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We introduce a more general set of kinematic renormalization schemes than the original momentum
subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω, which
tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the
three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the
three-loop renormalization group functions in each gauge. For an application, we evaluate two critical
exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme
independent in a subrange of the conformal window.
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I. INTRODUCTION

The renormalization of a renormalizable quantum field
theory is a technical exercise which first requires the
evaluation of the Feynman diagrams of the relevant
divergent n-point Green’s functions of the theory to a
specific order in perturbation theory. The machinery to
subsequently render the theory finite is well established and
is completed by encoding the computed renormalization
constants in the fundamental renormalization group func-
tions. These functions, such as the β function, which relates
to the renormalization of the coupling constant, allows one
to determine the behavior and value of all the Green’s
functions with the renormalization scale and energy. Of
course, this has to be tempered by noting that any values
can only be reliable within the confines of the perturbative
approximation made or equivalently the range of validity of
the loop expansion. However, in principle, with sufficient
orders in perturbation theory, any estimates should be
reasonably reliable. Indeed, the last known term of the
perturbative series can sometimes be used as a way of
estimating errors. In outlining the general process of
renormalization, several more technical issues lurk within
the procedure. One of these major areas is that of how the
renormalization constants are determined. There are two
main aspects to achieving this. First, one has to specify the
point where the renormalization constants are to be defined.
By this, we mean the momentum configuration of the

external legs of the divergent n-point functions. In other
words, the values of the square of each external momentum
have to be specified. Clearly, there are infinitely many
possibilities for such momenta values, but there is a subset
which has to be avoided. These are where the sum of a
subset of the external momenta is zero. Termed an excep-
tional momentum configuration, such momenta values can
lead to infrared problems in the evaluation or running of the
final value of the Green’s function. The second general
feature of renormalization is that once the renormalization
point is specified one has to specify the prescription to
defining the renormalization constant associated with each
Green’s function. This is known as the renormalization
scheme. Again, there are infinitely many of ways of
achieving this. The most commonly used scheme is the
modified minimal subtraction (MS) scheme [1]. It is a
variation on the original minimal subtraction scheme
denoted by MS, [2,3]. In the MS scheme, the renormaliza-
tion constants are determined by removing only the
divergences with respect to the regulator. The MS scheme
is a variant on this where not only are the poles removed but
also a specific finite part which is lnð4πe−γÞ, where γ is the
Euler-Mascheroni constant, [1]. The removal of this extra
piece appears to improve the convergence of the series for
the Green’s function, [1].
One major benefit of the MS scheme is that the

evaluation of (massless) Feynman diagrams can be com-
pleted to very high-loop order. Particularly impressive has
been the progress in determining the β function and other
renormalization group functions of QCD to five-loop order
[4–7] in the MS scheme. This, together with other five-loop
results [8–11], built on the earlier one- to four-loop MS
β-function results of Refs. [12–18] over a period of around
40 years. At this stage, we make a side remark in relation to
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the general renormalization process. We noted that the
renormalization scheme involves the divergent part of a
Green’s function, which is quantified by a regulator. The
specific regularization was not stated at that point as its
nature is irrelevant to the scheme definition. For instance,
there are several main regularizations such as Paul-Villars
cutoff, spacetime lattice regularization, and dimensional
regularization. Each has particular attributes best suited to
the problem of interest. For instance, spacetime lattice
regularization is particularly useful for studying infrared
physics numerically where perturbation theory is not
applicable. Although that regularization breaks Lorentz
invariance, this can be addressed in order to obtain reliable
physics results. Also, it is not an easy regularization to use
for analytic perturbative results, and only a few loop orders
have ever been determined analytically. Equally, a standard
cutoff approach is only useful for a few loop orders and has
the drawback of breaking gauge invariance. To circumvent
these technical constraints, high-order loop computations
are efficiently carried out using dimensional regularization
in which the critical (integer) dimension of the quantum
field theory is replaced by a continuum spacetime dimen-
sion d. This is an analytic continuation with the regulator
introduced as a small perturbation from the critical dimen-
sion. For QCD, we then have d ¼ 4 − 2ϵ, where ϵ is a
complex variable which has magnitude very much less than
unity and is the regulator. Unlike the other regularizations,
gauge and Lorentz symmetry are not broken.
One feature of the MS scheme that is maybe not

immediately obvious but that is exploited in the higher-
loop computations is that the correct MS renormalization of
a Green’s function emerges even at an exceptional momen-
tum configuration. For instance, the determination of the
coupling constant renormalization requires the evaluation
of one of the three three-point functions in QCD. The MS
divergences can be extracted by nullifying one of the
external momenta. This relegates the evaluation of three-
point functions to the level of a two-point function, which is
significantly easier to determine. This observation has been
beneficial to finding the QCD β function at various loop
orders. In this sense, MS is regarded as a nonkinematical
renormalization scheme. It carries no information within
the renormalization constants with respect to the location of
the subtraction point. By contrast, the renormalization
constants of a kinematic scheme contain data correspond-
ing to that point. Several kinematic renormalization
schemes have been used to study QCD. For example,
there are an on-shell scheme of Ref. [19] and the momen-
tum subtraction (MOM) schemes of Refs. [20,21]. In the
latter scheme, a nonexceptional momentum configuration
is chosen to evaluate the three-point vertex functions of
QCD. The second aspect of the MOM scheme definition is
that at that subtraction point the divergences as well as the
finite parts of the two- and three-point functions are
absorbed into the renormalization constants. Specifically,

the subtraction point for the MOM scheme is defined as the
point where the squares of the external momenta are all
equal [20,21]. This is known as the symmetric (subtraction)
point. For QCD, it leads to three separate MOM schemes
known as MOMg, MOMh, and MOMq, corresponding to
schemes based on the triple gluon, ghost-gluon, and quark-
gluon vertices, respectively. In Refs. [20,21], the two-loop
renormalization group functions were determined to two
loops. More recently, this was extended to three loops in
Ref. [22] due to the advance in the determination of the
two-loop three-point integrals for nonexceptional momenta
configurations [23–26].
At this point, one natural question arises, which has to do

with convergence. It could be the case that the value of a
Green’s function, for instance, appears to converge more
quickly in one scheme than another at the same loop order.
If one knew the full series, then there would be no
difference in the value of the Green’s function at the same
evaluation point. However, with a truncated series, the
numerical values of the coefficients of the coupling con-
stant differ in different schemes. Also, a Green’s function
itself is not a physical quantity, and a more proficient way
of seeing the scheme dependence is by computing a
renormalization group invariant. One simple and accessible
example of such a quantity is the set of critical exponents at
a phase transition. Critical exponents are related to the
underlying renormalization group functions themselves
since they are the values of the latter at the fixed point
or zero of the β function. In general, the main fixed point is
the Wilson-Fisher fixed point in the d-dimensional version
of the quantum field theory [27–30]. For kinematic
schemes, these have been studied in QCD in detail at three
loops in Ref. [31], for example. A second fixed point,
however, is available in QCD, which is the Banks-Zaks
fixed point [32]. It has been of intense interest recently
[33–50], from the point of view of studying various
nonkinematical schemes and responding to the new
higher-loop QCD data. The Banks-Zaks fixed point is a
strictly four-dimensional phenomenon and exists in the
conformal window defined by the two-loop β function. For
the SUð3Þ color group, the window is 9 ≤ Nf ≤ 16, [32],
where Nf is the number of massless quarks. At the Banks-
Zaks fixed point, one can determine critical exponents, and
there has been theoretical analysis into extracting accurate
estimates which have been shown to be scheme indepen-
dent [33–50]. Detailed analyses in the main used the MS
data of Refs. [4–9,11]. However, in Ref. [31], the critical
exponents for the three MOM schemes of QCD were
examined with the aim of seeing to what extent the
renormalization group invariance held as a function of
Nf in the conformal window. This is not a trivial exercise
because of the different structure of the renormalization
group functions. For instance, the classes of numbers
appearing in the MS scheme renormalization group func-
tions are the rationals and the Riemann zeta function
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evaluated for integers n ≥ 3. By contrast, the MOM scheme
functions in addition to rationals and Riemann zetas
involve polylogarithms reflecting the kinematical informa-
tion of the subtraction point. Therefore, analytically, it is
difficult to ascertain the true scheme independence of the
results for the Banks-Zaks critical exponents. While this
was resolved numerically in Ref. [31] for the region
12 < Nf ≤ 16, it was not clear if the consistency for the
MOM schemes was a coincidence or not. For instance,
there may have been something implicitly related to the MS
scheme in the choice of renormalizing at the fully sym-
metric point for the vertex functions.
Therefore, we have chosen to reexamine the problem of

scheme independence of the Banks-Zaks critical exponents
in a new set of MOM-related schemes, which we will term
the interpolating MOM (iMOM) schemes. There will be an
iMOM scheme for each of the three three-point vertices of
QCD, which will be termed iMOMg, iMOMh, and iMOMq
in direct parallel to the earlier MOM ones with the set
denoted by iMOMi. The renormalization group functions
in the iMOM schemes will depend on a parameter ω, which
is restricted to 0 < ω < 4. It tags one of the external
momenta of the three-point vertices, and the concept was
introduced in Refs. [51,52] for the specific case of the quark
mass operator renormalization only. The QCD Lagrangian
itself was not treated in our iMOM scheme defined here
since the application in Refs. [51,52] was to assist with
matching to a lattice gauge theory computation in which the
coupling constant was renormalized in the MS scheme. By
contrast, here, we will actually renormalize the QCD
Lagrangian itself by defining the scheme originally and
determining all the renormalization group functions. The
earlier MOM construction of Refs. [20,21] will correspond
to ω ¼ 1. By allowing for a parameter, we will be able to
quantify where and when the divergence from renormal-
ization group invariance of the Banks-Zaks critical expo-
nents begins in the conformal window. In practical terms,
our approach for the exponents will still be numerical and
focus on the specific values of ω ¼ 1

2
and 2, although the

full analytic renormalization will be for arbitrary ω. These
two values will be sufficient to band the MOM ω ¼ 1 value
and gauge the tolerance on the exponents. Alternatively,
one could regard these two values as a method of error
estimation for truncated renormalization group invariant or
physical quantities. One popular way of assessing the effect
of higher-loop behavior in physical quantities is to evaluate
the quantity as a function of the scale μ. Then, the values at
1
2
μ and 2μ are regarded as the error bounds. One dis-

advantage of this is that the lower value may be beyond the
region of perturbative validity and hence unreliable for
perturbative error estimates. We will introduce a new
approach here, which will have a scheme motivation.
With the parameter ω acting as a variation on the sub-
traction point, its variation between 1

2
and 2 would be a

better measure of the errors. In other words, it tracks the

effect of the vertex subtraction within the graphs constitut-
ing the truncated series of the quantity of interest. The
exponents we will compute will demonstrate the effective-
ness of this different interpolating approach, and we
suggest it would be useful to investigate other QCD
quantities with it.
One property of the β function in kinematic schemes is

that it is gauge dependent [20,21]. However, in general, the
gauge parameter of a linear covariant gauge can be
regarded as a second coupling constant. So, at criticality,
the renormalization group function of the gauge parameter
has to be zero, which corresponds to the Landau gauge.
Therefore, all the MOM and iMOM scheme data will be in
that gauge. However, there is a second covariant gauge
which is of interest, called the maximal Abelian gauge
(MAG). It is based on gauge fixing the gluon in the Abelian
subgroup of the color group differently from the other
gluons. The MAG was introduced in Refs. [53–55] to study
Abelian monopole condensation since this was believed to
be a potential mechanism for color confinement [56–58].
Subsequently, it has been studied in that context [56–58]
and shown to be renormalizable [59–64]. The renormali-
zation group functions are available at three loops in MS
[65] and the MOM schemes [66,67]. Therefore, it seems
natural to examine the Banks-Zaks fixed point in the
iMOM schemes in the MAG context as well, and we will
carry out that analysis in parallel with the Landau gauge.
The aim is to quantify how far the gauge independence of
the Banks-Zaks exponents extends into the conformal
window. This will also be carried out to the same three-
loop order as the linear covariant gauge in order to have as
comprehensive overview of the scheme and gauge depend-
ence of the strictly four-dimensional exponents.
The article is organized as follows. We review the

formalism required to evaluate and renormalize three-point
functions at the nonexceptional momentum configuration
in Sec. II for the two gauges we will consider. The
definition of the iMOM scheme is given there as well
before we record all the renormalization group functions in
Sec. III. Subsequently, Sec. IV is devoted to the determi-
nation of the two critical exponents of interest at the Banks-
Zaks fixed point. We present our conclusions in Sec. V. An
Appendix records the tensor bases and projection matrices
for each of the three vertices at the interpolating substrac-
tion point.

II. FORMALISM

To renormalize QCD in the interpolating MOM schemes
in both gauges, we have to introduce a wide body of
formalism, such as notation and conventions, as well as the
computational tools required for the whole process. There
are common aspects of the renormalization for both the
Landau and MAG gauges, which can be outlined together.
These will center on the two- and three-point functions
or self-energy and vertex Green’s functions, respectively.
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The two-point functions are relatively straightforward to
treat in the sense that with the massless fields we use here
there is only one scale which is the external momentum.
Therefore, in each of the iMOMi schemes, we choose to
define the wave function renormalization constants at a
point p2 ¼ −μ2, where μ is the mass scale introduced when
we dimensionally regularize in d ¼ 4 − 2ϵ dimensions.
This scale is necessary to ensure the coupling constant is
dimensionless in d dimensions. As the evaluation of the
two-point functions is a straightforward exercise for which
we use the MINCER algorithm [68,69], we devote the
remainder of the present discussion to the vertex function
computation. For these, the situation is more involved in
that there are two independent external momenta, and so
one has to be careful in specifying the point where the three
Green’s functions are renormalized. For the present dis-
cussion, we will focus on the canonical linear covariant
gauge and then indicate the modification to the formalism
to accommodate the MAG. First, to be more concrete, the
three vertex functions we consider are

hAa
μðpÞAb

νðqÞAc
σðrÞijω ¼ fabcΣggg

μνσðp; qÞjω
hψ i

IðpÞψ̄ j
JðqÞAc

σðrÞijω ¼ Tc
IJδ

ijΣqqg
σ ðp; qÞjω

hcaðpÞc̄bðqÞAc
σðrÞijω ¼ fabcΣccg

σ ðp; qÞjω; ð2:1Þ

where Aa
μ, ca, and ψ i are the gluon, Faddeev-Popov ghost,

and quark fields, respectively. The color group generators
are Ta, and the group has structure constants fabc. The
indices have the ranges 1 ≤ a ≤ NA and 1 ≤ I ≤ NF for the
linear covariant gauge with NF and NA corresponding to
the dimension of the fundamental and adjoint representa-
tions, respectively. Throughout, we will use notation
similar to Refs. [22,67]. In (2.1), we have indicated the
momenta of the external legs, which are p, q, and r, but we
take the first two as the independent ones and set

r ¼ −p − q: ð2:2Þ

For simplicity, we have factored off the color group
structure in each case in (2.1) since to two loops there
are no other color tensors. The definition of the iMOMi
schemes does not depend on these tensors. The amplitude
which remains is a Lorentz tensor, which, although it
depends in general on the two independent external
momenta, is restricted as indicated to the particular external
momentum configuration of the iMOMi subtraction point.
In particular, the squared external momenta are constrained
to satisfy

p2 ¼ q2 ¼ −μ2; r2 ¼ −ωμ2; ð2:3Þ

where ω is our interpolating parameter. These lead to

pq ¼
�
1 −

ω

2

�
μ2; pr ¼ qr ¼ −ωμ2: ð2:4Þ

The latter relations introduce restrictions on the range
of validity of ω such that 0 < ω < 4. The lower bound
would correspond to an infrared divergence, and the
supremum leads to collinear singularities. The original
MOM configuration of Celmaster and Gonsalves [20,21]
corresponds to ω ¼ 1, which will be used as an internal
check throughout. To carry out the renormalization of a
Green’s function, two aspects have to be considered. The
first is the specification of the values of the external
momenta. For the iMOMi schemes, we have already
indicated this with (2.3) and (2.4). The second is the
prescription to define the renormalization constants. We
have not phrased this as the way to remove the divergences
with respect to the regularization as any scheme has to do
this at the very least. The crucial part is the treatment of the
nondivergent pieces. As the subtraction point is specified,
the complicated function of the external momenta which
ordinarily is present within a Green’s function is reduced to a
particular value of this function. While in our case there are
no internal masses upon which this function could also
depend, there will be dependence on the parameter ω.
Therefore, the finite part of any renormalization constant
would correspond to a particular number or for iMOM
involve a parameter which sweeps over a range of numbers.
For the iMOMi schemes, the subtraction prescription is that
the renormalization constants for the two- and three-point
functions are chosen so that at the subtraction point there are
no OðaÞ corrections where a ¼ g2=ð16π2Þ. This is within
the spirit of the original Celmaster and Gonsalves scheme for
the symmetric point case in which ω ¼ 1 [20,21]. Therefore,
as noted, there are three different iMOMi schemes for both
the linear covariant gauge and MAG which derive from the
respective 3-point vertices of the two gauges.
The next stage of the vertex function evaluation is the

evaluation of the Lorentz tensor amplitudes. For an iMOMi
renormalization, this means that the amplitudes have to be
computed to the finite parts. The first stage is to decompose
these into a set of scalar amplitudes for each vertex by the
projection method discussed in Refs. [22,67]. For each
vertex, we define these scalar functions by

Σggg
μνσðp; qÞjω ¼

X14
k¼1

Pggg
ðkÞμνσðp; qÞΣggg

ðkÞ ðp; qÞ

Σqqg
σ ðp; qÞjω ¼

X6
k¼1

Pqqg
ðkÞσðp; qÞΣqqg

ðkÞ ðp; qÞ

Σccg
σ ðp; qÞjω ¼

X2
k¼1

Pccg
ðkÞσðp; qÞΣccg

ðkÞ ðp; qÞ; ð2:5Þ

where Pggg
ðkÞμνσðp; qÞ, Pqqg

ðkÞσðp; qÞ, and Pccg
ðkÞσðp; qÞ are the

independent Lorentz tensors which can be built out of the
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independent external momenta and tensors such as ημν for
each vertex. The evaluation at (2.3) and (2.4) is understood
on the right-hand side of (2.5). In addition, for the quark-
gluon vertex, the spinor indices of the quark fields have to
be attached to γ matrices. This means that we include
combinations of γ matrices in the set of objects from which
the basis tensors of the vertex decomposition are selected.
As we dimensionally regularize in order to evaluate the
Feynman integrals, we use generalized γ matrices [70–74],
which are denoted by ΓðnÞμ1…μn and defined by

Γμ1…μn
ðnÞ ¼ γ½μ1…γμn�: ð2:6Þ

An overall factor of 1=n! is understood in the definition of
this totally antisymmetric object. The benefits of using this
is that these matrices span the spinor space of the dimen-
sionally regularized theory as well as give a partition since

trðΓμ1…μm
ðmÞ Γν1…νn

ðnÞ Þ ∝ δmnIμ1…μmν1…νn ; ð2:7Þ

where Iμ1…μmν1…νn is the generalized identity tensor. For
each vertex function, the explicit Lorentz tensors are
defined in the Appendix. The important step is the isolation
of the scalar amplitudes.
We illustrate this for the triple gluon vertex, where for

each amplitude we have

fabcΣggg
ðkÞ ðp; qÞjω

¼ Mggg
kl ðPgggμνσ

ðlÞ ðp; qÞhAa
μðpÞAb

νðqÞAc
σð−p − qÞiÞj

ω
:

ð2:8Þ

Here, Mggg
kl is the projection matrix, which depends on ω

and d. It is derived from the related matrix N ggg
kl , which is

defined by

N ggg
kl ¼ ½Pggg

ðkÞμνσðp; qÞPgggμνσ
ðlÞ ðp; qÞ�j

ω
ð2:9Þ

and is a symmetric matrix with d- and ω-dependent entries.
Finally, the symmetric matrix Mggg

kl is the inverse of N ggg
kl

[22,67]. The process for the remaining vertices is similar,
and we have provided the projection matrices in the
Appendix. The only caveat is that for the construction of
the quark-gluon projection matrix a trace over the spinor
indices is also taken. As the decomposition (2.5) is based
on the Lorentz sector, we will use the same projection
matrices for the MAG.
The final Green’s function we will consider is that

from which we can extract the renormalization of the
quark mass operator ψ̄ψ. In particular, we will evaluate
hψðpÞ½ψ̄ψ �ðrÞψ̄ðqÞijω also to the finite part. The procedure
to achieve this is completely parallel to that outlined for the
vertex functions and in particular the quark-gluon vertex.
The reason for the connection with that specific vertex is

the open spinor indices. For the projection, there are two
independent tensors in the basis, which actually partitions
into two separate sectors due to (2.7). Aside from the unit
matrix Γð0Þ, the second basis element involves Γð2Þμν and is
given in the Appendix together with the ω-dependent
projection matrix.
The outcome of the projection process is to relegate the

Green’s functions to a sum over Lorentz scalar amplitudes
for each gauge. So far, this process has been general and did
not appeal to the the specific Feynman diagrams which
comprise the vertex functions. In practice, we generate all
the graphs by the FORTRAN-based QGRAF package [75].
The electronic representations of the graphs are then
individually passed through the projection algorithm once
the color, spinor, flavor, and Lorentz indices have been
appended. The consequence is that the amplitude for each
Feynman graph is a sum of Feynman integrals, which has
scalar products of the external and internal momenta. To
two loops, the majority of these scalar products can be
rewritten in terms of the propagators of a topology, which
allows one to naively reduce the powers of various
propagators in an integral. However, at two loops for a
three-point function, there is no more than one irreducible
scalar product. While this would ordinarily be a difficulty
in carrying out the integration, there is an elegant algorithm
designed to accommodate this problem, which was devel-
oped by Laporta [76]. In essence, the set of propagators of a
topology is completed by including an additional propa-
gator in the two-loop three-point case, but more can be
added for other Green’s functions and loops, which is a
process termed completion. Although this extension puts
the irreducible numerator propagator on the same footing as
the other propagators of the original integral, the new
integral cannot correspond to a bona fide Feynman graph.
This is not a problem as the Laporta algorithm [76] at large
involves integrating by parts completed Feynman integrals.
Then, the huge set of resultant linear equations, which as it
turns out are redundant, is solved. The end product is that
all the integrals contributing to a Feynman graph of the
original Green’s function can be written as a sum over a
relatively small set of what is termed master integrals. Their
ϵ expansion has to be determined by explicit evaluation.
For our two-loop three-point function, the master integrals
have been known for some time [23–26]. In terms of
practically implementing the procedure we have outlined,
we have used both versions of the REDUZE package
[77,78], which encodes the Laporta algorithm. One advan-
tage is that the output of the reduction to masters can be
converted into the symbolic manipulation language FORM
[79,80]. This was used intensively with the whole process
of evaluating each of our Green’s functions to two loops
prior to the renormalization in a fully automatic way.
The latter is achieved by the method of Ref. [81] by
computing all the Green’s functions in terms of the bare
coupling constant and gauge parameter. Their renormalized
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counterparts are introduced by the canonical rescaling. The
renormalization constants are fixed in a particular scheme
by the procedure given earlier in which all the one-loop
Green’s functions are converted to renormalized variables
first before repeating the exercise at two loops. This is
carried out first for all the wave function, coupling constant,
and gauge parameter renormalizations. Then, to extract the
renormalization constant for the quark mass operator ψ̄ψ,
the Green’s function hψðpÞ½ψ̄ψ �ðrÞψ̄ðqÞijω is also evalu-
ated in terms of the bare coupling and gauge parameter.
These then are rescaled in a particular iMOMi scheme, and

the operator renormalization constant for that scheme is
determined by ensuring that there are no OðaÞ corrections
at the subtraction point. This process is repeated separately
for the other two schemes.
To two loops, the iMOM master integrals have been

deduced from Refs. [23–26] and discussed in Ref. [67] for
the renormalization of the quark mass operator as a function
of ω used for lattice matching. Therefore, we summarize key
aspects required for the present work. It transpires that
several complicated functions arise in the finite parts of the
one- and two-loop master integrals. These are [24,25]

Φ1ðx; yÞ ¼
1

λ

�
2Li2ð−ρxÞ þ 2Li2ð−ρyÞ þ ln

�
y
x

�
ln

�ð1þ ρyÞ
ð1þ ρxÞ

�
þ lnðρxÞ lnðρyÞ þ π2

3

�

Φ2ðx; yÞ ¼
1

λ

�
6Li4ð−ρxÞ þ 6Li4ð−ρyÞ þ 3 ln

�
y
x

�
½Li3ð−ρxÞ − Li3ð−ρyÞ� þ

π2

12
ln2

�
y
x

�
þ 7π4

60

þ 1

2
ln2

�
y
x

�
½Li2ð−ρxÞ þ Li2ð−ρyÞ� þ

1

4
ln2ðρxÞln2ðρyÞ þ π2

2
lnðρxÞ lnðρyÞ

�

Ω2ðx; yÞ ¼ 3 ln

�
y
x

�
½Li2ð−ρxÞ − Li2ð−ρyÞ� −

1

2
ln2

�
y
x

�
½lnð1þ ρxÞ þ lnð1þ ρyÞ�

þ 6Li3ð−ρxÞ þ 6Li3ð−ρyÞ þ
1

2
½π2 þ lnðρxÞ lnðρyÞ�½lnðρxÞ þ lnðρyÞ�; ð2:10Þ

which are symmetric in x and y. Here, LinðzÞ is the
polylogarithm function, and the other functions are
defined by

λðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2 − 2xyþ y2 − 2x − 2yþ 1�

q
;

ρðx; yÞ ¼ 2

½1 − x − yþ λðx; yÞ� : ð2:11Þ

The variables x and y are specific to the three-point function
with nonzero external p, q, and r since [51,52]

x ¼ p2

r2
; y ¼ q2

r2
; r2 ¼ −ωμ2: ð2:12Þ

Within the interpolating setup, two specific argument
combinations emerge for Φiðx; yÞ and Ω2ðx; yÞ with
ðx; yÞ being either ð1;ωÞ or ðω;ωÞ.
As our focus will be on the renormalization of QCD in

various schemes, we need to recall several aspects of the
formalism. If the subscript o denotes a bare quantity, then
the relation between such an object and its renormalized
counterpart for a linear covariant gauge is given by

Aaμ
o ¼

ffiffiffiffiffiffi
ZA

p
Aaμ; cao ¼

ffiffiffiffiffi
Zc

p
ca; ψo ¼

ffiffiffiffiffiffi
Zψ

p
ψ ;

go ¼ μϵZgg; αo ¼ Z−1
α ZAα; ð2:13Þ

where the constant of proportionality is the renormalization
constant, α is the gauge parameter of the linear covariant
gauge fixing, and the mass scale μ ensures the

dimensionlessness of the coupling constant. The definition
of the renormalization constants for the MAG is somewhat
different and can be found in Ref. [64]. If we introduce the
shorthand notation

O ¼ ψ̄ψ ð2:14Þ

for the quark mass operator, then we have

Oo ¼ ZOO ð2:15Þ

for both gauges. However, in defining these relations, it
is worth stressing that there is an infinite number of
different renormalized fields and variables. This is because
the renormalized objects are in a particular scheme. With
the interpolating momentum subtraction scheme, the
parameter ω will play the role of potentially running over
a range of different possible schemes. Although we will
focus primarily on two values, the key point is that any set
of renormalization constants will depend on variables, such
as the coupling constant, defined with respect to a scheme.
Another set will depend on the variables in a different
scheme. The two sets, however, can be related through
properties of the renormalization group. We can illustrate
this formally for the linear covariant gauges in the iMOMi
schemes. From the defining relations of renormalized
variables, we can deduce
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giMOMiðμÞ ¼
Zg

ZiMOMi
g

gðμÞ; αiMOMiðμÞ ¼
ZAZiMOMi

α

ZiMOMi
A Zα

αðμÞ

ð2:16Þ

for the coupling constant and gauge parameter. We have
been careful to label the quantities in the iMOMi schemes,
and this label means that the variables in the particular
object are in that scheme. We take the convention that
unlabeled quantities are in the MS scheme, which is
regarded as the reference scheme. There is no specific
reason why we take MS as the reference aside from the
fact that it is the most widely used as well as being the
scheme for which the renormalization group functions are
known to the highest loop order. For completeness, we note
that the anomalous dimensions of the fields and gauge
parameter in any scheme are related to their renormaliza-
tion constants by

γAða; αÞ ¼ βða; αÞ ∂
∂a lnZA þ αγαða; αÞ

∂
∂α lnZA

γαða; αÞ ¼
�
βða; αÞ ∂

∂a lnZα − γAða; αÞ
��

1 − α
∂
∂α lnZα

�
−1

γcða; αÞ ¼ βða; αÞ ∂
∂a lnZc þ αγαða; αÞ

∂
∂α lnZc

γψ ða; αÞ ¼ βða; αÞ ∂
∂a lnZψ þ αγαða; αÞ

∂
∂α lnZψ

γOða; αÞ ¼ −βða; αÞ ∂
∂a lnZO − αγαða; αÞ

∂
∂α lnZO;

ð2:17Þ

where the same conventions as in Refs. [22,66,67] are used.
We have included an α dependence in the β function as it is
gauge dependent in general. In the MS scheme, it can be
shown that the gauge dependence is absent [2,3]. Our
apparently nonstandard relation for γαða; αÞ is because we
have not made any assumption on the form of Zα. In a

linear covariant gauge in our convention, Zα ¼ 1, but this is
not true in general. In particular, in the MAG, the
corresponding parameter of the off-diagonal gauge fixing
is not unity [59–64].
Once the renormalization constants have been deter-

mined in a scheme, for example, then the renormalization
group functions can be determined in that scheme from
(2.17). However, there is a second way in which expres-
sions can be deduced without evaluating (2.17). This
requires the renormalization group functions in another,
or what we will term a base, scheme. Here, this will be the
MS scheme, and the iMOMi schemes are the ones for
which we wish to deduce the renormalization group
functions. To achieve this, we define the respective con-
version functions by

CiMOMi
ϕ ða; αÞ ¼ ZiMOMi

ϕ

Zϕ
; CiMOMi

α ða; αÞ ¼ ZiMOMi
α ZA

ZαZiMOMi
A

;

ð2:18Þ

where ϕ will be used to represent one of the three fields or
quark mass operator. The arguments of the conversion
functions are in the base or MS scheme. This is an
important observation since the iMOMi renormalization
constants on the right-hand side have their variables in that
scheme. Naively evaluating these functions by taking the
explicit renormalization constants will lead to a divergent
function with respect to ϵ. To obtain finite expressions, the
variables of the iMOMi scheme have to be converted to
their MS counterparts. To find the relations between the
coupling constant and gauge parameter in the different
schemes, the relations (2.16) are solved recursively order
by order in perturbation theory. Once the maps are known
to the necessary loop order, then one can explicitly find the
conversion functions to the same order. Equipped with
these, the renormalization group functions in the iMOMi
scheme for the linear covariant gauge are given by

βiMOMiðaiMOMi; αiMOMiÞ ¼
�
βðaÞ ∂aiMOMi

∂a þ αγαða; αÞ
∂aiMOMi

∂α
�
MS→iMOMi

γiMOMi
ϕ ðaiMOMi; αiMOMiÞ ¼

�
γϕðaÞ þ βðaÞ ∂

∂a lnC
iMOMi
ϕ ða; αÞ þ αγαða; αÞ

∂
∂α lnC

iMOMi
ϕ ða; αÞ

�
MS→iMOMi

ð2:19Þ

from the renormalization group equation. The restriction on
each equation indicates that once the right-hand side has
been computed, which necessarily will be in the base
scheme variables, they have to be mapped to the iMOMi
variables. This mapping is the (perturbative) inverse of the

one used in deriving the conversion functions themselves.
While this process is equivalent to the direct evaluation of
the renormalization group functions using (2.17), the
advantage of the conversion function approach is that if
the conversion functions are known at L loops and the
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renormalization group functions of the base theory are
available at (Lþ 1) loops then the latter formalism pro-
duces the renormalization group functions of the new
scheme at (Lþ 1) loops without having to perform an
explicit (Lþ 1)-loop renormalization in the new scheme.
We will benefit from this observation by using it to
construct the three-loop iMOMi renormalization group
functions.
We close this section by briefly discussing the definition

of the MAG and the relevant aspects of the renormalization
of QCD in this gauge with respect to the iMOM schemes.
More background details to our conventions can be found
in Refs. [65–67]. In essence, the gauge is defined by
treating the diagonal color fields separately from the off-
diagonal ones [59–64]. First, we write the group valued
gluon field A as

Aμ ¼ Aā
μTā þ Aī

μTī; ð2:20Þ

where the group generators Ta are treated differently. Our
notation varies slightly from that of [65], given that we
are treating QCD in two different gauges. The diagonal
fields are labeled by indices ī, j̄, and k̄, where by
diagonal we mean those gluons of which the associated
group generators commute with each other. For SUð3Þ,
there are two such gluons. The remaining gluons are
termed off diagonal and denoted by barred lowercase
roman letters from the start of the alphabet. For a general
Lie group, the indices have the ranges 1 ≤ a ≤ NA,
1 ≤ ā ≤ No

A, and 1 ≤ ī ≤ Nd
A, where Nd

A is the dimension
of the diagonal sector and No

A is the dimension of the off-
diagonal sector. The sum of No

A and Nd
A is NA. The gauge

fixing for each sector is different with the diagonal
gluons fixed in the Landau gauge [59–64]. By contrast,
the off-diagonal gluons have a gauge fixing similar to the
linear covariant gauge. However, with the different treat-
ment of the gluons, the resultant MAG gauge-fixed
Lagrangian involves a significantly larger number of
interactions, which includes gluon-ghost and purely
quartic ghost interactions. In addition to the two sets
of gluons being gauge fixed differently, there are two sets
of Faddeev-Popov ghosts, cā and cī, which are respon-
sible for the additional type of interactions. Consequently,
one has a much larger number of Feynman graphs to
evaluate when examining the three-point vertices. One of
the complications in dealing with the enlarged basis of
terms in the Lagrangian is that the group theory used in
evaluating the Feynman graphs becomes more involved.
This has been detailed in Ref. [65], and we refer the
interested reader to that paper. We have used the same
group theory routines in carrying out our MAG compu-
tations here as were used in Refs. [65–67].
While the MAG has additional interactions and more

structure to handle for a computation, its renormalization

has several interesting features deriving from the Slavnov-
Taylor identities constructed in Ref. [64]. The first is that
the diagonal gluons effectively act as a background field
similar to the background field gauge [82–86]. For in-
stance, the renormalization of the diagonal gluon is in
one-to-one correspondence with the coupling constant
renormalization, which is parallel to the situation for the
background gluon of the background field gauge. However,
for the MAG in the context of the iMOM renormalization,
we derive each coupling constant renormalization from the
three-point functions directly and extend the MOM
approach of Refs. [66,67]. This therefore retains the spirit
of the MOM approach in that the iMOM vertex renorm-
alization incorporates kinematical information which will
involve ω and hence allows us to explore the dependence
on ω. Another consequence of the Slavnov-Taylor iden-
tities is that we need only to consider the three vertices
defined by the purely off-diagonal gluons as the basis for
our MAG iMOM schemes as in the MOM study of
Refs. [66,67]. Vertex functions with a diagonal gluon will
not lead to any iMOM schemes. Therefore, our focus in the
MAG will be on the Green's function parallel to (2.1),
except that the adjoint indices of the linear covariant gauge
are replaced by their barred counterparts. The color and
Lorentz decomposition are completely similar in the MAG.
Therefore, we do not need to add anything to this part of the
discussion except to note that we have applied the same
projection algorithms to the respective MAG vertices.
Therefore, after this point, we will not need to distinguish
between barred and unbarred adjoint color indices in the
discussion. Once all the renormalization constants have
been extracted for the MAG, we use the parallel definitions
to (2.17) for the off-diagonal gluon and ghosts as well as
the other anomalous dimensions. One complication is that,
like the MOM results of Refs. [66,67], the explicit
expressions will depend on No

A and Nd
A, for instance.

Equally, there are parallel definitions for the corresponding
conversion functions (2.18) and (2.19). The only caveat is
that we need to distinguish our linear covariant gauge
formalism from the corresponding MAG expressions. We
do this by denoting the iMOM schemes in the MAG in
general by iMOMmi, where the three MAG schemes will
be denoted by iMOMmg, iMOMmh, and iMOMmq for the
triple off-diagonal gluon, off-diagonal gluon-ghost, and
off-diagonal gluon-quark schemes, respectively.

III. RENORMALIZATION GROUP FUNCTIONS

We now discuss the results of our renormalization in
both gauges. In this context, it is worthwhile displaying one
of the renormalization group functions in analytic form as it
illustrates several important features. For instance, the β
function for the iMOMh scheme for the SUð3Þ group in the
Landau gauge is
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βiMOMhða; 0ÞjSUð3Þ ¼ ½2Nf − 33� a
2

3
þ 2

3
½19Nf − 153�a3

þ ½24192ln2ðωÞω4N2
f − 1728ln2ðωÞω5N2

f − 110592ln2ðωÞω3N2
f

þ 165888ln2ðωÞω2N2
f − 71928ln2ðωÞω5Nf þ 270864ln2ðωÞω4Nf

þ 787968ln2ðωÞω3Nf − 2882304ln2ðωÞω2Nf þ 1657260ln2ðωÞω5

− 11055528ln2ðωÞω4 þ 17107200ln2ðωÞω3 þ 2395008ln2ðωÞω2

þ 2304 lnðωÞΦð1Þω;ωω5N2
f − 31104 lnðωÞΦð1Þω;ωω4N2

f

þ 148608 lnðωÞΦð1Þω;ωω3N2
f − 285696 lnðωÞΦð1Þω;ωω2N2

f

þ 165888 lnðωÞΦð1Þω;ωωN2
f − 3132 lnðωÞΦð1Þω;ωω5Nf

þ 309096 lnðωÞΦð1Þω;ωω4Nf − 2256336 lnðωÞΦð1Þω;ωω3Nf

þ 5011200 lnðωÞΦð1Þω;ωω2Nf − 2923776 lnðωÞΦð1Þω;ωωNf

− 575586 lnðωÞΦð1Þω;ωω5 þ 3367980 lnðωÞΦð1Þω;ωω4

− 3228984 lnðωÞΦð1Þω;ωω3 − 4904064 lnðωÞΦð1Þω;ωω2

þ 3079296 lnðωÞΦð1Þω;ωω − 3456 lnðωÞω5N2
f þ 24192 lnðωÞω4N2

f

− 27648 lnðωÞω3N2
f − 55296 lnðωÞω2N2

f − 141696 lnðωÞω5Nf

þ 1461024 lnðωÞω4Nf − 4886784 lnðωÞω3Nf þ 5239296 lnðωÞω2Nf

þ 505440 lnðωÞω5 − 6286896 lnðωÞω4 þ 26034048 lnðωÞω3

− 35894016 lnðωÞω2 þ 30456Ωð2Þω;ωω5Nf − 339552Ωð2Þω;ωω4Nf

þ 1254528Ωð2Þω;ωω3Nf − 1534464Ωð2Þω;ωω2Nf − 502524Ωð2Þω;ωω5

þ 5602608Ωð2Þω;ωω4 − 20699712Ωð2Þω;ωω3 þ 25318656Ωð2Þω;ωω2

− 4608Ωð2Þ1;ωω5N2
f þ 55296Ωð2Þ1;ωω4N2

f − 221184Ωð2Þ1;ωω3N2
f

þ 294912Ωð2Þ1;ωω2N2
f þ 102168Ωð2Þ1;ωω5Nf − 1302480Ωð2Þ1;ωω4Nf

þ 5523552Ωð2Þ1;ωω3Nf − 7824384Ωð2Þ1;ωω2Nf þ 124416Ωð2Þ1;ωωNf

− 431244Ωð2Þ1;ωω5 þ 6436584Ωð2Þ1;ωω4 − 30921264Ωð2Þ1;ωω3

þ 48812544Ωð2Þ1;ωω2 − 2052864Ωð2Þ1;ωω − 4374Φ2
ð1Þω;ωω

5Nf

þ 34992Φ2
ð1Þω;ωω

4Nf − 110808Φ2
ð1Þω;ωω

3Nf þ 209952Φ2
ð1Þω;ωω

2Nf

− 217728Φ2
ð1Þω;ωωNf þ 124416Φ2

ð1Þω;ωNf þ 72171Φ2
ð1Þω;ωω

5

− 577368Φ2
ð1Þω;ωω

4 þ 1828332Φ2
ð1Þω;ωω

3 − 3464208Φ2
ð1Þω;ωω

2

þ 3592512Φ2
ð1Þω;ωω − 2052864Φ2

ð1Þω;ω þ 7488Φð1Þω;ωω5N2
f

− 89856Φð1Þω;ωω4N2
f þ 376704Φð1Þω;ωω3N2

f − 617472Φð1Þω;ωω2N2
f

þ 276480Φð1Þω;ωωN2
f − 46224Φð1Þω;ωω5Nf þ 618192Φð1Þω;ωω4Nf

− 2741472Φð1Þω;ωω3Nf þ 4091904Φð1Þω;ωω2Nf

− 235008Φð1Þω;ωωNf − 443880Φð1Þω;ωω5 þ 5942808Φð1Þω;ωω4

− 28479600Φð1Þω;ωω3 þ 56215296Φð1Þω;ωω2 − 35894016Φð1Þω;ωω

þ 11664Φð2Þω;ωω5Nf − 159408Φð2Þω;ωω4Nf þ 832032Φð2Þω;ωω3Nf

− 1982880Φð2Þω;ωω2Nf þ 1804032Φð2Þω;ωωNf þ 124416Φð2Þω;ωNf

− 192456Φð2Þω;ωω5 þ 2630232Φð2Þω;ωω4 − 13728528Φð2Þω;ωω3
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þ 32717520Φð2Þω;ωω2 − 29766528Φð2Þω;ωω − 2052864Φð2Þω;ω
− 1296Φð2Þ1;ωω6Nf þ 106272Φð2Þ1;ωω5Nf − 808704Φð2Þ1;ωω4Nf

þ 1700352Φð2Þ1;ωω3Nf − 331776Φð2Þ1;ωω2Nf þ 21384Φð2Þ1;ωω6

− 1753488Φð2Þ1;ωω5 þ 13343616Φð2Þ1;ωω4 − 28055808Φð2Þ1;ωω3

þ 5474304Φð2Þ1;ωω2 − 6144ζ3ω
5N2

f − 123136ω5N2
f

þ 73728ζ3ω
4N2

f þ 1477632ω4N2
f − 294912ζ3ω

3N2
f

− 5910528ω3N2
f þ 393216ζ3ω

2N2
f þ 7880704ω2N2

f

− 147456ζ3ω
5Nf þ 4157856ω5Nf þ 1715040ζ3ω

4Nf

− 49894272ω4Nf − 6689088ζ3ω
3Nf þ 199577088ω3Nf

þ 8939520ζ3ω
2Nf − 266102784ω2Nf − 746496ζ3ωNf

þ 4105728ζ3ω
5 − 23466672ω5 − 48370608ζ3ω

4

þ 281600064ω4 þ 190659744ζ3ω
3 − 1126400256ω3

− 254555136ζ3ω
2 þ 1501867008ω2

þ 12317184ζ3ω�
a4

6912ω2½ω − 4�2 þOða5Þ; ð3:1Þ

where we have introduced the shorthand notation

ΦðnÞ1;ω ¼ ΦðnÞð1;ωÞ; ΦðnÞω;ω ¼ ΦðnÞ

�
1

ω
;
1

ω

�

ΩðnÞ1;ω ¼ ΩðnÞð1;ωÞ; ΩðnÞω;ω ¼ ΩðnÞ

�
1

ω
;
1

ω

�
: ð3:2Þ

Analytic expressions for this β function for an arbitrary
color group together with all the other renormalization
group functions and conversion functions in both gauges
are included in the Supplemental Material [87], which also
contains the six MS vertex functions. In addition, the
decomposition of the vertex functions into the tensor basis
are also provided in the data file. While we have presented
the SUð3Þ expression, the arbitrary color result in the
Landau gauge shares the same property that the one- and
two-loop terms are in agreement with the scheme-
independent parts which were first computed in
Refs. [12–15]. For a nonzero α, the two-loop term is in
fact α dependent, as one would expect. This is because α
can be regarded as a second coupling constant and the
theorem which shows that the β function is scheme
independent at two loops only applies to a theory with a
single coupling constant. The main difference of the β
function, however, is in the scheme-dependent part, which
is clearly ω dependent. Moreover, it contains poles at ω¼0
and 4 as expected from the kinematics of the external
momenta of the three-point functions. The same feature
occurs in all the other renormalization group functions in
this and the other schemes in the scheme-dependent terms

for an arbitrary color group. Therefore, in terms of validity,
our results are restricted to the range 0 < ω < 4.
The remainder of our results will be given in numerical

form for both gauges as this is the most straightforward way
to compare the same expressions in different schemes as
well as to see the effect of varying ω within a renormaliza-
tion group function. As noted earlier, we will focus
specifically on the cases of ω ¼ 1

2
and 2 so that one can

gauge how scheme independent the renormalization group
invariant critical exponents are. While the difference in
these values of ω from the MOM case of unity are not the
same, we note that the difference in j lnω j from zero for
these ω values is equivalent. To obtain numerical informa-
tion, we evaluate each of the special functions which appear
at both values of ω, and these are

Φð1Þð2; 2Þ ¼ 1.45542479; Φð2Þð2; 2Þ ¼ 3.32388397

Φð2Þ

�
1;
1

2

�
¼ 8.59797371; Ωð2Þð2; 2Þ ¼ 8.69451627

Ωð2Þ

�
1;
1

2

�
¼ 2.86508328 ð3:3Þ

for the case when ω ¼ 1
2
and

Φð1Þ

�
1

2
;
1

2

�
¼ 3.66386238; Φð2Þ

�
1

2
;
1

2

�
¼ 11.86733462

Φð2Þð1;2Þ ¼ 4.54422692; Ωð2Þ

�
1

2
;
1

2

�
¼ −1.35231402

Ωð2Þð1;2Þ ¼ 7.88849843 ð3:4Þ
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for ω ¼ 2. The first stage in the construction of the three-loop renormalization group functions is the determination of the
various conversion functions in different schemes.
As our main focus will be on two specific values of ω, we concentrate on these cases. Moreover, all the numerical results

presented in the remainder of this section are for the SUð3Þ color group. The respective coupling constant mapping
functions for arbitrary α are

CiMOMg
g ða; αÞjω¼1

2
¼ 1þ ½−0.088593α3 þ 0.145415α2 þ 0.973734αþ 1.545158Nf − 12.931045�a
þ ½0.007849α6 þ 0.073901α5 − 0.813066α4 − 0.462374Nfα

3

þ 0.838289α3 þ 0.005079Nfα
2 − 6.028249α2 þ 2.747737Nfα

− 30.527809αþ 0.275213N2
f þ 34.734827Nf − 228.297272�a2 þOða3Þ

CiMOMh
g ða; αÞjω¼1

2
¼ 1þ ½−0.295179α2 − 1.225290αþ 0.555556Nf − 9.326914�a
þ ½0.127510α4 − 0.479424α3 − 0.455080Nfα

2 − 1.607853α2

− 0.363822Nfα − 18.6313969α − 0.1543210N2
f þ 27.1598858Nf − 195.1062372�a2 þOða3Þ

CiMOMq
g ða; αÞjω¼1

2
¼ 1þ ½−0.103925α2 þ 0.191374αþ 0.555556Nf − 7.559667�a
þ ½−0.020540α4 − 0.760731α3 − 0.047946Nfα

2 − 0.025079α2

þ 1.106752Nfα − 8.869723α − 0.154321N2
f þ 26.411323Nf − 130.701756�a2 þOða3Þ

CiMOMmg
g ða; αÞjω¼1

2
¼ 1þ ½0.048472α2 þ 0.930452αþ 1.545158Nf − 9.614714�a
þ ½−0.093437α4 − 0.778673α3 þ 0.001693α2Nf − 2.387913α2

þ 2.447811αNf − 10.719814αþ 0.275213N2
f þ 36.437144Nf − 231.335376�a2 þOða3Þ

CiMOMmh
g ða; αÞjω¼1

2
¼ 1þ ½−0.125000α2 − 1.084141αþ 0.555556Nf − 9.922960�a
þ ½0.023437α4 − 0.536449α3 − 0.208333α2Nf − 3.642248α2

− 0.179774αNf − 30.505406α − 0.154321N2
f þ 29.832673Nf − 226.633850�a2 þOða3Þ

CiMOMmq
g ða; αÞjω¼1

2
¼ 1þ ½−0.034642α2 þ 0.168280αþ 0.555556Nf − 6.663671�a
þ ½−0.002282α4 − 0.203870α3 − 0.015982α2Nf − 0.5936004α2

þ 0.760445αNf − 3.103542α − 0.154321N2
f þ 25.879816Nf − 128.426739�a2 þOða3Þ ð3:5Þ

for ω ¼ 1
2
and

CiMOMg
g ða; αÞjω¼2 ¼ 1þ ½−0.167112α3 þ 0.148595α2 þ 2.246555αþ 1.925389Nf − 13.345319�a

þ ½0.027927α6 þ 0.138338α5 − 1.346201α4 − 0.844818Nfα
3

þ 1.116340α3 − 0.119722Nfα
2 − 8.125459α2 þ 5.258434Nfα

− 47.432029αþ 0.961103N2
f þ 29.304598Nf − 192.265972�a2 þOða3Þ

CiMOMh
g ða; αÞjω¼2

¼ 1þ ½−0.115070α2 − 0.876052αþ 0.555556Nf − 9.135824�a
þ ½−0.013920α4 − 1.243069α3 − 0.311896Nfα

2 − 2.121830α2

þ 0.122619Nfα − 19.093491α − 0.154321N2
f þ 27.357866Nf − 186.353580�a2 þOða3Þ

CiMOMq
g ða; αÞjω¼2 ¼ 1þ ½0.375000α2 þ 2.587278αþ 0.555556Nf − 9.565419�a

þ ½−0.070312α4 þ 0.254398α3 þ 0.278426Nfα
2 þ 2.718626α2

þ 1.999510Nfα − 9.199750α − 0.154321N2
f þ 29.206664Nf − 131.140706�a2 þOða3Þ
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CiMOMmg
g ða; αÞjω¼2 ¼ 1þ ½0.049532α2 þ 2.032448αþ 1.925389Nf − 8.842253�a

þ ½−0.158617α4 − 1.135650α3 − 0.039907α2Nf − 2.056887α2

þ 4.543830αNf − 1.192456αþ 0.961103N2
f þ 33.612910Nf − 189.116753�a2 þOða3Þ

CiMOMmh
g ða; αÞjω¼2

¼ 1þ ½−0.125000α2 − 0.888591αþ 0.555556Nf − 11.044349�a
þ ½0.023437α4 − 0.840201α3 − 0.208333α2Nf − 2.145247α2

þ 0.318758αNf − 27.105424α − 0.154321N2
f þ 31.291364Nf − 204.314912�a2 þOða3Þ

CiMOMmq
g ða; αÞjω¼2 ¼ 1þ ½0.125000α2 þ 1.817289αþ 0.555556Nf − 8.476166�a

þ ½−0.007812α4 þ 0.073625α3 þ 0.092809α2Nf þ 3.101975α2

þ 1.384360αNf þ 9.787599α − 0.154321N2
f þ 28.679908Nf − 137.007566�a2 þOða3Þ ð3:6Þ

for ω ¼ 2. We recall that in all the conversion functions the coupling constant and gauge parameter variables are the MS
ones. The corresponding expressions for the quark mass operator are more compact in that

CiMOMi
ψ̄ψ ða; αÞj

ω¼1
2

¼ 1þ ½−0.363050α − 2.422484�a
þ ½−0.685057α2 þ 0.554007αþ 5.987945Nf − 64.755701�a2 þOða3Þ

CiMOMi
ψ̄ψ ða; αÞj

ω¼2
¼ 1þ ½1.109242αþ 1.994391�a
þ ½3.726210α2 þ 13.658375αþ 1.080306Nf þ 38.567136�a2 þOða3Þ

CiMOMmi
ψ̄ψ ða; αÞj

ω¼1
2

¼ 1þ ½−0.272288α − 2.422484�a
þ ½−0.198147α2 − 1.898939αþ 5.987945Nf − 65.436420�a2 þOða3Þ

CiMOMmi
ψ̄ψ ða; αÞj

ω¼2
¼ 1þ ½0.831931αþ 1.994391�a
þ ½1.524041α2 þ 17.315197αþ 1.080306Nf þ 40.646964�a2 þOða3Þ: ð3:7Þ

The same feature emerges here as in the ω ¼ 1 situation in that in each scheme the conversion function is the same for a
particular value of ω. This is also the case for the various wave function conversion functions, which are

CiMOMi
A ða; αÞ ¼ 1þ ½9α2CA þ 18αCA þ 97CA − 80NfTF�

a
36

þ ½810α3C2
A þ 2430α2C2

A þ 5184ζ3αC2
A þ 2817αC2

A

− 2880αCANfTF − 7776ζ3C2
A þ 83105C2

A − 20736ζ3CANfTF − 69272CANfTF

þ 41472ζ3CFNfTF − 47520CFNfTF þ 12800N2
fT

2
F�

a2

2592
þOða3Þ

CiMOMi
c ða; αÞ ¼ 1þ CAaþ ½−36ζ3α2CA þ 72α2CA þ 72ζ3αCA − 21αCA − 180ζ3CA þ 1943CA

− 760NfTF�
CAa2

192
þOða3Þ

CiMOMi
ψ ða; αÞ ¼ 1 − αCFaþ ½−9α2CA þ 8α2CF þ 24ζ3αCA − 52αCA þ 24ζ3CA − 82CA þ 5CF

þ 28NfTF�
CFa2

8
þOða3Þ: ð3:8Þ

They are totally equivalent to the MOM conversion functions of Refs. [20–22]. This is not unexpected as the
renormalization of the two-point functions here was carried out using the MOM renormalization criterion. As the
corresponding conversion functions in the MAG are more involved but are also equivalent to those of the MOM scheme
[66,67], we record their explicit iMOMmi numerical values, which are
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CiMOMmi
A ða; αÞ ¼ 1þ ½0.250000α2 þ α − 1.111111Nf þ 5.083333�aþ ½0.809362α3 þ 6.131144α2 − 1.111111αNf

þ 11.092087αþ 1.234568N2
f − 45.843483Nf þ 164.706865�a2 þOða3Þ

CiMOMmi
c ða; αÞ ¼ 1þ 5.000000aþ ½0.937500α2 þ 21.048378α − 9.895833Nf þ 150.659355�a2 þOða3Þ

CiMOMmi
ψ ða; αÞ ¼ 1 − αaþ ½−0.625000α2 − 18.825317αþ 2.333333Nf − 31.214206�a2 þOða3Þ: ð3:9Þ

Equipped with the coupling constant and mass operator conversion functions, we can now determine the respective three-
loop iMOMi and iMOMmi renormalization group functions. First, in order to compare, we recall both the MS and MOM
scheme β functions in numerical form, which are [12–16,20–22,66,67]

βMSðaÞ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3
þ ½−6.018518N2

f þ 279.611111Nf − 1428.500000�a4 þOða5Þ
βMOMgða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−2.658115N3
f þ 67.089536N2

f − 0.565929Nf − 1570.984380�a4 þOða5Þ
βMOMhða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−21.502818N2
f þ 617.647154Nf − 2813.492948�a4 þOða5Þ

βMOMqða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3
þ ½−22.587812N2

f þ 588.654845Nf − 1843.65273�a4 þOða5Þ
βMOMmgða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 93.608510�a3

þ ½−2.658115N3
f þ 54.791594N2

f þ 401.565562Nf − 3543.358228�a4 þOða5Þ
βMOMmhða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 108.000000�a3

þ ½−25.035332N2
f þ 674.085832Nf − 2991.050472�a4 þOða5Þ

βMOMmqða; 0Þ ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 96.936557�a3
þ ½−22.587812N2

f þ 627.275918Nf − 2266.490127�a4 þOða5Þ; ð3:10Þ
wherewehave restricted to theLandaugauge for the linear covariant gauge andα ¼ 0 for theMAGfor theMOMschemes.Our
notation for the renormalization group functions is that the second argument in a MOM or iMOM scheme is the gauge
parameter.Suchanargument is notneeded for theMSβ function. In theMS,MOM,and iMOMischeme renormalizationgroup
functions, we recall that the coupling constant and gauge parameter correspond to the variable in the specific case given by the
label on the left-hand side. This is to avoid encumbrancing thevariables themselveswith labels. The two sets of β functions are

βiMOMgða; 0Þjω¼1
2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−1.958625N3
f þ 45.770375N2

f þ 154.329226Nf − 1973.775606�a4 þOða5Þ
βiMOMhða; 0Þjω¼1

2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−21.248801N2
f þ 615.665280Nf − 2861.242336�a4 þOða5Þ

βiMOMqða; 0Þjω¼1
2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−21.559789N2
f þ 599.589376Nf − 2133.132445�a4 þOða5Þ

βiMOMmgða; 0Þjω¼1
2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 96.417290�a3

þ ½−1.958625N3
f þ 36.668278N2

f þ 469.963542Nf − 3720.350935�a4 þOða5Þ
βiMOMmhða; 0Þjω¼1

2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 108.504849�a3

þ ½−24.371002N2
f þ 689.727288Nf − 3346.349782�a4 þOða5Þ

βiMOMmqða; 0Þjω¼1
2
¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 100.990317�a3

þ ½−21.514813N2
f þ 630.898042Nf − 2435.486351�a4 þOða5Þ ð3:11Þ
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and

βiMOMgða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3
þ ½−3.752885N3

f þ 99.867703N2
f − 234.213856Nf − 976.833287�a4 þOða5Þ

βiMOMhða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3
þ ½−21.654322N2

f þ 617.879121Nf − 2746.474396�a4 þOða5Þ
βiMOMqða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 102.000000�a3

þ ½−23.801168N2
f þ 563.445891Nf − 1355.780477�a4 þOða5Þ

βiMOMmgða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 89.805313�a3
þ ½−3.752885N3

f þ 82.563084N2
f þ 297.046404Nf − 3156.729291�a4 þOða5Þ

βiMOMmhða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 107.331545�a3
þ ½−25.485264N2

f þ 636.479467Nf − 2354.843991�a4 þOða5Þ
βiMOMmqða; 0Þjω¼2 ¼ ½0.666667Nf − 11.000000�a2 þ ½12.666667Nf − 91.096267�a3

þ ½−23.905680N2
f þ 614.725445Nf − 2055.563293�a4 þOða5Þ: ð3:12Þ

In the Landau gauge, the correct scheme-independent part emerges in each case with the scheme dependence only present at
three loops. However, we can now quantify the effect of varying the parameter ω between 1

2
and 2 in comparison with the

symmetricpointMOMschemeofRefs. [20,21]. If oneexamines theNf-independent part of each three-loop term, for example,
it is evident that the corresponding coefficients in the ω case lie roughly halfway between the coefficients for ω ¼ 1

2
and 2 in

each of the respective iMOMi schemes. This is consistent with our expectations. However, the comparison with, say, the
iMOMg ω ¼ 2 β function with the MS case is not appropriate as the coupling constants are not as similar as within an ω
comparison. Moreover, β functions are not physically meaningful quantities, and the running of the coupling constant with
scale is not the sameat three loops in eachof the schemes.This is one of the reasonswhy it ismore beneficial to examine critical
exponents since they are renormalization group invariants.
We repeat the exercise for the quark mass operator. First, the known MS and MOM scheme results for comparison

are [31,88–92]

γMS
ψ̄ψ ðaÞ ¼ −4.000000aþ ½2.222222Nf − 67.333333�a2

þ ½1.728395N2
f þ 146.183776Nf − 1249.000000�a3 þOða4Þ

γMOMg
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−11.014658Nf þ 31.535915�a2

þ ½−48.143325N2
f þ 263.855175Nf þ 354.125435�a3 þOða4Þ

γMOMh
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−1.791876Nf − 0.240939�a2

þ ½−2.666667N2
f − 3.207195Nf þ 759.902600�a3 þOða4Þ

γMOMq
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−1.791876Nf − 7.570942�a2

þ ½−2.666667N2
f − 16.284387Nf þ 324.949029�a3 þOða4Þ

γMOMmg
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−11.014658Nf þ 1.580982�a2

þ ½−48.143325N2
f þ 24.289770Nf þ 993.171684�a3 þOða4Þ

γMOMmh
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−1.791876Nf þ 9.540363�a2

þ ½−2.666667N2
f − 16.444922Nf þ 861.561558�a3 þOða4Þ

γMOMmq
ψ̄ψ ða; 0Þ ¼ −4.000000aþ ½−1.791876Nf − 14.868106�a2

þ ½−2.666667N2
f − 23.628280Nf þ 368.925469�a3 þOða4Þ; ð3:13Þ
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where we have computed the ω ¼ 1 expressions for the MAG as a corollary of the iMOMmi calculation. Again, the second
argument corresponds to the gauge parameter in the non-MS schemes. We recall that the scheme dependence begins at two
loops for the quark mass anomalous dimension. The corresponding iMOMi results are

γiMOMg
ψ̄ψ ða; 0Þjω¼1

2

¼ −4.000000aþ ½−8.524052Nf þ 9.467706�a2

þ ½−32.491101N2
f þ 140.861801Nf þ 357.940500�a3 þOða4Þ

γiMOMh
ψ̄ψ ða; 0Þj

ω¼1
2

¼ −4.000000aþ ½−0.607233Nf − 19.365345�a2

þ ½−2.666667N2
f þ 36.838982Nf þ 341.949868�a3 þOða4Þ

γiMOMq
ψ̄ψ ða; 0Þj

ω¼1
2

¼ −4.000000aþ ½−0.607233Nf − 33.503320�a2

þ ½−2.666667N2
f þ 30.680528Nf − 240.778923�a3 þOða4Þ

γiMOMmg
ψ̄ψ ða; 0Þjω¼1

2

¼ −4.000000aþ ½−8.524052Nf − 17.879808�a2

þ ½−32.491101N2
f − 29.514002Nf þ 659.067463�a3 þOða4Þ

γiMOMmh
ψ̄ψ ða; 0Þj

ω¼1
2

¼ −4.000000aþ ½−0.607233Nf − 15.413838�a2

þ ½−2.666667N2
f þ 20.098107Nf þ 577.599012�a3 þOða4Þ

γiMOMmq
ψ̄ψ ða; 0Þj

ω¼1
2

¼ −4.000000aþ ½−0.607233Nf − 41.488147�a2

þ ½−2.666667N2
f þ 29.318648Nf − 337.686951�a3 þOða4Þ ð3:14Þ

for ω ¼ 1
2
and

γiMOMg
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−14.510481Nf þ 61.367526�a2
þ ½−74.6686432N2

f þ 492.015439Nf þ 158.572781�a3 þOða4Þ
γiMOMh
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−3.551816Nf þ 27.691568�a2
þ ½−2.666667N2

f − 53.424921Nf þ 1239.598236�a3 þOða4Þ
γiMOMq
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−3.551816Nf þ 31.128323�a2
þ ½−2.666667N2

f − 60.202636Nf þ 715.222060�a3 þOða4Þ
γiMOMmg
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−14.510481Nf þ 27.838788�a2
þ ½−74.668643N2

f þ 138.832502Nf þ 1356.765556�a3 þOða4Þ
γiMOMmh
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−3.551816Nf þ 45.455562�a2
þ ½−2.666667N2

f − 50.959511Nf þ 921.958650�a3 þOða4Þ
γiMOMmq
ψ̄ψ ða; 0Þj

ω¼2
¼ −4.000000aþ ½−3.551816Nf þ 24.910097�a2
þ ½−2.666667N2

f − 77.968868Nf þ 999.570302�a3 þOða4Þ ð3:15Þ

for ω ¼ 2. Now, if we compare the Nf ¼ 0 two- and three-loop terms within the same vertex scheme, we find the same
general trend that was apparent in the β function. First, at two loops, the ω ¼ 1 coefficient lies roughly halfway between the
ω ¼ 1

2
and 2 values. In this case, for the schemes based on the ghost and quark vertices, there is a sign change in the

coefficient across the range which does not affect this overall observation. At three loops, there is a slackening of the feature
of the ω ¼ 1 coefficients lying roughly halfway between the other two values. This is perhaps not surprising as the higher-
loop expressions are teasing out the effective asymmetry in the range. It will be interesting to see if this is evident in the
critical exponent case and how pronounced it is.

RENORMALIZATION OF QCD IN THE INTERPOLATING … PHYS. REV. D 97, 085016 (2018)

085016-15



Our final results-oriented remarks concern the internal
checks on our computation. We have determined all the two-
loop renormalization group functions in two ways for each
class of gauges. The first is the direct evaluation and
renormalization of the two- and three-point functions in
the respective schemes by using the various vertex functions
as well as the iMOMi renormalization conditions to deter-
mine the renormalization constants. From these, we have
produced the respective renormalization group functions.
There is also an internal check at that stage in that the
nonsimple poles in ϵ in the renormalization constants are
predetermined by the simple poles at the previous loop
orders. An error in these nonsimple poles would have
resulted in ϵ divergent renormalization group functions.
With the various parameters such as the two separate gauge
parameters and the color group Casimirs present, this is a
useful check. The second way we have constructed the
renormalization group functions is via the conversion
function route using the formalism of (2.19) once the various
renormalization constants were available. Therefore, we are
able to verify that the renormalization group functions
computed directly are consistent. This method has the
advantage that it automatically produces the three-loop
terms of the renormalization group functions. The three-
loop iMOMi coupling constant renormalization constants
cannot be adduced from these as there is no point of contact
with the finite part of the corresponding three-loop iMOMi
coupling constant renormalization constants. However, for
the wave function renormalizations, we have directly renor-
malized the respective two-point functions at three loops and
checked that they agree precisely with the three-loop
expressions constructed using the conversion functions.
This represents a useful verification of the conversion
function formalism. The final check on our results is that
the ω → 1 limit correctly emerges.

IV. CRITICAL EXPONENTS

As an application of our results, we now turn to the
evaluation of various critical exponents, which are renorm-
alization group invariants. Therefore, the values of the
exponents in any scheme will be the same, provided the
renormalization group functions are known to all orders.
However, when one has a truncated perturbative expansion,
the values for exponents in different schemes will be
different with the hope that the discrepancy reduces at
high loop order. This is part of our motivation for
determining the renormalization group functions in these
new schemes here. Our choice of the two specific values of
the parameter ω can be used to quantify the variation in
some way. First, we summarize the formalism we will
apply [31], concentrating on the Landau gauge for illus-
tration. We define the β function in a scheme S by

βSða; 0Þ ¼
X∞
r¼1

βSr arþ1; ð4:1Þ

where the coupling constant is understood to be in the
scheme S. The associated partial sums or truncated β
functions are

βSn ða; 0Þ ¼
Xn
r¼1

βSr arþ1; ð4:2Þ

where there is no OðaÞ term since we are only considering
the Banks-Zaks fixed points and not d-dimensional Wilson-
Fisher critical points. We denote the critical coupling
constant at the Lth -loop order by aL and define it as
the solution of the Lth partial sum

βSLðaL; 0Þ ¼ 0 ð4:3Þ
in scheme S. As we will be considering the critical
exponent associated with the quark mass renormalization,
we formally define the anomalous dimension in the scheme
S by [31]

γSψ̄ψ ða; 0Þ ¼
X∞
r¼1

γSr ar ð4:4Þ

in the Landau gauge and the corresponding partial sums by

γSψ̄ψnða; 0Þ ¼
Xn
r¼1

γSr ar: ð4:5Þ

The same formalism will also apply to the case of the MAG.
Then, from each partial sum, the truncated critical exponents
we will evaluate in each of the iMOMi schemes are

ω̃L ¼ 2β0LðaL; 0Þ; ρL ¼ −2γψ̄ψLðaL; 0Þ ð4:6Þ

in the notation of Ref. [31]. Here, we use the notation of ω̃ as
the exponent corresponding to correction to scaling in order
not to confuse it with our choice of the interpolating
parameter, which was introduced in Refs. [51,52] in the
study of the quark mass renormalization. In defining the
exponents ω̃ and ρ with the factors specified in (4.6), we
have the same definition of Refs. [31,43]. However, since we
used the β-function conventions of Ref. [65], comparing the
location of the critical couplings with Ref. [43], there will be
a difference of a factor of 4π. This has been absorbed into
our coupling constant.
Having introduced the partial sum formalism, we have

solved (4.3) for the Banks-Zaks fixed point at two and three
loops in each of the iMOMi schemes. We concentrate on
the values of ω ¼ 1

2
and 2 and provide numerical results in a

series of tables. The critical couplings at two and three
loops for both values of ω are given in Table I. Since the β
function is scheme independent to two loops inclusive,
we have chosen to present the values for ω̃3 in Table II
again for each of the three schemes together. The sub-
sequent three tables (Tables III–V) contain the results for
the quark mass exponent in the iMOMq, iMOMh, and
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TABLE I. Three-loop critical couplings for the three schemes iMOMq, iMOMg, and iMOMh for ω ¼ 1
2
(left bank) and ω ¼ 2 (right

bank).

Nc Nf iMOMq iMOMh iMOMg iMOMq iMOMh iMOMg

2 6 0.082 180 0.102 178 0.079 931 0.075 759 0.097 485 0.069 611
2 7 0.060 932 0.070 282 0.054 313 0.058 801 0.068 282 0.047 987
2 8 0.044 235 0.048 765 0.037 734 0.044 086 0.047 873 0.033 758
2 9 0.029 369 0.031 291 0.024 820 0.029 912 0.030 949 0.022 590
2 10 0.014 858 0.015 344 0.013 027 0.015 226 0.015 270 0.012 204

3 9 0.053 594 0.066 233 0.050 891 0.049 640 0.063 241 0.044 376
3 10 0.043 677 0.051 213 0.039 222 0.041 718 0.049 554 0.034 557
3 11 0.035 531 0.040 203 0.030 790 0.034 749 0.039 239 0.027 353
3 12 0.028 408 0.031 285 0.024 117 0.028 304 0.030 730 0.021 614
3 13 0.021 854 0.023 529 0.018 438 0.022 984 0.023 223 0.016 704
3 14 0.015 572 0.016 421 0.013 274 0.015 876 0.016 283 0.012 202
3 15 0.009 362 0.009 671 0.008 248 0.009 557 0.009 627 0.007 743
3 16 0.003 123 0.003 158 0.002 949 0.003 156 0.003 154 0.002 865

TABLE II. Three-loop exponent ω̃ for the three schemes iMOMq, iMOMg, and iMOMh for ω ¼ 1
2
(left bank) and ω ¼ 2 (right bank).

Nc Nf iMOMq iMOMh iMOMg iMOMq iMOMh iMOMg

2 6 1.046 201 1.285 814 1.018 897 0.968 029 1.230 113 0.892 618
2 7 0.562 075 0.632 772 0.509 522 0.545 385 0.618 001 0.457 363
2 8 0.275 610 0.295 000 0.244 918 0.274 943 0.291 309 0.224 482
2 9 0.108 045 0.111 728 0.097 670 0.109 128 0.111 102 0.091 733
2 10 0.023 580 0.023 809 0.022 407 0.023 756 0.023 776 0.021 721

3 9 1.002 950 1.219 382 0.955 671 0.933 669 1.168 830 0.840 254
3 10 0.662 954 0.758 306 0.603 957 0.637 256 0.737 797 0.540 073
3 11 0.426 862 0.468 961 0.380 803 0.419 495 0.460 538 0.345 318
3 12 0.260 195 0.277 545 0.231 243 0.259 538 0.274 324 0.212 649
3 13 0.144 113 0.150 218 0.129 481 0.144 993 0.149 178 0.120 933
3 14 0.067 279 0.068 846 0.061 947 0.067 865 0.068 606 0.058 914
3 15 0.022 022 0.022 223 0.021 019 0.022 153 0.022 196 0.020 420
3 16 0.002 200 0.002 203 0.002 181 0.002 203 0.002 202 0.002 167

TABLE III. Exponent ρ for the iMOMq scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops (right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 27.239 861 17.262 397 2.285 966 0.600 572 0.461 381 0.337 700
2 7 2.471 236 1.925 820 1.106 095 0.401 204 0.346 755 0.290 809
2 8 0.743 765 0.649 692 0.508 076 0.266 242 0.247 039 0.225 155
2 9 0.280 376 0.262 282 0.234 985 0.161 626 0.156 674 0.150 586
2 10 0.092 919 0.090 649 0.087 215 0.074 218 0.073 686 0.073 000

3 9 16.864 034 11.561 746 3.624 314 0.708 237 0.553 462 0.411 676
3 10 3.848 168 2.978 729 1.676 364 0.533 844 0.452 897 0.371 313
3 11 1.560 926 1.312 033 0.938 925 0.405 984 0.364 656 0.319 805
3 12 0.773 689 0.689 329 0.562 753 0.304 867 0.285 218 0.262 590
3 13 0.412 657 0.383 454 0.339 589 0.220 487 0.212 345 0.202 509
3 14 0.218 111 0.208 960 0.195 196 0.147 470 0.144 860 0.141 586
3 15 0.101 914 0.099 806 0.096 629 0.082 990 0.082 504 0.081 877
3 16 0.027 438 0.027 285 0.027 054 0.025 855 0.025 840 0.025 821
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TABLE IV. Exponent ρ for the iMOMh scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops (right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 19.223 415 13.977 991 6.482 302 0.397 351 0.305 679 0.207 404
2 7 1.978 641 1.724 000 1.363 952 0.331 401 0.304 515 0.274 502
2 8 0.646 766 0.609 951 0.558 852 0.241 931 0.234 852 0.226 952
2 9 0.258 640 0.253 377 0.246 363 0.155 029 0.153 796 0.152 490
2 10 0.089 653 0.089 311 0.088 924 0.073 435 0.073 373 0.073 325

3 9 11.955 015 9.016 606 4.817 632 0.481 863 0.375 534 0.265 557
3 10 2.975 518 2.526 293 1.888 493 0.423 952 0.377 682 0.328 109
3 11 1.288 175 1.170 622 1.005 228 0.350 646 0.330 763 0.309 163
3 12 0.671 895 0.636 553 0.587 498 0.277 955 0.270 097 0.261 584
3 13 0.373 456 0.363 130 0.349 118 0.208 770 0.206 167 0.203 416
3 14 0.204 271 0.201 785 0.198 561 0.143 428 0.142 818 0.142 216
3 15 0.098 263 0.097 913 0.097 517 0.082 160 0.082 094 0.082 043
3 16 0.027 128 0.027 124 0.027 129 0.025 826 0.025 826 0.025 827

TABLE V. Exponent ρ for the iMOMg scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops (right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 45.515 760 45.730 994 46.741 820 0.920 418 0.861 479 0.796 716
2 7 4.046 556 4.202 074 4.463 909 0.554 462 0.542 352 0.527 694
2 8 1.143 032 1.201 675 1.292 562 0.336 918 0.336 642 0.335 932
2 9 0.389 802 0.409 221 0.438 400 0.187 578 0.189 326 0.191 453
2 10 0.112 358 0.116 219 0.121 927 0.078 876 0.079 602 0.080 609

3 9 26.683 597 26.804 168 27.370 418 1.020 688 0.954 324 0.883 068
3 10 6.082 398 6.257 561 6.573 996 0.725 820 0.701 362 0.673 553
3 11 2.411 977 2.514 774 2.681 119 0.524 318 0.516 777 0.507 645
3 12 1.148 311 1.204 608 1.291 859 0.374 713 0.374 024 0.372 958
3 13 0.578 876 0.607 462 0.650 756 0.257 811 0.259 356 0.261 181
3 14 0.284 546 0.297 076 0.315 784 0.163 806 0.165 375 0.167 404
3 15 0.121 486 0.125 435 0.131 273 0.088 730 0.088 262 0.089 284
3 16 0.029 273 0.029 663 0.030 236 0.026 094 0.026 154 0.026 247

TABLE VI. Critical couplings for the MAG in the iMOMmq scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 0.799 071 0.537 774 0.365 556 0.085 019 0.080 231 0.081 241
2 7 0.216 131 0.185 636 0.154 275 0.061 121 0.059 714 0.059 190
2 8 0.097 538 0.088 764 0.078 600 0.043 575 0.042 749 0.042 380
2 9 0.046 504 0.043 433 0.039 661 0.028 639 0.028 092 0.027 695
2 10 0.018 097 0.017 153 0.015 955 0.014 474 0.014 104 0.013 695

3 8 16.520 099 1.288 823 0.553 544 0.067 606 0.064 207 0.061 489
3 9 0.384 329 0.293 024 0.218 305 0.053 563 0.051 567 0.050 019
3 10 0.168 767 0.145 756 0.121 824 0.043 260 0.042 012 0.041 088
3 11 0.095 628 0.086 485 0.076 013 0.034 976 0.034 165 0.033 589
3 12 0.058 812 0.054 483 0.049 258 0.027 846 0.027 301 0.026 914
3 13 0.036 644 0.034 450 0.031 716 0.021 368 0.020 986 0.020 687
3 14 0.021 831 0.020 731 0.019 327 0.015 219 0.014 936 0.014 671
3 15 0.011 235 0.010 745 0.010 111 0.009 169 0.008 966 0.008 733
3 16 0.003 278 0.003 153 0.002 988 0.003 078 0.002 985 0.002 865
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TABLE VII. Critical couplings for the MAG in the iMOMmh scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 7 0.352 911 0.348 066 0.342 161 0.078 831 0.073 482 0.066 826
2 8 0.127 203 0.126 358 0.125 311 0.053 505 0.051 563 0.048 882
2 9 0.055 812 0.055 568 0.055 263 0.034 175 0.033 613 0.032 775
2 10 0.020 797 0.020 729 0.020 644 0.016 844 0.016 771 0.016 655

3 9 0.909 893 0.833 333 0.749 799 0.072 040 0.066 273 0.059 306
3 10 0.238 596 0.232 143 0.224 117 0.054 752 0.051 951 0.048 238
3 11 0.118 938 0.117 021 0.114 577 0.042 665 0.041 258 0.039 270
3 12 0.068 973 0.068 182 0.067 161 0.033 125 0.032 451 0.031 448
3 13 0.041 547 0.041 176 0.040 696 0.024 931 0.024 651 0.024 211
3 14 0.024 215 0.024 038 0.023 809 0.017 440 0.017 353 0.017 207
3 15 0.012 271 0.012 195 0.012 097 0.010 298 0.010 279 0.010 245
3 16 0.003 540 0.003 521 0.003 496 0.003 366 0.003 356 0.003 343

TABLE VIII. Critical couplings for the MAG in the iMOMmg scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 0.456 502 0.368 962 0.293 214 0.068 321 0.058 604 0.048 399
2 7 0.172 393 0.155 029 0.136 508 0.046 244 0.041 077 0.035 270
2 8 0.084 619 0.078 840 0.072 198 0.032 787 0.029 333 0.025 796
2 9 0.041 926 0.039 760 0.037 173 0.021 571 0.019 852 0.017 805
2 10 0.016 680 0.015 987 0.015 140 0.011 542 0.010 807 0.009 909

3 8 1.152 688 0.733 566 0.491 556 0.062 251 0.053 790 0.044 666
3 9 0.284 370 0.245 200 0.206 657 0.045 268 0.040 311 0.034 640
3 10 0.143 254 0.131 082 0.117 558 0.034 919 0.031 600 0.027 699
3 11 0.085 438 0.080 190 0.074 032 0.027 530 0.025 184 0.022 383
3 12 0.053 974 0.051 377 0.048 236 0.021 688 0.020 014 0.017 991
3 13 0.034 188 0.032 837 0.031 169 0.016 696 0.015 532 0.014 111
3 14 0.020 597 0.019 906 0.019 041 0.012 119 0.011 373 0.010 500
3 15 0.010 686 0.010 374 0.009 981 0.007 610 0.007 219 0.006 726
3 16 0.003 137 0.003 056 0.002 953 0.002 766 0.002 665 0.002 534

TABLE IX. Critical exponent ω̃ for the MAG in the iMOMmq scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 5.327 143 3.585 161 2.437 039 1.073 281 1.013 502 0.962 845
2 7 1.152 701 0.990 057 0.822 798 0.559 772 0.534 507 0.510 243
2 8 0.390 152 0.355 055 0.314 319 0.270 730 0.259 641 0.247 612
2 9 0.124 010 0.115 822 0.105 762 0.105 709 0.101 371 0.096 136
2 10 0.024 130 0.022 871 0.021 273 0.023 162 0.022 148 0.020 846

3 8 1.529 262 1.419 098 1.316 340
3 9 3.843 291 2.930 241 2.183 050 0.996 607 0.940 596 0.885 769
3 10 1.462 652 1.263 216 1.055 809 0.653 734 0.623 259 0.592 086
3 11 0.701 272 0.634 220 0.557 432 0.419 166 0.402 108 0.383 796
3 12 0.352 874 0.326 896 0.295 548 0.255 045 0.245 527 0.234 734
3 13 0.171 004 0.160 769 0.148 006 0.141 288 0.136 210 0.130 111
3 14 0.072 771 0.068 102 0.064 422 0.066 093 0.063 703 0.060 684
3 15 0.022 469 0.021 491 0.020 222 0.021 710 0.020 901 0.019 846
3 16 0.002 186 0.002 102 0.001 992 0.002 177 0.002 096 0.001 988
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TABLE X. Critical exponent ω̃ for the MAG in the iMOMmh scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 7 1.882 193 1.856 353 1.824 856 0.746 948 0.701 073 0.643 199
2 8 0.508 813 0.505 432 0.501 244 0.338 018 0.328 334 0.314 785
2 9 0.148 833 0.148 181 0.147 369 0.126 465 0.125 049 0.122 966
2 10 0.027 729 0.027 638 0.027 525 0.026 727 0.026 631 0.026 498

3 9 9.098 932 8.333 333 7.497 988 1.383 771 1.272 760 1.139 203
3 10 2.067 830 2.011 905 1.942 349 0.840 139 0.799 725 0.746 148
3 11 0.872 209 0.858 156 0.840 231 0.513 518 0.498 442 0.477 261
3 12 0.413 839 0.409 091 0.402 969 0.302 051 0.296 744 0.289 024
3 13 0.193 884 0.192 157 0.189 917 0.162 873 0.161 206 0.158 755
3 14 0.080 716 0.080 128 0.079 363 0.074 398 0.073 931 0.073 261
3 15 0.024 541 0.024 390 0.024 193 0.023 907 0.023 788 0.023 626
3 16 0.002 360 0.022 347 0.002 331 0.002 354 0.002 342 0.002 326

TABLE XI. Critical exponent ω̃ for the MAG in the iMOMmg scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 3.043 344 2.459 744 1.954 763 0.842 774 0.719 335 0.592 056
2 7 0.919 427 0.826 824 0.728 041 0.427 109 0.380 106 0.327 615
2 8 0.338 478 0.315 362 0.288 792 0.209 472 0.191 012 0.169 503
2 9 0.111 803 0.106 027 0.099 128 0.085 449 0.079 444 0.072 219
2 10 0.022 240 0.021 316 0.020 186 0.020 130 0.019 078 0.017 776

3 8 3.123 205 2.479 437 1.868 995
3 9 2.843 703 2.452 003 2.066 569 0.833 292 0.739 952 0.634 737
3 10 1.241 532 1.136 045 1.018 833 0.531 501 0.481 717 0.423 555
3 11 0.626 546 0.588 059 0.542 903 0.338 716 0.311 363 0.278 660
3 12 0.323 842 0.308 264 0.289 414 0.207 970 0.193 387 0.175 627
3 13 0.159 546 0.153 239 0.145 454 0.117 778 0.110 682 0.101 890
3 14 0.068 658 0.066 355 0.063 472 0.057 024 0.054 161 0.050 550
3 15 0.021 371 0.020 749 0.019 961 0.019 601 0.018 829 0.017 838
3 16 0.002 092 0.002 038 0.001 969 0.002 062 0.002 004 0.001 929

TABLE XII. Critical exponent ρ for the MAG in the iMOMmq scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 27.151 323 9.421 916 2.329 600 0.727 579 0.529 330 0.340 358
2 7 2.727 786 1.739 164 0.911 281 0.448 441 0.372 273 0.295 462
2 8 0.802 887 0.621 964 0.434 591 0.282 612 0.252 537 0.221 015
2 9 0.293 480 0.252 532 0.205 388 0.165 442 0.154 232 0.141 942
2 10 0.094 414 0.086 687 0.077 168 0.074 136 0.070 596 0.066 387

3 8 1.133 708 0.749 544 0.423 023
3 9 16.945 454 7.666 846 2.419 001 0.786 991 0.593 762 0.414 971
3 10 4.059 420 2.559 142 1.289 464 0.574 469 0.471 709 0.371 009
3 11 1.645 984 1.209 145 0.771 741 0.426 561 0.371 078 0.314 365
3 12 0.807 914 0.651 783 0.480 014 0.314 378 0.284 772 0.253 448
3 13 0.425 766 0.366 189 0.296 502 0.223 991 0.208 688 0.191 928
3 14 0.222 301 0.200 185 0.173 150 0.148 067 0.140 545 0.131 936
3 15 0.102 650 0.095 603 0.086 687 0.082 627 0.079 281 0.075 218
3 16 0.027 328 0.026 087 0.024 471 0.025 626 0.024 694 0.023 492
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iMOMg schemes, respectively. In each, we have included
the two- and three-loop values, but for three values of ω
which are 1

2
, 1, and 2. The symmetric point values

corresponding to ω ¼ 1 were computed in Ref. [31]. We
have included them here for comparison with the new
values and in order to gauge, for instance, what the range of
the exponent is when ω is varied. For all these tables, we
have concentrated on the SUð2Þ and SUð3Þ color groups
for their two-loop conformal windows, which are 6 ≤ Nf ≤
10 and 9 ≤ Nf ≤ 16, respectively. The subsequent tables
contain the same data but for the case of the MAG. For
instance, the critical couplings for each of iMOMmq,
iMOMmh, and iMOMmg schemes are given in
Tables VI, VII, and VIII, respectively, while the corre-
sponding values of ω̃ are given in Tables IX, X, and XI for
the same three schemes. Finally, Tables XII, XIII, and XIV
record the parallel two- and three-loop estimates for the

quark mass exponent ρ also at two and three loops with ω
values of 1

2
, 1, and 2 for each iMOMm scheme. In several of

the iMOMmi schemes, the lower end of the conformal
window is at Nf ¼ 8 rather than 9 for SUð3Þ, and we have
included some data for these schemes. In these cases, we
omitted recording two-loop exponents purely for the reason
that the values were several orders of magnitude greater
than either the subsequent Nf estimates or the three-loop
value. This no doubt reflects the fact that perturbation
theory is probably not truly reliable at that point. However,
as the three-loop data for Nf ¼ 8 are not unreasonable
compared to the Nf ¼ 9 value, we have included those for
guidance.
To ascertain how the exponent ω̃ depends on the scheme,

we have plotted the data of Table I for the Landau gauge in
Fig. 1 for both SUð2Þ and SUð3Þ. While we determined the
exponents for discrete values of Nf, we have chosen to

TABLE XIII. Critical exponent ρ for the MAG in the iMOMmh scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 7 3.747 300 2.473 367 0.815 222 0.319 711 0.282 781 0.262 300
2 8 0.863 985 0.720 339 0.529 470 0.252 724 0.234 933 0.220 454
2 9 0.309 416 0.285 623 0.254 192 0.166 848 0.160 562 0.154 358
2 10 0.101 970 0.099 095 0.095 369 0.080 456 0.079 152 0.077 654

3 9 41.850 719 15.814 616 −9.168 835 0.387 396 0.298 384 0.276 381
3 10 4.355 094 2.760 172 0.794 656 0.398 791 0.340 127 0.306 951
3 11 1.576 575 1.214 713 0.748 957 0.347 815 0.314 402 0.289 775
3 12 0.767 773 0.656 673 0.511 728 0.283 215 0.265 652 0.250 555
3 13 0.412 837 0.376 052 0.327 950 0.216 388 0.208 016 0.199 960
3 14 0.221 764 0.210 274 0.195 312 0.150 500 0.147 053 0.143 388
3 15 0.105 550 0.102 718 0.099 061 0.086 974 0.085 862 0.084 554
3 15 0.028 950 0.028 643 0.028 250 0.027 477 0.027 288 0.027 045

TABLE XIV. Critical exponent ρ for the MAG in the iMOMmg scheme for ω ¼ 1
2
, 1, and 2 at two loops (left bank) and three loops

(right bank).

Nc Nf ω ¼ 1
2

ω ¼ 1 ω ¼ 2 ω ¼ 1
2

ω ¼ 1 ω ¼ 2

2 6 18.889 955 13.115 654 9.026 188 1.137 715 0.904 094 0.686 813
2 7 3.461 711 3.017 882 2.588 851 0.596 908 0.522 030 0.439 606
2 8 1.096 596 1.031 878 0.962 335 0.338 991 0.311 343 0.277 765
2 9 0.381 247 0.370 717 0.358 819 0.181 255 0.171 390 0.158 654
2 10 0.108 207 0.106 115 0.103 640 0.074 094 0.071 156 0.067 335

3 8 2.311 115 1.831 479 1.380 792
3 9 17.574 292 13.681 752 10.430 036 1.165 083 0.991 664 0.809 849
3 10 5.378 418 4.779 519 4.181 646 0.776 540 0.695 456 0.602 230
3 11 2.313 440 2.179 419 2.036 729 0.539 557 0.498 978 0.449 066
3 12 1.131 927 1.100 464 1.066 610 0.375 802 0.355 280 0.328 634
3 13 0.574 349 0.568 081 0.561 776 0.253 855 0.243 752 0.230 073
3 14 0.281 210 0.280 212 0.279 458 0.159 044 0.154 304 0.147 767
3 15 0.118 769 0.095 603 0.086 687 0.084 019 0.079 281 0.079 108
3 16 0.028 135 0.026 087 0.027 193 0.024 828 0.024 694 0.023 407
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FIG. 1. Critical exponent ω̃ at three loops for SUð2Þ (left panel) and SUð3Þ (right panel) for the respective iMOMq, iMOMh, and
iMOMg schemes.
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present piecewise linear connections between the spot values
for this and the other tables, similar to Ref. [50], in order to
see any trends more clearly. In Fig. 1, the three schemes are
shown in the order of iMOMq, iMOMh, and iMOMg, and
on each plot, we have included the corresponding values for
the MS and mini-MOM (mMOM) schemes, which were
computed in Ref. [31]. As these are the same in each plot,
they provide a guide point for comparing the scheme results
for each color group. The definition of the mMOM scheme
[93] centers on the fact that the ghost-gluon vertex in the
Landau gauge does not get renormalized [94]. Therefore, the
coupling constant renormalization constant in the mMOM
scheme is determined by evaluating the ghost-gluon vertex
function with one external ghost leg nullified and then
requiring that the nonrenormalization condition is preserved
away for all covariant gauges [93]. While the scheme is
motivated by a specific property of the gauge theory, the fact
that the subtraction point is at an exceptional momentum
configuration means that there may be infrared problems
unlike the iMOMi schemes. Several general themes appear
to emerge for the Landau gauge. First, for each of the three
schemes comparing the SUð2Þ to the respective SUð3Þ plot,
the MS values diverge from the iMOMi values at about the
midpoint of the conformal window as Nf decreases. This is
not unexpected, as this is around the place where one would
expect perturbation theory to become less reliable. The effect
is most pronounced for the iMOMg scheme, whereas for the
iMOMh scheme, there is a smaller spread across the schemes
for relatively low Nf. For the iMOMi schemes, the spread
over the range of ω is relatively small, which is perhaps
surprising for low values of Nf but in keeping with our
expectations for the higher values where one is in the
perturbative region. For SUð3Þ regarding Nf ¼ 12 as a
rough boundary of this region then estimates for ω̃ would
appear to be in agreement from all the schemes except the
MS one.
One of the features of the three-loop plots for ω̃ is the

relatively small spread for the range of ω we took.
However, the two-loop value for this exponent is scheme
independent, and therefore we cannot say whether the
momentum subtraction based schemes have any marked
difference with the nonkinematic schemes. By contrast, the
quark mass anomalous dimension is scheme dependent at
two loops, and so we can examine scheme features over
several loop orders. We have given plots of ρ2 and ρ3 in
Figs. 2 and 3 for both SUð2Þ and SUð3Þ. In both figures, the
left set is the two-loop values, and the right set is the three-
loop ones with Fig. 2 giving the SUð2Þ values. The order of
the schemes is the same as Fig. 1. Some general comments
are in order at the outset. First, in both cases, the two-loop
results at the lower boundary of the conformal window for
both groups are clearly unreliable. While this is more
marked than for the exponent ω̃, it is clear that there is a
huge difference at this end of the window when one
compares with the three-loop plots. Even for values of

Nf above the lower boundary, there is still a large
discrepancy between the two- and three-loop cases as
the large vertical scale at two loops camouflages the
disparity. The other general feature is one shared with
the exponent ω̃ in that the MS scheme, and to a lesser extent
the mMOM scheme, has different behavior compared to the
iMOMi schemes as Nf decreases. This should also be
tempered by the fact that the discrepancy becomes apparent
at around Nf ¼ 12 for SUð3Þ, which is where perturbation
theory is perhaps on the limit of credibility. In terms of the
different schemes, there is clearly a parallel structure when
comparing each scheme for both groups, which is reassur-
ing. Equally, for the three-loop plots aside from the iMOMg
scheme, there is a slight discrepancy between the MS and
mMOM scheme estimates and the iMOMi ones, which has
a more dramatic low Nf limit for the iMOMh case. Clearly,
for the iMOMi schemes, there is a significant difference in
the limit to the lower window boundary, and therefore no
significance should be placed on any estimate of ρ3 in this
case. However, compared with the dramatic change from
two loops, it would suggest that a four-loop evaluation
could improve the picture for lower Nf in the kinematic
schemes. One interesting feature emerges if one examines
the three-loop plots for both exponents. For the most part,
the mMOM plots appear to faithfully track the MS ones.
Both schemes are defined in closely similar ways. For
instance, the MS scheme is a mass-independent scheme and
can be defined at an exceptional momentum configuration
as a consequence. Equally, the mMOM scheme has its
origin in preserving a property of a vertex function at
specific exceptional momentum configuration. However,
the exception to parallel behavior for mMOM exponents
compared to the MS scheme is the exponent ω̃ in the
iMOMh scheme. For both color groups, the mMOM
exponents are virtually on top of each of the iMOMi
schemes for the whole range of the conformal window. It is
premature to say that this is a general feature ahead of a
four-loop analysis. In other words, it may be the fact that as
the mMOM scheme preserves by definition a property of
the ghost-gluon vertex then this is reflected in the agree-
ment with the kinematical scheme behavior. Indeed, of the
three schemes, the iMOMh ω̃ exponents have minimal
spread for all Nf. Again, this observation needs to be
balanced by noting that the iMOMg behavior of ρ3 is
parallel to the MS and mMOM schemes for low Nf.
For the MAG, we have provided similar plots for both

exponents at three loops in Fig. 4 for the iMOMmq,
iMOMmh, and iMOMmg schemes, respectively, for
SUð3Þ. Fewer plots for this gauge have been included as
there is a strong general similarity with the Landau gauge
plots at two loops. Also, we have omitted points forNf ¼ 8

for the two schemes in which there is a window as the
relatively large values of the respective exponents would
skew the analysis. For instance, if the data from that value
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FIG. 2. Critical exponent ρ for SUð2Þ at two (left panel) and three loops (right panel) for the respective iMOMq, iMOMh, and iMOMg
schemes.

J. A. GRACEY and R. M. SIMMS PHYS. REV. D 97, 085016 (2018)

085016-24



FIG. 3. Critical exponent ρ for SUð3Þ at two (left panel) and three loops (right panel) for the respective iMOMq, iMOMh, and iMOMg
schemes.
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FIG. 4. Critical exponents ω̃ (left panel) and ρ (right panel) for SUð3Þ in the MAG at three loops for the respective iMOMmq,
iMOMmh, and iMOMmg schemes.
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of Nf were included, then the plots would make it appear
that for Nf ≥ 9 all the scheme estimates were equivalent.
Taking the range as 9 ≤ Nf ≤ 16 allows the finer detail to
be seen. The MS and mMOM three-loop estimates are
again provided for comparison. First, for ω̃, the three-loop
plots are virtually the same as for the Landau gauge. Down
to around Nf ¼ 13, there is little difference between the
two reference schemes and the kinematic ones. For the
border point of Nf ¼ 12, the iMOMmq and iMOMmh
schemes are practically the same but back up the earlier
observation that this is probably the place where higher-
order corrections could remove scheme ambiguity. For the
iMOMmg, there is clearly a discrepancy at Nf ¼ 13 which
is slightly larger than the Landau gauge. This could be due
in part to the nature of the MAG in which a subset of gluon
fields is isolated in the definition of the gauge itself.
However, the closer agreement for the other two schemes
would suggest that with higher orders this discrepancy
could wash out. The situation for ρ is somewhat different
with a different functional behavior for each scheme below
Nf ¼ 16. However, the general behavior of the three
iMOMmi schemes is not dissimilar to that of the
Landau gauge plots. It may be that the different behavior
lies in the nature of the quantity plotted, which is the quark
mass operator. As an operator, it does not have any gluon
content in which the split color group property would be
significant. However, the plots may be misleading in that
the difference between ρ exponent estimates between Nf ¼
13 and 15 range from 5% to 8% Finally, what is noticeable
in both gauges is that the behavior of the schemes based on
the triple gluon vertex is different from the other two
schemes at the lower end of the conformal window. That
this is the case in the MAG as well as the Landau gauge
suggests that it is a feature of the particular vertex, which
has significantly more graphs at two loops, and these are
predominantly gluonic. It will not be until three loops that
there would be a commensurate number of gluonic con-
tributions to the quark- and ghost-gluon vertex functions
with which to compare. It may be then that the behavior at
the lower end of the window becomes similar across all
three iMOMi schemes.

V. DISCUSSION

We conclude with various remarks. First, we have
completed the full renormalization of QCD in a new set
of kinematic schemes called iMOM, which extend the
MOM schemes of Celmaster and Gonsalves [20,21]. In
particular, we have derived all the renormalization group
functions at three loops in the three iMOM schemes for
both the Landau and maximal Abelian gauges. The
schemes depend on a parameter ω, which is restricted to
the range 0 < ω < 4. One motivation for introducing the
iMOM schemes was to provide a testing ground for
evaluating quantities of physical interest in truncated

perturbation theory and seeing how far the scheme inde-
pendence was apparent. The major application of this idea
here was to the Banks-Zaks fixed point in the conformal
window of QCD. As critical exponents are the evaluation of
the renormalization group functions at a fixed point and
therefore physical quantities, it was important to study the
exponents in the iMOM scheme. The conformal window is
such that for values of Nf near the upper limit perturbation
theory should be a good tool for reliable information. By
contrast, asNf reduces inside the window, perturbation will
cease to be a reliable guide. However, where the breakdown
occurs is not immediately obvious without a numerical
analysis. Overall, for both gauges, it seems that from the
three-loop results one cannot fully rely on the estimates at
Nf ¼ 12. This should be qualified by noting that this is
from the raw results without resummation to improve
convergence.
One aspect of our results which is worth remarking on is

in regard to agreement between MS and iMOMi scheme
results for the upper end of the window. Numerically, the
data in the plots for both sets of schemes lie on top of each
other. This strongly suggests bona fide scheme independ-
ence. However, this needs to be balanced by the fact that the
numerology of the MS and iMOMi schemes is different
with the differences appearing first in the scheme-
dependent terms. Therefore, this ought to motivate a future
analytic study in order to see if this can be established
beyond numerical evidence. Of course, one could extend
the iMOMi schemes beyond the appearance of one param-
eter. For instance, a more general set of schemes could
involve two parameters related to the dimensionless var-
iables x and y appearing in the underlying polylogarithms
of the master one- and two-loop integrals. While we have
not studied this, we would expect the outcome to be the
same. In other words, there would be scheme independ-
ence. Such a more general set of schemes might be useful in
the extension of these ideas to other quantities of physical
interest such as the R ratio. There, one has experimental
data for which the truncated perturbative expansion is also
available but has been computed primarily in the MS
scheme. By recomputing in the iMOMi schemes, one could
systematically provide bounds on the measured value at a
particular energy scale by using the tolerance from the
values at ω ¼ 1

2
and 2. This would appear to be a more

quantum field theory motivated approach as ω tracks the
effect the scheme has through the Feynman diagrams
underlying the quantity of interest. This is in contrast to
what is currently used in terms of varying the scale itself of
where the measurement is made. The toy example of the
critical exponents suggests that the scheme variation would
be a more robust procedure. Finally, in completing the
derivation of the three-loop renormalization group func-
tions in these classes of kinematic schemes and gauges, the
natural extension is to proceed to the next-loop order in
future work.
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APPENDIX: TENSOR BASES AND PROJECTION MATRICES

In this Appendix, we record the various tensor bases for each of the three-point vertex functions. While these are in effect
the same as the symmetric point, the corresponding projection matrices are ω dependent. For the ghost and quark vertices,
we have the tensor bases

Pccg
ð1Þσðp; qÞ ¼ pσ; Pccg

ð2Þσðp; qÞ ¼ qσ; ðA1Þ

and

Pqqg
ð1Þσðp; qÞ ¼ γσ; Pqqg

ð2Þσðp; qÞ ¼
pσ=p
μ2

; Pqqg
ð3Þσðp; qÞ ¼

pσ=q
μ2

;

Pqqg
ð4Þσðp; qÞ ¼

qσ=p

μ2
; Pqqg

ð5Þσðp; qÞ ¼
qσ=q
μ2

; Pqqg
ð6Þσðp; qÞ ¼

1

μ2
Γð3Þσpq; ðA2Þ

where in the latter we use the generalized basis of γ matrices, which are denoted by Γμ1…μn
ðnÞ and defined earlier. We use the

convention that when an external momentum is contracted with a Lorentz index then that index is replaced by the particular
momentum itself. For the three-point gluon vertex, there are 14 independent tensors given by

Pggg
ð1Þμνσðp; qÞ ¼ ημνpσ; Pggg

ð2Þμνσðp; qÞ ¼ ηνσpμ; Pggg
ð3Þμνσðp; qÞ ¼ ησμpν

Pggg
ð4Þμνσðp; qÞ ¼ ημνqσ; Pggg

ð5Þμνσðp; qÞ ¼ ηνσqμ; Pggg
ð6Þμνσðp; qÞ ¼ ησμqν

Pggg
ð7Þμνσðp; qÞ ¼

1

μ2
pμpνpσ; Pggg

ð8Þμνσðp; qÞ ¼
1

μ2
pμpνqσ; Pggg

ð9Þμνσðp; qÞ ¼
1

μ2
pμqνpσ

Pggg
ð10Þμνσðp; qÞ ¼

1

μ2
qμpνpσ; Pggg

ð11Þμνσðp; qÞ ¼
1

μ2
pμqνqσ; Pggg

ð12Þμνσðp; qÞ ¼
1

μ2
qμpνqσ

Pggg
ð13Þμνσðp; qÞ ¼

1

μ2
qμqνpσ; Pggg

ð14Þμνσðp; qÞ ¼
1

μ2
qμqνqσ: ðA3Þ

Finally, for the mass operator Green’s function, there are two tensors in the basis, which are

Pψ̄ψ
ð1Þ ðp; qÞ ¼ Γð0Þ; Pψ̄ψ

ð2Þ ðp; qÞ ¼
1

μ2
Γpq
ð2Þ; ðA4Þ

where Γð0Þ is the unit matrix in spinor space.
From these bases, the construction of the projection matrices is straightforward and uses the relations (2.3) and (2.4).

Consequently, the matrices are ω dependent. For instance, in the ghost-gluon vertex case, the matrix is

Mccg ¼ 2

ω½ω − 4�
�

2 ð2 − ωÞ
ð2 − ωÞ 2

�
: ðA5Þ

For the other two cases, we have chosen to record the diagonal and upper triangle entries as the matrices like Mccg are
diagonal. First, factoring off a common factor by defining

Mqqg ¼ 1

4ðd − 2Þω2½ω − 4�2
fMqqg; Mggg ¼ 1

ðd − 2Þω3½ω − 4�3
fMggg; ðA6Þ

then the entries for the quark-gluon vertex case are

J. A. GRACEY and R. M. SIMMS PHYS. REV. D 97, 085016 (2018)

085016-28



fMqqg
1;1 ¼ ½ω − 4�2ω2; fMqqg

1;2 ¼ −4½ω − 4�ω; fMqqg
1;3 ¼ 2½ω − 2�½ω − 4�ω

fMqqg
1;4 ¼ 2½ω − 2�½ω − 4�ω; fMqqg

1;5 ¼ −4½ω − 4�ω; fMqqg
1;6 ¼ 0; fMqqg

2;2 ¼ 16½d − 1�
fMqqg

2;3 ¼ −8½d − 1�½ω − 2�; fMqqg
2;4 ¼ −8½d − 1�½ω − 2�

fMqqg
2;5 ¼ −4½2½ω2 − 4ωþ 2� − ½ω − 2�2d�; fMqqg

2;6 ¼ 0; fMqqg
3;3 ¼ 4½ω2 − 4ω − 4þ 4d�

fMqqg
3;4 ¼ 4½d − 1�½ω − 2�2; fMqqg

3;5 ¼ −8½d − 1�½ω − 2�; fMqqg
3;6 ¼ 0

fMqqg
4;4 ¼ 4½ω2 − 4ω − 4þ 4d�; fMqqg

4;5 ¼ −8½d − 1�½ω − 2�; fMqqg
4;6 ¼ 0

fMqqg
5;5 ¼ 16½d − 1�; fMqqg

5;6 ¼ 0; fMqqg
6;6 ¼ 4½ω − 4�ω ðA7Þ

and

fMggg
1;1 ¼ 4½ω − 4�2ω2; fMggg

1;2 ¼ 0; fMggg
1;3 ¼ 0; fMggg

1;4 ¼ −2½ω − 2�½ω − 4�2ω2

fMggg
1;5 ¼ 0; fMggg

1;6 ¼ 0; fMggg
1;7 ¼ −16½ω − 4�ω; fMggg

1;8 ¼ 8½ω − 2�½ω − 4�ω
fMggg

1;9 ¼ 8½ω − 2�½ω − 4�ω; fMggg
1;10 ¼ 8½ω − 2�½ω − 4�ω

fMggg
1;11 ¼ −4½ω − 2�2½ω − 4�ω; fMggg

1;12 ¼ −4½ω − 2�2½ω − 4�ω
fMggg

1;13 ¼ −16½ω − 4�ω; fMggg
1;14 ¼ 8½ω − 2�½ω − 4�ω; fMggg

2;2 ¼ 4½ω − 4�2ω2

fMggg
2;3 ¼ 0; fMggg

2;4 ¼ 0; fMggg
2;5 ¼ −2½ω − 2�½ω − 4�2ω2; fMggg

2;6 ¼ 0

fMggg
2;7 ¼ −16½ω − 4�ω; fMggg

2;8 ¼ 8½ω − 2�½ω − 4�ω; fMggg
2;9 ¼ 8½ω − 2�½ω − 4�ω

fMggg
2;10 ¼ 8½ω − 2�½ω − 4�ω; fMggg

2;11 ¼ −16½ω − 4�ω
fMggg

2;12 ¼ −4½ω − 2�2½ω − 4�ω; fMggg
2;13 ¼ −4½ω − 2�2½ω − 4�ω

fMggg
2;14 ¼ 8½ω − 2�½ω − 4�ω; fMggg

3;3 ¼ 4½ω − 4�2ω2; fMggg
3;4 ¼ 0; fMggg

3;5 ¼ 0

fMggg
3;6 ¼ −2½ω − 2�½ω − 4�2ω2; fMggg

3;7 ¼ −16½ω − 4�ω
fMggg

3;8 ¼ 8½ω − 2�½ω − 4�ω; fMggg
3;9 ¼ 8½ω − 2�½ω − 4�ω

fMggg
3;10 ¼ 8½ω − 2�½ω − 4�ω; fMggg

3;11 ¼ −4½ω − 2�2½ω − 4�ω
fMggg

3;12 ¼ −16½ω − 4�ω; fMggg
3;13 ¼ −4½ω − 2�2½ω − 4�ω

fMggg
3;14 ¼ 8½ω − 2�½ω − 4�ω; fMggg

4;4 ¼ 4½ω − 4�2ω2; fMggg
4;5 ¼ 0; fMggg

4;6 ¼ 0

fMggg
4;7 ¼ 8½ω − 2�½ω − 4�ω; fMggg

4;8 ¼ −16½ω − 4�ω
fMggg

4;9 ¼ −4½ω − 2�2½ω − 4�ω; fMggg
4;10 ¼ −4½ω − 2�2½ω − 4�ω

fMggg
4;11 ¼ 8½ω − 2�½ω − 4�ω; fMggg

4;12 ¼ 8½ω − 2�½ω − 4�ω
fMggg

4;13 ¼ 8½ω − 2�½ω − 4�ω; fMggg
4;14 ¼ −16½ω − 4�ω; fMggg

5;5 ¼ 4½ω − 4�2ω2

fMggg
5;6 ¼ 0; fMggg

5;7 ¼ 8½ω − 2�½ω − 4�ω; fMggg
5;8 ¼ −4½ω − 2�2½ω − 4�ω

fMggg
5;9 ¼ −4½ω − 2�2½ω − 4�ω; fMggg

5;10 ¼ −16½ω − 4�ω
fMggg

5;11 ¼ 8½ω − 2�½ω − 4�ω; fMggg
5;12 ¼ 8½ω − 2�½ω − 4�ω

fMggg
5;13 ¼ 8½ω − 2�½ω − 4�ω; fMggg

5;14 ¼ −16½ω − 4�ω; fMggg
6;6 ¼ 4½ω − 4�2ω2

fMggg
6;7 ¼ 8½ω − 2�½ω − 4�ω; fMggg

6;8 ¼ −4½ω − 2�2½ω − 4�ω
fMggg

6;9 ¼ −16½ω − 4�ω; fMggg
6;10 ¼ −4½ω − 2�2½ω − 4�ω
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fMggg
6;11 ¼ 8½ω − 2�½ω − 4�ω; fMggg

6;12 ¼ 8½ω − 2�½ω − 4�ω; fMggg
6;13 ¼ 8½ω − 2�½ω − 4�ω

fMggg
6;14 ¼ −16½ω − 4�ω; fMggg

7;7 ¼ 64½dþ 1�; fMggg
7;8 ¼ −32½dþ 1�½ω − 2�

fMggg
7;9 ¼ −32½dþ 1�½ω − 2�; fMggg

7;10 ¼ −32½dþ 1�½ω − 2�
fMggg

7;11 ¼ 16½dω2 − 4dωþ 4dþ 4�; fMggg
7;12 ¼ 16½dω2 − 4dωþ 4dþ 4�

fMggg
7;13 ¼ 16½dω2 − 4dωþ 4dþ 4�

fMggg
7;14 ¼ −8½dω2 − 4dωþ 4d − 2ω2 þ 8ωþ 4�½ω − 2�; fMggg

8;8 ¼ 32½2dþ ω2 − 4ωþ 2�
fMggg

8;9 ¼ 16½dþ 1�½ω − 2�2; fMggg
8;10 ¼ 16½dþ 1�½ω − 2�2

fMggg
8;11 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; fMggg

8;12 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�
fMggg

8;13 ¼ −8½dω2 − 4dωþ 4dþ 4�½ω − 2�; fMggg
8;14 ¼ 16½dω2 − 4dωþ 4dþ 4�

fMggg
9;9 ¼ 32½2dþ ω2 − 4ωþ 2�; fMggg

9;10 ¼ 16½dþ 1�½ω − 2�2
fMggg

9;11 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; fMggg
9;12 ¼ −8½dω2 − 4dωþ 4dþ 4�½ω − 2�

fMggg
9;13 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; fMggg

9;14 ¼ 16½dω2 − 4dωþ 4dþ 4�
fMggg

10;10 ¼ 32½2dþ ω2 − 4ωþ 2�; fMggg
10;11 ¼ −8½dω2 − 4dωþ 4dþ 4�½ω − 2�

fMggg
10;12 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�; fMggg

10;13 ¼ −8½4dþ ω2 − 4ωþ 4�½ω − 2�
fMggg

10;14 ¼ 16½dω2 − 4dωþ 4dþ 4�; fMggg
11;11 ¼ 32½2dþ ω2 − 4ωþ 2�

fMggg
11;12 ¼ 16½dþ 1�½ω − 2�2; fMggg

11;13 ¼ 16½dþ 1�½ω − 2�2
fMggg

11;14 ¼ −32½dþ 1�½ω − 2�; fMggg
12;12 ¼ 32½2dþ ω2 − 4ωþ 2�

fMggg
12;13 ¼ 16½dþ 1�½ω − 2�2; fMggg

12;14 ¼ −32½dþ 1�½ω − 2�
fMggg

13;13 ¼ 32½2dþ ω2 − 4ωþ 2�; fMggg
13;14 ¼ −32½dþ 1�½ω − 2�

fMggg
14;14 ¼ 64½dþ 1� ðA8Þ

for the triple gluon vertex. For the mass operator, the projection matrix is diagonal since

Mψ̄ψ ¼ 1

4ω½ω − 4�
�
ω½ω − 4� 0

0 4

�
: ðA9Þ

For each of the three vertices and the operator, we have checked that the symmetric point matrices of Ref. [22] emerge in the
ω → 1 limit.

[1] W. A. Bardeen, A. J. Buras, D.W. Duke, and T. Muta, Phys.
Rev. D 18, 3998 (1978).

[2] G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).
[3] G. ’t Hooft, Nucl. Phys. B61, 455 (1973).
[4] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev.

Lett. 118, 082002 (2017).
[5] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.

Vogt, J. High Energy Phys. 02 (2017) 090.
[6] T. Luthe, A. Maier, P. Marquard, and Y. Schröder, J. High

Energy Phys. 10 (2017) 166.

[7] K. G. Chetyrkin, G. Falcioni, F. Herzog, and J. A. M.
Vermaseren, J. High Energy Phys. 10 (2017) 179.

[8] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, J. High
Energy Phys. 10 (2014) 76.

[9] T. Luthe, A. Maier, P. Marquard, and Y. Schröder, J. High
Energy Phys. 01 (2017) 081.

[10] T. Luthe, A. Maier, P. Marquard, and Y. Schröder, J. High
Energy Phys. 03 (2017) 020.

[11] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, J. High
Energy Phys. 04 (2017) 119.

J. A. GRACEY and R. M. SIMMS PHYS. REV. D 97, 085016 (2018)

085016-30

https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1007/JHEP02(2017)090
https://doi.org/10.1007/JHEP10(2017)166
https://doi.org/10.1007/JHEP10(2017)166
https://doi.org/10.1007/JHEP10(2017)179
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP10(2014)076
https://doi.org/10.1007/JHEP01(2017)081
https://doi.org/10.1007/JHEP01(2017)081
https://doi.org/10.1007/JHEP03(2017)020
https://doi.org/10.1007/JHEP03(2017)020
https://doi.org/10.1007/JHEP04(2017)119
https://doi.org/10.1007/JHEP04(2017)119


[12] D. J. Gross and F. J. Wilczek, Phys. Rev. Lett. 30, 1343
(1973).

[13] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[14] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
[15] D. R. T. Jones, Nucl. Phys. B75, 531 (1974).
[16] O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov,

Phys. Lett. 93B, 429 (1980).
[17] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin,

Phys. Lett. B 400, 379 (1997).
[18] M. Czakon, Nucl. Phys. B710, 485 (2005).
[19] M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys.

34, 687 (1986).
[20] W. Celmaster and R. J. Gonsalves, Phys. Rev. Lett. 42, 1435

(1979).
[21] W. Celmaster and R. J. Gonsalves, Phys. Rev. D 20, 1420

(1979).
[22] J. A. Gracey, Phys. Rev. D 84, 085011 (2011).
[23] A. I. Davydychev, J. Phys. A 25, 5587 (1992).
[24] N. I. Usyukina and A. I. Davydychev, Phys. At. Nucl. 56,

1553 (1993).
[25] N. I. Usyukina and A. I. Davydychev, Phys. Lett. B 332, 159

(1994).
[26] T. G. Birthwright, E. W. N. Glover, and P. Marquard, J. High

Energy Phys. 09 (2004) 042.
[27] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240

(1972).
[28] K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
[29] K. G. Wilson, Phys. Rev. B 4, 3184 (1971).
[30] K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).
[31] J. A. Gracey and R. M. Simms, Phys. Rev. D 91, 085037

(2015).
[32] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[33] T. A. Ryttov and F. Sannino, Phys. Rev. D 76, 105004

(2007).
[34] T. Ryttov and F. Sannino, Int. J. Mod. Phys. A 25, 4603

(2010).
[35] C. Pica and F. Sannino, Phys. Rev. D 83, 116001 (2011).
[36] T. A. Ryttov and R. Shrock, Phys. Rev. D 83, 056011

(2011).
[37] C. Pica and F. Sannino, Phys. Rev. D 83, 035013 (2011).
[38] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032

(2012).
[39] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 085005

(2012).
[40] R. Shrock, Phys. Rev. D 88, 036003 (2013).
[41] T. A. Ryttov, Phys. Rev. D 89, 016013 (2014).
[42] T. A. Ryttov, Phys. Rev. D 89, 056001 (2014).
[43] T. A. Ryttov, Phys. Rev. D 90, 056007 (2014); 91, 039906

(E) (2015).
[44] G. Choi and R. Shrock, Phys. Rev. D 90, 125029 (2014).
[45] T. A. Ryttov, Phys. Rev. Lett. 117, 071601 (2016).
[46] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105015

(2016).
[47] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014

(2016).
[48] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005

(2016).
[49] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 105004

(2017).

[50] T. A. Ryttov and R. Shrock, Phys. Rev. D 96, 105018
(2017).

[51] C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C.
Sachrajda, and A. Soni, Phys. Rev. D 80, 014501 (2009).

[52] M. Gorbahn and S. Jäger, Phys. Rev. D 82, 114001 (2010).
[53] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).
[54] A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys.

B293, 461 (1987).
[55] A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J.

Wiese, Phys. Lett. B 198, 516 (1987).
[56] Y. Nambu, Phys. Rev. D 10, 4262 (1974).
[57] G. ’t Hooft, High Energy Physics (Editorice Compositori,

Bologna, 1975).
[58] Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982).
[59] H. Min, T. Lee, and P. Y. Pac, Phys. Rev. D 32, 440 (1985).
[60] A. R. Fazio, V. E. R. Lemes, M. S. Sarandy, and S. P.

Sorella, Phys. Rev. D 64, 085003 (2001).
[61] K.-I. Kondo and T. Shinohara, Prog. Theor. Phys. 105, 649

(2001).
[62] T. Shinohara, Mod. Phys. Lett. A 18, 1398 (2003).
[63] T. Shinohara, T. Imai, and K.-I. Kondo, Int. J. Mod. Phys. A

18, 5733 (2003).
[64] D. Dudal, J. A. Gracey, V. E. R. Lemes, M. S. Sarandy, R. F.

Sobreiro, S. P. Sorella, and H. Verschelde, Phys. Rev. D 70,
114038 (2004).

[65] J. A. Gracey, J. High Energy Phys. 04 (2005) 012.
[66] J. M. Bell and J. A. Gracey, Phys. Rev. D 88, 085027

(2013).
[67] J. M. Bell and J. A. Gracey, Phys. Rev. D 92, 125001

(2015).
[68] S. G. Gorishny, S. A. Larin, L. R. Surguladze, and F. K.

Tkachov, Comput. Phys. Commun. 55, 381 (1989).
[69] S. A. Larin, F. V. Tkachov, and J. A. M. Vermaseren, The

form version of Mincer, Report No. NIKHEF-H-91-18.
[70] A. D. Kennedy, J. Math. Phys. (N.Y.) 22, 1330 (1981).
[71] A. Bondi, G. Curci, G. Paffuti, and P. Rossi, Ann. Phys.

(N.Y.) 199, 268 (1990).
[72] A. N. Vasil’ev, S. É. Derkachov, and N. A. Kivel, Theor.

Math. Phys. 103, 487 (1995).
[73] A. N. Vasil’ev, M. I. Vyazovskii, S. É. Derkachov, and N. A.

Kivel, Theor. Math. Phys. 107, 441 (1996).
[74] A. N. Vasil’ev, M. I. Vyazovskii, S. É. Derkachov, and N. A.

Kivel, Theor. Math. Phys. 107, 710 (1996).
[75] P. Nogueira, J. Comput. Phys. 105, 279 (1993).
[76] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).
[77] C. Studerus, Comput. Phys. Commun. 181, 1293 (2010).
[78] A. von Manteuffel and C. Studerus, arXiv:1201.4330.
[79] J. A. M. Vermaseren, arXiv:math-ph/0010025.
[80] M. Tentyukov and J. A. M. Vermaseren, Comput. Phys.

Commun. 181, 1419 (2010).
[81] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303, 334

(1993).
[82] G. ’t Hooft, Acta Universitatis Wratislaviensis 368, 345

(1976).
[83] B. S. DeWitt, in Proceedings of Quantum Gravity, edited by

C. Isham, R. Penrose, and S. Sciama (Oxford, England,
1980), Vol. II, p. 449.

[84] D. G. Boulware, Phys. Rev. D 23, 389 (1981).
[85] L. F. Abbott, Nucl. Phys. B185, 189 (1981).

RENORMALIZATION OF QCD IN THE INTERPOLATING … PHYS. REV. D 97, 085016 (2018)

085016-31

https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/S0370-2693(97)00370-5
https://doi.org/10.1016/j.nuclphysb.2005.01.012
https://doi.org/10.1002/prop.19860341102
https://doi.org/10.1002/prop.19860341102
https://doi.org/10.1103/PhysRevLett.42.1435
https://doi.org/10.1103/PhysRevLett.42.1435
https://doi.org/10.1103/PhysRevD.20.1420
https://doi.org/10.1103/PhysRevD.20.1420
https://doi.org/10.1103/PhysRevD.84.085011
https://doi.org/10.1088/0305-4470/25/21/017
https://doi.org/10.1016/0370-2693(94)90874-5
https://doi.org/10.1016/0370-2693(94)90874-5
https://doi.org/10.1088/1126-6708/2004/09/042
https://doi.org/10.1088/1126-6708/2004/09/042
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevLett.28.548
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.76.105004
https://doi.org/10.1103/PhysRevD.76.105004
https://doi.org/10.1142/S0217751X10050391
https://doi.org/10.1142/S0217751X10050391
https://doi.org/10.1103/PhysRevD.83.116001
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.83.035013
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.88.036003
https://doi.org/10.1103/PhysRevD.89.016013
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.90.056007
https://doi.org/10.1103/PhysRevD.91.039906
https://doi.org/10.1103/PhysRevD.91.039906
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevLett.117.071601
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.94.105015
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.96.105018
https://doi.org/10.1103/PhysRevD.96.105018
https://doi.org/10.1103/PhysRevD.80.014501
https://doi.org/10.1103/PhysRevD.82.114001
https://doi.org/10.1016/0550-3213(81)90442-9
https://doi.org/10.1016/0550-3213(87)90080-0
https://doi.org/10.1016/0550-3213(87)90080-0
https://doi.org/10.1016/0370-2693(87)90910-5
https://doi.org/10.1103/PhysRevD.10.4262
https://doi.org/10.1103/PhysRevD.25.2681
https://doi.org/10.1103/PhysRevD.32.440
https://doi.org/10.1103/PhysRevD.64.085003
https://doi.org/10.1143/PTP.105.649
https://doi.org/10.1143/PTP.105.649
https://doi.org/10.1142/S0217732303011198
https://doi.org/10.1142/S0217751X03016008
https://doi.org/10.1142/S0217751X03016008
https://doi.org/10.1103/PhysRevD.70.114038
https://doi.org/10.1103/PhysRevD.70.114038
https://doi.org/10.1088/1126-6708/2005/04/012
https://doi.org/10.1103/PhysRevD.88.085027
https://doi.org/10.1103/PhysRevD.88.085027
https://doi.org/10.1103/PhysRevD.92.125001
https://doi.org/10.1103/PhysRevD.92.125001
https://doi.org/10.1016/0010-4655(89)90134-3
https://doi.org/10.1063/1.525069
https://doi.org/10.1016/0003-4916(90)90380-7
https://doi.org/10.1016/0003-4916(90)90380-7
https://doi.org/10.1007/BF02274026
https://doi.org/10.1007/BF02274026
https://doi.org/10.1007/BF02071452
https://doi.org/10.1007/BF02070379
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.1016/j.cpc.2010.03.012
http://arXiv.org/abs/1201.4330
http://arXiv.org/abs/math-ph/0010025
https://doi.org/10.1016/j.cpc.2010.04.009
https://doi.org/10.1016/j.cpc.2010.04.009
https://doi.org/10.1016/0370-2693(93)91441-O
https://doi.org/10.1016/0370-2693(93)91441-O
https://doi.org/10.1103/PhysRevD.23.389
https://doi.org/10.1016/0550-3213(81)90371-0


[86] D.M.Capper andA.MacLean,Nucl. Phys.B203, 413 (1982).
[87] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.97.085016 for file with
renormalization group functions, coupling constant map-
pings, conversion functions, vertex functions and projection
matrices.

[88] O. Nachtmann andW.Wetzel, Nucl. Phys. B187, 333 (1981).
[89] R. Tarrach, Nucl. Phys. B183, 384 (1981).

[90] O. V. Tarasov, Joint Institute for Nuclear Research preprint
P2-82-900 (unpublished).

[91] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997).
[92] J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen,

Phys. Lett. B 405, 327 (1997).
[93] L. von Smekal, K. Maltman, and A. Sternbeck, Phys. Lett. B

681, 336 (2009).
[94] J. C. Taylor, Nucl. Phys. B33, 436 (1971).

J. A. GRACEY and R. M. SIMMS PHYS. REV. D 97, 085016 (2018)

085016-32

https://doi.org/10.1016/0550-3213(82)90321-2
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
http://link.aps.org/supplemental/10.1103/PhysRevD.97.085016
https://doi.org/10.1016/0550-3213(81)90278-9
https://doi.org/10.1016/0550-3213(81)90140-1
https://doi.org/10.1016/S0370-2693(97)00535-2
https://doi.org/10.1016/S0370-2693(97)00660-6
https://doi.org/10.1016/j.physletb.2009.10.030
https://doi.org/10.1016/j.physletb.2009.10.030
https://doi.org/10.1016/0550-3213(71)90297-5

