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We analyze the Green function, the Casimir densities and forces associated with a massive scalar
quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The
plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them.
The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of
the field squared and of the energy-momentum tensor for both the single plate and two plates geometries.
The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off
diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of
Dirichlet and Neumann boundary conditions. For points outside the string core the topological
contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the
boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the
nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal
component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the
problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide
if the corresponding Robin coefficients are different. Another difference is that in the presence of the
cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet
boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is
not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the
appearance of the shear stress acting on the plates. The corresponding force is directed along the radial
coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of

the problem, the radial component of the shear force can be either positive or negative.

DOI: 10.1103/PhysRevD.97.085023

I. INTRODUCTION

Among the most interesting consequences of phase
transitions in gauge theories is the formation of a variety
of topological defects [I1]. The type of defect formed
depends on the nature of symmetry breaking. In particular,
due to their important role in cosmology, the cosmic strings
are most thoroughly studied in the literature. The early
interest to this class of topological defects was motivated by
the scenario of the large-scale structure formation in the
Universe where the strings seed the primordial density
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perturbations. In the 1980s this was the most popular
alternative to the inflationary scenario based on quantum
fluctuations of fields during the inflation. Although the
further observations of the temperature anisotropies of the
cosmic microwave background radiation (CMB) excluded
the cosmic strings as the main source for the density
perturbations, this type of topological defects are still
candidates for the generation of a number of interesting
effects that include the generation of gamma ray bursts,
high-energy cosmic rays and gravitational waves. Among
the other observable consequences we can mention here
the gravitational lensing, the creation of small non-
Gaussianities in the CMB and some influence on the
corresponding tensor modes.

Depending on the underlying microscopic model, the
cosmic strings can be realized as nontrivial field configura-
tions or they can be fundamental quantum strings stretched to
cosmological scales (cosmic superstrings, first considered in
[2]). A mechanism for the generation of the latter type of
objects with low values of the string tensions has been
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recently proposed within the framework of brane inflationary
models (see, for instance, [3] and references therein). Defects
of the cosmic string-type appear also in a number of
condensed matter systems such as crystals, liquid crystals
and quantum liquids [4]. Although the specific properties of
cosmic strings are model-dependent, they produce similar
gravitational effects. In the simplified model of a straight
cosmic string and at large distances from the string, com-
pared with the core radius, these effects generate planar angle
deficit in the plane perpendicular to the string.

The nontrivial topology of the cosmic string spacetime
provides a distortion of the spectrum for vacuum fluctua-
tions of quantized fields. As a consequence, the vacuum
expectation values (VEVs) of physical observables are
shifted. Explicit calculations have been done for the field
squared and energy-momentum tensor in the cases of
scalar, fermionic and electromagnetic fields (see, for
instance, references in [5]). For charged fields and for
cosmic strings carrying magnetic flux, other important
characteristics of the vacuum state, influenced by the
planar angle deficit, are the charge and current densities.
The vacuum polarization induced by a cosmic string in the
background of curved maximally symmetric spacetimes,
namely in de Sitter and anti—de Sitter spacetimes, has been
discussed in [6,7]. For the background Schwarzschild
spacetime threaded by an infinite straight cosmic string
this phenomenon is investigated in [8].

In a number of problems with cosmic strings additional
boundaries are present on which the operators of quantum
fields obey prescribed boundary conditions. Examples are
the branes in brane inflationary models with cosmic super-
strings. The imposition of boundary conditions on quantum
fields gives rise to additional shifts in the VEVs. This is the
well-known Casimir effect (for reviews see [9]). It has been
investigated for a large number of bulk and boundary
geometries and has been confirmed experimentally with
high accuracy. For a cylindrical shell coaxial with the string,
the combined quantum effects of the topology and bounda-
ries have been considered for scalar [10,11], fermionic
[12,13], and electromagnetic fields [11,14,15]. The
Casimir force for a massless scalar fields subject to
Dirichlet and Neumann boundary conditions in the setting
of the conical piston has been discussed in [16]. The Casimir
densities for scalar and electromagnetic fields induced by
boundaries perpendicular to the string were considered in
[17-20]. Another type of boundary conditions arise in
models with cosmic strings compactified along the axis.
The influence of this compactification on the properties of the
quantum vacuum has been discussed in [21].

In the present paper we are interested in the analysis of
the influence of a cosmic string on the vacuum properties
for a scalar field confined between two parallel plates. The
plates are perpendicular to the cosmic string and on them
the field operator obeys Robin boundary conditions, in
general, with different coefficients for separate plates.
Motivated by possible applications for cosmic superstrings,

the problem will be considered in an arbitrary number of
spatial dimensions. The paper is organized as follows. In
the next section we present the problem formulation and the
evaluation of the heat kernel for a scalar field in the region
between the plates. By using the heat kernel method, in
Sec. 111, a representation of the Green function is provided
with explicitly extracted boundary-free topological contri-
bution. For points away from the plates, the renormaliza-
tion in the coincidence limit is required for that contribution
only. The VEVs of the field squared and of the energy-
momentum tensor in the presence of a single plate are
investigated in Sec. I'V. This section generalizes the results
obtained in [17] for the special cases of Dirichlet and
Neumann boundary conditions. The VEVs of the field
squared and energy-momentum tensor in the region
between two parallel plates are discussed in Sec. V.
Various special cases are considered, and the behavior of
the VEVs in asymptotic regions of the parameters is
investigated. The Casimir forces acting on the plates are
studied in Sec. VI. Unlike to the case of the Minkowski
bulk, these forces are inhomogeneous and depend on the
distance from the string. Depending on the latter and on the
boundary conditions, the presence of the cosmic string can
either increase or decrease the Casimir pressure. The main
results of the paper are summarized in Sec. VII. In the
Appendix we present the evaluation of a more general two-
point object, the off diagonal zeta function and also the
local zeta function.

II. PROBLEM SETUP AND THE HEAT KERNEL

We consider a massive scalar quantum field propagating
in a D-dimensional generalized cosmic string spacetime.
By using the generalized cylindrical coordinates with
the cosmic string on the subspace defined by r = 0, being
r > 0 the radial polar coordinate, the corresponding metric
tensor is defined by the line element below,

D-1
ds? = gydx'dx* = —dr* +dr’ + r*dg® + dz* + Z(dxl)z.
=4
(2.1)

The coordinate system reads x' = (t,7,¢,z,x'), with
¢ €10,2/q], and t,z,x' € (—c0, 0). The parameter ¢,
smaller than unity, codifies the presence of the string. In a
four-dimensional spacetime, this parameter is related to the
linear mass density of the string, 4, by ¢! = 1-4Gpu, with
G being the Newton gravitational constant. In this analysis
we shall admit the presence of extra coordinates, x!, defined
in an Euclidean (D — 4)-dimensional subspace.

For a scalar field propagating in an arbitrary curved
spacetime the field equation reads

(0= m? = ER)¢p(x) =0, (2.2)
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with [] denoting the covariant d’ Alembertian operator and
R is the scalar curvature. In (2.2) we have introduced an
arbitrary curvature coupling £ The minimal coupling
corresponds to £=0 and for the conformal one
E=¢.=(D-2)/[4(D—1)]. We shall assume that the
field obeys Robin boundary conditions
(1 +ﬂjn’;8”)¢(x) =0, z=aj, (2.3)
on the hypersurfaces orthogonal to the string and located at
z=a;=0and z=a,=a. In (23), p;, j=1, 2, are
constants and n’]‘- is the inward pointing normal to the
boundary at z = a;. In the region between the plates,
a; <z < ay, one has nf = (=1)/-18.
The Green function associated with a massive scalar field
in a curved spacetime obeys the second order differential
equation

_P(x =)
o
(2.4)

(O —m? = ER)G(x,x') = =P (x, ') =

where 6P (x, x') represents the bidensity Dirac distribution.
This function can be obtained within the framework of the
Schwinger-DeWitt formalism as follows:

G(x,x') = /Ooo dsK(x,x';s), (2.5)

where the heat kernel, K (x, x'; 5), is expressed in terms of a
complete set of normalized eigenfunctions of the operator
defined in (2.2),

K(x,x';s) = Zd),; (x)®%(x)e™", (2.6)

with 6> being the corresponding positively defined

eigenvalue.
Writing
(B = m? = ER)®, (x) = —0> D, (x), (2.7)
in the spacetime defined by the line element (2.1), a

complete set of normalized solutions in the region a; <
z L a, is given by

®,(x) = C,elmavtkx=eny (Ar)W(z),  (2.8)

being J,(x) the Bessel function, x = (x*, ..., xP~!), and
W(z) = cos [k, (z — a;) +7;(k,)]. (2.9)
For the quantum numbers in (2.8) one has n =

0,£1,£2,..., k= (ky,..

.,kD_l), -0 < W, ki < 400,

and A4 > 0. From the boundary condition (2.3) on the plate
at z = a;, for the function y;(k,) one obtains

G2intiy — SV ikep+ 1 (2.10)
(—1)ikp, —1 ‘

From the boundary condition on the second plate it follows
that the eigenvalues for k, are solutions of the equation,

(1 = bybyy?)siny — (b, + by )ycosy =0, (2.11)

where

y=k.a,b;=p/a. (2.12)
This equation coincides with the corresponding eigenvalue
equation for two parallel plates in Minkowski bulk [22] (for
the scalar Casimir densities for parallel plates with Robin
boundary conditions on anti-de Sitter, de Sitter and
Friedmann-Robertson-Walker backgrounds see [23]). The
Eq. (2.11) has an infinite number of positive roots which will
be denoted by y = y,, p = 1,2, ..., and for the correspond-
ing eigenvalues of k, one has k, = y,/a. As a result, the
complete set of quantum numbers is specified by
(w,A,n, p,K), and the corresponding positively defined
eigenvalue is given by
o =’ + 22+ yi/a* + K>+ mP. (2.13)

Note that, in addition to the real roots, depending on the
values of b; and b,, the Eq. (2.11) may have one or two
purely imaginary roots (see [22]). Here, for simplicity of the
further discussion we will assume the values of the coef-
ficients for which all the roots are real.

The coefficient C, in (2.8) is found by the normalization
condition

DO (1)®; () = 6°(x, x).

o

(2.14)

This gives

2(27)*Pqi/a

|C0'|2 = by 1
1 + cosly +27;(y)] sin(y)/y

. (2.15)

with y =y, and the function 7;(y) is defined by the
relation

eZi}?j(y) = s

j=12. (2.16)

The next step is the evaluation of the heat kernel by using
(2.6). On the base of (2.8) we have
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K(x,x';s) = 2”D2/da)/dk

(gnAp+k-Ax—wAt)
x[) mzzeq o+ ‘

n=-—00 p=

q\n|(/1r) q|n|(/1r) (Z)W(ZI)
1+ cosly, +27,(v,)] sin(y,)/y,
x e—.v(012+/12+y%/a2+k2+m2),

(2.17)

where Ap = ¢ — ¢/, At =1—1', Ax = x — x/. After per-
forming the integrals by using the results from [24,25], we
obtain

2ge"wTm T“’"z RS A
K(x,x;5) = Z elan 40]‘1‘”‘ 2s

4ns a, =%

. W()W (e
- ; 1+ cosly, +27;(v,)] sin(y,)/y,”

(2.18)

where I, (x) is the modified Bessel function [26], and

Ap* = r* 4+ 1% + (Ax)* — (A1) (2.19)
Note that we can write
W()W(Z) =5 9;(z. 7. k) (2.20)

where

E eczkz\z+z’—2aj| lkzﬁj ¢
24 ik.p; +e

(2.21)

9i(z.7', k;) = cos (k,Az) +

From here it follows that g;(z,7', —k;) = g;(z,Z'. k,).
The summation over the quantum number n has been
developed in [27]. The result is reproduced below,

® .
Z elan(pIqM(v)

n=—00

_ _ E eV cos (2kn/q—Ap)

/ sin(gr + lqAg)e
cosh (qy) — cos(qr + lgAg)’

(2.22)

—vcoshy

where the summation in the first term on the right-hand side
goes under the condition

~q/2+ qAp/(27) <k < q/2 + qAp/(27).  (2.23)
If + q/2 + qA@/(27) is an integer, then the corresponding
term in the first sum on the right-hand side of (2.22) should
be taken with the coefficient 1/2. For integer values of g,

formula (2.22) reduces to the well-known result [25,28]

-1

E elan([)] — l E eV cos (2km/q— A(/)

n=-—co =0

vQ

(2.24)

_
~

By taking into account (2.22), the heat kernel (2.18) is
presented as

Ap” 2
e A sm

(47s)(P-1/2q

[Se]

gl
p=1 1 +COS[yP + 2}7j(yp)] Sin(yp)/yp

|:Zevcos 2kn/q—Agp)

K(x,x';s) =

/ sin(gr + lgAg)e=vcoshy
cosh (qy) —cos(qr+1qAp)|’
(2.25)

with v = rr'/(2s).

III. GREEN FUNCTION

The Green function is evaluated by using (2.5) and
(2.25). The integral over the variable s is expressed in terms
of the Macdonald function K,(z), and the expression for
the Green function takes the form

271) 2 [ZS Wi, X, X')

q [ Z sin(gz + lgAp)S(wy, x, x')
y 9
/£ cosh(gy) — cos(qr + lqAp)

(3.1)

G(x,x)

_ﬂo

with the notation

(w)\/m? + k?)

1 + cos yp + 27]()71;)] Sln(yp)/yp
(3.2)

) m+k2 fnz

S(w, x,x") ;—az

p=l

x gi(z. 2, k;),

with k, = y,/a. Here we have introduced the function

£ () = el

X

(3.3)
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and the notation

o(w) = \/—At2 + 24+ 2+ AX? 421w (3.4)
Additionally, in (3.1) we have defined
wy = —cos(2kn/q — Ag), w, =coshy.  (3.5)

In (3.2), y, is given implicitly, as solutions of the
transcendental equation (2.11), and that representation is
not convenient for the further evaluation of the VEVs in the
coincidence limit. An alternative representation is obtained
by using a variant of the generalized Abel-Plana formula
[22,29]

i 7y, f(vp)

2= yp +cosly, +27;(y,)] siny,

__ #f(0)/2 o
_71—b2—b1+l duf(u)

+ l/oo du f(lu) _f(z_lu) , (36)
o c(u)ey(u)er —1
where, for the further convenience, the notation
b]'l/i —1
; = 3.7
C](u) b]l/l + 1 ( )
is introduced.
For the summation of the series in (3.2) we take
f) = (m* + /@) foa(o(w)\/m? + 2 /a?)
x g;(z.2,y/a). (3.8)

Note that one has f(0) = 0. By taking into account that
9;(z.2\—iu/a) = g;(z,Z,iu/a), we see that f(iu)—
f(=iu) =0 for u < ma and

fliu) = f(=iu) = —mig;(z,2', iu/a)(u*/a* - m2)’z

X Z%(a(w)\/ u?/a® — m?), (3.9)
for u > ma. Here
J
Z,(x) = ”(f) : (3.10)
X
and
gj(z.7.iu/a) = cosh (uAz/a)
1 ub; +e
- —eulz+z'=2a;|/a Z7J . 11
+ 26;(3 ubj —€ (3.11)

Note that for the function Z,(x) one has the relation

XZy i (x) = 20Z,(x) = Z, (x). (3.12)

Applying (3.6) with the function (3.8) to the series in
(3.2) and by taking into account (2.21), the function
S(w, x,x’) is decomposed as

S(w, x,x") = Sy(w, x,x') + Sj(w,x,x’) + Sjj/(w,x,x’),
(3.13)

where j/ =1 for j =2 and j/ = 2 for j = 1. The separate
terms are given by the expressions

1 [ -
So(w,x,x") = 2—/ du(m? + u2)¥f%(a(w)\/ m? + u?) cos (uAz),
0
1 00 5 . , | R
Si(w,x,x) = 4—/ du(m? + uz)%f%(a(w)\/ m? + u?) Z eciulz+a=2a)| up—¢
0

. b
=1 iuf; + €

] © - 2 &5 / ) i
Sip(w,x,x) = 5/ B Zoa(o(w)V u? —m?).

-1 77

(3.14)

The first two terms in the right-hand side of (3.13) come from the first integral in (3.6). The integral in the expression

So(w, x,x") is further evaluated with the result

mD—2

So(w, x,x)

= Tz—ﬂfD/z—l

(my/a*(w) + (A2)%).

(3.15)

In the part S;(w, x, x’) we rotate the integration contour in the complex plane u by the angle z/2 for the term ¢ = 1 and by

the angle —xz/2 for ¢ = —1. This gives
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1 ©0 -3 i i + 1
Siw.x,x') = —/ du(u® — m?)’T Zos(o(w)V u? — m2)e et =24/l L (3.16)

4 m 2 Mﬂj -1

With the decomposition (3.13), the Green function (3.1) is presented as
Gx.x') = Go(x,X') + G;(x.X') + Gy (x,X'), (3.17)
where
sin(gr + lgA@)S,(w,, x, X')

G 222) 7Y Sa(wy, -= . 3.18
(¥ 7 {Z (Wi, ) Z/ cosh (qy) — cos(qr + lqAp) |’ (3.18)

witha = 0, j, jj'. Here, Gy(x, ") is the Green function in the geometry without boundaries, the term G, (x, x’) is induced by
the boundary at z = a; when the second boundary is absent, and the term G;;(x,x’) is induced if we add the second
boundary at z = a;. The boundary-induced contribution,

Sp(w, x,x") = §;(w,x,x') + 8, (w, x,x), (3.19)

can be combined in a single expression

1 [ 2 _ . 2\(D-3)/2
Sy(w,x,x') = / du ((u m) Zoa s(c(W)Vu?> —m )[2 cosh (uAz) + Ze”‘”z ~2ailc, (au)} (3.20)
m 1

4 au)c,(au)e*™ — 1 fy
Now, for the Green function we get the decomposition
G(x,x') = Go(x,x') + Gp(x,x'), (3.21)

with the boundary-induced contribution

sm (g7 + jqAp)Sy(wy, x, x')
; Su(wex ) - L 3.22
b (x, x) {Z b (Wi, x. x') Jzﬂ/ cosh (qy) — cos(qr + jqAp)| (3-22)

Note that
62 (wp) + (Az)? = r? + 12 + AX? + 2rr cos Ag + (Az)? — A2,

and the k = 0 term in the expression (3.18) for Gy(x, x’) is the Green function in the boundary-free Minkowski spacetime.
Hence, we have obtained a representation for the Green function in which the Minkowskian part is explicitly exhibited. This
is important from the point of view of the renormalization in the VEVs of the field squared and the energy-momentum
tensor. For points away from the cosmic string and boundaries, the local geometry is the same as in the Minkowski
spacetime and, hence, the divergencies are the same as well. The renormalization in the VEVs in the coincidence limit is
reduced to the subtraction of the Minkowskian part.

In the regions z < a; and z > a, the Green function is presented as

G(x.x') = Go(x,X') + G;(x, X'), (3.23)

where j = 1 (j = 2) for the region z < a; (z > a,). For special cases of Dirichlet and Neumann boundary conditions, the
integral in the expression for (3.16) for §;(w,x,x’) is expressed in terms of the Macdonald function [24], and we get

mD2

N

where and in what follows the upper and lower signs correspond to Dirichlet and Neumann conditions, respectively. In the
case of Dirichlet boundary condition, the expression (3.23), with (3.18) and (3.24) coincides with the result of Ref. [17].

For Dirichlet and Neumann boundary conditions and in the region between the plates, an alternative representation of the
function Sy, (w, x,x’) is obtained from (3.20) by using the expansion

fg_l( \/ 2(w )+(z+z’—2aj)2), (3.24)

Sj(w, x,x') =

085023-6
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The integrals are evaluated by using the formula [25]

—by/y*4+m?
/ dyy2b+lz cy
0

This leads to the result

D-2

(o]
— E e—2nau'

VY4 m?

(3.25)

(3.26)

2
;mzwlfwl/z(m Vb + ).

Sp(w, x,x)
=1 j=1.2

_ ;nmz Z [f§—1 (m\/oz(w) + (2na - (—l)jAz)2> F fo (m\/oz(w) + (2na—|z 47 - 2aj)2)].

(3.27)

A similar representation can be obtained for the function S;;(w,x,x’). Combining (3.27) with (3.15), the function
S(w, x,x") in the expression for the Green function is presented in the form

S(w, x,x)

n—=-—00

With this formula, the Green function G(x, x) in the region
between the plates is presented as an image sum of the
Green functions in the boundary-free geometry.

In the Appendix we evaluate a more general two-point
function, namely, the off diagonal zeta function. The latter
is reduced to the Green function for special value of the
argument s = 1. The local zeta function is obtained from
the off diagonal zeta function in the coincidence limit of the
arguments corresponding to separated spacetime points.

IV. VEVs IN THE PRESENCE OF A SINGLE PLATE

This and the following sections will be devoted to the
vacuum polarizations effects induced by the boundaries.
Two main calculations will be performed. The evaluation of
the VEV of the field squared, in the first place, followed by
the evaluation of the VEV of the energy-momentum tensor.

2 lq/2]
(@")es = Y {Z fo_1(2mrsy)

2@ i [fg—l( \/ 2(w) + (2na - AZ)z) F fou (m\/ffz(w) +(2na+z+7 - 2a1)2>] (3.28)

Here we will consider the VEVs in the presence of a single
plate at z=a;. The corresponding Green function is
presented as (3.23). For points away from the boundary,
the divergences in the coincidence limit x' — x are contained
in the k = 0 term of the expression (3.18) for Gy (x, x’). The
latter corresponds to the Green function in the boundary-free
Minkowski spacetime. The renormalization is reduced to the

subtraction of the Minkowskian part.

A. Field squared

Taking the coincidence limit in (3.23) and omitting the
Minkowskian contribution, the VEV of the field squared is
split as

(@) = (#°)es + (%), (4.1)
where
q sm(qﬂ) fo_y(2mrcoshy)
A cosh(2gy) — COS(q”)] ’ 4-2)

with s, = sin(kz/q) is the renormalized VEV in the boundary-free geometry. The prime on the summation sign in (4.2)
means that for even values of ¢ the term with k = [¢/2] should be taken with the coefficient 1/2. The part

[q/2]

(2 = (2n)P [Z Uj(sp.r.2) qsm(q”)[)

U,(coshy,r,z) ] (43)

Y cosh(2gy) — cos(gx)

is the boundary-induced contribution. In (4.3), the prime on the sign of the summation means that the terms & = 0 and
k = [q/2] (for even values of ¢) should be taken with the coefficient 1/2, and we have defined the function

00 +1
Uj(S, rz) = / du(u* — m2)¥ DT<2}"S\/ u? —m?e “2ufz—a;| P T T up,
m

T (4.4)
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The k = 0 term in (4.3) coincides with the corresponding
VEV for a plate in the Minkowski bulk [22,29],

(4r)3" [ D3 oy WP 11
<¢2>§M) = F(%)L du(u? — m?)5 el uﬁj —
(4.5)

For special cases of Dirichlet and Neuamnn boundary
conditions, by using the integral (3.26) we get

2
Uj(s.r.z) =F \/;mD_zfg—K)(), (4.6)
where
x=2m\/(z—a;)*+ r’s?, (4.7)

and the upper/lower sign corresponds to Dirichlet/
Neaumann boundary condition. The VEV (4.3) with
(4.6) coincides with that considered in [17]. The same
expression is obtained by taking the coincidence limit of
G;(x,x") with (3.18) and (3.24).

Let us consider the asymptotic behavior of the VEV of
the field squared in limiting regions of the parameters. Near
the cosmic string, r <« m~!, |z —aj|, from (4.2) for the
boundary-free contribution to the leading order we get

['(D/2-1)gp_»(q)

oD-1,2,0-2

(#)es » (4.8)

with the notation

lq/2]

- qsin(qﬂ)/oo cosh™y
pr— n_i d ’
9.(q) E : Sk p 0 ycosh(qu)—COS(qﬂ)

(4.9)

For a massless field the result (4.8) is exact. For the
boundary-induced part in the limit r — 0 we find

(@) il—0 = (@)1 +290(q)).

Taking in (2.22) Ap = 0 and v = 0, we can see that

(4.10)
90(q) = (g —=1)/2, (4.11)
and, hence,

(@*);l,—0 = a(d?) M. (4.12)

At large distances from the string, r> [z —a;|, the
topological part in the boundary-induced contribution,

(@) — <¢2>§-M), is suppressed by the factor e=2""sin(/4),

The boundary-induced VEV (4.3) diverges on the
boundary. This divergence comes from the Minkowskian
part and to the leading order

v (12260, )T(D/2 = 1)
W) )

s

for |z—a;| < r,m™'. For r+#0, the topological part

(%), = (¢?) - (¢2>§-M) is finite on the boundary, z = a;.
For Dirichlet and Neuamnn boundary conditions this is
obvious from (4.6).

B. Energy-momentum tensor

Similar to the field squared, the VEV of the energy-
momentum tensor is presented as

<T;w> = <T;w>cs + <T/w>j7 (413)
where (T,,). corresponds to the geometry of the cosmic
string without boundaries and (7,); is induced by the
boundary. Having the Green function and the VEV of the
field squared, the VEV of the energy-momentum tensor is

evaluated by using the formula

(Ty) = 1imd,0,G(x,x)

X' —x

+ [(é - 1/4>g/w|:| - gvﬂvl/ - éR/u/] <¢2>’ (414)
where for the spacetime under consideration the Ricci
tensor, R,,, vanishes.

First let us consider the boundary-free part. By taking
into account (3.18) with &« = 0 and (4.2), we can see that
the VEV (T, ). is diagonal with the components (no
summation over y)

omP [ g sin(grn)
T = E F®(s,.2 _ 11
< ﬂ>cs (zﬂ_)g |:k1 (sk mrsk) p

F®)(coshy,2mrcoshy)
cosh(2¢qy) — cos(gr)

, (4.15)

x/wdy
0

where

FU(s,y) = (4= 1)s%y* fo.1 (v) + [1 = 2(46 = 1)s’] fo(y),
FU(s,y) = (1-4&5%) fo(y),

FO(s.y) = (1-482)[f2() =22, ()] (4.16)

with [ = 0,3, ..., D — 1. For integer values of ¢, (4.15) is
reduced to the result given in [10]. In the case of a massless

field, by taking into account that £, (x) =~ 2~ 'T'(v)x~% for
small x, one gets (no summation over y)
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(Th)es = gggfg i gp—2(q) + a’gp(q)].  (4.17)
with the coefficients
aj'! = (D-2)(4¢-1),
ag ) = 1,
a)) = —4z,
agz) =1,
al) =4(D-1)e,
a?’) =1-D, (4.18)

where [ =0,3,...,D — 1.

Now we turn to the boundary-induced contribution in the
geometry of a single plate at z = a;. By taking into account
the expression (3.18) with a = j for the function G;(x, x’)
and (4.3), it is presented in the form

L

o lg/2 0
(T,0); = (2m)2 [ U (sr.2)

J
k=0

(4.19)

T

_qsin(qzr /wd U,(;Q(COShy,V,Z)
ycosh(2qy)—cos(qﬂ) '

where the functions U ,(,’,,) (s, r,z) are defined by the relation

U!(JJI;)<S’ r, Z) - 41,imau’avsj(wa X, xl)

+ [(5 - 1/4)9;41/[] - gvuvu] Uj(s’ r, Z)’
(4.20)

with w = 2s? — 1. By using (3.14) for S;(w.x,x") and (4.4)
we find the representation

. o aup;i+1
U,(,j,,)(s,r, 7) = [n du(u® - mz)%zﬂﬂ’]—_l
x e 2=l (u,s,r), (4.21)
where
e—2u|Z—Llj|Vlw(u’S’r)
| s el
:l’lil}raﬂ/aDZDT%(U(W) u-—m )W
e~ 2ulz—a;|
+ [(g_ 1/4)9140':' - 5v;¢VU]ZDT’3(7/)m, (422)
and
y =2rs\V u? —m?. (4.23)

The k=0 term in (4.19) gives the corresponding VEV
induced by a plate in Minkowski bulk.

After long but straightforward calculations, for the
diagonal components (T); with u#2 one finds (no
summation over /)

Vi(u.5.7) = (14 (46 =1)(D=3)5%] Zoas (1)
2

e e

u-—m
(46— Dw?

I Zna(y) + (1= 48%) Za(y),

Vi(u.s.r) = (48 = 1)s*[(D = 3)Znai(v) = Zoa(y)).

Vi(u,s,r)=

(4.24)

where [ = 0,4, ...,D — 1. The only nonzero off diagonal
component is given by the expression

V%(u,s, r)=2(1-4¢&)sgn(z— aj)rus2Z<D_1)/2(y), (4.25)

where sgn(x) = £x/|x|. As expected, the diagonal com-
ponents are symmetric with respect to the plate whereas the
off diagonal component changes the sign. Note that for the
off diagonal component the term k = 0 in (4.19) vanishes.
This corresponds to the fact that in the Minkowski bulk the
vacuum energy-momentum tensor is diagonal. All the off
diagonal components of (7,,) j» except the components
(T\3); = (T31);> vanish. This property is a direct conse-
quence of the problem homogeneity with respect to the
coordinates x’ with i # 1, 3. Of course, that can also be seen
by a direct evaluation.

The remaining component V3(u,s,r) is most easily
found by wusing the covariant continuity equation
V,(T}); = 0. For the geometry under consideration the
latter is reduced to two equations

O, (r(T1);) + raz<T?>j —(T3); =
9,(r(T3);) + ro(T3); =

El

0
0, (4.26)
where (T7); = (T});. By using (4.19) and (4.21), similar
relations are found for the functions V% (u, s, r),

0,(rV(u,s.7)
—2sgn(z — aj)uer(u, §,7) — V%(u, s,r) =0,
O, rVi(u, s, r)] +2(=1)YurV3(u,s,r) = 0. (4.27)

First of all, we can check that the second of the relations is
indeed obeyed by the functions (4.24) and (4.25). For the
evaluation of the component V3 (u, s, r) we use the first of
the Eq. (4.27),
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(4 - Du?
Viluys,r) = 5= Zos(y)
+ (485> = DD = 2)Zoa(y) = Zox(y)]
(4.28)
For the trace we find the relation
e alVi(u,s,r) = [(D = 1) = &) - m?]
« e—Zu\z—uj\ZDT%(y), (4.29)

where &, = (D —2)/[4(D — 1)] is the curvature coupling
parameter for a conformally coupled field. From (4.29) it
follows that for the energy-momentum tensor one has the
standard trace relation

(Tp); = (D = 1)(& = &) — m*|(¢?);. (4.30)

This is an additional check for the evaluation procedure
presented above. For Dirichlet and Neumann boundary
conditions, by using (3.26) and

/°° du(u? — m2)*HZ, (y)e2=]
m

— \/imD[(D — 1) foy32(x) —4m*r’s*f 155 (0],
(4.31)

with y and y defined by (4.23) and (4.7), we can see that
from (4.19) the expressions derived in [17] are obtained.
The result (4.31) is obtained from (3.26) by using the
relations

fo(x) = =xfu1(x), fu (x) = X2 f 0 (x) = 20, (x).
(4.32)

In particular, for the off diagonal component we get

U (s, r,2) =F 4\@1 —4E)mP 2z = a)rs’fo (o),
(4.33)

where y is defined by (4.7). In particular, we see that the off
diagonal component (T}) = (T}); vanishes on the plate in
the cases of Dirichlet and Neumann boundary conditions.

Having in mind the application to the evaluation of the
Casimir force (see Sec. VI below), here we provide an
alternative representation for the function Ugj ! (s,r,2).
From (4.21), by taking into account (4.25), one gets

U (s.r.2) = U (s.r.2) +4(1 - 48)sgn(z — a,)rs>

s - e—2u\z—a/-\
XL duu(u®> —m?)= - Zoai(y),
(4.34)
(Nj) : . .
where U; ' (s,r,z) is the corresponding function for

Neumann boundary condition and is given by (4.33) with
the lower sign. For the transformation of the remaining part
we use the integral representation

1 /00
= dxe(1-ub))x
1-— Mﬂ] 0

Substituting into (4.34) and changing the order of integra-
tions, the integral over u is evaluated in terms of the
Macdonald function, and we find

(4.35)

. . 2
09" (5.r.2) = OS5, 2) 4 8y 2021 —ag)r
- T

X /oo dxe [z —a; —sgn(z — a;)f;x/2]
0

xf %+1<2m\/ (|2 = aj] = Bjx/2)? + rs?).
(4.36)

In the special cases of Dirichlet and Neumann boundary
conditions this result is reduced to (4.33). The representa-
tion (4.36) explicitly shows that the (T3); is finite on the
plate. Note that for the representation (4.34) we are not
allowed to put directly z = a; in the integrand.

For points near the cosmic string, r <« m,|z—a j|, the
dominant contribution to the total VEV (4.13) comes from
the boundary-free part, and the leading terms in the
diagonal components coincide with the VEV (T, )., for
a massless field given by (4.17). These terms diverge as
r~P. For z # a; the boundary-induced contribution is finite
on the string. Taking the limit » — 0 in the expressions
above we see that the VEVs are expressed in terms of gy(g)
and g_,(g). The function gy(q) has been evaluated above,
and the function g_,(g) can be obtained from (2.22) with
A = 0, taking the derivative with respect to » and then the
limit ¥ — 0. In this way, we can see that

g-2(q) = q/4. (4.37)

For the diagonal components of the boundary-induced
energy-momentum tensor on the string one finds (no
summation over )
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(M) (4”) 2 qd
(Th)jlrmo=q(Th); _TDZA)
© D-1 i+ 1
x / du(? =22 auea) (438
m I/tﬁj -1
with the coefficients
d,=4¢—1, u=20,3..,D-1,
d, =2¢, uw=1,2. (4.39)

The VEV for a plate in Minkowski spacetime is given by
[22,29]

(T2)M = @/‘” du(i? — m?)’= up; + 1
Hiy

202 up;—1

x 24D = 1)(E = &) = 7], (4.40)

for y#3 and <T§>§M) =0. The leading term in the
asymptotic expansion for the off diagonal component near
the string is given by

(47)7"qr
T msgn(z—a;) 2 971 _4
(78 sen(e=a) G ipe (140
x/wduu(uz—mz)%]%e'zu'“i, (4.41)
m j

and this component vanishes on the string.

The boundary-induced VEV (T,,); diverges on the
boundary. For points outside the string, r # 0, the diver-
gences are the same as those for Minkowski bulk, and the
topological part induced by the string, (T,,) — (TW);M) is
finite on the boundary. Consequently, to the leading order
for y#3 and |z —a;| <m™,r one has (no summation

over i)

2(D - 1)r(3)s;

) (T »
(Th) ~ (Th); @z —a?

" (£ = &) (1 =250

(4.42)

for p#3. At large distances from the string, r>
|z — a;|,m™", the topological part in the boundary-induced

contribution (7,); — (TW);M) is suppressed by the fac-
tor e~2mrsin(z/q)

V. VEVS IN THE REGION BETWEEN THE PLATES

Now we turn to the case of two plates and will consider
the region between them, a; < z < a,. The VEVs in the
regions z < a; and z > a, are given by the expression from
the previous sections with j = 1 and j = 2 respectively.

A. Field squared

The VEV of the field squared is formally given by
evaluating the Green function at the coincidence limit. In
this analysis the complete Green function is given by the
sum (3.21). Omitting the part corresponding to the boun-
dary-free Minkowski spacetime, we obtain

(@) = (#)es + ()

where the boundary-free contribution is given by (4.2). For
the boundary-induced part one gets the expression

(5.1)

Wz]/ g sin(gn)
@)= 2| Y Ulsirz) - 0
k=0 d
oo h
" / dy U(coshy,r,z) ’ (5.2)
0 cosh(2gy) — cos(gr)
with the function
o (u?—m?) T g(u,2)
U(s,r,z) = d
(s.7.2) L ucl(au)cz(au) 2au
X Zp=a(2rs u? —m?). (5.3)
In (5.3) we have defined
g(u.2) =2+ > e=aile;(au). (5.4)

j=12

The k = 0 term in (5.2) is the corresponding VEV in the
region between two plates on the Minkowski bulk,

u(o,r, Z)
2(27:) T

Um0

TS Jue ci(au)es(au)e® —1°

(¢2)5"

(5.5)

In the special cases of Dirichlet and Neumann boundary
conditions, equivalent expression for (5.3) is obtained from
(3.22) with the function (3.27),

U(smz)z\f Dzz[zfa_lo( :sz__lo(,n],

j=1.2
(5.6)

where the upper and lower signs correspond to Dirichlet
and Neumann boundary conditions and

I = 2m\/ n’a® + r’s?,

Hjn = Zm\/(na — |z —a;])* + r’s%.

(5.7)
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For a massless field, taking the limit m — 0 in (5.6), one gets

r2-1)& [ 2
U(s,r,2) = —5
( ) 257 ; (n2a2+r2s2)%_1

FY : 7|

ralna =z —a;))? + 572

(5.8)

For z # a;, a,, the boundary-induced part {¢?), is finite
on the string,

(@)oo = a(@)M™.

Near the string, the boundary-free part behaves as (4.8), and
it dominates in the total VEV. At large distances from the
cosmic string the leading contribution to (5.2) comes from
the term k = O that coincides with the corresponding VEV

for Minkowski bulk, <¢2)EM). For a massive field, under the
conditions 7 > a, m™!, the topological contribution in the

(5.9)

boundary-induced part, (¢?),, — <¢2>£M>, is suppressed by
the factor e2"7sn(7/4) Comparing with (4.2), we see that
this contribution is of the same order as the boundary-free
topological part (¢?).. For a massless field and for r > a,

the topological contribution (%), — (¢*){" in the case of
non-Dirichlet boundary conditions behaves as >~ /a. By
taking into account that {¢?) ., o« 1/r?~2, we conclude that
for a massless field and at large distances the topological
part in the VEV of the field squared is dominated by the
boundary-induced contribution.

An alternative form for the VEV of the field squared is
obtained by using the representation (3.17),

<¢2> = <¢2>cs + <¢2>j + <¢2>jj’»

where the second boundary-induced part is given as

(5.10)

1-D [q/z]
(#%)7=(2n)7 [Z Ujjp(se.7.2)

=0
_qsin(qn)/oody U;j(coshy,r,z) 5.1
T 0 cosh(2gy) —cos(gn)
with the function
o (= m?)Tgi(u,2)
U.i(s,r.z) = d
iz (8:7.2) L ucl(au)cz(au)ez““ -1
X Zos(2rsV u? — m?), (5.12)
where
e—2u|z—aj|
g;(u,z) =2+ ezu‘z‘“f‘cj(au) + (5.13)

cjlau)

Note that the contribution (¢?); is finite on the plate at
z = a;. For a Dirichlet boundary condition it vanishes on

that plate. In the special cases of Dirichlet and Neumann
boundary conditions, alternative expressions for
U,;(s,r,z), similar to (5.6), are obtained by using the
expansion (3.25).

B. Energy-momentum tensor

Following the same line of investigation, in this section
we are interested in the evaluation of the contribution
induced by the boundaries in the VEV of the energy-
momentum tensor. Similar to the case of the field squared,
in the region between the plates the energy-momentum
tensor is presented in the split form,

<T/w> = <T,uu>cs =+ <T/w>b’

where the boundary-free part (T, ). is given by (4.15).
In order to evaluate the boundary-induced contribution
we will use the analog of the formula (4.14) for that
contribution. By using the expression (3.22) for the
boundary-induced part in the Green functions, the VEV
of the energy-momentum tensor is presented as

(5.14)

la/2]

(T, = (22)7 {Z/ Uy(sg,r,2) — %(q”)
k=0

x/oody
0

For the diagonal components one has the function (no
summation over y)

U, (coshy,r,z)
cosh(2gy) —cos(gr)|

(5.15)

(w2 = m)"5

ci(au)cy(au)e®™ — 1

Ui(s,r,z) = /oo du

X |:2VI6”(M, s,r)+ Vi(u,s,r)

X Zezuz—ujcj(au)] ,

j=12

(5.16)

where the functions V% (u, s, r) are defined by (4.24), (4.28)
and (no summation over /)

Voi(u,s,r) = [s7(46 = 1)(D = 3) + 1]Zo(y)
(1 - 48)Zos(),

Vor(u,s,1r) = (1 = 4&s*) Zoa(y),

Viy(u,5.7) = (1 = 462 = D)Zosa(y) + Zos(1)]

Vis(u,s,1) = (46 = 1)s*[(D = 3)Zoa(y) = Zea(y)]

2

(5.17)

where [ = 0,4, ...,D — 1 and y is defined by (4.23).
The azimuthal component of the energy-momentum
tensor is most easily found from the analog of the first
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equation in (4.26). For the only nonzero off diagonal
component one gets

o (= m?) 20, (y)
1 S.r = - I"S2 u >
U3( s 7Z> 2(1 45) A d cl(au)cz(au)ez‘”‘—l
x Y (-1)

Jeli=aile;(au). (5.18)
j=12

Now we can check that the boundary-induced VEV obeys
the second equation in (4.26) and the trace relation (4.30).
The k = 0 term in (5.15) gives the VEV for parallel plates
in the Minkowski bulk: (T¥)™ = (22)5°U%(0.0,2)/2.
The latter does not depend on the radial coordinate, and the
off diagonal component vanishes.

For Dirichlet and Neumann boundary conditions, alter-
native expressions for the VEVs are obtained by using the
expansion (3.25). The integral over u in (5.16) is expressed
in terms of the Macdonald function. As a result, the
function appearing in the expression (5.15) for the diagonal
components is presented in the form (no summation over y)

UMS’"Z \/§ Z[ZWOys)(n q:ZW S)(jn:|v

Jj==*1
(5.19)

where the upper and lower signs correspond to Dirichlet
and Neumann boundary conditions, respectively, and y,,
X jn are given by (5.7). The functions in (5.19) are defined
by the relations

Woi(s.x) = [2(1 = 48)s* + 1]f5(x)

= s*(1 = 48)(2mrs)*fp,, (x).
Wor (s5.) = (1 - 4652) f(x),
Woa(s.x) = (1= 485%)[fo(x) — (2mrs)*fp., (x)].
Wos(s.x) = Wig(s.x) + [(2mrs)* = x| fp,,(x).  (5.20)
and
Wi(s.x) = [(1-4)(25* + 1) + 1]f5(x)

+ (48 = D + (52 = 1)(2mrs)?|fp,4(x),
Wi(s.x) = [2 = 45(s* + 1)] fo(x)

+ (48 = [x* = (2mrs)]fp,(x).
Wo(s.x) = Wi(s.x) + (4852 = 1)(2mrs)*fp,4 (x).
Wi(s.x) = (1 = 4882 2f5(x) = 2mrs)2 i (9], (5.21)

with [ =0,4,....,D
one gets

— 1. For the off diagonal component

Ul(s,r,z) =F 44/ =mP2(1 - 4¢)rs?

NIN

X

[]s
M

(=1)/(na—lz=a;l)foe1 Otjn)-

n 1,2

(5.22)

Note that the off diagonal components vanishes on the
plates for Dirichlet and Neumann boundary conditions.
For a massless field and for Dirichlet and Neumann
boundary conditions, the expressions for the VEVs are
obtained from (5.19)—(5.22) by making use of the asymptotic
expression f,(x) ~ 2"~ 'I'(v)x~2 for x < 1. The diagonal
components are presented as (no summation over x)

b O s na/(rs
Ul(s.r.z) = L(P/2)a ZFWW(’ /(r5))

2<D+'>/2ﬁ i + (sr/a )PP
s, (na - |z — a;))/(rs))
N Z |z—aj|/a> T (sr/ayPR|
(5.23)

with the functions

0 D
WO (s.x) = 1+ (1 - 4¢)s? (2 - +x2>,
W (s, x) = 1 —4&s2,
0 D
W (5,x) = (1 — 4&52) (1 _W)’
0 0 sz
a3 (s.x) = Wog (5.) = 17— (5.24)

with/=0,4,...,D -1, and

2
0 sc—1
WE)(s,x):1+(4§—1)<D—1—2s2+D1+x2>,

0 48 —1
Wg )(S,.X) = 2—45(52 + 1) +Dx2m,
0 0 4&s? — 1
W3 (s.0) = W (s.0) + D=
0 D
W (5.x) = (1 — 4&)s? <2 - +x2>‘ (5.25)

For the off diagonal component one gets
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U%(s,r,z):q:%F(g)
(-1)/(n=|z=a;|/a)
ZZ ~le=ajl/@? + (sr/@ PR

(5.26)

An alternative representation for general Robin boundary
conditions is obtained by using the decomposition (3.17)
for the Green function,

<T;w> = <T/w>cs + <T/u/>j + <T;w>jj” (527)

where the second boundary induced contribution is given
by the expression

[
W LD q/Z]’ ('
(Tv) ;= (2m)= E U " (sg,r.2)

=0
_qSIH(qﬂ)/oo y l(/jj/)”(COShy’r7Z) . (528)
0 cosh(2qy) —cos(grn)

The diagonal components of the function in (5.28) are
defined as

2 _ 025t
(i ® (> —m”) >

U ,1Z) = d

i (sn2) A ! ¢y (au)cy(au)e®™ — 1

X {2Vﬁ”(u, s, 1)+ Vi(u,s,r)

2ulz—aj| .
X {e ~4ilc;(au) +W] } (5.29)
For the off diagonal component one has

U (5,7,2) =2(=1) (1 - 4€)rs?

o 2 _ 2\(D-1)/2
x/ du u(u”—m’)
m €1

(au)c,(au)e*™ —1
o-2ulz-a)
X Zp-1),2(7) {ezulz_“flcj(au) —W
(5.30)

The second boundary induced contribution (7', ) s is finite
on the plate at z = a;.

For Dirichlet and Neumann boundary conditions, an
equivalent expression for the function UY (s, r.z) is
obtained in a way similar to that we have used for
(5.19) (no summation over p),

2 o0
U \/mDZ[zwoﬂ (s20) F D W, sx,,f)]
[==*1

n=1

(5.31)

with ;(52 = 2m\/(na —llz—a;])* + r*s* and with the

functions (5.20) and (5.21). For the off diagonal component
one gets

UM (s, rz) =F 4\/%mD+2(—1)j(1 —48)rs?
X Z Z I(

n=1 I=+1

1
na = 1|z - a;|) fo.1 (£)-
(5.32)

The latter vanishes on the plate z = a;.
For points near the string, r < m!, |z—a j\, the boun-
dary-free part dominates in (5.14). For a massive field the
leading term in the corresponding asymptotic expansion is
given by (4.17). For points z # a;, the boundary-induced
contribution is finite on the string and is expressed in terms
of go(q) and g_,(q). By using (4.11) and (4.37) for the
diagonal components we find (no summation over p),

1-D
Ty (4n)* qd,
2r(2H)

X /°° du (w? = m?)%
m ci(au)c,(au)e*™ — 1

[+ X i)

j=12

<Tﬁ>b|r:0 =4q

(5.33)

where the coefficients d, are given by (4.39). The off
diagonal component linearly vanishes on the string,

(4m)7 q 1—4§)r/oodu u(u?> —m?)=
m Cl(

au)c,(au)e*™ — 1

(5.34)

X (_l)je2u‘z—a/‘cj<au),

for r - 0.

The leading term in the asymptotic expansion of (7, at
large distances from the string is given by the term k = 0 in
(5.15), and it coincides with the corresponding VEV for
Minkowski bulk, (T%)" . Assuming that r > a,m™!, the
topological part for a massive field in the boundary-induced
contribution, (T%), — (T’J>£,M), is suppressed by the factor
e~2mrsin(z/4) The same is the case for the boundary-free
topological term (7). For a massless field in the region

r>a, the contribution (T%), — (T’lf)t()M) decays like
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r'=P/a. Under the same conditions for the boundary-free
part one has (T%), o 1/r”, and the dominant contribution
comes from the boundary-induced topological part.

VI. THE CASIMIR FORCES

The pth component of the force acting on the surface
element dS of the plate at z=a; is given by
—~(TV).—4,+0n{;);dS in the region z>a;+0 and
—<T">Z:aj_0n(_)1dS in the region z<a;—0, where
n’(’ = +084. For the resulting force we get

dF"

') = (T5)a0dS.

z=a;+0 (6'1)
Due to the nonzero off diagonal component (T1), in
addition to the normal component dF ?j), this force has
nonzero component parallel to the boundary (shear force),
dF éi)' First we will consider the normal force.

A. Normal force
For the normal force acting on the plate at z = a; one has
dFy, = <T§>|ZZ;%dS For (T3) we have the decomposi-
tion (5.27) in the region between the plates and (4.13) in the
remaining regions. The parts (T3) and (T3); are the same
on the left- and right-hand sides of the plate, and they do
not contribute to the net force. The nonzero contribution
comes from the term <T3> + in the region between the
plates. Hence, for the vacuum effective pressure on the
plate z = a; one gets
P' = <Tg>jj’|z:a»
lq/2]

271' IZD |:Z F Sk,

q sm(qzr)

o F(coshy,r)
d / , 6.2
XA ycosh(qu) — cos(gn) (62)
where
Fi(s.r)= _/00 du (= m2)> 2u? Zoa(y)
U ci(au)cs(au)e®™ — 1 u?> —m?

145D = 3)Zuslr) = Zeslhyan)
(6.3)

with y given by (4.23), and

hj(au) =2+ c;(au) + ¢ (au)

The pressures (6.2) with j = 1 and j = 2 act on the sides
z=a; + 0 and z = a, — 0 of the plates, respectively. The
corresponding forces are attractive for P; < 0 and repulsive

for P; > 0. Note that dF?j) = (—1)/P;dS. The k = 0 term
in (6.2) corresponds to the Casimir pressure for plates in the
Minkowski bulk [22,29],

2(4n)F [ 2(u2 — m2)5
m 1

S YO au)c,(au)e*™ —1°
For special cases of Dirichlet and Neumann boundary
conditions the Casimir forces coincide on Minkowski bulk,
and they are attractive. In the presence of the cosmic string,
these forces, in general, are different.

Let us consider the behavior of the Casimir forces in the
asymptotic regions of the parameters. For points on the
string, r=0, by taking into account that Z,(0) =
27%/T(v+ 1) and using (4.11), (4.37), one finds

M
Pj|r:0:qP§‘ )_

© 2 _ 2 2\5L
x/ PRl “2) h(x),  (6.6)
ma CI(X)CZ(X)E -1
where P{") is given by (6.5). For the Dirichlet boundary

condition the second term in the right-hand side (6.6)

vanishes and P;|,_, = qu(.M)

1

. At large distances from the

string, »> a,m™", the leading term in the asymptotic
expansion of P; coincides with the corresponding quantity
for the plates in Minkowski bulk, given by (6.5). The
topological contribution is suppressed by the factor
e~2mrsin(z/q) for a massive field and decays as 1/rP~!
for a massless field.

In the case of the Dirichlet boundary condition, an
alternative expression for the Casimir pressure is obtained
by using the expansion (3.25). With this expansion, the
function F(s, r) is presented as

05 Lo~ |7 sz
F 7 (s,r) = ZZa(na)z A dyy?=*Zps(2rsy)
S SR (6.7)

The integral is evaluated by using the formula (3.26). In
addition, by making use the relations (4.32), we get the
representation

FP (5.r) = 2\/§mD > Fal) = mna i )

(6.8)

085023-15



BEZERRA DE MELLO, SAHARIAN, and ABAJYAN

PHYS. REV. D 97, 085023 (2018)

For a massless field this gives

2

[(D/2) S~ r2s? — (D — 1)n’a
DZI\/—; (n2a2+r2 2>D+1

Note that for the Dirichlet boundary condition the Casimir
pressure does not depend on the curvature coupling
parameter.

In a similar way, for a Neumann boundary condition the
function (6.3) is presented as

(D)
F; (s,r) =

(6.9)

() 2
FiV(s,r) =F; (s, r) +4(4¢ - 1)52\/:mD

T

< S 1@mrs e )~ 2felr). (6.10)

n=1

For the Casimir pressure at the location of the string, by
using (4.11) and (4.37), we get

4¢)
Pjl,_o = qPAE'M) + gmP ((2” J) an (2mna),
where
2mP &
(2’:)% [f2(2mna) — (2mna) fn+1(2mna)]
n=1

(6.11)

is the Casimir pressure in Minkowski spacetime for
Dirichlet and Neuamann boundary conditions. As seen,
unlike the Dirichlet case, the Casimir pressure for the
Neuamnn boundary condition depends on the curvature
coupling parameter ¢.

For a massless scalar field and for the Neumann
boundary condition the expression (6.10) is simplified to

(D/2)(4§—1) 2
25 \/—

- D/2—1 r’s* — n*a?
XZ +r2S2)D+1 ’ (6.12)

(N) _ (D)
F; (s,r)fFj (s,r) +

n=1

with F;D)(s, r) from (6.9). For the Casimir pressure at the
location of the string this gives

4
Pil,_o = qP <1+2 S 1>, (6.13)
with the Minkowskian Casimir pressure
D — D/2
Pj‘M):_< >D( / )C(D), (614)
(4m)>a®

where {(x) is the Riemann zeta function. For even values of
D the series in (6.9) and (6.12) are expressed in terms of
elementary functions by using the relation

i": 1 __bcothb -1
o+ b 20

and its derivatives with respect to b. For example, in D = 4
one gets

(6.15)

_ b’ coshbsinh™h — 1

(D)
F: (s,
i (s 4N/ 2rrtst
V) D) E-1/4 [ b?
F -
; (s,7) (s,r)+ 540 |sinhh
cheohb(14-22 Y 4] (6.16)
co —4], .
sinh?b

where b = zrs/a. For plates in the Minkowski bulk the
Casimir forces for Dirichlet and Neumann boundary con-
ditions coincide, and for a massless field we have

D
oo _ FP0 (- P2ED)
J 2(271.)(D—1)/2 (471')0/201)

In Fig. 1 we have plotted the ratio of the Casimir pressure
to the corresponding pressure in the Minkowski bulk, P(
as a function of the distance from the axis of the cosmlc
string. The graphs are plotted for a massless field. The left/
right panel corresponds to the Dirichlet/Neumann boundary
condition, and the numbers near the curves correspond to
the values of the parameter ¢. In the right panel, the full/
dashed lines correspond to minimally/conformally coupled
scalar fields. For the Dirichlet boundary condition the
Casimir forces in the cases of minimal and conformal
couplings are the same. Note that for the considered

example from (6.17) one has P.S»M) = —nza‘4/480.
Recall that, at the location of the string, r = 0, one has

P;/ PEM) = ¢ for the Dirichlet boundary condition and the
relation (6.13) for Neumann boundary condition.
Another special case corresponds to the Dirichlet boun-
dary condition on the plate z =a; (f; =0) and the
Neumann boundary condition on the second plate z =
a, (f = ). The corresponding expressions for the
function F,(s,r) are obtained from (6.3) taking
cjlau) = (—1)/, hi(au) =0 and hy(au) =4. We can
obtain equivalent representations by using the expansion
for the function (e + 1)~! which is the analog of (3.25).
The expressions for F (s, r) are obtained from the formulas
(6.8) and (6.9) for the function F' ;D) (s, r) adding the factor
(—1)" in the expression under the sign of the summation.
The expressions for F, (s, r) are obtained from (6.10) and
(6.12) in a similar way. For even values of D and for a
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FIG. 1.
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rla

The ratio of the Casimir pressure for a massless scalar field to the corresponding quantity in the Minkowski bulk versus the

distance from the string. The left and right panels are for Dirichlet and Neumann boundary conditions respectively. The numbers near the
curves are the values of the parameter g. On the right panel, the full and dashed curves correspond to minimally and conformally coupled

scalars, respectively.

massless field the series over n is summed taking the
derivatives of the relation

i (-1)"  b/sinhb—1
i+ b 20*

In particular, for D = 4 we can show that

_ 2> ,
20

b
[sinh b <sinh2b

(6.18)

32+ sinh?b

sinh®b
£-1/4
V2rrts?

F(IDN)(S, r) =

1
b
8\ 2mrtst (

F(ZDN)(S, r) = F<1DN>(S, r) +

—|—bcothb—|—b2+1> —4], (6.19)
with the same b as in (6.16).
3.0 ' ' ' ]
2.5/ ]
3 ]
s
T 20 1
a
15'& |
1.0p ‘ ‘ , ‘
0.0 0.5 1.0 1.5 2.0

rla

For the model with D =4, Fig. 2 displays the ratio
P;/ PﬁM) versus 7/ a for the Dirichlet boundary condition on
the plate z = a; and the Neumann boundary condition on
the plate z = a,. The graphs are plotted for a massless field
and for two values of the parameter ¢ (numbers near the
curves). The left and right panels correspond to the plates
z =a; and z = a,, respectively. For the right panel, the
full/dashed lines correspond to minimally/conformally
coupled scalar fields. For the considered example we have

P;M) = 7x*a=*/3840, and the corresponding forces are
repulsive.

B. Shear force

As it has been emphasized above, in the problem at hand
in addition to the normal Casimir force one has a nonzero
shear force along the radial direction, dF (lj) =f ) ds,

2.5 T T T T

rla

FIG. 2. The ratio of the Casimir pressures for a massless scalar field in D = 4 cosmic string and Minkowski backgrounds in the case of
a Dirichlet boundary condition at z = a; and a Neumann boundary condition at z = a,. The left (right) panel presents the pressure on
the plate z = a; (z = a,). On the right panel, the full and dashed curves correspond to minimally and conformally coupled scalars,
respectively. The numbers near the curves are the values of the parameter q.
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is the shear force per unit surface of the plate at
= (Té)ﬁiiﬁ% (note that
the limiting transitions r - 0 and z — a; =0 are not
commutative).

Let us start with the case of a single plate at z = z;. The
corresponding shear forces acting on the sides z = a; — 0
and z=a; +0 coincide and by using (4.19) with the

function Ugj )1(5, r,z) from (4.34) for r # 0 one gets

where f ;)

z = z;. The latter is given by f ()

/2]
4B, (1-49) [«
() _ P\ T 7)
1 =g | 1)

g [~ . sin(gz)UY)(rcoshy)

- = d , 6.20
71"/() Y cosh(2qy) — cos(gx) (6:20)

where

Ui(y) = 4mD+2yZA dxxe™ fpyi (m ﬁfxz + 4y2).

(6.21)

The shear force vanishes for Dirichlet and Neumann
boundary conditions. At large distances from the string,
mr > 1, the dominant contribution to (6.20) comes from
the k = 1 term and to the leading order

fm y Zﬂj(l _ 45) mDe—Zmrsin(ﬂ/q)
J (27)P=V2r 2mrsin(z/q)]P~V/?"

(6.22)

Note that the dependence of the shear force on the curvature
coupling parameter & appears in the form of the coefficient
1 —4¢&. Near the string, mr < 1, the shear stress (6.20)
behaves as r!=P for r<«<m™,|B:|, and as rP~1 for
|Bj| < r<m™'. The divergence on the string of the
self-shear stress is a consequence of the idealized model
of the cosmic string with a zero thickness core. In more

T T T T T

fO11-4¢)

FIG. 3.

realistic models, the behavior of the shear stress near the
string depends on the core structure.
For a massless field we have

[(D/2+ 1)xe™™
(/}?XZ + 4y2)D/2+1 :

UU(y) = 2P/2+2)2 / " dx (6.23)
0

In this case the decay of the shear stress at large distances is
as a power law,

4;(1 - 4)

(47.[)D/2},D+1 (6'24)

iV~ I(D/2+ 1)gp(q),

with the function gp(g) defined in (4.9). In Fig. 3 we have

plotted the shear stress fﬁ-l) for a D = 4 massless field as a
function of the radial coordinate (left panel, arbitrary units)
and of the coefficient in the Robin boundary condition
(right panel, arbitrary units). The left panel is plotted for
fj = —1, and the right panel is plotted for r = 0.5. The
numbers near the curves are the corresponding values of the
parameter q.

In the geometry of two plates the shear force per unit
surface of the plate at z = a; is presented as

fi=r"r. (6.25)

where [ = (T}); AZZ;;% is the shear stress induced by
the plate at z = z;. Note that f;; = 0 in the regions z < z;
and z > z, and the force acts on the sides z = a; + 0 and
Z = a, — 0 only. By taking into account (5.28) and (5.30),

for the shear stress induced by the second plate one obtains

T T T T T T ™

f01(1-4¢)

-30 -25 -20 -15 -1.0 -05 0.0

4

The shear stress on a single plate for a D = 4 massless scalar field as a function of the radial coordinate and of the Robin

coefficient (arbitrary units). The numbers near the curves correspond to the values of g.
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FIG. 4. The interaction part of the shear stress in the geometry of two plates for a D = 4 massless scalar field as a function of r/a and

p;/a. The graphs are plotted for f; = f.

/2]
46,1 —4¢) T4
Tir = Jzﬂ b/, [Z U (rsy)
g [~ . sin(qgz)UY7)(rcoshy)
-= d 6.26
Jl'[) Y cosh(2gy) — cos(gn) (6:26)
with the function
) o 20,2 _ 2\(D=1)/2
U (y) = /27y / gyt =) ~
m ci(au)cy(au)e* ™ — 1
Zp-122yVu? — m?
(D 1)/2( y )' (6.27)

1 —ﬂ?uz

Note that, unlike the self-shear, the interaction part (6.26) is
finite everywhere, including on the string. Figure 4 presents
the interaction part of the shear stress as a function of the
ratios r/a (left panel) and f3;/a (right panel) for a D = 4
massless scalar field and for ¢ = 1.5, 3 (numbers near the
curves) in the model with ; = f,. The left panel is plotted
for #;/a = —1, and the right panel is plotted for r/a = 0.5.

VII. SUMMARY

We have investigated the effects of a nontrivial topology
due to a straight cosmic string on the local characteristics of
the scalar vacuum and on the Casimir forces in the
geometry of two parallel plates perpendicular to the axis
of the string. On the plates, the Robin boundary conditions
are imposed with coefficients that, in general, can differ for
separate plates. In the problem under consideration all the
properties of the quantum vacuum are encoded in two-point
functions. As the first step for the evaluation of these
functions we have constructed the heat-kernel as a mode-
sum over the complete set of scalar modes. The mode-sum
contains summation over the eigenvalues for the compo-
nent of the momentum perpendicular to the plates. Unlike
the two special cases of Dirichlet and Neumann boundary

conditions, in the region between the plates these eigen-
values are given implicitly, as solutions of the transcen-
dental equation (2.11). For the summation of the
corresponding series, we have employed a variant of the
generalized Abel-Plana formula that allowed us to extract
explicitly the boundary-free contribution in the Green
function [see (3.21)] and to present the boundary-induced
part, given by (3.22), in terms of integrals strongly
convergent for points away from the plates. The boun-
dary-induced contribution to the Green function can be
further decomposed into the single boundary and second
boundary-induced terms [see (3.17)], separately given by
(3.18). For points away from the plates, the local geometry
in the problem at hand is Minkwoskian and, as a conse-
quence, the renormalization of the VEVs in the coincidence
limit is reduced to the subtraction of the corresponding
VEVs in boundary-free Minkowski spacetime. In the
representations of the Green function we have provided,
the Minkowskian part is presented by the k = 0 term in the
formula (3.18) for the boundary-free function Gy(x,x’).
Hence, the renormalized VEVs are obtained omitting this
term and taking the coincidence limit of the arguments.
In our consideration of the VEVs of the field squared and
of the energy-momentum tensor we have started with the
presence of a single plate. The boundary-induced contri-
butions are given by (4.3) and (4.19). The k = 0 terms in
these expressions correspond to the VEVs for a plate in
Minkowski bulk. The remaining parts are contributions
induced by the nontrivial topology of the cosmic string. In
the special cases of Dirichlet and Neumann boundary
conditions the results for the geometry of a single plate
reduce to those previously derived in [17]. For points
outside the plates and close to the string, the VEVs are
dominated by the boundary-free contributions. The latter
diverge on the string as 1/r”=2 for the field squared and
like 1/rP for the diagonal components of the energy-
momentum tensor. The boundary-induced parts in the
VEVs are finite on the string. For the field squared one
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has a simple relation (4.12) with the corresponding VEV in
the Minkowski bulk. For the diagonal components of the
energy-momentum tensor in the case of a single plate the
corresponding relation is more complicated and is given by
(4.38). The off diagonal component linearly vanishes on the
string. For points outside from the string the divergences of
the VEVs on the boundary coincide with those for a plate in
the Minkowski bulk and the topological parts are finite on
the boundary.

The VEVs in the region between the plates are decom-
posed into the boundary-free and boundary-induced con-
tributions. The latter is given by (5.2), (5.3) for the VEV of
the field squared and by (5.15), (5.16) for the energy-
momentum tensor. The kK = 0 terms in these expressions
are the corresponding VEVs in the region between two
plates on the Minkowski bulk. For points away from the
boundaries, the off diagonal component of the energy-
momentum tensor vanishes on the string. The functions
(5.3) and (5.16) in the expressions for the VEVs are further
simplified to (5.6) and (5.19) in the special cases of the
Dirichlet and Neumann boundary conditions. For the off
diagonal component of the energy-momentum tensor the
corresponding function is presented as (5.22). The off
diagonal component vanishes on the plates for Dirichlet
and Neumann boundary conditions. Alternative decompo-
sitions with the extracted single plate and the second plate-
induced parts in the region between the plates are given by
(5.10) and (5.27).

In Sec. VI we have investigated the Casimir forces acting
on the plates. Due to the nonzero off diagonal component of
the vacuum energy-momentum tensor, in addition to the
normal component, these forces have a nonzero component
parallel to the boundary (shear force). The vacuum effective
pressure on the plates, corresponding to the normal
component of the Casimir force, is given by (6.2) with
the function (6.3). The corresponding forces are attractive
for P; < 0 and repulsive for P; > 0. Unlike the problem on
the Minkowski bulk, the forces acting on the separate
plates, in general, do not coincide if the corresponding
Robin coefficients are different. Another difference is that
in the presence of the cosmic string the Casimir forces for
Dirichlet and Neumann boundary conditions differ. In these
special cases the functions in the expression for the
pressures are simplified to (6.7) and (6.10). For a massless
field the corresponding formulas take the form (6.9) and
(6.12). For odd values of the spatial dimension the
corresponding series are expressed in terms of elementary
functions [see (6.16) for D = 4]. For the Dirichlet boun-
dary condition the Casimir pressure does not depend on the
curvature coupling parameter. This is not the case for
Neumann boundary condition. A new qualitative feature
induced by the cosmic string is the appearance of the shear
stress acting on the plates. The corresponding force is
directed along the radial coordinate. The shear force
vanishes for Dirichlet and Neumann boundary conditions.

In the geometry of a single plate, the corresponding stress is
given by (6.20) with the function (6.21). At large distances
from the string the shear force decays as e=2""5"(*/9) for a
massive field and like 1/r°*! for a massless field. In the
geometry of two plates the shear stress is decomposed into
two contributions [see (6.25)]. The first one corresponds to
the self-stress, and the second one is induced by the
presence of the second plate. The latter is given by
(6.26) and (6.27). Depending on the parameters of the
problem, the radial component of the shear force can be
either positive or negative.

The regularization procedure we have used is based on
the point-splitting. An alternative regularization procedure,
widely discussed in the literature, uses the zeta function for
the evaluation of global quantities, like the total vacuum
energy, or the local zeta function for the investigation of the
local VEVs (for example, the energy density and stresses).
In the Appendix on the base of the heat kernel, we have
evaluated the off diagonal and local zeta functions in the
problem under consideration.
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APPENDIX: LOCAL ZETA FUNCTION

By using the heat kernel K(x, x’; s) from (2.25), we can
evaluate a more general object, the off diagonal zeta
function (see, for example, [30])

2s

K A=K (x.x'
F(s)/) duw’'K(x,x';u), (A1)

C(x,x'5s) =

where p is a mass parameter introduced by dimensional
reasons. By taking into account the expression (2.25) for
the heat kernel, one gets

{(x.x'5s) = 25 2F

2‘ [ZS Wi, X, X';5)

/ sin(gr 4 lqA@)S(wy.x,x';s)
cosh (gy) —cos(gr+ IqAp)

(A2)

with the function
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i *® m —|—k2>__sfnl s( (W)\/I’I?W)
2a4=  1+cosly,+27;(y,)]sin(y,)/y,
(A3)

S(w,x,x;s) =

xg;i(z,2 k),

and k, = y,/a. Note that G(x,x') = {(x,x'; 1) /4.

Further transformation of the function is similar to that
we have used for the function S(w, x, x’) in (3.2). By using
the summation formula (3.6), the following decomposition
is obtained:

S(w,x,x55) =S (w,x,x';5) +Sj(w,x,x’;s) +Sjj/(w,x,x’;s),

(A4)

where the expressions for the functions in the right-hand
side are obtained from the corresponding expressions in
(3.14) by the replacement (D —3)/2 — (D —1)/2 — 5. As
a consequence, the off diagonal zeta function in the region
between the boundaries is presented as
C(rx'ss) = Colx.¥ss) + Gy(xxss),  (AS)
where {y(x,x’;s) is the corresponding function for
the geometry in the absence of boundaries and the con-
tribution {y(x,x’;s) is induced by the boundaries.
The expressions for the functions {o(x,x’;s) and
Co(x, x5 s) are obtained from (A2) by the replacements
S(wi, x,x'58) = So(wi, x,x'5s)  and  S(wy,x,x';s) =
Sy (wy, x, X5 5), respectively, with
Spy(w.x, x's5) = S;(w.x,x';5) + S, (w,x,x';5).  (A6)
The integral representation for the latter is obtained from
(3.20) by the replacement (D —3)/2 —» (D —1)/2 — .
From (A5) for the local zeta function {(x;s) = {(x, x; 5)
one gets
¢(x;s)

={o(xs8) + Gu(xss), (A7)

where

CO(X;S)

s [4/2]
22 81,28 ,,,D=2s
= Cu(x;s) + “ [

W Z Ipja-s(2mrsy)

q / o Sm(cm)fu/z_.y(Zmrcoshy)
0 cosh(2¢qy) — cos(gr)

T

|

is the local zeta function in the absence of boundaries and
{m(xss) is the corresponding function in Minkowski

spacetime. The second term in the right-hand side of
(A8) is induced by the nontrivial topology of the cosmic
string. In the region between the boundaries the boundary-
induced contribution in (A7) is given by

gb(X;s) 75— 3F

_z/‘”dy
7 Jo

with the function

/2]
2 1- D 25 g
(2z) > {Z Sp (54, %3 8)

sin(gz)Sy(coshy, x; 5)
cosh(2¢gy) — cos(gn)

(A9)

1 [ (uz _ m2)(D—l)/2—s
Sy(y,x;8) =— d
by %:) 4/,1 ucl(au)cz(au)ez“” -1

D_l_S(Zry V u2 - mz)
X [2 + Zez”z_"/cj(au)].

j=12

(A10)

For points away from the boundaries this contribution is
finite at s = 1 and the renormalization of the local VEVs is
reduced to the one in the boundary-free geometry. In
particular, for the VEV of the field squared one gets
(%) = limu[C (x;5) = L (3 8))-

With the boundary-free zeta function (A8), this leads to the
result (4.2) for the boundary-free geometry and to the result
(5.2) in the region between two plates. For the evaluation of
the VEV of the energy-momentum tensor, in addition to the
local zeta function {(x; s), one needs the off diagonal zeta
function {(x, x'; s). The latter is required for the evaluation
of the first term in the right-hand side of (4.14). It is
presented as lim_, limy_,, 9,,0,{(x,x'; 5).

The renormalization procedure for the boundary-free
cosmic string geometry within the framework of the zeta
function approach and the comparison with the point-
splitting scheme have been discussed in [31]. Note that the
expression for the local zeta function in the boundary-free
cosmic string geometry, {o(x; s), given in the second paper
of Ref. [31], presents this function in the form of the series
over the product mr. The local zeta function in a related
geometry of a wedge with reflecting boundaries is consid-
ered in [32]. Note that, unlike the case of the cosmic string
geometry, the problem with the wedge is not homogeneous
along the azimuthal direction.
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