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We review recent results in the theory of numbers and single-valued functions on the complex plane
which arise in quantum field theory. These results are the basis for a new approach to high-loop-order
calculations. As concrete examples, we provide scheme-independent counterterms of primitive log-
divergent graphs in ϕ4 theory up to eight loops and the renormalization functions β, γ, γm of dimensionally
regularized ϕ4 theory in the minimal subtraction scheme up to seven loops.
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I. INTRODUCTION

Quantum field theories (QFTs) are fundamental theories
of physical interactions. Physical QFTs are the electroweak
theory which combines electromagnetism with the weak
interaction, quantum chromodynamics which describes the
interaction between quarks and gluons, and ϕ4 theory for
the Higgs boson. Gravity has not yet found a quantum
formulation.
Although QFTs are experimentally very well confirmed

(see e.g. the anomalous magnetic moment of the electron
for an impressive example, Sec. IV J [1–4]), a complete
mathematical understanding of QFTs is lacking. On the
one hand, there are fundamental questions like the exist-
ence and structure of QFTs. On the other hand, there is
demand for practical tools to perform QFT calculations.
Due to the mathematical difficulty of QFTs progress is
modest. Here, we report on some recent results in both
directions.
For a while it seemed possible that the number content

of QFT is given by multiple zeta values (MZVs) which
are multiple sums that generalize the Riemann zeta
function at positive integer arguments. Assuming standard
conjectures it has now been proved that this is not the
case [5,6].
With the theory of graphical functions, a tool was

developed to perform multiloop calculations in massless
scalar field theories [7–9]. A first notable breakthrough
was the proof of the zig-zag conjecture [10,11] which

gives an explicit formula for periods1 of zig-zag graphs (see
Theorem 4.8).
For more general applications it was necessary to

introduce a novel family of single-valued functions on
the complex plane: generalized single-valued hyperlogar-
ithms (GSVHs, see Sec. IV D 7). Generalized single-valued
hyperlogarithms vastly generalize single-valued multiple
polylogarithms. Nevertheless it was possible to translate the
vital properties of single-valued multiple polylogarithms
into the framework of GSVHs [13]. A Maple™ package
was developed that can calculate many periods in ϕ4 theory
up to 11 loops [14]. With a large amount of data available,
the structure of ϕ4 periods could be connected to the Galois
theory of algebraic integrals [15–17].
To make further contact to physics, it is necessary to

regularize integrals which diverge in four dimensions. This
is often done by generalizing to 4 − ϵ “dimensions” (which
can be defined in a parametric representation of QFT
integrals [18]). Using GSVHs it was possible to obtain
ϵ-expansions for QFT periods and graphical functions. The
procedure Phi4 in HyperlogProcedures calculates
the β-function and the anomalous dimensions γ and γm up
to seven loops in the minimally subtractedOðnÞ symmetric
ϕ4 theory [14]. The self-energy can be calculated to six
loops (see Sec. IV D 9 for results in the case n ¼ 1).
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1We use the word “period” for numbers that arise in perturba-
tive quantum field theory. The name comes from [12], where
periods are defined as numbers which are obtained from algebraic
integrals (defined using polynomials with integer coefficients).
Note that the name period in mathematics has only a small
overlap with the physical notion of a period. In the concrete case
of primitive log-divergent Feynman graphs (as in the zig-zag
conjecture or in Table III), periods are the (scheme-independent)
residues of the regularized Feynman integrals. Also the coef-
ficients of the ϕ4 renormalization functions in Sec. IV D 9 are
periods.
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II. GENERAL IDEA

In QFT, graphs are used to symbolize integrals. One first
has to fix a space-time dimension d which, for brevity, we
connect to the parameter λ according to

d ¼ 2þ 2λ > 2:

The chosen QFT determines which graphs are admissible.
Here we are mainly interested in ϕ4 theory which limits the
vertex degree to four. Feynman rules translate graphs to
integrals. They exist in momentum and in position space
with integration over d-dimensional variables associated to
independent cycles or vertices, respectively. For massive
theories one needs to use momentum space to obtain
explicitly algebraic integrands. Here we are mostly inter-
ested in massless calculations which allows us to use
position space.
The general setup is as follows. Assume G is a graph

with edges EðGÞ and vertices VðGÞ. We do not assume here
that every vertex in G has maximum degree four. Every
edge e ∈ EðGÞ has a weight νe ∈ R. We assume that G has
no self-loops (tadpoles). This is common in dimensionally
regularized massless theories. The edge weight is additive,
i.e. a multiple edge in G is equivalent to a single edge with
weight equal to the weight sum of the multiple edge.
Therefore, we only need to consider single edges. We split
the set of vertices into ‘internal’ vertices V intðGÞ and
‘external’ vertices VextðGÞ. To every vertex we associate
a d dimensional variable and do not distinguish between the
vertex and the variable. We use xi, i ¼ 1;…; V intðGÞ ¼
jV intðGÞj for internal vertices and zi, i ¼ 1;…; VextðGÞ ¼
jVextðGÞj for external vertices. To every edge e ¼ fu; vg ∈
EðGÞ between the two vertices u; v ∈ VðGÞ (internal or
external) we associate a quadric Qe which is given by the
Euclidean distance between (the variables associated to) u
and v,

Qeðu; vÞ ¼ jju − vjj2 ¼ ðu1 − v1Þ2 þ � � � þ ðud − vdÞ2:

Assume the graph G has the property that the following
integral exists

fðλÞG ðz1;…; zVextÞ ¼
� YV intðGÞ

v¼1

Z
Rd

ddxv
πd=2

�
1Q

e∈EðGÞQ
λνe
e

: ð1Þ

Due to translational and scale invariance the integral can
only exist if G has at least two external vertices. In the case
of exactly two external vertices, the integral is determined
up to a constant by these symmetries,

fðλÞG ðz1; z2Þ ¼ PðGÞjjz1 − z2jjdV
intðGÞ−2λ

P
e∈EðGÞ νe : ð2Þ

The number PðGÞ ∈ Rþ is the Feynman period of G.

In primitive logarithmically divergent physical graphs
(with external legs), the residue (in the regulator) is given
by the period of the graph with amputated external legs.
Therefore the calculation of periods is of great importance
for renormalizing QFTs (see e.g. [10]).
Without loss of information, we set z1 ¼ ‘0’ ¼ ð0;…; 0Þ

and z2 ¼ ‘1’ ¼ ð1; 0;…; 0Þ (we may associate to the vertex
1 any unit vector in Rd) and obtain

fðλÞG ð0; 1Þ ¼ PðGÞ:

In the case of three external vertices, we can again exploit
the symmetry of the integral to reduce the number of
variables. In this case, we may use a complex variable z
(and its complex conjugate z̄) to describe the functional

behavior of fðλÞG . We obtain the “graphical function” (which

we also give the symbol fðλÞG ) [9]

fðλÞG ðzÞ ¼ fðλÞG

�
0; 1;

�
zþ z̄
2

;
z − z̄
2i

; 0;…; 0

��
:

In full generality, fðλÞG ðzÞ is a positive single-valued
real analytic function on Cnf0; 1g [8] with the residual
symmetry

fðλÞG ðzÞ ¼ fðλÞG ðz̄Þ:

The benefit of complex numbers is that quadrics between
external vertices factorize

Qf0;1g ¼ 1; Qf0;zg ¼ zz̄; Qf1;zg ¼ ðz − 1Þðz̄ − 1Þ:

General graphs with four or more external vertices lead to
functions which effectively depend on a variable in R3.
Such functions do not have this factorizing property.
An exception are “conformal” graphs with four external
vertices where every internal vertex has degree 2d=ðd − 2Þ.
In this case, one may use an inversion xi ↦ xi=jjxijj2 to
reduce the integral to the case of three external vertices e.g.
[7,19]. Here, we go the opposite direction and ‘complete’
graphical functions to conformal graphs with four external
vertices [9]. We will see in Sec. IV D 1 that this is useful to
exploit the full symmetry of graphical functions.
In the following, we restrict ourselves to the above two

cases, periods and graphical functions. In ϕ4 theory, four-
point functions are formally conformal. However, only the
tree level contribution is convergent. A practical tool to
resolve divergences is to transform all integrals in a
parametric form using the Schwinger trick [18]. In para-
metric form, one integrates over one-dimensional variables
associated to the edges of the graph. The dimension d
enters the integrand as an exponent. It is hence possible to
consider d as a parameter and use analytic continuation to
d ¼ 4 − ϵ (losing conformal invariance). All parametric
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integrals have Laurent expansions at ϵ ¼ 0. Graphical
functions are amendable to such a procedure. A general
parametric representation of graphical functions is given in
[8] (which generalizes a formula in [20], see also [21] as a
general reference for the parametric representation of
Feynman integrals).

III. NUMBERS

A graph G is called ϕ4 if G has maximum vertex degree
four. The period of a ϕ4 graph in d ¼ 4 dimensions is a ϕ4

period. The loop order of G is the number of independent
cycles in G.

A. Completion

We “complete” a graph G with two external vertices 0
and 1 by adding a new external vertex which we give the
label ‘∞’ (as reference to conformal symmetry) [22]. We
add edges from ∞ to all internal vertices in G such that
every internal vertex has degree 2d=ðd − 2Þ. Finally, we
add a weighted triangle with vertices 0; 1;∞ such that the
completed graph becomes 2d=ðd − 2Þ regular. We denote
the completion of G by Ḡ. It is easy to see that completion
is always possible and unique. If we employ the Feynman
rule that every edge e adjacent to∞ has quadricQe ¼ 1 we
find that the period (1) does not change under completion.
The power of completion is that the period of a

completed graph does not depend on the choice of
the external vertices 0; 1;∞. This was proved in four
dimensions in Theorem and Definition 2.7 in [22]. The
d-dimensional case is strictly analogous. Hence, in Ḡwe do
not need the distinction between internal and external
vertices. We, henceforth, consider Ḡ as an unlabeled graph.
Obviously, different graphsG1 andG2 can have the same

completion. In this case, completion implies equality of
their periods: PðG1Þ ¼ PðG2Þ if G1 ¼ G2. This identity on
periods was already used in [10]. Completion is effectively
a tool to organize equivalence classes of graphs with
identical period. We define PðḠÞ ≔ PðGÞ if Ḡ is the
completion of G. The loop order of a completed graph
Ḡ is defined as the number of independent cycles in the
uncompleted graph G. So, by definition, completion does
not change the loop order.

B. Existence

In four dimensions, the period of a completed graph Ḡ
with edge-weights 1 exists if and only if Ḡ is internally
6-connected. This means that the only way to cut Ḡ with
less than 6 edge cuts is to separate off a vertex (Proposition
2.6 in [22]).
In general, a Feynman period PðGÞ can be considered as

a graphical function (see Sec. IV D 1) with an isolated
external vertex z. Existence of PðGÞ in general is hence a
special case of the criterion for the existence of graphical
functions in Theorem 4.3.

A completed graph with existing period in four dimen-
sions is called completed primitive [22].

C. Product identity

The period of a completed graph Ḡ can only exist if Ḡ
has vertex connectivity ≥3 (the vertex connectivity is the
minimum number of vertices which, when removed, split
the graph). The period of a completed graph Ḡ with vertex-
connectivity three factorizes in the way depicted in Fig. 1.
Reversely, completed primitive graphs Ḡ1, Ḡ2 with trian-
gles can be glued along triangles to provide a completed
graph with period PðḠ1ÞPðḠ2Þ. The case d ¼ 4 with unit
edge-weights was treated in Theorem 2.10 in [22]. The
general case (where the weights of the triangles follow from
2d=ðd − 2Þ regularity) is analogous.
A completed graphwith vertex connectivity three is called

reducible, otherwise it is irreducible [22]. A list of all
irreducible completed primitive graphs up to eight loops
(in four dimensions with unit edge weights) is given in
Table III at the end of this report.HyperlogProcedures
extends this list to eleven loops [14].
Because not all completed primitive graphs have trian-

gles (see e.g. P6;4 in Table III) it is unclear if, in general, the
product of Feynman periods is a Feynman period. In
particular, one may ask if the Z-span of ϕ4 periods is a
ring (or—weaker—if ϕ4 periods span a Q algebra).

D. Twist and Fourier identity

There exist two more known identities on ϕ4 periods.
The (for graphs with many vertices) frequent twist identity
and the rare Fourier identity [22]. The Fourier identity
was already used in [10]. The first example of a twist
identity which is not also explained by a Fourier identity
appears at eight loops. Twist and Fourier identities are listed
in Table III.
Recent results on the Hepp invariant seem to indicate that

more identities between periods exist (see Sec. III C 8).

E. The number content of ϕ4 periods

Up to five loops there exists at most one ϕ4 period per
loop order. These periods are the first instances of the
infinite family of zig-zag periods (see Fig. 5). The periods
of the zig-zag family are rational multiples of the Riemann
zeta function at odd arguments (see Theorem 4.8).

FIG. 1. Vertex connectivity 3 leads to a product of periods.
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At six loops the ϕ4 periods P6;3 and P6;4 have a zeta
double sum of weight eight. In general, Feynman periods
are often multiple zeta values (MZVs) which are Q linear
combinations of multiple zeta sums

ζðnd;…;n1Þ¼
X

kd>…>k1≥1

1

kndd ���kn11
with ni∈Z>0; nd≥2:

At seven loops there exists a single period, P7;11, which
(conjecturally) is not expressible in terms of MZVs. The
period P7;11 (see Fig. 2) features an extension of MZVs by
(some) sixth (or third) roots of unity. We give the result in
the f6 alphabet with respect to the corresponding even
parity Deligne basis [17] (a presentation of P7;11 with
smaller numerators and denominators is given in [31]):

P7;11

i
ffiffiffi
3

p ¼ −
332262

43
f68f

6
3 þ

54918

55
f66f

6
5 þ

1134

13
f64f

6
7

−
1874502

3485
f62f

6
9 − 5670f62f

6
3f

6
3f

6
3

−
3216912825399005402331281812377062149

10264478246467100965990650592350882000

× ðπiÞ11: ð3Þ
There exists a lengthy conversion of the period P7;11 in
terms of multiple polylogarithms evaluated at primitive
sixth roots of unity. The period P7;11 was calculated by
Erik Panzer (using his program HyperInt) in his PhD
thesis [23] in terms multiple polylogarithms. With
HyperlogProcedures the result was converted into
the f alphabet [14].
At eight loops still most periods are MZVs. Beyond

MZVs we found for the period P8;33 an expression of
weight 13 which is similar to P7;11. Moreover, there exist
four periods of an entirely new type. The geometry
underlying these periods is no longer a punctured sphere
Cnf0; 1;…g. Instead of point punctures, we obtain in two
cases K3 surfaces [6]. In the other two cases, we found a
threefold and a fivefold, respectively. All four varieties are
modular of low level [32].
Beyond eight loops periods associated to nonmodular

varieties are expected [32].

F. The coaction conjectures

In (3), a letter f6 of even weight (subscript) appears only
in the leftmost position. This is a consequence of a Galois
structure in ϕ4 periods.

In [12], M. Kontsevich and D. Zagier defined the Q
algebra of periods P as integrals of rational forms over Q.
Feynman periods are periods in this sense. By general
philosophy there should exist a Galois coaction on P
[16,33–38],

Δ∶ P → Pdr ⊗Q P; ð4Þ

where the left-hand side of the tensor product is the Hopf
algebra of de Rham periods. (Note that in some publica-
tions Pdr coacts on the right-hand side.) In the special case
of ϕ4 periods, the right-hand side (and also the left-hand
side) of (4) seems to be severely restricted. A mathematical
theory with first results is in [15]. The data of approx-
imately 300 known ϕ4 periods up to 11 loops led to the
following possible scenarios [17] for the Q algebra Pϕ4

generated by ϕ4 periods. (More precisely, in this articleΔ is
the unipotent part of the coaction.)
Scenario 1.

Δ∶Pϕ4 → Pdr ⊗Q Pϕ4 : ð5Þ
Scenario 2.

Δ0∶ Pϕ4;≤n → Pdr ⊗Q PF;≤n−1; ð6Þ
where

Δ0x ¼ Δx − 1 ⊗ x

is the reduced coaction.
Scenario 2 means that for a given ϕ4 period of n loops

the right-hand side of the tensor product is in the Q vector
space spanned by Feynman periods of all graphs with at
most n − 1 loops.
Note that Pϕ4 and PF are very sparse in P, so that the

Scenarios 1 and 2 have huge predictive power on Pϕ4 .
Presumably Pϕ4 also is very sparse in PF. The coaction
conjectures are (5) and (6).

G. The c2 invariant

The c2 invariant assigns to every graph with at least three
vertices an infinite sequence which is indexed by prime
powers q ¼ pn [39],

c2∶ G ↦ ðc2ðGÞqÞq
¼ ðc2ðGÞ2; c2ðGÞ3; c2ðGÞ4; c2ðGÞ5; c2ðGÞ7;…Þ;

where c2ðGÞq is in Z=qZ. The c2 invariant is linked to the
period integral in four dimensions. With a metric signature
ðþ;−;þ;−Þ instead of the Euclidean signature it can be
defined via the point-count Nq of the singular locus of the
period integral (1) over the finite field Fq [40,41]. For
graphs with at least three vertices, Nq is divisible by q2 and
we define

FIG. 2. The completed graph P7;11.
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c2ðGÞq ≡ Nq=q2modq:

In practice, it is more efficient to calculate the c2 invariant
in parametric space where the above equation is still
valid [6,39].
The power of the c2 invariant is twofold: First, there exist

powerful tools which make it possible to determine the c2
invariant for many graphs. If the c2 invariant cannot be fully
calculated, it is still possible to determine the c2 invariant
for small primes [32,42]. For all completed primitive ϕ4

graphs up to ten loops the c2 is known for at least the first
six primes (in most cases much more) [32].
Second, the c2 invariant has some predictive power for

the period. In particular, if two graphs have the same
period, they are conjectured to have the same c2 invariant,

PðG1Þ ¼ PðG2Þ ⇒ c2ðG1Þ ¼ c2ðG2Þ:

All graphs with c2 invariant −1 (i.e. c2ðGÞq ≡ −1modq for
all q) should have an MZV period. If the c2 invariant is −z2,
with

zNðqÞ ¼
8<
:

1 if Njq − 1;

0 if gcdðN; qÞ > 1;

−1 otherwise;

ð7Þ

then the period is expected to be an Euler sum (due to the
coaction conjectures, in many cases these periods are still
MZVs [17]). The c2 invariant of the periods P7;11 and P8;33

are−z3. This links the c2 invariant to the sixth roots of unity
which exist in (3).
The connection between ϕ4 periods and higher dimen-

sional geometries (in some graphs with at least eight loops)
is proved with the c2 invariant [6,32].
This led to the proof (assuming standard transcenden-

tality conjectures) that not all ϕ4 periods are MZVs or
extensions of MZVs by algebraic numbers [5,6].
Concretely, it was shown that P8;37 is linked in such a
way to the geometry of a K3 surface (which is modular of
weight 3 level 7) that the “motivic” period cannot be
mixed Tate.
The c2 invariant can also be zero (i.e. c2ðGÞq ≡ 0modq

for all q). In this case, the period (conjecturally) has ‘weight

TABLE I. List of ϕ4-transcendentals up to loop-order eight. The list is incomplete at loop-order eight.

l Weight Number Value

1 0 Q0 ¼ 1 1
3 3 Q3 ¼ ζð3Þ 1.202 056 903 159
4 5 Q5 ¼ ζð5Þ 1.036 927 755 143
5 7 Q7 ¼ ζð7Þ 1.008 349 277 381
6 8 Q8 ¼ N3;5 0.070 183 206 556

9 Q9 ¼ ζð9Þ 1.002 008 392 826
7 10 Q10 ¼ N3;7 0.090 897 338 299

11 Q11;1 ¼ ζð11Þ 1.000 494 188 604
Q11;2 ¼ −ζð3; 5; 3Þ þ ζð3Þζð5; 3Þ 0.042 696 696 025
Q11;3 ¼ P7;11, Eq. (3) 200.357 566 429

8 12 Q12;1 ¼ N3;9 0.096 506 102 637
Q12;2 ¼ N5;7 0.020 460 547 937
Q12;3 ¼ π12=10! 0.254 703 808 841

13 Q13;1 ¼ ζð13Þ 1.000 122 713 347
Q13;2 ¼ −ζð5; 3; 5Þ þ 11ζð5Þζð5; 3Þ þ 5ζð5Þζð8Þ 5.635 097 688 692
Q13;3 ¼ −ζð3; 7; 3Þ þ ζð3Þζð7; 3Þ þ 12ζð5Þζð5; 3Þ þ 6ζð5Þζð8Þ 6.725 631 947 085
Q13;4 ¼ P8;33 [14] 468.038 498 992

TABLE II. Conversion of the Na;bs in Table I into MZVs.

l Weight Base

6 8 N3;5 ¼ 27
80
ζð5; 3Þ þ 45

64
ζð5Þζð3Þ − 261

320
ζð8Þ

7 10 N3;7 ¼ 423
3584

ζð7; 3Þ þ 189
256

ζð7Þζð3Þ þ 639
3584

ζð5Þ2 − 7137
7168

ζð10Þ
8 12 N3;9 ¼ 27

512
ζð4; 4; 2; 2Þ þ 55

1024
ζð9; 3Þ þ 231

256
ζð9Þζð3Þ þ 447

256
ζð7Þζð5Þ − 9

512
ζð3Þ4 − 27

448
ζð7; 3Þζð2Þ − 189

128
ζð7Þζð3Þζð2Þ

− 1269
1792

ζð5Þ2ζð2Þ þ 189
512

ζð5; 3Þζð4Þ þ 945
512

ζð5Þζð3Þζð4Þ þ 9
64
ζð3Þ2ζð6Þ − 7322453

5660672
ζð12Þ

N5;7 ¼ − 81
512

ζð4; 4; 2; 2Þ þ 19
1024

ζð9; 3Þ − 477
1024

ζð9Þζð3Þ − 4449
1024

ζð7Þζð5Þ þ 27
512

ζð3Þ4 þ 81
448

ζð7; 3Þζð2Þ þ 567
128

ζð7Þζð3Þζð2Þ
þ 3807

1792
ζð5Þ2ζð2Þ − 567

512
ζð5; 3Þζð4Þ − 2835

512
ζð5Þζð3Þζð4Þ − 27

64
ζð3Þ2ζð6Þ þ 3155095

5660672
ζð12Þ
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drop’. This means that the transcendental weight of the
period is strictly smaller than the maximum value 2l − 3 in
loop order l.
Note that the c2 invariant seems very sparse for ϕ4

periods. It can be conjectured that for any fixed dimension
(of the lowest dimensional manifold whose point-count
gives the c2) there exist only finitely many c2s to all loop
orders. For dimension 0 we have −zN for N ¼ 1, 2, 3, 4. In
dimension one, there seems to be nothing. We possibly
only have three two-folds (which are modular K3s of low
level) and five modular three-folds in ϕ4 [32].
This is in stark contrast to the situation in PF (including

non-ϕ4 graphs) where we expect that we see basically any
geometry over Z in the c2.
An interesting recent result by K. Yeats (private com-

munication 2017) is that we seem to see any finite sequence
of prime remainders in the c2 of ϕ4 graphs. Note that this
does not contradict the sparsity of ϕ4 c2s (because c2s are
infinite sequences).

H. The Hepp invariant

For any graph G with edge weights fνeg, e ∈ EðGÞ and
a ∈ C we recursively define the following Hepp invariant:

HaðGÞ ¼
P

e∈EðGÞνeHaðGneÞ
NG − ah1ðGÞ

; ð8Þ

where NðGÞ ¼ P
e∈EðGÞ νe is the sum of edge weights and

h1ðGÞ is the (Betti) number of independent cycles in G.
A graph with no edges has Hepp invariant 1.
Lemma 3.1. The Hepp invariant has the following

properties:
(1) If the removal of the edge e disconnects the graph G

then HaðGÞ ¼ HaðGneÞ.
(2) If G has vertex connectivity ≤ 1 then Ha factorizes,

i.e.HaðGÞ is the product of the Hepp invariants of its
components (cutting at split vertices without remov-
ing edges).

(3) Assume a vertex v in G is adjacent to exactly two
edges e and f with weights νe and νf. We construct a
smaller graph G0 by contracting the edge e (or f) in
G and giving f (e) the weight νe þ νf. Then
HaðGÞ ¼ HaðG0Þ.

Proof.—Straightforward induction over the number of
edges in G. □

The above lemma can be used to efficiently calculate the
Hepp invariant of reasonably large graphs. Note that every
forest has Hepp invariant 1.
If a graph G has a Feynman period in d ¼ 4 dimensions

then HaðGÞ trivially has a simple pole at a ¼ 2. We define
the Hepp period of G as the residue,

HðGÞ ¼ −h1ðGÞ2−h1ðGÞresa¼2HaðGÞ: ð9Þ

Erik Panzer recently found that the Hepp period is closely
related to the Feynman period [30,43]. It approximates the
Feynman period surprisingly well,

PðGÞ ≈ 0.545h1ðGÞ−1HðGÞ1.355: ð10Þ

with an error of a few percent. The numerical estimates for
the unknown eight loop periods in Table III were obtained
by a refinement of (10).
Even more surprisingly, the Hepp period seems to know

all identities between periods.
Conjecture 3.2. (E. Panzer).

PðG1Þ ¼ PðG2Þ ⇔ HðG1Þ ¼ HðG2Þ ð11Þ

At eight loops, the above conjecture requires P8;30 ¼
P8;36 and P8;31 ¼ P8;35. These identities do not follow from
twists or Fourier identities.
Assuming Conj. 3.2 for completion, the product identity

(Sec. III C 3) was proved by E. Panzer (private communi-
cation) and independently by K. Yeats (private communi-
cation) to hold for Hepp periods.
It is easy to see that PðGÞ ≤ 2h1ðGÞHðGÞ which is the

classical Hepp bound for periods. Erik Panzer has achieved
a certain refinement of this bound [30]. We conjecture that
the Hepp period is a (crude) upper bound for the
period, PðGÞ ≤ HðGÞ.

IV. FUNCTIONS

Let G be a graph with external vertices 0; 1; z such that

the graphical function fðλÞG exists.

A. Completion

Like in the case of periods, completion exploits con-
formal symmetry to handle equivalence classes of closely
related graphical functions. Again, we add an external
vertex ‘∞’ which connects to all internal vertices of G with
weights that give the internal vertices weighted degree
2d=ðd − 2Þ. Now, we add edges fz;∞g, f0; 1g, f0;∞g,
f1;∞g such that all external vertices have weighted degree
0. This provides the completion Ḡ of G. The graphical

function fðλÞḠ of the completed graph Ḡ is defined as the
graphical function of Ḡn∞ (edges adjacent to ∞ have
quadric 1). Clearly, the graphical function does not change
under completion. Completion is always possible and
unique. In three or four dimensions, we also know that
the completed graph Ḡ has integer edge weights if G has
(Lemma 3.18 in [9]).
A permutation of external vertices in a completed graph

results in a Möbuis transformation of the argument z:
Theorem 4.1. (Theorem 3.20 in [9]). Let

σ∶f0; 1; z;∞g → f0; 1;ϕðzÞ;∞g be a permutation of
f0;1;z;∞g followed by a Möbius transformation z ↦
ϕðzÞ such that σ preserves the cross ratio ð0; 1; z;∞Þ, i.e.
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TABLE III. The census of ϕ4 periods. The numbers Q• are listed in Table I with definitions for the numbers N• in Table II. All known
periods except for P7;11 [23] can be calculated with [14]. See also [22] for definitions and explanations.

Numerical value
Name Weight Graph Exact value jAutj Index Ancestor −c2 Remarks, [Lit]

P1 1 48 — P1 — C3
1;1

0 1

P3 7.212 341 418 120 6 P3 1 C5
1;2, K5, [24]

3 6Q3

P4 20.738 555 102 48 40 P3 1 C6
1;2, O3, [25]

5 20Q5

P5 55.585 253 915 14 882 P3 1 C7
1;2, C̄7, [26]

7 441
8
Q7

P6;1 168.337 409 994 16 24192 P3 1 C8
1;2 [27]

9 168Q9

P6;2 132.243 533 110 4 16 P3 1 [10]
9 1063

9
Q9 þ 8Q3

3

P6;3 107.711 024 841 16 72 P2
3

0 [10]
8 256Q8 þ 72Q3Q5

P6;4 71.506 081 796 1152 1728 P6;4 0 C8
1;3 [10,28]

8 −4096Q8 þ 288Q3Q5

P7;1 527.745 051 766 18 405108 P3 1 C9
1;2 [10]

11 33759
64

Q11;1

P7;2 380.887 829 534 2 20 P3 1 [10]
11 62957

192
Q11;1 þ 9Q11;2 þ 35Q2

3Q5

P7;3 336.067 072 110 2 16 P3 1 [10]
11 73133

240
Q11;1 þ 144

5
Q11;2 þ 20Q2

3Q5

P7;4 294.035 314 185 4 320 P2
3

0 [10]
10 420Q3Q7 − 200Q2

5

P7;5 254.763 009 595 8 144 P2
3

0 [10]
10 −189Q3Q7 þ 450Q2

5

(Table continued)
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TABLE III. (Continued)

Numerical value
Name Weight Graph Exact value jAutj Index Ancestor −c2 Remarks, [Lit]

P7;6 273.482 574 258 2 20 P3 1 [10]
11 14279

64
Q11;1 − 51Q11;2 þ 35Q2

3Q5

P7;7 294.035 314 185 8 320 P2
3

0 Fourier, twist
10 P7;4

P7;8 183.032 420 030 16 16 P7;8 z2
11 22383

20
Q11;1 − 4572

5
Q11;2 þ 1792Q3Q8 − 700Q2

3Q5

P7;9 216.919 375 587 12 3 P7;9 z2 [29]
11 92943

160
Q11;1 − 3381

20
Q11;2 þ 896Q3Q8 − 1155

4
Q2

3Q5

P7;10 254.763 009 595 72 144 P7;10 0 K3□K3, Fourier
10 P7;5

P7;11 200.357 566 429 18 ? P7;11 z3 C9
1;3, [23]

11 Q11;3

P8;1 1 716.210 576 104 20 2635776 P3 1 C10
1;2

13 1716Q13;1

P8;2 1 145.592 929 599 2 12 P3 1
13 25147347

22400
Q13;1 − 16881

1400
Q13;2 þ 459

112
Q13;3 þ 1305

8
Q2

3Q7 − 135Q3Q2
5

P8;3 1 105.107 697 390 4 1280 P3 1
13 298Q13;1 þ 56Q13;2 − 20Q13;3 − 280Q2

3Q7 þ 800Q3Q2
5

P8;4 966.830 801 986 1 12 P3 1
13 17124243

22400
Q13;1 − 19689

1400
Q13;2 þ 1755

112
Q13;3 þ 9

8
Q2

3Q7 þ 135Q3Q2
5

P8;5 844.512 518 603 4 24 P2
3

0
12 1536Q12;1 − 1280Q12;2 þ 36Q3Q9 þ 1299

2
Q5Q7

P8;6 904.280 824 357 4 32 P3 1
13 214841

336
Q13;1 − 423

7
Q13;2 þ 705

14
Q13;3 þ 183Q2

3Q7

P8;7 847.646 115 639 2 144 P3 1
13 2061501

2800
Q13;1 þ 13527

175
Q13;2 − 675

14
Q13;3

(Table continued)
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TABLE III. (Continued)

Numerical value
Name Weight Graph Exact value jAutj Index Ancestor −c2 Remarks, [Lit]

P8;8 847.646 115 639 2 144 P3 1 twist
13 P8;7

P8;9 904.280 824 357 2 32 P3 1 twist
13 P8;6

P8;10 735.764 103 468 2 72 P2
3

0
12 1536Q12;1 − 1280Q12;2 − 63

2
Q3Q9 þ 2493

4
Q5Q7

P8;11 805.347 388 507 4 16 P2
3

0
12 10240

69
Q12;1 þ 81920

69
Q12;2 − 2560

69
Q12;3 þ 45503

69
Q3Q9 þ 305

46
Q5Q7 − 12Q4

3

P8;12 688.898 361 296 2 288 P2
3

0
12 1024Q12;2 − 1008Q3Q9 þ 1800Q5Q7

P8;13 742.977 090 366 1 4 P3 1
13 10087273

9600
Q13;1 þ 8007

200
Q13;2 − 813

16
Q13;3 þ 2247

8
Q2

3Q7 − 465Q3Q2
5

P8;14 749.818 622 995 1 4 P3 1
13 41038969

67200
Q13;1 − 30129

1400
Q13;2 þ 1611

112
Q13;3 þ 153

8
Q2

3Q7 þ 105Q3Q2
5

P8;15 805.347 388 507 2 16 P2
3

0 twist
12 P8;11

P8;16 633.438 914 549 32 576 P3
3

0
11,10 − 31851

5
Q11;1 þ 24336

5
Q11;2 − 10240Q3Q8 þ 5040Q2

3Q5 − 8192Q10 þ 9648Q3Q7 − 10080Q2
5

P8;17 589.354 510 434 2 8 P3 1
13 15548993

4800
Q13;1 − 17313

100
Q13;2 þ 267

8
Q13;3 þ 512Q3Q10 þ 2304Q5Q8 − 825

4
Q2

3Q7 − 1410Q3Q2
5

P8;18 641.723 358 297 2 48 P2
3

0
12 727Q3Q9 − 735

2
Q5Q7 þ 72Q4

3

P8;19 598.617 690 750 4 32 P2
3

0
12 10240

69
Q12;1 þ 81920

69
Q12;2 − 2560

69
Q12;3 þ 13970

69
Q3Q9 þ 11020

23
Q5Q7 − 84Q4

3

P8;20 641.346 699 620 1 6 P3 1
13 4375463

44800
Q13;1 þ 383001

2800
Q13;2 − 23607

224
Q13;3 − 256Q3Q10 þ 256Q5Q8 − 1953

16
Q2

3Q7 þ 1035
2

Q3Q2
5

(Table continued)
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TABLE III. (Continued)

Numerical value
Name Weight Graph Exact value jAutj Index Ancestor −c2 Remarks, [Lit]

P8;21 742.977 090 366 2 4 P3 1 Fourier, twist
13 P8;13

P8;22 735.764 103 468 4 72 P2
3

0 twist
12 P8;10

P8;23 589.354 510 434 2 8 P3 1 twist
13 P8;17

P8;24 414.873 975 722 8 144 P7;8 z2
13 − 40309047

1400
Q13;1 − 353601

350
Q13;2 þ 48051

28
Q13;3 − 17920Q3Q10 − 19840Q5Q8 þ 17577

2
Q2

3Q7 þ 10800Q3Q2
5

P8;25 641.723 358 297 4 48 P2
3

0 Fourier, twist
12 P8;18

P8;26 500.445 152 216 4 6 P7;9 z2
13 25114323

22400
Q13;1 − 113979

1400
Q13;2 þ 4443

112
Q13;3 − 896Q3Q10 þ 1984Q5Q8 þ 1701

8
Q2

3Q7 − 1215
2

Q3Q2
5

P8;27 598.617 690 750 4 32 P7;10 0 Fourier
12 P8;19

P8;28 500.445 152 216 4 6 P7;9 z2 twist
13 P8;26

P8;29 553.273 794 612 2 1 P7;9 z2
13 78907643

89600
Q13;1 − 306689

5600
Q13;2 þ 16987

448
Q13;3 þ 10129

32
Q2

3Q7 − 2275
4

Q3Q2
5

P8;30 ≈505.5 2 ? P7;11 z3 [30]
13 ?

P8;31 460.088 538 246 4 8 P7;8 z2
13 67363763

5600
Q13;1 − 36487

175
Q13;2 − 1913

7
Q13;3 þ 1792Q3Q10 þ 7936Q5Q8 þ 98Q2

3Q7 − 7330Q3Q2
5

P8;32 470.720 125 534 16 17280 P8;32 0
12 − 81920

23
Q12;1 − 655360

23
Q12;2 þ 20480

23
Q12;3 þ 8760

23
Q3Q9 þ 15660

23
Q5Q7

P8;33 468.038 498 992 2 ? P8;33 z3
13 Q13;4

(Table continued)
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−z
1 − z

¼ ðσð0Þ − σðzÞÞðσð1Þ − σð∞ÞÞ
ðσð1Þ − σðzÞÞðσð0Þ − σð∞ÞÞ :

Then fðλÞḠ ¼ fðλÞ
σðḠÞ, where the Möbius transformation in the

label of σðḠÞ acts on the argument of the graphical

function. In particular, fðλÞḠ is invariant under double
transpositions of external labels.
Because edges between external vertices produce trivial

factors, completed graphical functions with stripped off
edges between external vertices are equivalence classes
graphical functions of the same type. In four dimensions,
all those graphical functions with edge weights one and at
most seven vertices are known [14].
Example 4.2. The smallest nontrivial graphical func-

tion has four vertices and three edges (see Fig. 3). In four
dimensions, this graphical function is given by the Bloch-
Wigner dilogarithm (see e.g. [44]).

fðλÞG ðzÞ ¼ 4iDðzÞ
z − z̄

;

with

DðzÞ ¼ ImðLi2ðzÞ þ lnð1 − zÞ ln jzjÞ: ð12Þ

Theorem 4.1 and fðλÞG ðzÞ ¼ fðλÞG ðz̄Þ reflect the symmetries
of D.

TABLE III. (Continued)

Numerical value
Name Weight Graph Exact value jAutj Index Ancestor −c2 Remarks, [Lit]

P8;34 470.720 125 534 16 17280 P8;34 0 twist
12 P8;32

P8;35 ≈460.2 16 ? P8;35 z2 Hepp, [30]
13 P8;31?

P8;36 ≈505.5 10 ? P8;36 z3 Hepp, [30]
13 P8;30?

P8;37 ≈422.9 2 ? P8;37 (3,7) [30]
? ?

P8;38 ≈386.6 4 ? P8;38 (4,5) [30]
? ?

P8;39 ≈384.2 8 ? P8;39 (3,8) [30]
? ?

P8;40 ≈312.1 320 ? P8;40 z4 C10
1;4, [30]

13 ?

P8;41 ≈323.3 240 ? P8;41 (6,3) C10
1;3, [30]

? ?

FIG. 3. A four dimensional graphical function with three edges
and its completion. The wiggly lines refer to edge weights −1.
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B. Existence

Existence of the graphical function fðλÞG is best formu-
lated in terms of the completion Ḡ.
Theorem 4.3. (Lemma 3.19 in [9]). The graphical

function fðλÞḠ exists if and only if for any vertex subset
V ⊂ VðḠÞ with at least two vertices and at most one
external vertex the following inequality holds,

ðd − 2ÞNg < dðjVj − 1Þ; ð13Þ

where Ng is the sum of edge weights in the induced
subgraph g of V in Ḡ (i.e. g has all the edges of Ḡ that have
both vertices in V).
In Example 4.2, we only have the case jVj ¼ 2 and

Ng ¼ 1, so that fðλÞG ðzÞ exists. In d dimensions the edge
fz;∞g has weight ð6 − dÞ=ðd − 2Þ so that (13) implies that
the graphical functions of Example 4.2 exists in any
dimension greater than three.

C. General properties of graphical functions

Graphical functions should be considered as functions
on C̄ ¼ C ∪ f∞g. They have the following general
properties:
Theorem 4.4. Let G be a graph such that the graphical

function fðλÞG exists.
(G1)

fðλÞG ðzÞ ¼ fðλÞG ðz̄Þ: ð14Þ

(G2) fðλÞG is a positive single-valued real analytic function
on C̄nf0; 1;∞g.

(G3) The radius of convergence of the real analytic
expansion of fðλÞG at z0 ∈ C̄nf0; 1;∞g is the distance
from z0 to the nearest singularity of fðλÞG .
Let ν>z (ν<z ) be the sum of positive (negative)

weights of edges adjacent to z. Let the dimension
d ¼ 2λþ 2 be even. Then, if z0 ∈ f0; 1g, we have
for jz − z0j < 1 and coefficients cl;m;nðz0Þ ∈ C:

fðλÞG ðzÞ ¼
XV int

l¼0

X∞
m¼Mz0

X∞
n¼Nz0

cl;m;nðz0Þ

× logl½ðz− z0Þðz̄− z̄0Þ�ðz− z0Þmðz̄− z̄0Þn;
ð15Þ

where

Mz0 ; Nz0 > −λν>z :

If z0 ¼ ∞ we have for jzj > 1 and coefficients
cl;m;nð∞Þ ∈ C:

fðλÞG ðzÞ ¼
XV int

l¼0

XM∞

m¼−∞

XN∞

n¼−∞
cl;m;nð∞Þloglðzz̄Þzmz̄n;

ð16Þ

where

M∞; N∞ < −λν<z :

Property (G1) is immediate by symmetry. It also follows
from the parametric representation of graphical functions
[8]. Property (G2) is proved in [8] while (G3) will be
handled in [45]. Conjecture 4.12 gives additional informa-
tion on the leading terms of the above expansions. In the
case of odd dimensions, there exist expansions at 0, 1, ∞
which are similar to (15) and (16) with a square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − z0Þðz̄ − z̄0Þ
p

[45].

D. Appending edges

Edges between external vertices give factors in a
graphical function. In the case that an edge is appended
to the vertex z creating a new vertex z (see Fig. 4),
the graphical functions are related by a differential equation
[9,46].
Lemma 4.5. In the setup of Fig. 4, we have

�
−

1

ðz − z̄Þ ∂z∂ z̄ðz − z̄Þ þ λ − 1

z − z̄
ð∂z − ∂ z̄Þ

�
fðλÞG1

ðzÞ

¼ 1

ΓðλÞ f
ðλÞ
G ðzÞ; ð17Þ

where ΓðλÞ ¼ R
∞
0 xλ−1 expð−xÞdx is the gamma function.

The differential equation is particularly simple in d ¼ 4
dimensions (λ ¼ 1). In this case, we (uniquely) obtain the
graphical function of G1 by single-valued integration with
respect to z and z̄ (see [9]).
Lemma 4.6. Let λ ¼ 1. The differential operator on the

left-hand side of (17) has trivial kernel in the space of
functions with general properties (G1)–(G3).
Proof.—Assume f with properties (G1)–(G3) is in the

kernel of the differential operator for λ ¼ 1. Because of
(G2), gðzÞ ¼ ∂zðz − z̄ÞfðzÞ is meromorphic. We use (15)
with N0, M0, N1, M1 ≥ 0 (because ν>z ¼ 1 in G1) and
conclude that g is holomorphic on C. From (16) with
N∞, M∞ ≤ −1 we get gð∞Þ ¼ 0, hence, by Liouville’s

FIG. 4. Appending an edge to the vertex z in G gives G1.
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theorem, g ¼ 0. Therefore f ¼ hðz̄Þ=ðz − z̄Þ for some anti-
holomorphic function h. With (G1) we obtain h ¼ 0. □

Beginning with the empty graphical function we can
construct many graphical functions by appending edges
(see [9,11]). A particularly simple class of such graphical
functions is handled by the following theorem.
Theorem 4.7. Let G be a graph with external vertex

width four (constructible in [9]), i.e. G can be constructed
from the empty graph by adding edges between external
vertices, permuting external vertices, and appending edges.
If G has no edges between external vertices then we obtain
in d ¼ 4 dimensions,

fð1ÞG ðzÞ ¼ PðzÞ=ðz − z̄Þ; ð18Þ
where P is a single-valued multiple polylogarithm [47] of
weight 2V intðGÞ.
The proof of the theorem will be in [45]. Note that the

theorem is consistent with Example 4.2.
In d ¼ 4 − ϵ dimensions, edges can still be appended if

one expands fðλÞG into a Laurent series in ϵ to a given order.
The procedure, however, is more subtle, see Sec. IV D 8.

E. Identities

There exist many identities for graphical functions. A
Fourier-identity relating planar duals was proved in [8].
Like in the case of periods there also exists a twist identity.
Some complicated graphical functions can be calculated by
a Gegenbauer technique [9,45]. All known identities are
included in HyperlogProcedureswhich (among other
things) can calculate many graphical functions [14]. If a
graphical function is inaccessible to all of these methods
then sometimes it can still be calculated by parametric
integration, due to F. Brown [48,49] and E. Panzer [23,50].
In [51], B. Basso and L. J. Dixon provide an intriguingly

simple formula for graphical functions of the ðm; nÞ
‘fishnet’ topology. The result is conjectured from methods
and properties ofN ¼ 4 supersymmetric Yang-Mills theory.
Form; n > 1 the fishnet topology is inaccessible to the tools
presented here. This indicates that much more powerful
methodsmay exist for the calculation of graphical functions.

F. From graphical functions to periods

There exist several options to derive Feynman periods
from graphical functions.

First, one can specify the variable z in fðλÞG ðzÞ to 0, 1, or
∞. In the case of the zig-zag graphs depicted in Fig. 5, this
method leads to a proof of a conjecture by D. Broadhurst
and D. Kreimer in 1995 [10].
Theorem 4.8. (F. Brown, O. Schnetz, [11]). The

period of the graph Zn is given by

PðZnÞ ¼ 4
ð2n − 2Þ!
n!ðn − 1Þ!

�
1 −

1 − ð−1Þn
22n−3

�
ζð2n − 3Þ: ð19Þ

Second, in integer dimensions d ≥ 3 one can integrate

fðλÞG ðzÞ over the external variable z [9]. This effectively
makes z an internal variable. For a general graph in integer
dimensions this is the best method to calculate Feynman
periods. It is used in [14].
Third, in the case of dimensional regularization we need

to treat the dimension d as a parameter and expand periods
in 4 − ϵ dimensions at ϵ ¼ 0. Using the second method one
obtains an integration measure of ðz − z̄Þ2−ϵ which does not
expand in ϵ into GSVHs (see Sec. IV D 7). One can resort
to the following procedure to integrate over z: Add an edge
of weight −1 between the external vertices 0 and z. Then,
append an edge to the vertex z creating a new vertex z. Set
z ¼ 0 so that the newly appended edge cancels the
previously added edge of weight −1. This integrates over
z in any possibly non-integer dimension d. This method is
used for perturbative calculations in dimensionally regu-
larized ϕ4 theory (see Sec. IV D 9) [14]. It is also possible
to devise a more direct method to perform 4 − ϵ dimen-
sional integrations (private communication with E. Panzer).
However, this is conceptually more demanding and in
practice the method that appends an edge works quite well.

G. Generalized single-valued hyperlogarithms

Many graphical functions can be expressed in terms of
iterated integrals [52]. Although, by (G2) of Sec. IV D,
graphical functions have only singularities at 0, 1, and∞ it
turns out that single-valued multiple polylogarithms [47]
(i.e. letters 0 and 1 in the iterated integrals) are too
restrictive. Let us consider the following example (which
shows the same mechanism although it is not a graphical
function).

FIG. 5. Completed (Z•) and uncompleted (Z•) zig-zag graphs with five and six loops.
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Example 4.9. let r > 0. Define

fðzÞ ¼ logðzz̄=rÞ
z − r=z̄

: ð20Þ

Then f is real analytic on C̄nf0;∞g because the zero locus
z ¼ r=z̄ in the denominator is canceled by the numerator.
By general principles, there should exist a single-valued
primitive of f which also is real analytic on C̄nf0;∞g. By
single-valuedness the primitive is determined up to a
rational function in z̄. It is unique in the space of hyper-
logarithms which vanish at 0.
We generalize the above example in the sense that we

consider bilinear denominators in z and z̄ (i.e.
aþ bzþ cz̄þ dzz̄, with a; b; c; d ∈ C). We require that
non pointlike zero loci in the denominator are canceled by
the numerator. This leads to functions with pointlike
singularities, so that single-valuedness makes sense. We
can construct single-valued primitives of single-valued
functions leading to the space of generalized single-valued
hyperlogarithms (GSVHs).
There also exist GSVHs with no singularities on the

complex plane. A trivial example of this type is logð1þ
zz̄=rÞ for r > 0. In the context of graphical functions,
however, we have GSVHs of the type in Example 4.9. A
QFT example of weight three is the single-valued primitive
of 4iDðzÞ=ðz − z̄Þ where D is the Bloch-Wigner dilogar-
ithm (12) (see also [53]).
Let G be the space of GSVHs. Upon differentiation with

respect to z and z̄we obtain the spaces ∂zG, ∂ z̄G, ∂ z̄∂zG. For
example, f in (20) is in ∂zG. We would like to construct an
algorithm for single-valued integration in ∂zG.
Functions in ∂zG have expansions (15) and (16) for

general z0 ∈ C̄. The holomorphic residue resz0 is the
coefficient c0;−1;0ðz0Þ, whereas the anti-holomorphic resi-
due ¯resz0 is the coefficient c0;0;−1ðz0Þ. let π0 (π̄0) be the
projection onto the (anti-)residue free part,

π0∶ ∂zG → ∂zG; fðzÞ ↦ fðzÞ −
X
z0∈C

resz0ðfÞ
z − z0

;

π̄0∶ ∂ z̄G → ∂ z̄G; fðzÞ ↦ fðzÞ −
X
z0∈C

¯resz0ðfÞ
z̄ − z̄0

:

An efficient method to obtain single-valued primitives
relies on the commutative hexagon in Fig. 6, where

R
sv

stands for single-valued integration.
Theorem 4.10. The diagram in Fig. 6 commutes.
The proof of the theorem will be in [13]. By virtue of

Fig. 6, we can express a single-valued primitive with
respect to z also as a single-valued primitive with respect
to z̄. Because single-valued integration in z (resp. z̄) equals
ordinary integration up to an anti-holomorphic (resp.
holomorphic) function, knowing both integrands deter-
mines the single-valued primitive up to a constant (which

is fixed by the condition that the single-valued primitive
vanishes at z ¼ 0). Using integration by parts at the bottom
right arrow in Fig. 6, we can reduce single-valued inte-
gration to lower weights.
If f ∈ ∂zG has weight 0 then the integration from ∂ z̄∂zG

to ∂ z̄G is purely rational. The single-valued integration of
the residues (which has to be done separately) is trivial: The
single-valued primitive of 1=ðz − cÞ is log½ðz − cÞðz̄ − c̄Þ�
for any c ∈ C.
Example 4.11. (Example 4.9 continued). In terms of

iterated integrals (writing from right to left), we obtain for
the numerator of the integrand

logðzz̄=rÞ ¼ Iðz; 0; 0Þ þ Iðz̄; 0; 0Þ − Iðr; 0; 0Þ:

The single-valued primitive of f has the general form (note
that f is residue-free)

Z
sv
fðzÞdz ¼ Iðz; r=z̄; 0; 0Þ

þ Iðz; r=z̄; 0Þ½Iðz̄; 0; 0Þ − Iðr; 0; 0Þ�
þ gðz̄Þ ð21Þ

for some anti-holomorphic g. Differentiation with respect
to z̄ yields

∂ z̄fðzÞ ¼
1

zz̄ − r
− r

logðzz̄=rÞ
ðzz̄ − rÞ2 :

Using integration by parts on the second term, we find

Z
sv
−r

logðzz̄=rÞ
ðzz̄ − rÞ2 dz ¼

r logðzz̄=rÞ
z̄ðzz̄ − rÞ −

Z
sv

r
zz̄ðzz̄ − rÞ dz:

Adding the two terms which remain to be integrated, the
factor ðzz̄ − rÞ cancels (it has to) and we obtain

Z
sv
∂ z̄fðzÞdz ¼

r logðzz̄=rÞ
z̄ðzz̄ − rÞ þ logðzz̄Þ

z̄
:

In fact, there is an ambiguity in form of a rational function
in z̄. However, because the result has to be in ∂ z̄G, the

FIG. 6. The inductive construction of GSVHs by a commuta-
tive hexagon.
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ambiguity can only be an anti-residue and it is removed by
the projection π̄0. The above expression has an anti-residue
at z ¼ 0 with value logðrÞ. Subtraction yields

π̄0

Z
sv
∂ z̄fðzÞdz ¼

logðzz̄=rÞ
z̄ − r=z

:

Using the commutative hexagon we obtain by integration
with respect to z̄,

Z
sv
fðzÞdz ¼ Iðz̄; r=z; 0; 0Þ

þ Iðz̄; r=z; 0Þ½Iðz; 0; 0Þ − Iðr; 0; 0Þ�
þ hðzÞ ð22Þ

for some holomorphic function h. If we write (22) as
hyperlogarithms in z with coefficients which are hyper-
logarithms in z̄ we get (21) with hðzÞ instead of gðz̄Þ.
(Alternatively we may treat z and z̄ as independent
variables in (22) and consider the limit z → 0.) We
conclude that in this example hðzÞ ¼ gðz̄Þ is a constant.
This constant is zero because the single-valued integral is
required to vanish at z ¼ 0.
At four dimensions some (few) graphical functions exist

which can be expressed in terms of ordinary single-valued
multiple polylogarithms (see e.g. [11]). A large majority of
graphical functions which can be expressed in terms of
iterated integrals are GSVHs which are not single-valued
multiple polylogarithms. In 4 − ϵ “dimensions,” every
nontrivial graphical function expands in ϵ with coefficients
which are not single-valued multiple polylogarithms (but
often GSVHs).

H. 4 − ϵ dimensions

We can use the parametric representation of graphical
functions [8] to define graphical function for non-integer d.
Using 4 − ϵ ‘dimensions’ regularizes graphical functions:
Graphical functions that diverge in 4 dimensions may (and
generically do) exist in 4 − ϵ dimensions.
Although general properties (G1) and (G2) in

Theorem 4.4 remain valid, graphical functions in non-
integer dimensions can hardly be calculated in terms of
known functions. However, in QFT it suffices to know their
Laurent expansions at ϵ ¼ 0 to some (small) order in ϵ. For

the Laurent coefficients, (G3) holds and often they can be
expressed in terms of GSVHs.
The main tool for constructing these coefficients is again

appending edges (see Sec. IV D 4). Equation (17) can be
solved iteratively in powers of ϵ. However, in this approach
we cannot directly use Lemma 4.6 to avoid the kernel of the
differential operator. We first need to subtract poles at
z ¼ z0, z0 ∈ f0; 1g, which are of order four (or higher) in
jz − z0j. (Using completion an analogous subtraction is
necessary at z0 ¼ ∞.) For these singular contributions we
need exact results; it is not sufficient to know them to a
limited order in ϵ. In a renormalizable QFT, we only have to
deal with “logarithmic” singularities; i.e. the case of poles
of order four suffices. This leading-order asymptotic
behavior of graphical functions is obtained by the following
conjecture.
Conjecture 4.12. Let G be a graph with V int internal

and Vext ¼ f0; 1; zg external vertices such that the graphical
function fðλÞG exists. LetG½V� be the subgraph ofG which is
induced byV, i.e. the subgraphwhich contains theverticesV
and all edges of G with both vertices in V. Further let z0 ∈
f0; 1g and G½V ¼ z0� be the graph G=G½V� where one
identifies all vertices in V with the vertex z0. Then (see
Fig. 7). we obtain the asymptotic expansions at z ¼ z0 by

fðλÞG ðzÞ¼
X
V⊆V int

fðλÞG½V∪fz0;zg�ðzÞf
ðλÞ
G½V∪fz0;zg¼z0�ð1þOðjz−z0j2ÞÞ

ð23Þ

whenever the right-hand side exists. The asymptotic expan-
sion at z ¼ ∞ is given by

fðλÞG ðzÞ ¼
X
V⊆V int

fðλÞG½V∪f0;1g�f
ðλÞ
G½V∪f0;1g¼0�ðzÞð1þOðjzj−2ÞÞ

ð24Þ

whenever the right-hand side exists.
Note that on the right-hand side of the above equations

one has graphs with two external vertices [see (2)]. The
calculation of their functions amounts to calculating peri-
ods (see Sec. III) which is much simpler than the calcu-
lation of graphical functions. Equations (23) and (24) are
formally obtained by rescaling some internal variables
xi ↦ xijzj followed by a naive expansion in the integrand.

FIG. 7. The asymptotic expansion of graphical functions at z ¼ 0. The bold lines stand for sets of edges.
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The sum is over all possible ways to do this. In (rare)
situations, the right-hand sides may fail to exist (although
working in 4 − ϵ dimensions). In these cases, we have no
result for the asymptotic expansion of the left-hand side.
In integer dimensions, Conjecture 4.12 is an analog to a

power-counting result by S. Weinberg from 1960 [54]. In
the mathematical literature, one uses the equivalent tech-
nique of blowing up singularities (see e.g. [55] in the QFT
context). Here, however, we use 4 − ϵ dimensions so that
the methods so not directly apply in position space. We
thuse leave the result as a well tested conjecture.
Up to four loops appending edges and permuting

external vertices suffices to calculate graphical functions.
In four loops, all encountered functions are GSVHs in the
alphabet 0; 1; z̄ (this holds to all orders in ϵ). Because such
GSVHs evaluate to MZVs this extends a results by B. A.
Baikov and K. G. Chetyrkin (up to weight 7) [56] and by

R. N. Lee, A. V. Smirnov, and V. A. Smirnov (up to
weight 12) [57] to arbitrary weight.
In addition to appending edges, there exist a variety of

tools that allows one to calculate the ϵ-expansions of
graphical functions in 4 − ϵ dimensions to low orders in
ϵ [58]. Note that linear reducibility [23] and the method
presented here suggest that MZVs exhaust the number
contents of ϵ expansions up to 6 loops and any order in ϵ.

I. β, γ, γm, and the self-energy in dimensionally
regularized ϕ4 theory

Most efficiently one calculates ϕ4 renormalization func-
tions in the minimal subtraction scheme of dimensional
regularization [18]. The seven loop β function, anomalous
dimension γ, and anomalous mass dimension γm are (The
Feynman graphs were generated with M. Borinsky’s
program feyngen [59].)

β ¼
�
195654269

23040
þ 15676169

720
ζð3Þ − 316009

3840
π4 þ 18326039

480
ζð5Þ − 129631

5040
π6 þ 516957

20
ζð3Þ2 − 4453

60
π4ζð3Þ

þ 1536173

20
ζð7Þ − 20425591

1260000
π8 þ 116973ζð3Þζð5Þ þ 947214

25
ζð5; 3Þ − 1010

63
π6ζð3Þ þ 613

5
π4ζð5Þ þ 4176ζð3Þ3

þ 547118

3
ζð9Þ − 45106

43659
π10 − 48π4ζð3Þ2 þ 84231

2
ζð3Þζð7Þ − 273030

7
ζð5Þ2 þ 8460

7
ζð7; 3Þ − 174

25
π8ζð3Þ

þ 6227

35
π6ζð5Þ − 56043

25
π4ζð7Þ − 504387π2ζð9Þ þ 46845ζð3Þ2ζð5Þ þ 27216ζð3Þζð5; 3Þ − 336258

5
ζð5; 3; 3Þ

þ 52756839

10
ζð11Þ þ 24P7;11

�
g8 þ

�
−
18841427

11520
−
779603

240
ζð3Þ þ 5663

480
π4 −

63723

10
ζð5Þ þ 6691

1890
π6 −

8678

5
ζð3Þ2

þ 9

5
π4ζð3Þ − 63627

5
ζð7Þ þ 88181

78750
π8 − 4704ζð3Þζð5Þ − 51984

25
ζð5; 3Þ − 768ζð3Þ3 − 46112

3
ζð9Þ

�
g7

þ
�
764621

2304
þ 7965

16
ζð3Þ − 1189

720
π4 þ 987ζð5Þ − 5

14
π6 þ 45ζð3Þ2 þ 1323ζð7Þ

�
g6

þ
�
−
3499

48
− 78ζð3Þ þ 1

5
π4 − 120ζð5Þ

�
g5 þ

�
145

8
þ 12ζð3Þ

�
g4 −

17

3
g3 þ 3g2

≈ 474651g8 − 34776.1g7 þ 2848.57g6 − 271.606g5 þ 32.5497g4 − 5.66667g3 þ 3g2; ð25Þ
where P7;11 is given in (3). This confirms (and goes beyond) a recent six loop result by M. V. Kompaniets and E. Panzer
[43]. Note that the final result for the five loop β function was already obtained in 1993 by H. Kleinert, J. Neu, V. Schulte-
Frohlinde, K. G. Chetyrkin and S. A. Larin [60]. In this article, the authors also give a five-loop result for γm and a four-loop
result for the anomalous dimension γ.

γ ¼
�
−
214519

5120
−
52883

1920
ζð3Þ − 4247

23040
π4 þ 8023

320
ζð5Þ − 71

1080
π6 −

523

40
ζð3Þ2

−
1

20
π4ζð3Þ þ 3573

40
ζð7Þ − 2063

210000
π8 þ 27ζð3Þζð5Þ þ 162

25
ζð5; 3Þ

�
g7

þ
�
73667

9216
þ 295

192
ζð3Þ þ 73

1920
π4 −

37

8
ζð5Þ þ 5

756
π6 −

1

2
ζð3Þ2

�
g6

þ
�
−
3709

2304
þ 3

16
ζð3Þ − 1

180
π4
�
g5 þ 65

192
g4 −

1

16
g3 þ 1

12
g2

≈ −124.159g7 þ 14.3840g6 − 1.92558g5 þ 0.338542g4 − 0.0625g3 þ 0.0833333g2: ð26Þ
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This confirms (and goes beyond) a recent six-loop calculation of D. V. Batkovich, K. G. Chetyrkin, and
M. V. Kompaniets [61].

γm ¼
�
−
24838423

13824
−
2399489

864
ζð3Þ þ 329

960
π4 −

25511

24
ζð5Þ − 1865

1134
π6 −

140153

48
ζð3Þ2 − 68

45
π4ζð3Þ þ 46625

12
ζð7Þ

−
83003

378000
π8 − 4519ζð3Þζð5Þ − 6147

5
ζð5; 3Þ − 412

189
π6ζð3Þ þ 167

30
π4ζð5Þ þ 424ζð3Þ3 þ 60289

12
ζð9Þ

−
45106

654885
π10 −

16

5
π4ζð3Þ2 þ 777

2
ζð3Þζð7Þ þ 31778

7
ζð5Þ2 þ 564

7
ζð7; 3Þ

�
g7

þ
�
7915913

23040
þ 472891

1440
ζð3Þ þ 113

192
π4 þ 4019

40
ζð5Þ þ 163

540
π6 þ 446

5
ζð3Þ2 þ 3

5
π4ζð3Þ − 4629

20
ζð7Þ þ 2063

35000
π8

− 288ζð3Þζð5Þ − 972

25
ζð5; 3Þ

�
g6 þ

�
−
158849

2304
−
1519

48
ζð3Þ − 13

72
π4 − ζð5Þ − 5

126
π6 þ 9ζð3Þ2

�
g5

þ
�
477

32
þ 3

2
ζð3Þ þ 1

30
π4
�
g4 −

7

2
g3 þ 5

6
g2 − g

≈ −13759.8g7 þ 1354.64g6 − 150.756g5 þ 19.9563g4 − 3.5g3 þ 0.833333g2 − g: ð27Þ

This confirms (and goes beyond) a recent six-loop result by M. V. Kompaniets and E. Panzer [43].
The six-loop self-energy Σ is

ΣðpÞ
p2

¼
�
−
27

2
L5 −

3643

24
L4 þ

�
−
648011

864
− 16ζð3Þ

�
L3 þ

�
−
291187

144
− 82ζð3Þ − 1

20
π4 − 20ζð5Þ

�
L2

þ
�
−
1699885

576
−
32953

192
ζð3Þ − 11

48
π4 −

211

4
ζð5Þ − 5

378
π6 þ ζð3Þ2

�
L −

33992153

18432
−
683389

4608
ζð3Þ − 18403

69120
π4

−
8681

192
ζð5Þ − 359

18144
π6 −

83

48
ζð3Þ2 þ 1

360
π4ζð3Þ þ 5

6
ζð7Þ

�
g6 þ

�
9

2
L4 þ 1375

36
L3 þ

�
12935

96
þ 2ζð3Þ

�
L2

þ
�
8353

36
þ 5ζð3Þ þ 1

90
π4
�
Lþ 1874629

11520
þ 6319

1440
ζð3Þ þ 251

14400
π4 −

1

5
ζð5Þ

�
g5

þ
�
−
3

2
L3 −

53

6
L2 −

1867

96
L −

2017

128
þ 3

32
ζð3Þ

�
g4 þ

�
1

2
L2 þ 7

4
Lþ 167

96

�
g3 þ

�
−
1

6
L −

13

48

�
g2; ð28Þ

where

L ¼ 1

2
log

�
4πΛ2

expðCÞp2

�
;

with the renormalization scale Λ and Euler-Mascheroni
constant C ¼ 0.577…. This result confirms an unpublished
five loop result by D. Broadhurst for the propagator
1=ðp2 − ΣðpÞÞ at L ¼ 0 [62].
The analogous results for the OðnÞ-symmetric model

have also been calculated. They are available in
HyperlogProcedures [14]. With these results E.
Panzer improved his QFT predictions for critical exponents
in three dimensional statistical models (private communi-
cation, [43]).
While eight loop calculations of the anomalous dimen-

sions γ and γm seem possible, an eight loop result for the β

function demands serious determination. For the time being
the author is not pursuing eight loop calculations.

J. The anomalous magnetic moment of the electron

So far, all results were obtained in the framework of
massless bosonic ϕ4 theory. How does the picture change
for a physical gauge theory with massive fermions? An
excellent test is the QED contribution to the anomalous
magnetic moment of the electron ae where three orders in
α=π are known [3] with a recent partial fourth-order result
by S. Laporta [4].
In the f alphabet for MZVs with extensions by all sixth

roots of unity, we obtain—we use the letters g6 to make the
distinction to (3) which refers to a number subset which has
no weight 1 letters g61 ≅ 2 log 2 and log 3 (the letter log 3 is
absent in all known terms of ae):
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ae ¼
1

2

�
α

π

�
þ
�
197

144
þ 1

12
π2 þ 27

32
g63 −

1

4
g61π

2

��
α

π

�
2

þ
�
28259

5184
þ 17101

810
π2 þ 139

16
g63 −

149

9
g61π

2

−
525

32
g61g

6
3 þ

1969

8640
π4 −

1161

128
g65 þ

83

64
g63π

2

��
α

π

�
3

:

ð29Þ

In the f alphabet, the Galois coaction (4) is deconcatena-
tion. It is therefore easy to read off the Galois conjugates on
the right-hand side of the tensor product in the coaction. Up
to weight three, we only have the four Galois conjugates

1; π2; g63; g61π
2:

Although this list follows from a three loop result it can be
conjectured that the list is complete to all loop orders (see
e.g. [15,16]). In general we expect that one is able to extract
the complete list of Galois conjugates of weight ≤ n from
an n loop result.
In [4] Laporta presents an explicit result for the hyper-

logarithmic part of the fourth-order ae. The conversion into
the f alphabet is given in [63]. It is similar to (29) with
additional extensions of MZVs by fourth roots of unity.
With f42 ≅ 2iImLi2ðiÞ we obtain the following six Galois
conjugates of weight 4:

g64; g61g
6
3; g62π

2; f42π
2; g61g

6
1π

2; π4:

The result is preliminary because it does not contain the
Galois conjugates of the nonhyperlogarithmic part of ae. It
is also possible that Laporta’s result misses some hyper-
logarithmic terms (hidden in the nonhyperlogarithmic part).

Because the coaction conjectures basically work graph by
graph, it still makes sense to analyze the partial result [63].
The two most remarkable properties of the motivic

structure of ae are
(1) The Q vector spaces of Galois conjugates at given

weight have very low dimensions. This is a strong
sparsity property of QED, similar to the one found
for Pϕ4.

(2) The type of numbers in ae corresponds to what we
found in Pϕ4 . We have MZVs (g63; g

6
5), Euler sums

(g61; g
6
1g

6
1; g

6
1g

6
3), extensions by sixth roots of unity

(g62; g
6
4), and extensions by fourth roots of unity (f

4
2).

These correspond to the c2 invariants −1, −z2, −z3,
−z4 found in ϕ4 theory. There seems to exist
nothing else in the polylogarithmic part of ae up
to loop-order four. The only difference to massless
ϕ4 theory is that the numbers come at smaller loop
orders, namely 2,2,4,4 for ae in contrast to 3,9,7,8
for ϕ4.
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