and color indices. We calculate the new terms in spectral action due to the presence of these fields. Our
analysis demonstrates that the fermionic doubling in the noncommutative geometry is not just a presence of
spurious degrees of freedom, but it is an interesting and peculiar property of the formalism, which leads to
physically valuable conclusions. Some of the new fields do not contribute to the physical fermionic action,
but they appear in the bosonic spectral action. Their contributions to the Dirac operator correspond to
couplings with the spurious fermions, which are projected out.
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I. INTRODUCTION

The standard model of particle interactions can be
efficiently described by a particular noncommutative geom-
etry: an “almost commutative geometry.”Over the years the
model has been developing both in its mathematical and
physical aspects. Its mathematical framework has its roots
in a global view [1–4] of geometry based on the spectral
properties of operators. The applications of this point of
view to geometry are quite startling; the standard reference
of the model in its modern version is [5]; for a recent review
see [6]. The model has predictive power, although it is
premature to consider it a fully fledged theory to confront
with experiment, with prediction with a significative
number of digits. Its main success is in the description
of the symmetries of the model; very few Yang-Mills
models can be described by a noncommutative geometry
(NCG), but the standard model and a few more can. The
Higgs field emerges naturally as an intermediate boson
corresponding to the noncommutative part of the model, of

a par with photons, W, Z, and gluons. The actions for
fermions and bosons are firmly based on the spectral
properties of a generalized Dirac operator [7],1 and the
procedure is capable of obtaining numbers such as the mass
of the Higgs boson. The numbers produced in [5], although
encouraging, are not in agreement with present data; in
particular, the model requires the unification of all cou-
plings at a single energy, and one calculates the Higgs
boson mass around 170 GeV. Both these aspects are
experimentally excluded, and the model can be fixed to
allow the physical mass of the Higgs boson [12–21]. Efforts
are also undertaken to use the model for other predictions,
for example, in [22].
The fact that the calculations made in the present model

are encouraging, but not yet comparable with experiment,
suggests that some improvement may happen also from the
mathematical side. In [23] a noncommutative version of the
Clifford symmetry was discussed. One of the remarkable
effects of the Clifford requirements is the appearance of
scalar fields that are not present in the usual description.
The aim of this paper is to discuss in detail these new

fields and their couplings. In particular, we calculate their
contribution to the spectral action. The noncommutative
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1It is remarkable that the spectral action is intimately con-
nected to anomalies [8–10], and further development of this
observation leads to interesting results beyond the noncommu-
tative geometry [11].
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model is by nature Euclidean and exhibits spurious degrees
of freedom, known as “fermion doubling” [24]; therefore,
for physical applications a Wick (anti)rotation accompa-
nied by an elimination of these spurious degrees of freedom
is necessary. We have described this procedure in detail in
[25]. Here we find that not all of these extra bosons behave
upon this procedure in a standard way: some of the new
scalar fields present in the Euclidean Dirac operator are
absent in the corresponding (Lorentzian) physical action for
fermions.
The paper is organized as follows: in Sec. II we review

the noncommutative geometric approach to the standard
model, focusing on the modification of the formalism due
to an introduction of the Clifford structures proposed in
[23]. In Sec. III we introduce the new scalar fields, which
come out from the fluctuations of the Dirac operator in the
“Clifford-based” approach [23], and discuss their trans-
formation properties upon the action of the gauge group.
Section IV is devoted to the bosonic spectral action: we
compute the new terms with respect to the “standard”
spectral approach [5]. In Sec. V we discuss the physical
action derived from this model: we carry out the Wick
rotation to the Lorentzian signature and get rid of the
spurious degrees of freedom in the fermionic action. The
last section contains our conclusions.

II. THE STANDARD MODEL AS A
NONCOMMUTATIVE GEOMETRY

In this section we sketch the main aspects of the model.
We are very brief; the reader familiar with this approach
will need this section just to set the notations. First we
outline the basic concepts of the spectral triples, which are
common for both the standard approach [5] and the
Clifford-based [23] approaches; afterwards we discuss
the peculiar features of the latter, which differentiate it
from the former: the finite dimensional grading γF and the
finite dimensional Dirac operator DF.

A. The standard spectral triple

In the spectral approach a geometry is described by a
spectral triple [1–3], i.e., a �-algebra (possibly noncom-
mutative) realized as bounded operators on a Hilbert space,
and a self-adjoint operator that generalizes the Dirac
operator. The algebra describes the topology of the space;
for the case at hand the Hilbert space describes the matter
content and the Dirac operator gives a metric structure and
enables the writing of action. Being based on operators all
quantities are based on spectra, and, in particular, the
actions for bosons and fermions can be written in purely
spectral form. Also of fundamental importance are two
more operators: the grading and the real structure, which
generalize chirality (for the even dimensional case) and
charge conjugation. The standard model emerges from this
scheme. We briefly describe this approach mainly to set

notations, referring to details in the original literature [5,7]
or the recent book [6]. We start choosing an algebra that is
the product commutative infinite dimensional algebra of
continuous functions on the manifoldM, which represents
the space-time times a noncommutative but finite dimen-
sional matrix algebra,

A ¼ CðMÞ ⊗ AF: ð2:1Þ

For the standard model the finite algebra is

AF ¼ C ⊕ H ⊕ Mat3ðCÞ; ð2:2Þ

where by H we indicate quaternions, and by Mat3ðCÞ three
by three complex matrices. Likewise the Hilbert space is
the product of usual spinors times a finite dimensional
Hilbert space, which contains all physical degrees of
freedom,

H ¼ spðMÞ ⊗ HF; ð2:3Þ

the generalized Dirac operator (which in the following we
simply call Dirac operator) is

D0 ¼ iγμ∇LC
μ ⊗ 1F þ γ5 ⊗ DF; ð2:4Þ

where ∇LC
μ is the covariant derivative on the spinor bundle

of M, which contains the Levi-Civita spin connection.
Gravity in the action is considered background, and is not
quantized. A curved background does not however play a
major role in this paper, but is useful to retain it, as it
enables some simplification in the calculations, as we see
in Sec. V.
As we mentioned, there are two more operators that play

an important role. They are the grading operator Γ and the
antiunitary real structure J . The grading operator Γ is
present in the even dimensional case; it satisfies Γ2 ¼ 1 and
is taken to be

Γ ¼ γ5 ⊗ γF; ð2:5Þ

where γ5 is the chirality matrix; i.e., the usual product of all
four Dirac’s γμ and γF is an operator acting on HF. It is
usually taken to have eigenvalue þ1 on left-handed states,
and −1 on right-handed one, but other choices are possible
and we discuss them later in the paper.
The real structure operator J ¼ J ⊗ JF, which is anti-

unitary inH, enables the definition of the opposite algebra,

Ao ¼ JAJ −1: ð2:6Þ

The elements of the triple must satisfy several conditions,
which render the space the noncommutative equivalent of
a manifold [26]. There are conditions of compatibility
between Γ;J , and D0 with signs that depend on the
dimensions,
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J 2 ¼ �1; JΓ ¼ �ΓJ ; JD0 ¼ �D0J : ð2:7Þ

The opposite algebra must commute with the algebra (order
zero condition),

½a;J bJ −1� ¼ 0; ∀ a; b ∈ A ð2:8Þ

and with one forms (the order one condition),

½½D0; a�;J bJ −1� ¼ 0; ∀ a; b ∈ A: ð2:9Þ

The dimension of HF in (2.3) is 96. This number is
obtained taking into account that there is a lepton left
doublet plus two right-handed singlets, and a doublet and
two singlets for quarks times three colors. This makes
16 degrees of freedom, times three generations, and times
two for particle/antiparticle, sums to 96. Since the spinor
has 4 components the element of the full Hilbert spaceH is
described by 384 independent complex valued functions.
Clearly there is some overcounting, called for historical
reasons fermion doubling [24]. We come back to this issue,
as well as the fact that the model is at this stage Euclidean,
in Sec. V.
We label the elements ofHF according to the basis given

by the elementary particles of the standard model (includ-
ing right-handed neutrinos),

ðνR; eR;LL; uR; dR;QL; νcR; e
c
R;L

c
L; u

c
R; d

c
R;Q

c
LÞ; ð2:10Þ

where QL corresponds to2 the quark doublet ðuL; dLÞ while
LL corresponds to the lepton doublet ðνL; eLÞ; with the
supercript cwe indicate the elements ofHF that correspond
to the antiparticles and by boldface characters we indicate
that the elements have to replicated by three generations,
for example, e ¼ ðe; μ; τÞ and so on. Quarks have an extra
color index, which we omit. Below we use the following
notation for matrices action on HF. We define the matrix
unity EuRuR to be a matrix whose only nonzero element is
an identity matrix in the uR location; likewise for EuRdR it is
an off diagonal matrix with nonvanishing entry in the uRdR,
and so on. In the cases for which a singlet crosses a doublet
we assume that, for example, EuR;LL

is two identity matrices
side by side, or vertically superimposed.
The representation of the algebra is diagonal and with

our notation, an element a ¼ ðλ; h; mÞ with λ ∈ C; h ∈ H
and m ∈ Mat3ðCÞ is represented by the matrix,3

a ¼ λEuR;uR þ λ�EdR;dR þ hEQL;QL
þ λEνR;νR þ λ�EeR;eR

þ hELL;LL
þmEucR;u

c
R
þmEdcR;d

c
R
þmEQc

L;Q
c
L
þ λEνcR;ν

c
R

þ λEecR;e
c
R
þ λELc

L;L
c
L
:

In our notations the real structure JF of the finite spectral
triple reads

JF¼ðEuR;ucR
þEdR;dcR

þEQL;Qc
L
þEνR;νcR

þEeR;ecR
þELL;LL

Þcc;
ð2:11Þ

where cc is complex conjugation.
So far we have been in the framework of [5]. From now

on we focus on the peculiar properties of the construction
of [23], which enables us to incorporate the Clifford
structures in the finite spectral triple. We refer to the
original paper for all the details, and present here just
the results.

B. Alternative grading

The first novelty of the Clifford-based construction is the
grading γF of the finite spectral triple, which has the
following form:

γF¼−EuR;uR −EdR;dR þEQL;QL
þEνR;νR þEeR;eR −ELL;LL

−ð−EucR;u
c
R
−EdcR;d

c
R
þEQc

L;Q
c
L
þEνcR;ν

c
R
þEecR;e

c
R
−ELc

L;L
c
L
Þ;

ð2:12Þ

which differs from the “standard grading” γstF considered
in [5],

γstF¼−EuR;uR −EdR;dR þEQL;QL
−EνR;νR −EeR;eR þELL;LL

−ð−EucR;u
c
R
−EdcR;d

c
R
þEQc

L;Q
c
L
−EνcR;ν

c
R
−EecR;e

c
R
þELc

L;L
c
L
Þ:

ð2:13Þ

The two are connected by the following formula,

γF ¼ ðQ − LÞγstF; ð2:14Þ

where Q and L stand for the projectors of the quark and
leptonic subspaces of HF, respectively,

Q ¼ EuR;uR þ EdR;dR þ EQL;QL
þ EucR;u

c
R
þ EdcR;d

c
R
þ EQc

L;Q
c
L
;

L ¼ EνR;νR þ EeR;eR þ ELL;LL
þ EνcR;ν

c
R
þ EecR;e

c
R
þ ELc

L;L
c
L
:

ð2:15Þ

C. The Dirac operator

Another novelty of the Clifford-based approach is the
Dirac operator DF, which has the following form,

2The construction of the product space clarifies in which sense
the word “corresponds” is used: see, in particular, the discussion
around (5.15).

3Here and in the following we omit terms like ⊗13 when, for
example, a complex number acts on a quark, and likewise for
doublets etc.
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DF¼ΥνEνRLL
þΥeEeRLL

þΥuEuRQL
þΥdEdRQL

þΩ�EνRecR
þΔUEνcRu

c
R
þΔDEecRd

c
R
þΔLELc

LQ
c
L
þKELLucR

þJFðΥνEνRLL
þΥeEeRLL

þΥuEuRQL
þΥdEdRQL

þΩ�EνRecR
þΔUEνcRu

c
R
þΔDEecRd

c
R
þΔLELc

LQ
c
L

þKELLucR
ÞJFþΥ†

REνRν
c
R
þH:c:; ð2:16Þ

and which is compatible with the new grading γF and other
requirements of the approach of [23]. The terms on the first,
third, and last lines involve the usual Yukawa couplings and
the Majorana mass terms, which are already present in [5].

The second and the fourth lines instead contain novel terms,
which are the object of this paper: Δ and K provide novel
couplings of leptons and quarks; Ω couples leptons among
themselves in the Euclidean action before the projection on
the physical subspace. We see later on that the projection to
the physical subspace eliminates some of these couplings.
It is important that the self-consistency approach of [23]
requires, in particular, that

(i) both entries ΔD and ΔL must differ from 0,
(ii) and at least two out of the three entriesΔU,K, andΩ

must be different from 0.
In conclusion we present the explicit matrix form of the

Dirac operator DF defined by (2.16),

DF ¼

2
6666666666666666666666664

· · Υν Δu
� · · Υ†

R Ω� · · · ·

· · Υe · Δd
� · Ω† · · · · ·

Υ†
ν Υ†

e · · · Δ�
L · · · K · ·

Δt
u · · · · Υu · · Kt · · ·

· Δt
d · · · Υd · · · · · ·

· · Δt
L Υ†

u Υ†
d · · · · · · ·

ΥR Ω · · · · · · Υ�
ν Δu · ·

Ωt · · · · · · · Υ�
e · Δd ·

· · · K� · · Υt
ν Υt

e · · · ΔL

· · K† · · · Δ†
u · · · · Υ�

u

· · · · · · · Δ†
d · · · Υ�

d

· · · · · · · · Δ†
L Υt

u Υt
d ·

3
7777777777777777777777775

: ð2:17Þ

Setting ΔU;D;L ¼ 0, Ω ¼ 0, and K ¼ 0, one obtains the
standard DF of [5].

III. FLUCTUATIONS OF THE DIRAC
OPERATOR: FIELDS

The fluctuated Dirac operator is constructed in the
following way,

D ¼ D0 þ
X
i

ai½D0; bi� þ
X
i

J ai½D0; bi�J †; ð3:1Þ

for generic elements ai; bi ∈ A. Both gauge and scalar
fields in the spectral approach come out from these
fluctuations. Presence of the new terms (with respect to
[5]) in (2.17) indicates new scalar fields, not present in the
standard model.
Below we restrict ourselves to the following structures,

where the dependence on the generation indices is
factorized:

Υν ¼ Ŷu ⊗ h̃†ν; Υe ¼ Ŷd ⊗ h†e;

Υu ¼ ŷu ⊗ h̃†u; Υd ¼ ŷd ⊗ h†d;

Δu
� ¼ ŷ†Δu

⊗ d†u; Δd
� ¼ ŷ†Δd

⊗ d†d;

ΔL
� ¼ ŷ†ΔL

⊗ d†L; K ¼ ŷ†S ⊗ s†;

Ω� ¼ ŷΩ ⊗ ω; Υ†
R ¼ ŷM ⊗ MR: ð3:2Þ

In these formulas the two component columns hν;e;u;d (in
the weak isospin indices) are chosen in the same way as it
was done in [5] (hereafter v is an arbitrary complex
constant of the dimension of the mass),

hν ¼
�
v

0

�
; he ¼

�
0

v

�
;

hu ¼
�
v

0

�
; hd ¼

�
0

v

�
; ð3:3Þ

and the three component columns du;d;L (in the color
indices) we choose as follows:
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du ¼

0
B@

v

0

0

1
CA; dd ¼

0
B@

0

v

0

1
CA; dL ¼

0
B@

0

0

v

1
CA: ð3:4Þ

The quantity s is the complex 3 by 2 matrix (in both color
and the weak isospin indices),

s ¼

0
B@

v 0

0 0

0 0

1
CA; ð3:5Þ

ω is the complex number, which we set to v, and the
dimensionful constant MR sets the Majorana mass scale for
the right-handed neutrinos, which is needed for the seesaw
mechanism. The quantities Ŷu, Ŷd, ŷu, ŷd, ŷΔu

, ŷΔd
, ŷΔL

, ŷS,
and ŷM are arbitrary (dimensionless) complex 3 by 3
Yukawa matrices that act on the generation index. The
tilde indicates charge conjugated weak isospin doublets,
e.g., h̃ν¼σ2h�ν, where σ2 stands for the second Pauli matrix.
Considering the fluctuations (3.1) of the Dirac operator

one can see that in order to construct the fluctuated Dirac
operator, D, one has replace the constant matrices in (3.2)
by the matrix valued functions according to the following
rule:

h̃ν → H̃ he → H h̃u → H̃ hd → H

du → Δu dd → Δd dL → ΔL

s → S ω → Ω: ð3:6Þ

Note that upon the fluctuations of the Dirac operator MR
remains a constant; i.e., it does not transform into a field.
By definition the gauge subgroups SUð2Þ and SUð3Þ are

represented on the weak isospin fermionic doublets and
color fermionic triplets as a left multiplication by the
unitary matrices USUð2Þ and USUð3Þ, respectively,

4

½ferm doublet� → USUð2Þ · ½ferm doublet�;
½ferm triplet� → USUð3Þ · ½ferm triplet�; ð3:7Þ

while the gauge fields transform upon the adjoint repre-
sentation of the gauge group. The transformation law of the
scalar fields that is presented below maintains the gauge
invariance of the fermionic action upon the simultaneous
gauge transformation of the fermionic multiplets, gauge
and scalar fields. In what follows Y stands for the Abelian
hypercharge of a given multiplet, which describes the
action of the Uð1Þ gauge subgroup.

The scalar doubletH is nothing but the Higgs field of the
minimal standard model, which transforms as follows:

H ¼
�

Hup

Hdown

�
⟶
SUð2Þ×SUð3Þ

USUð2Þ ·H; YH ¼ 1: ð3:8Þ

The field H̃ transforms as H under the SUð2Þ trans-
formations; however it has the opposite hypercharge,

H̃¼
�ðHdownÞ�
−ðHupÞ�

�
⟶
SUð2Þ×SUð3Þ

USUð2Þ ·H̃; YH̃¼−1: ð3:9Þ

For each of the three fields Δu, Δd, and ΔL the trans-
formation law reads

Δu;d;L ¼

2
64
Δred

u;d;L

Δgreen
u;d;L

Δblue
u;d;L

3
75⟶

SUð2Þ×SUð3Þ
USUð3Þ · Δu;d;L;

YΔu
¼ YΔd

¼ YΔL
¼ 4

3
: ð3:10Þ

The field S carries both color and weak isospin indices and
transforms in the following way:

S¼

2
64

Sup red Sdown red

Sup green Sdown green

Sup blue Sdown blue

3
75⟶

SUð2Þ×SUð3Þ
U−1T

SUð3Þ · S ·U
−1
SUð2Þ;

YS ¼ −
1

3
: ð3:11Þ

The last field Ω is the SUð2Þ×SUð3Þ singlet, and it trans-
forms nontrivially just under the Uð1Þ transformations,

Ω⟶
SUð2Þ×SUð3Þ

Ω; YΩ ¼ −2: ð3:12Þ

In the next section we compute the bosonic spectral action.

IV. BOSONIC SPECTRAL ACTION

The aim of this section is to calculate the bosonic spectral
action,5

SB ≡ Trχ

�
D2

Λ2

�

≃ Λ4f0a0 þ Λ2f2a2 þ Λ0f4a4 þO

�
1

Λ2

�
; ð4:1Þ

4We assume that the components of the weak isospin fermionic
doublets and the color fermionic triplets are combined into
columns. Note that antiquarks and antileptons are transformed
by the complex conjugated matrices.

5In the present paper we exploit the standard definition of the
bosonic spectral action, which is based on the introduction of the
ultraviolet cutoff. Other definitions based, e.g., on the ζ-function
regularization are also possible [27].
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where χ is some cutoff function, f0, f2, f4 are the first three
momenta of its Fourier transform, and a0, a2, and a4 are the
first three nontrivial heat kernel coefficients on the mani-
fold without boundary. The “fluctuated” (or covariant)
Dirac operator is given by

D ¼ iγμ∇μ þ γ5 ⊗ M; ð4:2Þ

where the covariant derivative ∇μ involves the gauge and
the Levi-Civita spin connections, while the 96 by 96 matrix
M is nothing but the fluctuated version of DF, which is
obtained from (2.17) via the prescription (3.6).
Comment: We notice that the asymptotic expansion (4.1)

correctly describes the behavior of the trace in the left-hand
side of (4.1) at the energies below the cutoff scale Λ, while
the high momenta behavior of the bosonic spectral action is
drastically different [28]: high momenta bosons do not
propagate; see also [29]. Physically it means that this model
becomes strongly coupled at the energies above Λ in both
Uð1Þ, SUð2Þ, and SUð3Þ sectors. A similar high energy
phase transition has been considered beyond the scope of
the noncommutative geometry; see, e.g., [30,31]. In what
follows we do not discuss the high momenta regime and the
mentioned above effects, so from now on the ansatz in the
right-hand side of (4.1) is identified with the definition of
the bosonic spectral action.
We emphasize that the gauge content of this formalism is

identical to the one of [5]; therefore, if one sets Δu;d;L ¼ 0,
Ω ¼ 0, and S ¼ 0 our operator D coincides with the one of
[5]; hence it is sufficient to calculate the difference,

SB − SBjΔu;d;L¼0;Ω¼0;S¼0: ð4:3Þ

A. Computational simplifications

The structure of the heat kernel coefficients on manifolds
without boundaries is very well known (see, e.g., [32]), and
one can easily see that the scalar fields can contribute to a2
through the combination,

acontrib2 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p
trðEÞ; ð4:4Þ

and to a4 through the combination,

acontrib4 ¼ 1

16π2
1

360

Z
d4x

ffiffiffi
g

p
trð−60REþ 180E2Þ; ð4:5Þ

where by definition

E≡ −D2 −∇2 ð4:6Þ

and R stands for a scalar curvature.
Note that the a2 contribution cannot contain covariant

derivatives of the scalar field: the simplest scalar contri-
bution that involves the scalar fields and their covariant

derivatives has the canonical dimension 3, while the
integrand in (4.4) must have the canonical dimension 2.
Therefore, to compute acontrib2 is sufficient to neglect the
dependence of scalars on coordinates.
Now let us focus on the a4 contribution. The computation

of the scalar contribution to a4 drastically simplifies, when
the Dirac operator transforms in a homogeneous way upon
the local Weyl transformation of the metric tensor and of the
scalar fields. Even though the Dirac operator D does not
exhibit this property (since it contains the constantMajorana
mass terms for the right-handed neutrinos) one can write

Trχ

�
D2

Λ2

�
¼ Trχ

�
D̃2

Λ2

�����
σ¼MR

; ð4:7Þ

where the “intermediate” Dirac operator D̃ is obtained from
D via the replacement of the constant MR by the scalar field
σ. This field has no gauge indices and it has already been
considered in the context of the model to fix the Higgs mass
in [12]. We emphasize that for the scope of the present
article this field is needed at the intermediate step only, and
by the end of the day it will be replaced by the constant MR.
Upon the local Weyl transformation

gμν → e2ϕgμν; H → e−ϕH; Δu;d;L → e−ϕΔu;d;L;

S → e−ϕS; Ω → e−ϕΩ; σ → e−ϕσ; ð4:8Þ

where ϕ is an arbitrary function of x, the intermediate Dirac
operator D̃ transforms in a homogeneous way,

D̃ → e−
5ϕ
2 D̃e

3ϕ
2 ; ð4:9Þ

and one can easily check (using the method of conformal
variations, see for example [32]) that the fourth heat kernel
coefficient that is associated with =̃D2 is Weyl invariant.
On the other side all heat kernel coefficients are gauge

invariant. The only Weyl and gauge invariant combination
of scalar fields of dimension 4 that involves the deriva-
tives is6

tr½Dμðscalar fieldÞ†Dμðscalar fieldÞ�

−
1

6
Rtr½ðscalar fieldÞ†ðscalar fieldÞ�; ð4:10Þ

thus it is sufficient to compute the coefficient in front of
Rðscalar fieldÞ†ðscalar fieldÞ, while the kinetic term, which
contains all the covariant derivatives Dμ, can be restored
from (4.10). Note that for such a computation it is sufficient
to consider constant scalar fields, ∂μðscalarÞ ¼ 0, and set
the gauge connection to 0. Since the same simplification is

6The trace is needed since we are dealing with the matrix
valued scalar fields like S.
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applicable for the a2 contribution, let us assume it for a
while. Using the well-known Lichnerowics formula one
can easily check that in our “simplified” regime the
endomorphism E, which enters in (4.4) and (4.5), equals to

E ¼ −M2 ⊗ 1s4 þ
R
4
⊗ 1384; ð4:11Þ

hence

E2 ¼ M4 ⊗ 1s4 þ
R2

16
⊗ 1384 −

�
R
2

�
·M2 ⊗ 1s4; ð4:12Þ

so the calculation of the new terms of the bosonic spectral
action is reduced to an algebraic exercise: one has to

calculate trM2 and trM4. We recall that all the terms that
disappeared because of our simplification can be recovered
via the Weyl and the gauge invariance of a4.

B. Relevant traces

One can check by a direct computation using, e.g.,
Maple, the following formulas:

trM2¼2y1σ2þ4y2ðΩ�ΩÞþ4y3ðΔ†
uΔuÞþ4y4ðΔ†

dΔdÞ
þ8y5ðΔ†

LΔLÞþ12y6ðH†HÞþ4y7trðS†SÞ; ð4:13Þ

and

trM4 ¼ 2z1σ4 þ 4z2ðΩ�ΩÞ2 þ 4z3ðΔ†
uΔuÞ2 þ 4z4ðΔ†

dΔdÞ2 þ 8z5ðΔ†
LΔLÞ2 þ 12z6ðH†HÞ2 þ 8z7ðΔ†

uΔuÞðΩ�ΩÞ
þ 8z8ðΔ†

dΔdÞðΩ�ΩÞ þ 16z9ðΔ†
uΔuÞðH†HÞ þ 16z10ðΔ†

dΔdÞðH†HÞ þ 16z11ðΔ†
LΔLÞðH†HÞ

þ ½8z12ðΔ†
dΔLÞðH†HÞ þ 8z13ðΔ†

uΔLÞðH†HÞ þ c:c:� þ 8z14ðΩ�ΩÞðH†HÞ þ 8z15ðΔ†
uΔuÞσ2

þ 8z16ðΩ�ΩÞσ2 þ 8z17ðH†HÞσ2 þ 4z18trðS†SÞ2 þ 8z19ðH†HÞtrðS†SÞ þ 8z20ðSH̃Þ†ðSH̃Þ þ 8z21ðSHÞ†ðSHÞ
þ 8z22ðΔT

uSÞðΔT
uSÞ† þ 8z23ðΔ†

LΔLÞtrðS†SÞ þ ½8z24ðH̃TSTΔuÞσ þ 8z25ðHTSTΔuΩÞ þ c:c�; ð4:14Þ

where the constants y1; ...; y7, z1; ...; z25 depend on the Yukawa couplings as follows:

y1 ≡ trðŷMŷ†MÞ; y2 ≡ trðŷΩŷ†ΩÞ; y3 ≡ trðŷΔu
ŷ†Δu

Þ; y4 ≡ trðŷΔd
ŷ†Δd

Þ; y5 ≡ trðŷΔL
ŷ†ΔL

Þ;

y6 ≡ tr

�
½ŷuŷ†u� þ ½ŷdŷ†d� þ

1

3
½ŶuŶ

†
u� þ

1

3
½ŶdŶ

†
d�
�
; y7 ≡ trðŷSŷ†SÞ;

z1 ≡ trðŷMŷ†MÞ2; z2 ≡ trðŷΩŷ†ΩÞ2; z3 ≡ trðŷΔu
ŷ†Δu

Þ2; z4 ≡ trðŷΔd
ŷ†Δd

Þ2; z5 ≡ trðŷΔL
ŷ†ΔL

Þ2;

z6 ≡ tr
�
½ŷuŷ†u�2 þ ½ŷdŷ†d�2 þ

1

3
½ŶuŶ

†
u�2 þ

1

3
½ŶdŶ

†
d�2

�
; z7 ≡ trðŷΩŷ†ΩÞðŷ†Δu

ŷΔu
Þ; z8 ≡ trðŷ†ΩŷΩÞðŷTΔd

ŷ�Δd
Þ;

z9 ≡ 1

2
tr½ðŷuŷ†uÞðŷΔu

ŷ†Δu
Þ þ ðŶuŶ

†
uÞðŷ†Δu

ŷΔu
Þ�; z10 ≡ 1

2
tr½ðŷdŷ†dÞðŷΔd

ŷ†Δd
Þ þ ðŶdŶ

†
dÞðŷ†Δd

ŷΔd
Þ�;

z11 ≡ 1

2
tr½ðŷ†uŷuÞðŷΔL

ŷ†ΔL
Þ þ ðŷ†dŷdÞðŷΔL

ŷ†ΔL
Þ þ ðŶ†

uŶuÞðŷ†ΔL
ŷΔL

Þ þ ðŶ†
dŶdÞðŷ†ΔL

ŷΔL
Þ�; z12 ≡ trðŷ†Δd

ŷdŷΔL
Ŷ†
dÞ;

z13 ≡ trðŷ†Δu
ŷuŷΔL

Ŷ†
uÞ; z14 ≡ tr½ðŷΩŷ†ΩÞðŶuŶ

†
uÞ þ ðŷ†ΩŷΩÞðŶ�

dŶ
T
dÞ�; z15 ≡ 1

2
tr½ðŷ†MyMÞðŷTΔu

ŷ�Δu
Þ þ ðŷMy†MÞðŷ†Δu

ŷΔu
Þ�;

z16 ≡ 1

2
tr½ðŷΩŷ†ΩÞðŷMŷ†MÞ þ ðŷ�ΩŷTΩÞðŷ†MŷMÞ�; z17 ≡ trðŷMŷ†MÞðŶuŶ

†
uÞ; z18 ≡ trðŷSŷ†SÞ2; z19 ≡ tr½ðŷSŷ†SÞðŷ�uŷTuÞ�;

z20 ≡ tr½ðŷ†SŷSÞðŶ†
uŶuÞ�; z21 ≡ tr½ðŷ†SŷSÞðŶ†

dŶdÞ�; z22 ≡ tr½ðŷSŷ†SÞðŷ�Δu
ŷTΔu

Þ�; z23 ≡ tr½ðŷ†SŷSÞðŷ†ΔL
ŷΔL

Þ�;
z24 ≡ trðŷΔu

ŷMŶ
�
uŷTSÞ; z25 ≡ trðŷΔy

ŷΩŶ
�
dŷ

T
SÞ: ð4:15Þ

C. The full bosonic spectral action

Substituting (4.13), (4.14), (4.11), and (4.12) in (4.4) and (4.5), recovering the dependence on the derivatives and on the
gauge fields according to (4.10), and setting σ ¼ MR we arrive at the following answer for the new terms in the bosonic
spectral action:
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SB ¼ SBjΔu;d;S¼0;Ω¼0;S¼0 þ
Z

d4x
ffiffiffiffiffi
gE

p �
−f2Λ2

�
y2
π2

Ω�Ωþ y3
π2

Δ†
uΔu þ

y4
π2

Δ†
dΔd þ

2y5
π2

Δ†
LΔL þ

y7
π2

trS†S

�

þ f4

�
y2
2π2

�
DμΩ�DμΩ−

R
6
Ω�Ω

�
y3
2π2

�
DμΔ

†
uDμΔu −

R
6
Δ†

uΔu

�
þ y4
2π2

�
DμΔ

†
dD

μΔd −
R
6
Δ†

dΔd

�

þ y5
π2

�
DμΔ

†
LD

μΔL −
R
6
Δ†

LΔL

�
þ y7
2π2

tr

�
DμS†DμS−

R
6
S†S

�
þ 1

2π2
z2ðΩ�ΩÞ2 þ 1

2π2
z3ðΔ†

uΔuÞ2 þ
1

2π2
z4ðΔ†

dΔdÞ2

þ 1

π2
z5ðΔ†

LΔLÞ2 þ
1

π2
z7ðΔ†

uΔuÞðΩ�ΩÞ þ 1

π2
z8ðΔ†

dΔdÞðΩ�ΩÞ þ 2

π2
z9ðΔ†

uΔuÞðH†HÞ þ 2

π2
z10ðΔ†

dΔdÞðH†HÞ

þ 2

π2
z11ðΔ†

LΔLÞðH†HÞ þ 1

π2
½z12ðΔ†

dΔLÞðH†HÞ þ z13ðΔ†
uΔLÞðH†HÞ þ c:c:� þ 1

π2
z14ðΩ�ΩÞðH†HÞ þ 1

π2
z15ðΔ†

uΔuÞM2
R

þ 1

π2
z16ðΩ�ΩÞM2

R þ
1

2π2
z18½trðS†SÞ�2 þ

1

π2
z19ðH†HÞtrðS†SÞ þ 1

π2
z20ðSH̃Þ†ðSH̃Þ þ 1

π2
z21ðSHÞ†ðSHÞ

þ 1

π2
z22ðΔT

uSÞðΔT
uSÞ† þ

1

π2
z23ðΔ†

LΔLÞtrðS†SÞ þ
1

π2
½z24ðH̃TSTΔuÞMR þ z25ðHTSTΔuΩÞ þ c:c�

	
: ð4:16Þ

This is the result of the spectral action computation with the
new fields coming form the Clifford requirement grading.

V. TOWARDS THE PHYSICAL ACTION

In this section we discuss how to make our spectral
action applicable in a physical context. In order to do this
one has to carry out two important steps.

(i) Get rid of the redundant fermionic degrees of
freedom.

(ii) Make the action Lorentzian.
The redundancy is usually solved projecting out the extra
degrees of freedom [5,24,33], while the Euclidean vs
Lorentzian issue has several ramifications (see, for example,
[34–37]), but the usualmethod is to perform aWick rotation.
We have shown in [25] that the two issues are intimately
related, and give a prescription on how to deal with them.

A. General prescription: a review and discussion

Now we briefly recall how the Wick rotation works
following [25]. In order to pass from the Euclidean to a
Lorentzian theory, each expression F that involves the
vierbeins eaμ has to be transformed according to the
following rule:

Wick∶ F½e0μ; ejμ� → F½ie0μ; ejμ�; j ¼ 1; 2; 3: ð5:1Þ

As it was demonstrated in [25], upon the transformation
(5.1) the Euclidean bosonic action SEbos, which comes out
from the first three nonzero heat kernel coefficients,
perfectly transforms into the “textbook” Lorentzian action
SMbos, in particular,

Wick∶ exp ð−SEbos½fields; gEμν�Þ
→ exp ðiSMbos½fields; gMμν�Þ; ð5:2Þ

where the metric tensors gEμν and gMμν have the signatures
fþ;þ;þ;þg and fþ;−;−;−g, respectively. We refer the
reader to the quoted reference for the details.
A treatment of the fermionic action is more subtle, since

the product space H contains extra degrees of freedom.
Now we briefly recall what the problem is. The Hilbert
space H of the almost commutative geometry has the
following structure,

H ¼ spðMÞ ⊗ HF ¼ HL ⊕ HR ⊕ Hc
L ⊕ Hc

R; ð5:3Þ

where the subspaces HL, HR by definition consist of the
multiplets of the nonchiral four-component spinors that
transform under the gauge transformations as the multiplets
of the left-handed and right-handed chiral fermions of the
standard model, while the subspacesHc

L andHc
R consist of

the nonchiral four-component spinors fermions that trans-
form under the gauge transformations as the charge con-
jugated multiplets of the chiral left and right fermions of the
standard model. This doubling of the degrees of freedom is
called in [25] the “mirror doubling.” On the one side the
action of the standard model does not contain any inde-
pendent variables with the index “c,” which indicates the
charge conjugated field: the charge conjugated spinor is
obtained from the original one via the charge conjugation
operation [i.e., they are not independent variables; see
(5.12) below]. This other doubling is called in [25] the
charge conjugation doubling.
In order to get rid of the mirror doubling one has to

extract the particles with the correct chirality. The left ψL
and the right ψR chiral spinors are by definition the
eigenstates of the left and the right chiral projectors,

ψL ¼ 1

2
ð1 − γ5ÞψL; ψR ¼ 1

2
ð1þ γ5ÞψR: ð5:4Þ
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In order to get rid of the redundant fermionic degrees of
freedom with the wrong chirality one has to extract just left
chiral fermions from HL and Hc

R and just right chiral
fermions fromHR andHc

L, where we took into account the
fact that for the physical fermions, which live in Lorentzian
space-time, the antiparticles have the opposite chirality
with respect to the original particles. So the subspaceHþ of
H that contains just the fermions with correct chiralities has
the following structure:

Hþ ¼ ðHLÞL ⊕ ðHRÞR ⊕ ðHc
LÞR ⊕ ðHc

RÞL: ð5:5Þ

In the original paper [5] such an extraction was presented in
the form

PþHþ ¼ Hþ; ð5:6Þ

where the projector Pþ is defined via the grading as
follows:

Pþ ¼ 1

2
ð1þ γ5 ⊗ γstFÞ: ð5:7Þ

In this formula γstF stands for the standard grading intro-
duced in [5]. Since we are working with the different
grading γF, in order to arrive at the correct subspace (5.5)

the connection between the projector Pþ and the grading γF
takes a slightly different form,

Pþ ¼ 1

2
ð1þ γ5 ⊗ ðQ − LÞγFÞ: ð5:8Þ

The Euclidean fermionic action introduced in [5], which is
free of the mirror doubling, reads

SEF ¼ 1

2

Z
d4x

ffiffiffiffiffi
gE

p
ðJΨþÞ†DΨþ; Ψþ ∈ Hþ: ð5:9Þ

As [25] shows, after the Wick rotation of the vierbeins (5.1)
one obtains

Wick∶ exp ð−SEF½spinors; eaμ�Þ
→ exp ðiSM doubled

F ½spinors; eaμ�Þ; ð5:10Þ

where the intermediate fermionic action SM doubled
F is already

Lorentz invariant. However, due to the charge conjugation
doubling, it depends on twice more fermionic fields than is
needed; it is not real and therefore it is not suitable for the
canonical quantization. In order to complete a construction
of the physical fermionic action one has to eliminate the
charge conjugation doubling via the following identification
of the variables in the action SM doubled

F from the subspaces
Hc

L and Hc
R with the variables from HL and HR,

step 1∶

8>>><
>>>:

ðψc
LÞR ∈ ðHc

LÞR|fflfflffl{zfflfflffl}
⊂Hþ

has to be identified withCMðψLÞL; ðψLÞL ∈ ðHLÞL|fflffl{zfflffl}
⊂Hþ

ðψc
RÞL ∈ ðHc

RÞL|fflffl{zfflffl}
⊂Hþ

has to be identified withCMðψRÞR; ðψRÞR ∈ ðHRÞR|fflfflffl{zfflfflffl}
⊂Hþ

;
; ð5:11Þ

where the operation CM is the charge conjugation oper-
ation, which acts on the arbitrary spinor ψ as follows:

CMψ ¼ −iγ2ψ�: ð5:12Þ

Note that in contrast to the Euclidean charge conjugation J
the operationCM changes a chirality. We emphasize that the
identification (5.11) makes sense after the Wick rotation to
Lorentzian signature, since the quantities to be identified
transform in the same way under the Lorentzian SOð1; 3Þ
transformations rather than Euclidean SOð4Þ rotations.
After the global axial transformation of all the remaining
spinors,

step 2∶ ψ → e−
iπ
4
γ5ψ ; ð5:13Þ

one arrives ar the textbook form SMF of the fermionic
action,

step 1þ step 2∶ exp ðiSM doubled
F ½spinors; eaμ�Þ

→ exp ðiSMF ½phys spinors; eaμ�Þ: ð5:14Þ

Following [25] we recall that the last stepmust be performed
before the quantization: otherwise one gets an additional
Pontryagin gauge action that comes out from the Abelian
axial anomaly. Below we apply these prescriptions to our
model and we find out a nontrivial outcome.

B. This model

Let us parametrize the elements of the Hilbert spaceH as
follows:

Ψ ¼ ðvR; eR;LL;uR;dR;QL; vcR; e
c
R;L

c
L;u

c
R;d

c
R;Q

c
LÞT:
ð5:15Þ

This is basically the parametrization (2.10) of the elements
ofHF; the change of typeface indicates that the elements of
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H are spinors, no longer complex numbers. In these
notations uR is a collection of four-component spinors
that transforms upon the action of the gauge group as the
right-handed quarks, uc

R is an independent collection of
four-component spinors that transforms upon the action of
the gauge group as the charge conjugated right-handed
quark field, and so on. The typical element ofHþ, which is
constructed according to (5.5), then becomes

Ψþ ¼ ð½uR�R; ½dR�R; ½QL�L; ½vR�R; ½eR�R; ½LL�L;
½uc

R�L; ½dc
R�L; ½Qc

L�R; ½vcR�L; ½ecR�L; ½Lc
L�RÞT: ð5:16Þ

Composing the fermionic action (5.9), applying the Wick
rotation procedure (5.1), removing the charge conjugation
doubling according to the general prescription (5.11), and
finally carrying out the axial transformation (5.13) we
see that

Wick rotationþ dequadrupling∶ −SEF → iSMF ; ð5:17Þ

where SMF is given by

SMF ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
−gM

p �
iðuRÞ=∇uR þ iðdRÞ=∇dR þ iðQLÞ=∇QL þ iðvRÞ=∇vR þ iðeRÞ=∇eR þ iðLLÞ=∇LL

−
�
ðQLÞ½ŷ†u ⊗ H̃�uR þ ðQLÞ½ŷ†d ⊗ H�dR þ ðLLÞ½Ŷ†

u ⊗ H̃�vR þ ðLLÞ½Ŷ†
d ⊗ H�eR

þ 1

2
ðCMvRÞ½ŷ†M�vR þ ðCMeRÞ½ŷ†Ω ⊗ Ω��vR þ c:c:

�	
: ð5:18Þ

In this formula for an arbitrary spinor ψ the bar stands for
the Dirac conjugation, ψ̄ ≡ ψ†γ0. Note that after the Wick
rotation accompanied by the elimination of the fermionic
quadrupling just the multiplets of the sructures ½ψR�R and
½ψL�L remain in the result; therefore we simplified the
notations replacing them by ψR and ψL, respectively.
We now come to an important point of this noncommu-

tative geometric construction. Note that the fields Δu, Δd,
ΔL, and S, which are present in the Dirac operator and
hence in the bosonic spectral action, are absent in the
fermionic action (5.18). Let us clarify what has happened.
If one looks carefully at the structure ðJΨÞ†DΨ, Ψ ∈ H
one immediately finds out that the mentioned fields always
appear in interaction terms in the action (vertices) that
involve spinors with unphysical chiralities. Therefore,
when one restricts the fermions just to the “good-chirality”
subspace Hþ, all these terms vanish. Indeed, the S field
enters in ðJΨÞ†DΨ, in particular, via the combination

ðJuRÞ†ðγ5 ⊗ ŷS ⊗ SÞLL: ð5:19Þ

When one restricts Ψ ∈ Hþ this expression turns into

ðJ½uR�RÞ†ðγ5 ⊗ ŷS ⊗ SÞ½LL�L
≡ ðJPRuRÞ†ðγ5 ⊗ ŷS ⊗ SÞPLLL

¼ ðJuRÞ†ðγ5 ⊗ ŷS ⊗ SÞðPRPLÞLL ¼ 0; ð5:20Þ

where we took into account the fact that the chiral
projectors PL ¼ 1

2
ð14 − γ5Þ and PR ¼ 1

2
ð14 þ γ5Þ com-

mute with the Euclidean charge conjugation J and remain
unchanged upon the Hermitian conjugation of matrices.

One can easily check that all other combinations that
involve S vanish according to the same mechanism.
Now let us see what has happened to the Δu;d;L fields.

The Δu field enters in ðJΨÞ†DΨ in particular through the
expression

ðJuc
RÞ†ðγ5 ⊗ ŷΔu

⊗ ΔuÞvR: ð5:21Þ

Upon the restriction Ψ ∈ Hþ this expression turns into

ðJ½uc
R�LÞ†ðγ5 ⊗ ŷΔu

⊗ ΔuÞ½vR�R
¼ ðJPLuc

RÞ†ðγ5 ⊗ ŷΔu
⊗ ΔuÞPRvR

¼ ðJuc
RÞ†ðγ5 ⊗ ŷΔu

⊗ ΔuÞPLPRvR ¼ 0: ð5:22Þ

One can easily check that all other terms, which involve the
Δ-fields, vanish as well in a similar way.

VI. CONCLUSIONS AND OUTLOOK

Based on the purely algebraic idea to incorporate the
Clifford structure in the finite dimensional spectral triple,
proposed in [23], we arrive at a set of new scalar fields in
the minimal version of the noncommutative standard
model. Some of the new scalar fields (viz. Δu;d;L and S)
carry both color and the weak isospin indices. The fields of
such a kind are of interest in recent phenomenological
research; in particular, the scalar leptoquarks are the case
in Ref. [38].
We computed the new terms in the bosonic spectral

action, which come out from these fields. Equation (4.16) is
one of the main results of this article. The scalar-scalar
couplings between the new fields and the Higgs field may
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improve the minimal noncommutative standard model from
the phenomenological point of view: they give positive
contributions to the beta function of the Higgs self-inter-
action quartic constant at the level of the one loop [39], what
is needed to avoid the vacuum instability problem [40,41].
We did not discuss in detail in this paper the possible

phenomenological consequences of these new terms. The
whole approach to the standard model based on non-
commutative geometry is now reaching the level to be
confronted with phenomenology, and of course the scalar
sector seems to be of paramount importance. The new
fields discussed here may possibly be part of this, but more
work is necessary in this direction.
The approach is interesting from the mathematical point

of view as well. It turns out that some of the new fields (viz.
Δu;d;L and S) are coupled to the spurious fermionic degrees
of freedom, whose presence is due to the “product-based”
construction of the almost commutative spectral triple.
Therefore, this model exhibits a very peculiar property,
which is another important result of this article. On the one
side these fields do not enter in the physical (Minkowskian)
fermionic Lagrangian (5.18), even though they appear in
the Euclidean NCG Dirac operator. On the other side the
physical (Wick rotated to the Lorentzian signature) bosonic
spectral action keeps memory about these extra degrees of
freedom: it depends on Δu;d;L and S. Therefore, the
fermionic quadrupling in the spectral approach is not just
the presence of the extra fermions to be projected out: by

the end of the day it affects nontrivially the bosonic action
of the model, without altering the fermionic action.
In this article we considered an evolution of the spectral

approach from an algebraic point of view. There are other
interesting mathematical directions that can be taken. In
particular, we consider the manifold M without boundary;
manifolds with boundaries have been considered within the
spectral action formalism as well [42–44]. Recently another
purely spectral feature has been discovered: parity anomaly
on four-dimensional manifolds with boundaries [45,46]. It
would be interesting to understand the role played by the
parity anomaly in the context of the spectral action
approach, and the issue deserves further scrutiny.
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