
 

Thermodynamic equilibrium with acceleration and the Unruh effect
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We address the problem of thermodynamic equilibrium with constant acceleration along the velocity
field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum
field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh
temperature TU ¼ A=2π where A is the magnitude of the acceleration four-vector. We argue that the
Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global
thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local
thermodynamic equilibrium situation.
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I. INTRODUCTION

The study of relativistic matter and quantum fields at
thermodynamic equilibrium under different conditions is
drawing great attention lately. There are several motivations
behind this interest. On one hand, the relativistic stress-
energy tensor is the key ingredient in general relativity, hence
in relativistic astrophysics and cosmology, where one would
like to calculate its mean value including quantum effects at
local thermodynamic equilibrium. Furthermore, the appa-
rently successful description of the quark-gluon plasma
formed in nuclear collisions as a relativistic fluid at local
thermodynamic equilibrium with acceleration and vorticity
[1] has stimulated new theoretical developments in this
direction. On the other hand, when temperature becomes
very low and we get close to vacuum state, it is known that
acceleration involves peculiar quantum-relativistic effects,
which were first pointed out byUnruh [2]. Indeed, the Unruh
effect and its consequences is still a vibrant subject of
investigation (see for instance Refs. [3,4]).
In this paper, we will study an accelerated system at any

finite temperature in the framework of quantum field theory
and quantum statistical mechanics. The equilibrium ther-
mal state will be defined by the proper density operator:

ρ̂ ¼ 1

Z
exp½−Ĥ=T0 þ aK̂z=T0�

where Ĥ is the Hamiltonian and K̂z is the boost operator.
As we will show, this density operator represents a system
at global thermodynamic equilibrium with nonvanishing
acceleration and finite local temperature, whose relation
with the constants T0 and a will become clear later on.
We will show—for the free scalar field case—that this

equilibrium state has a remarkable feature, namely its local
temperature, measured by a comoving thermometer cannot
be lower than:

TU ¼ jAj
2π

where jAj is the magnitude of the acceleration four-vector,
which can be defined as the comoving Unruh temperature.
We will argue that this feature extends to any fluid and it is
not in fact limited to free fields.

A. Notation

In this paper we use the natural units, with
ℏ ¼ c ¼ K ¼ 1. The Minkowskian metric tensor is
diagð1;−1;−1;−1Þ; for the Levi-Civita symbol we use
the convention ϵ0123 ¼ 1. Operators in Hilbert space will be
denoted by a large upper hat, e.g. T̂ while unit vectors with
a small upper hat, e.g. v̂.

II. EQUILIBRIA IN RELATIVISTIC
STATISTICAL MECHANICS

In thermal quantum field theory the usual task is to
calculate mean values of physical quantities at thermody-
namic equilibrium. The corresponding density operator in
flat spacetime is

ρ̂ ¼ ð1=ZÞ exp½−Ĥ=T0 þ μ0Q̂=T0� ð1Þ

where T0 is the temperature and μ0 the chemical potential
(the reason for the 0 superscript will become clear soon)
coupled to a conserved charge Q̂, and Z the partition
function. The above density operator can be made mani-
festly covariant by introducing the four-temperature β ¼
ð1=TÞu where u is the four-velocity of the comoving
observer; thereby, the Eq. (1) can be rewritten as:

ρ̂ ¼ ð1=ZÞ exp½−β · P̂þ μ0Q̂=T0� ð2Þ
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where P̂ is the four-momentum operator. Note that T ¼
1=

ffiffiffiffiffi
β2

p
is a relativistic invariant; it is the temperature

measured by a comoving thermometer, according to the
most widely accepted formulation of relativistic thermo-
dynamics [5].
However, the density operator (1), is not the only form

of global thermodynamic equilibrium, defined, in general,
as a state where the entropy S ¼ −trðρ̂ log ρ̂Þ is maximal—
hence constant—with specific constraints. For instance, it
is well known [6,7] that in nonrelativistic quantummechan-
ics the operator:

ρ̂ ¼ ð1=ZÞ exp½−Ĥ=T0 þ ωĴz=T0 þ μ0Q̂=T0� ð3Þ

Ĥ the Hamiltonian and Ĵz the angular momentum operator
along some axis z, represents a globally equilibrated
spinning fluid with angular velocity ω.
The above (2) and (3) are indeed special cases of the

most general thermodynamic equilibrium density operator,
which can be obtained by maximizing the total entropy
S ¼ −trðρ̂ log ρ̂Þ with the constraints of given energy-
momentum and charge densities at some specific time
over some spacelike hypersurface Σ [5,8,9]. Therefore, the
general equilibrium density operator can be written in a
fully covariant form as [8,10,11]:

ρ̂ ¼ ð1=ZÞ exp
�
−
Z
Σ
dΣμðT̂μνβν − ζĵμÞ

�
ð4Þ

where T̂μν is the stress-energy tensor, ĵμ a conserved current
and ζ is a scalar whose meaning is the ratio between
comoving chemical potential comoving temperature. The
four-vector field β has the physical meaning of the inverse
proper temperature times the four-velocity and, in general,
does not need to be constant and uniform at equilibrium.
Indeed, for the right hand side of Eq. (4) to be a good

equilibrium distribution, the integral must be independent
of Σ, which also means independent of time if Σ is chosen
to be a t ¼ const hypersurface. Provided that the flux at
some timelike boundary vanishes, this condition requires
the divergence of the vector field in the integrand to be zero
and this in turn [11] that the scalar ζ is constant and β a
Killing vector field, that is fulfilling the equation1:

∇μβν þ∇νβμ ¼ 0 ð5Þ

The density operator (4) is also well suited to describe
thermodynamic equilibrium in a general curved spacetime
possessing a timelike Killing vector field. In Minkowski
spacetime, which we will be dealing with in this work, the
general solution of the Eq. (5) is

βμ ¼ bμ þϖμνxν ð6Þ

where b is a constant four-vector and ϖ a constant
antisymmetric tensor, which, because of Eq. (6) can be
written as an exterior derivative of the β field, that is
ϖνμ ¼ − 1

2
ð∂νβμ − ∂μβνÞ. Hence, by using the Eq. (6), the

integral in Eq. (4) can be rewritten as:

Z
Σ
dΣμT̂

μνβν ¼ −bμP̂μ þ 1

2
ϖμνĴ

μν ð7Þ

and the density operator (4) as:

ρ̂ ¼ 1

Z
exp

�
−bμP̂μ þ 1

2
ϖμνĴ

μν þ ζQ̂

�
ð8Þ

where the Ĵ’s are the generators of the Lorentz trans-
formations:

Ĵμν ¼
Z
Σ
dΣλðxμT̂λν − xνT̂λμÞ: ð9Þ

Therefore, besides the chemical potentials, the most general
equilibrium density operator in Minkowski spacetime can
be written as a linear combinations of the 10 generators of
the Poincaré group with 10 constant coefficients.
It can be readily seen that the density operator (2) is

obtained by setting b ¼ ð1=T0Þð1; 0; 0; 0Þ andϖ ¼ 0, what
we define as homogeneous thermodynamic equilibrium.
The rotating global equilibrium in Eq. (3) can be obtained
as a special case of Eq. (8) by setting:

bμ ¼ ð1=T0; 0; 0; 0Þ ϖμν ¼ ðω=T0Þðg1μg2ν − g1νg2μÞ
ð10Þ

i.e. by imposing that the antisymmetric tensor ϖ has just a
“magnetic” part; thereby, ω gets the physical meaning of a
costant angular velocity [6]. However, there is a third, not
generally known, form which is conceptually independent
of the above two, which can be obtained by imposing that
ϖ has just an “electric” (or longitudinal) part, i.e.:

bμ ¼ ð1=T0; 0; 0; 0Þ ϖμν ¼ ða=T0Þðg0νg3μ − g3νg0μÞ:
ð11Þ

The resulting density operator is

ρ̂ ¼ ð1=ZÞ exp ½−Ĥ=T0 þ aK̂z=T0�: ð12Þ

K̂z ≡ Ĵ30 being the generator of a Lorentz boost along the z
axis. As we will see, this density operator represents a
relativistic fluid with constant comoving acceleration along
the z direction and the combination Ĥ − aK̂z can be seen as
the generator of translation along its flow lines [12]. Note

1For general non-cartesian coordinates can be involved, we use
covariant derivative notation even though we are working in flat
spacetime.
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that the operators Ĥ and K̂z are both conserved and yet,
unlike in the rotation case (3) they do not commute with
each other. In fact, the boost operator K̂z is explicitly time
dependent as, from (9):

K̂z ¼ Ĵ30 ¼ tP̂z −
Z

d3xzT̂00

and its Heisenberg equation of motion reads:

i
dK̂z

dt
¼ ½K̂z; Ĥ� þ i

∂K̂z

∂t ¼ −iP̂z þ iP̂z ¼ 0

This makes the density operator (12) a very peculiar kind of
thermodynamic equilibrium.
The question arises whether and how a density operator

like (12) can be realized. In quantum statistical mechanics,
the density operator (12) is the solution of the maximization
of entropy constrained by fixed mean values of the total
energy hĤi ¼ H0 and of the mean boost hK̂zi ¼ K0. In
flat space-time, it is possible to shift the origin of the
coordinates to the center-of-mass according to:

K̂0
z ¼ K̂z − tP̂z þ zCMĤ

so as to make K0
0 ¼ 0. Thereby, a state such as (12) seems

to be irrelevant.
Nevertheless, for systems at local thermodynamic equi-

librium, the operator (8) is the first order local expansion
of the four-temperature field [5] and must then be a better
approximation to describe a fluid with nonvanishing local
acceleration (and vorticity) with respect to the local four-
temperature vector alone. Similarly, in presence of the
gravitational field, the (12) is the leading order expansion
of the generally covariant expression (4) in inertial coor-
dinates [13] and it can then describe thermodynamic
equilibrium in a constant and uniform gravitational field.
This is in agreement with the principle of equivalence
and it is confirmed by taking its nonrelativistic limit. For
it is constant, we can write the explicit form of its exponent
at t ¼ 0:

Ĥ − aK̂z ¼
Z

d3xð1þ azÞT̂00:

For the single particle in nonrelativistic quantum mechan-
ics, the operator T̂00 is (restoring c) reads:

T̂00 ¼ ðmc2 þ p̂2=2mÞδ3ðx − x̂Þ
where x̂ is the position operator. Hence:

Ĥ − aK̂z ¼ ðmc2 þ p̂2=2mÞ

×
Z

d3xð1þ az=c2Þδ3ðx − x̂Þ

≃mc2 þ p̂2=2mþmaẑ

which is the Hamiltonian of a nonrelativistic particle in a
constant gravitational field a; this demonstrates our inter-
pretation. Of course, for real gravitational fields, the (12) is an
approximation of (4) without curvature terms, which may
play a role at extremely low temperatures, when the curvature
scale becomes comparable with thermal wavelengths.
The mixed states (3) and (12) are the two main

thermodynamic equilibria with ϖ ≠ 0 in Eq. (6) in flat
spacetime; all other cases are combinations thereof. It is
important to stress that in both cases the four-temperature
vector β is not a global timelike Killing vector. In fact,
there is a nontrivial Killing horizon hypersurface defined
by β2 ¼ 0 dividing the spacetime into regions where β is
timelike and spacelike respectively. This does not, though,
hamper the calculation of mean values of local operators in
the regions where β is timelike and future-oriented, as we
will see in detail in the next section.

III. EQUILIBRIUM WITH ACCELERATION

The physics described by an equilibrium density oper-
ator is contained in the four-temperature β. As has been
mentioned in the Introduction, whenever β is timelike and
future-oriented, its magnitude is the inverse comoving
temperature, whilst its direction is a flow velocity. In the
rotating case (10) one has:

β ¼ 1

T0

ð1;ω × xÞ

and the velocity field is that of a rigid rotation [6] up to the
radius r where ωr ¼ 1. The inverse of the time component
β0 is the temperature measured by a thermometer at rest
with the inertial observer, while 1=

ffiffiffiffiffi
β2

p
is the proper

temperature T measured by a comoving thermometer.
Thus, in the rotating case the temperature measured by
the inertial observer who sees the fluid in a rotational
motion is uniform, constant and equal to T0 while latter
is constant but not uniform, and it is related to T0 by the
so-called Tolman’s law T ¼ T0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jω × xj2

p
.

In the accelerating case (11), the contravariant compo-
nents of β read:

βμ ¼ 1

T0

ð1þ az; 0; 0; atÞ: ð13Þ

To understand the meaning of this vector field, it is very
useful to shift the origin of the coordinates in z ¼ −1=a.
Thereby, the four-temperature becomes, with z0 ¼ zþ 1=a:

βμ ¼ a
T0

ðz0; 0; 0; tÞ: ð14Þ

The field lines are hyperbolae with constant values of
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 − t2

p
and the four-temperature is timelike only

outside the light cone of ð0; 0; 0;−1=aÞ in the so-called
right and left Rindler wedges (RRW and LRW respec-
tively), see Fig. 1. Besides, the four-temperature is future
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oriented only in the RRW. In this region, the comoving
temperature reads:

T ¼ 1ffiffiffiffiffi
β2

p ¼ T0

ka
ð15Þ

and it is constant along the flow lines. The Eq. (15) can be
seen as an instance of Tolman’s law [14], but it is most
naturally obtained within this approach by imposing the
four-temperature to be a Killing vector. Indeed, the con-
stancy along the flow lines is a general property of Killing
vectors; by double-contracting the equation (5) with β:

0 ¼ βμβνð∇μβν þ∇νβμÞ ¼ 2βμβν∇μβν

¼ βμ∇μβ
2 ≡

ffiffiffiffiffi
β2

q
Dβ2 ð16Þ

Indeed, it is an expected feature of thermodynamic equi-
librium that observers moving along the velocity field
u ∝ β see no change in temperature and, consequently, in
all other thermodynamic quantities [15,16].
Because of (14) and (15), the velocity field u ¼ β=

ffiffiffiffiffi
β2

p
reads:

uμ ¼ 1

k
ðz0; 0; 0; tÞ

and its derivative along the flow u—that is the acceleration
Aμ—reads:

Aμ ¼ 1

k2
ðt; 0; 0; z0Þ

implying A2 ¼ −1=k2, i.e. A2 is constant along the flow
lines. The motion described by the two above relations is a
well known one in special relativity, the so-called uni-
formly accelerated observer. Note that:

−
A2

T2
¼ a2

T2
0

ð17Þ

implying that a=T0 is the constant ratio between the
magnitude of the acceleration four-vector A and that of
the proper temperature measured by the comoving observer
along the flow line. Finally, the temperature measured by
the inertial observer in the RRW is the inverse of the time
component of β in Eq. (14):

T inertial ¼ T0

1

az0

and, along the flow line:

T inertial ¼ T0

1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ t2

p

that it, it decreases for far times, when the speed of the
system approaches c.
The Killing vector field (13) has normal hypersurfaces,

which are the hyperplanes (see Fig. 1):

t ¼ k

�
zþ 1

a

�
¼ kz0

The existence of normal hypersurfaces is allowed by the
vanishing vorticity of the field (13). Indeed, as it can be
readily checked:

ϵμνρσβσ∂νβρ ¼ 0

IV. FACTORIZATION OF THE EQUILIBRIUM
DENSITY OPERATOR

We now come to the study of the equilibrium density
operator (12). First, we note that the operator in the
exponent is a Lorentz boost with respect to the displaced
origin ð0; 0; 0;−1=aÞ, what follows from the general
formula:

Ĵ0μν ≡ Ĵμνx ¼ Ĵμν − ðxμP̂ν − xνP̂μÞ
implying that:

K̂0
z ¼ K̂z −

1

a
Ĥ: ð18Þ

The density operator (12) can then be rewritten as:

ρ ¼ 1

Z
exp ½aK̂0

z=T0�: ð19Þ

z

t

RRW

LRW

-1/a

β

Σ

FIG. 1. 2D Minkowski space-time diagram with the field lines
(dashed) of the four-temperature β Killing field (13) in the right
Rindler wedge (RRW) and the left Rindler wedge (LRW). In
these wedges the vector field (drawn with arrows) is timelike and
it is future-directed only in the RRW. Also shown a hyperplane Σ
perpendicular to βwhich can be used as spacelike hypersurface to
define the Klein-Gordon inner product and calculate the operators
Π̂R,Π̂L. The quantum field in the RRW is causally disconnected
from the LRW.
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As we discussed in Sec. II, this is a special case of the
generally covariant form (4) with β given by the equa-
tions (13) or (14), with an arbitrary choice of the spacelike
hypersurface Σ, e.g. the horizontal t ¼ 0 hyperplane.
The nice feature of the density operator in Eq. (4) is that
the Killing vector β (14) vanishes in one point, which is the
displaced origin ð0; 0; 0;−1=aÞ. This is at variance with,
e.g. the rotating case in (10) and it implies that any
spacelike hypersurface through this point will allow us
to separate the exponent of (12) into two commutating—
hence factorizable—operators involving the field degrees
of freedom on either side. The reason is that the only
contribution to the commutator:

�Z
z0>0

dΣμT̂
μνβν;

Z
z0<0

dΣμT̂
μνβν

�

on a spacelike hyperplane Σ (see Fig. 1) through z0 ¼ 0
stems from the point z0 ¼ 0, i.e. the only point where
the field operators have nonvanishing commutators; since
β ¼ 0 therein, the above commutator vanishes. Thus,
defining:

γ ¼ T0β ð20Þ
which is still a Killing vector field, we have:

−aK̂0
z ¼

Z
dΣμT̂

μνγν ≡ Π̂ ¼
Z
z0>0

dΣμT̂
μνγν

þ
Z
z0<0

dΣμT̂
μνγν ≡ Π̂R − Π̂L ð21Þ

with:

½Π̂R; Π̂L� ¼ 0

where the subscripts R and L stand for the right and left
Rindler wedge respectively. We remark that a − sign in
the definition (21) of Π̂L appears because the unit vector
perpendicular to Σ in the LRW has the opposite direction
with respect to β or γ, see Fig. 1. Hence, by using Eqs. (20)
and (21), one can write:

K̂0
z ¼ −

1

a
Π̂ ¼ −

1

a
ðΠ̂R − Π̂LÞ ð22Þ

and the density operator (19) becomes:

ρ̂ ¼ 1

Z
exp½−Π̂R=T0� exp½Π̂L=T0� ð23Þ

where R and L stands for the right and left Rindler wedge
respectively (see Fig. 1).
The form (23) of the density operator makes it apparent

that the mean value of a local operator at any point x in
either the RRW or the LRW only depends on the operator
Π̂R or Π̂L respectively. Indeed, since each Π̂R;L involves

only the field operators in its wedge, one can write, in the
Hilbert space of the field states:

Π̂R ¼ Π̂R ⊗ I Π̂L ¼ I ⊗ Π̂L

Consequently, the partition function is the product of two
independent factors:

Z ¼ trðexp½−ðΠ̂R − Π̂LÞ=T0�Þ
¼ trRðexp½−Π̂R=T0�ÞtrLðexp½Π̂L=T0�Þ

where the subscripts R, L indicate that the trace is
computed on the Hilbert space spanned by the field degrees
of freedom on the RRWand LRW respectively. So, if ÔðxÞ
is a local operator with x lying, e.g. on the RRW, its mean
value will be

hÔðxÞi≡ 1

Z
trðexp½−aK̂0

z�ÔðxÞÞ

¼ 1

ZR
trRðÔðxÞ exp½−Π̂R=T0�Þ ð24Þ

regardless of the field states in the LRW.
The operators Π̂R;L are the generators of translations

along the hyperbolic β field lines. This can be readily
proved by calculating the commutator of the combination
Π̂R − Π̂L with the fields operators. If x ∈ RRW:

½Π̂R − Π̂L; ψ̂ðxÞ� ¼ ½Π̂R; ψ̂ðxÞ�

¼ −T0

�
b · P̂ −

1

2
ϖ∶Ĵ; ψ̂ðxÞ

�

¼ −iT0

�
b · ∂ψ̂ −

1

2
ϖμνðxμ∂ν − xν∂μÞψ̂

�

¼ −iT0β · ∂ψ̂ ¼ −iγ ·∇ψ̂

where we have used the Eqs. (7), (20), (21), the known
commutation relations of the Poincaré algebra and the fact
that ψ̂ðxÞ commutes with Π̂L if x ∈ RRW. This happens
because Π̂L is formed with field operators which are
causally disconnected from those in the RRW. Defining
a parameter τ such that γμ ¼ dxμ=dτ, we have:

½Π̂R; ψ̂ðxÞ� ¼ −iγ ·∇ψ̂ðxÞ ¼ −i
∂
∂τ ψ̂ðxÞ ð25Þ

i.e. the coordinate τ plays the role of a time along the γ field
lines. Accordingly, for the LRW, one has:

½Π̂L; ψ̂ðxÞ� ¼ iγ ·∇ψ̂ðxÞ ¼ i
∂
∂τ ψ̂ : ð26Þ

V. THE FREE SCALAR FIELD IN
RINDLER COORDINATES

We will now consider in more detail the simplest
instance of a quantum field theory: the free real scalar
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field. This a well known problem in Rindler coordinates:
we refer to the nice review in Ref. [17], here we will just
present a short summary. The first step is to define an inner
product of functions:

ðϕ1;ϕ2Þ ¼ i
Z
Σ
dΣμðϕ�

1∇μϕ2 − ϕ2∇μϕ�
1Þ ð27Þ

where Σ is a spacelike hypersurface with future-oriented
normal vector in Minkowski spacetime, e.g. t ¼ const. This
is also called Klein-Gordon inner product because it is
independent of Σ if ϕ1;ϕ2 are solutions of the Klein-
Gordon equation □ϕþm2ϕ ¼ 0. In this case, it is easy to
realize that the vector field integrand in (27) is divergence-
less, hence if the functions ϕ1;ϕ2 or their normal deriv-
atives vanish at the timelike boundary of a closed spacetime
region, the scalar product can be calculated over any
spacelike hypersurface. It can be checked that:

ðϕ1;ϕ2Þ ¼ ðϕ2;ϕ1Þ� ¼ −ðϕ�
1;ϕ

�
2Þ�

⇒ ðϕ�
1;ϕ2Þ ¼ −ðϕ�

2;ϕ1Þ
and that the Klein-Gordon inner product (27) is a sesqui-
linear form, that is antilinear for the first argument.
In general, the real scalar quantum field ψ̂ðxÞ can be

expanded in normalized (according to the inner product
(27) solutions of the Klein-Gordon equation):

ψ̂ðxÞ ¼
X
i

uiâi þ u�i â
†
i ð28Þ

The function u is an eigenfunction of the derivative along
the timelike Killing field (in this case β or γ) and has a
positive inner norm, which sets a distinction between
creation and destruction operator in Eq. (28) [18]:

ðui; ujÞ ¼ δij ⇒ ðu�i ; u�jÞ ¼ −δij
ðu�i ; ujÞ ¼ 0 ⇒ ðui; u�jÞ ¼ 0 ð29Þ

The Eq. (28) can be inverted to obtain the operators â; â†:

âj ¼ ðuj; ψ̂Þ â†j ¼ −ðu�j ; ψ̂Þ: ð30Þ

By using the (30) and the canonical commutation relations
of the field, it can be shown that [17]:

½âi; â†j � ¼ δij ½âi; âj� ¼ ½â†i ; â†j � ¼ 0 ð31Þ

which are the usual commutation relations between crea-
tion and destruction operators.
The field equation ð□þm2Þψ̂ ¼ 0 can be solved in

Rindler coordinates:

τ ¼ 1

2a
log

z0 þ t
z0 − t

ξ ¼ 1

2a
log½a2ðz02 − t2Þ� ð32Þ

whose inverse read, in the RRW where z0 > 0:

t ¼ eaξ

a
sinhðaτÞ z0 ¼ eaξ

a
coshðaτÞ ð33Þ

while the “transverse” coordinates x and y are cartesian. In
the LRW, instead:

t ¼ −
eaξ̄

a
sinhðaτÞ z0 ¼ −

eaξ

a
coshðaτÞ ð34Þ

while the direct (32) are maintained. With these definitions,
it turns out that dxμ=dτ ¼ γ [see Eq. (21)] both in the RRW
and the LRW. The general solution of the Klein-Gordon
equation depends on three parameters: ω, a positive real
number and a vector kT which is but the transverse
momentum of a single mode. The normalized [according
to the inner product (27)] eigenfunction in the RRW
reads [17]:

uðτ; ξ;xTÞωkT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
Kiω=a

�
mTeaξ

a

�
eikT·xTe−iωτ

ð35Þ

where K are modified Bessel functions, and the relevant
field expansion (28):

ψ̂ðτ; ξ;xTÞðRÞ ¼
Z

∞

0

dω
Z

d2kTðuωkT
âðRÞωkT

þ u�ωkT
â†ðRÞωkT

Þ

ð36Þ

where the creation and destruction operators fulfill the
commutation relation

½âðRÞωkT
; â†ðRÞω0k0

T
� ¼ δðω − ω0Þδ2ðkT − k0

TÞ: ð37Þ

Note that from (35):

i
du
dτ

¼ iγ · ∇u ¼ ωu ð38Þ

that is the u’s are eigenfunctions of the transport along the
Killing field.
Similarly, in the LRW, the quantum field can be

expanded into eigenfunctions having the same modes
and same functional form of τ and ξ as the u’s in
Eq. (35), with the important proviso that the role of creation
and destruction operators is interchanged, i.e.:

ψ̂ðτ; ξ;xTÞðLÞ ¼
Z

∞

0

dω
Z

d2kT
�
uωkT

â†ðLÞωkT
þ u�ωkT

âðLÞωkT

�

ð39Þ

with, again:
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½âðLÞωkT
; â†ðLÞω0k0

T
� ¼ δðω − ω0Þδ2ðkT − k0

TÞ: ð40Þ
The swap between creation and destruction can be under-
stood by recalling that the spacelike hypersurface chosen to
calculate the inner product (27) has the same orientation as
the Killing vector γ in the RRW, but opposite in the LRW.
As a consequence, if uðτ; ξ;xTÞ is the eigenfunction (35) in
the RRW, one has

ðuωkT
; uω0k0

T
Þ ¼ ðuωkT

; uω0k0
T
ÞR ¼ δðω − ω0Þδ2ðkT − k0

TÞ
ð41Þ

but if it is the eigenfunction with the same functional
dependence on the arguments τ; ξ;xT , in the LRW, then

ðuωkT
; uω0k0

T
Þ ¼ ðuωkT

; uω0k0
T
ÞL ¼ −δðω − ω0Þδ2ðkT − k0

TÞ
ð42Þ

simply because in the LRW dΣμ ∝ −γμ=
ffiffiffiffiffi
γ2

p
if Σ is the

hyperplane orthogonal to γ (see Fig. 1). Looking at the
Eqs. (29), (30) the swap of creation and destruction
operators as operatorial coefficients of the functions u
and u� in the LRW is apparent. Furthermore, as the fields in
the RRW and LRW are causally disconnected, one has:

½âðRÞωkT
; âðLÞω0k0

T
� ¼ ½âðRÞωkT

; â†ðLÞω0k0
T
� ¼ 0 ð43Þ

that is, all commutators of creation and destruction oper-
ators of RRW and LRW respectively vanish.
Finally, the field can be expanded in plane waves, as

usual, and equating its expansion with the above one in
Rindler eigenfunctions one can obtain the Bogoliubov
relations between the two sets of creation and destruction
operators. Defining:

vp ¼ 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jp0j

p exp½−ip · x�

and plugging the plane wave field expansion in the (30) one
obtains, for instance:

âðRÞ ¼ ðuωkT
; ψ̂Þ ¼

�
uωkT

;
Z

d3papvp þ a†pv�p

�

¼
Z

d3pðuωkT
; vpÞap þ ðuωkT

; v�pÞa†p: ð44Þ

As it is known, both Klein-Gordon inner products are
nonvanishing in Eq. (44) so that the RRW destruction
operators can be obtained as a linear combination of
creation and destruction operators of particles in eigenstates
of linear momentum.

VI. EQUILIBRIUM MEAN VALUES

The calculation of mean values of local observables with
the density operator (12)—or its equivalent form (23)—is
similar to that in the familiar thermal field theory. Let us
consider a local operator which is Hermitian and quadratic

in the field, such as ψ̂2, ∇μψ̂∇μψ̂ , ∇μψ̂∇νψ̂ etc. Most
operators of physical interest belong to this class, including
the stress-energy tensor. By using the expansion (28), and
using the subscript i as a shorthand for ðω;kTÞ, its
expectation value in the, e.g., RRW can be written as:

hAψ̂Bψ̂i ¼
X
i;j

fi;jðxÞhâ†ðRÞi âðRÞj i þ fi;jðxÞ�hâðRÞi â†ðRÞj i

ð45Þ
where A and B denote linear operations on the field, like
multiplication by a scalar or derivation and fi;j is a
functional expression depending on the specific A and B
and the eigenfunctions u; hi stands for the trace on the
RRWas in Eq. (24). An analogous expression will be found
in the LRW.
We begin our derivation by calculating the commutation

relation between the operators Π̂R;L and the creation and
destruction operators. As an example, we can derive

½Π̂R; â
ðRÞ
i � based on the Eq. (25) and by using Eqs. (28),

(29), (30) and (38):

½Π̂R;â
ðRÞ
i �¼ ½Π̂R;ðui;ψ̂ÞR�¼ ðui; ½Π̂R;ψ̂ �ÞR¼−i

�
ui;

∂
∂τψ̂

�
R

¼−
X
j

ωjðui;ujÞRâðRÞj ¼−ωiâ
ðRÞ
i :

Likewise, the full set of commutation relations can be
obtained:

½Π̂R; â
ðRÞ
i � ¼ −ωiâ

ðRÞ
i ½Π̂R; â

†ðRÞ
i � ¼ ωiâ

†ðRÞ
i

½Π̂L; â
ðLÞ
i � ¼ ωiâ

ðLÞ
i ½Π̂L; â

†ðLÞ
i � ¼ −ωiâ

†ðLÞ
i

½Π̂L; â
ðRÞ
i � ¼ ½Π̂L; â

†ðRÞ
i � ¼ 0 ð46Þ

which show that Π̂R and Π̂L play the role of Hamiltonian
operators.
It is also worth pointing out that an explicit expression of

the operators Π̂R; Π̂L can be obtained in terms of Rindler
creation and destruction operators. To show it, one extends
the Klein-Gordon inner product (27) to operators, by
defining2:

ðψ̂1; ψ̂2Þ ¼ i
Z
Σ
dΣμðψ̂†

1∇μψ̂2 − ψ̂2∇μψ̂†
1Þ: ð47Þ

With this definition, it can be shown that [17]:

2In (47) it is understood that anytime the product of field
operators appears, anticommutation is implied. For instance

ψ̂†
1∇μψ̂2 ≡ 1

2
fψ̂†

1;∇μψ̂2g
so that the order of operators appearing in (47) does not matter
even if they do not commute with each other.
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Π̂ ¼ Π̂R − Π̂L ¼ i
2
ðψ̂ ; γ ·∇ψ̂Þ ¼ i

2

�
ψ̂ ;

∂
∂τ ψ̂

�
: ð48Þ

Thus, taking the relations (29) into account:

Π̂ ¼ i
2

�
ψ̂ ;

∂ψ̂
∂τ

�

¼ i
2

X
i;j

ðuiâðRÞi þ u�i â
†ðRÞ
i ;−iωjujâ

ðRÞ
j þ iωu�j â

†ðRÞ
j ÞR

þ ðuiâ†ðLÞi þ u�i â
ðLÞ
i ;−iωjujâ

†ðLÞ
j þ iωu�j â

ðLÞ
j ÞL

¼ 1

2

X
i

ωiðâ†ðRÞi âðRÞi þ âðRÞi â†ðRÞi Þ

−ωiðâ†ðLÞi âðLÞi þ âðLÞi â†ðLÞi Þ

and, by using the (37), (40):

Π̂ ¼
X
i

ωi

�
â†ðRÞi âðRÞi − â†ðLÞi âðLÞi

�
ð49Þ

whence the commutation relations (46) could be derived.
The last expression shows that:

Π̂R ¼
X
i

ωiâ
†ðRÞ
i âðRÞi Π̂L ¼

X
i

ωiâ
†ðLÞ
i âðLÞi

From the Eq. (46) the following relations ensue:

exp½Π̂R=T0�âðRÞi exp½−Π̂R=T0� ¼ e−ωi=T0 âðRÞi

exp½−Π̂R=T0�â†ðRÞi exp½Π̂R=T0� ¼ e−ωi=T0 â†ðRÞi

exp½−Π̂L=T0�âðLÞi exp½Π̂L=T0� ¼ e−ωi=T0 âðLÞi

exp½Π̂L=T0�â†ðLÞi exp½−Π̂L=T0� ¼ e−ωi=T0 â†ðLÞi ð50Þ

which are needed to calculate the mean values of products
of creation and destruction operators. For instance,

hâ†ðRÞi âðRÞj i can be determined by using the Eqs. (37),
(50) and taking advantage of trace cyclicity:

hâ†ðRÞi âðRÞj i¼ 1

Z
tr
�
exp½−Π̂=T0�â†ðRÞi âðRÞj

�

¼ e−ω=T0
1

Z
tr
�
â†ðRÞi exp½−Π̂=T0�âðRÞj

�

¼ e−ω=T0
1

Z
tr
�
âðRÞj â†ðRÞi exp½−Π̂=T0�

�

¼ e−ω=T0
1

Z
tr
�
â†ðRÞi âðRÞj exp½−Π̂=T0�

�
þ e−ω=T0δij

¼ e−ω=T0hâ†ðRÞi âðRÞj iþ e−ω=T0δij: ð51Þ

The above equation has one finite solution, the well-known
Bose-Einstein distribution:

hâ†ðRÞi âðRÞj i ¼ δij
1

eω=T0 − 1
: ð52Þ

Similarly, it can be easily shown that:

hâ†ðRÞi â†ðRÞj i ¼ hâðRÞi âðRÞj i ¼ 0: ð53Þ

Conversely, in the LRW, a similar derivation leads to:

hâ†ðLÞl âðLÞj i ¼ eω=T0hâ†ðLÞi âðLÞj i þ eω=T0δij ð54Þ

which has a negative algebraic solution. A positive definite
solution can be obtained by iteration, starting from:

hâ†ðLÞi âðLÞj i0 ¼ eω=T0δij

replacing it on the right-hand side of Eq. (54) and iterating.
Eventually:

hâ†ðLÞi âðLÞj i ¼ δij
X∞
k¼1

ekω=T0

which is manifestly a divergent series. That the mean
occupation number in the LRW is infinite is a clear
consequence of the negative time component of the four-
temperature therein. Under this circumstance, the higher
energy states with large number of quanta are favored,
unlike in the RRW. However, this does not hurt if one is to
calculate the mean values of local operators in the RRW as
this divergent factor in the trace is cancelled by the partition
function normalizing factor.
We are now in a position to write the general expression

of the mean value (45) in the RRW. By using the (52) and
(53) and using the commutation relation, we are left with
a single sum over the modes, like in the usual thermal
quantum field theory:

hAψ̂Bψ̂i ¼
Z þ∞

0

dω
Z

d2kT

�
fω;kT

ðxÞ 1

eω=T0 − 1

þ f�ω;kT
ðxÞ

�
1

eω=T0 − 1
þ 1

��
ð55Þ

The complete calculation of physical interesting quantities
which are quadratic in the field, such as stress-energy
tensor or currents, requires the specification of the forms A,
B. Once they are known, exact expressions for fω;kT

can be
obtained by using the field eigenfunctions (35). The terms
in the integrand of (55) involving the Bose-Einstein
distribution give rise to a finite value, wherease the term
arising from the þ1 within brackets is divergent.
As an example, we can reckon the mean value of the

Lorentz-invariant expression, which enters in the calcula-
tion of the stress-energy tensor:
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hu · ∂ψ̂u · ∂ψ̂i ¼ 1

γ2
hγ · ∂ψ̂γ · ∂ψ̂i ¼ e−2aξ

	�
dψ̂
dτ

�
2



ð56Þ
where we have used the γ definition (20), the Eq. (14) and
the (33). In general, local Lorentz scalar functions such as
(56) can depend on the Lorentz scalars β2 and A2; for
instance, the canonical stress-energy tensor for the massless
scalar field [19] has a nonvanishing quadratic correction in
A2. By using the (35) it can be shown that for the quantity
(56) the functions fω;kT

in Eq. (55) are real and read:

fω;kT
¼ ω2

sinhðπω=aÞ
4π4a

Kiω=a

�
mTeaξ

a

�
K�

iω=a

�
mTeaξ

a

�
:

ð57Þ

In the massless case mT ¼ kT and the integration can be
done analytically:

Z
d2kTKiω=a

�
mTeaξ

a

�
K−iω=a

�
mTeaξ

a

�

¼ πa2

e2aξ
Γð1þ iω=aÞΓð1 − iω=aÞ ¼ π2a

e2aξ
ω

sinhðπω=aÞ

where we have taken into account that K�
iω=a ¼ K−iω=a.

Thus, for the non-divergent part of the (56) we have:

hu · ∂ψ̂u · ∂ψ̂i → 1

2π2
e−4aξ

Z þ∞

0

dωω3
1

eω=T0 − 1

¼ π2

30

e−4aξ

T4
0

¼ π2

30

1

ðβ2Þ2 :ð58Þ

This local mean value only depends on β2.

VII. SUBTRACTION OF THE VACUUM
EXPECTATION VALUE

The mean value of a local operator quadratic in the fields
at equilibrium in Eq. (55) features divergencies owing to
the constant term þ1 which stems from the commutation
relations of creation and destruction operators. In the
familiar thermal free field theory with density operator
(1), the analogous term is renormalized away by sub-
tracting the vacuum expectation value. Yet, in the present
case, we face an ambiguity as the vacuum state is dependent
on which field expansion is taken. Since the Bogoliubov
relations (44) mix creation and destruction operators, the
Rindler vacuum, i.e. the state which is annihilated by both
the âðRÞ and âðLÞ operators:

âðRÞj0Ri ¼ âðLÞj0Ri ¼ 0

does not coincide with the usual Minkowski vacuum j0Mi.

Which vacuum contribution to subtract then? In order to
solve the ambiguity, we can argue that the subtraction of
the Minkowski vacuum is better motivated, both physically
and from a mathematical viewpoint. Indeed, the inertial
observer is a privileged one in Minkowski space-time, and
one should then refer to its vacuum. Furthermore, as it can
be realized from the previous construction, the Rindler
vacuum is a state explicitly dependent on the value of a,
which is a thermodynamic parameter appearing in the
density operator (23). In fact, the vacuum state should not
be dependent on the density operator, and this is an
undesired feature of the Rindler vacuum which is not
shared by the Minkowski vacuum. We then conclude that
the most appropriate renormalization procedure is to
subtract the Minkowski vacuum contribution, hence for a
general quadratic operator:

hAψ̂Bψ̂iren ¼ hAψ̂Bψ̂i − h0MjAψ̂Bψ̂ j0Mi ð59Þ

Unruh proved that the Minkowski vacuum expectation
value corresponds to a thermal Bose-Einstein distribution
of particles at a temperature T0 ¼ a=ð2πÞ [2]. Even if it is a
well known result, we believe that it is worth outlining a
derivation based on an analytical prolongation method
which is applicable to free as well as an interacting theory
[20]. It should be pointed out that the rigorous mathemati-
cal proof involves many subtleties, what is presented below
is a largely simplified version.
In Minkowski spacetime, for a general Lorentz boost and

a scalar field one has:

exp½−iξK̂0
z�ψ̂ðxÞ exp½iξK̂0

z� ¼ ψ̂ðe−iξK0
zxÞ

where ξ is the boost hyperbolic angle. This relation can be
analytically extended to imaginary ξ’s up to ξ ¼ iπ [20,21].
For this limiting value:

exp½πK̂0
z�ψ̂ðt; x; y; z0Þ exp½−πK̂0

z� ¼ ψ̂ð−t; x; y;−z0Þ

so exp½πK0
z� is in fact a rotation of π in the ðt; z0Þ plane. We

can now apply the above operators to the Minkowski
vacuum j0Mi. Since:

exp½−πK̂0
z�j0Mi ¼ exp½−πðK̂z − Ĥ=aÞ�j0Mi

¼ expðπE0=aÞj0Mi ð60Þ

where E0 is the vacuum energy and we have used the (18)
and the invariance of the vacuum under Lorentz trans-
formations, that is K̂zj0Mi ¼ 0. Hence we get:

expðπE0=aÞ exp½πK̂0
z�ψ̂ðt; x; y; z0Þj0Mi

¼ ψ̂ð−t; x; y;−z0Þj0Mi:
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We now turn to the corresponding relations in the Rindler
coordinates. First, we note that the right-hand side must be
mapped onto the LRW, with the same coordinates τ and ξ as
on the left hand side [see Eqs. (32), (34)]. Hence, by
plugging the expansions (36), (39), solving the Klein-
Gordon inner products (41), (42) and using the (22) we
obtain:

expðπE0=aÞ exp
�
−
π

a
Π̂
�
âðRÞj0Mi ¼ â†ðLÞj0Mi

expðπE0=aÞ exp
�
−
π

a
Π̂
�
â†ðRÞj0Mi ¼ âðLÞj0Mi: ð61Þ

Now, by using the relations (50) and taking into account
that, because of the Eqs. (22) and (60):

exp½−πΠ̂=a�j0Mi ¼ exp½πK̂0
z�j0Mi ¼ expð−πE0=aÞj0Mi

the Eqs. (61) turn into:

eπωi=aâðRÞi j0Mi ¼ â†ðLÞi j0Mie−πωi=aâ†ðRÞi j0Mi ¼ âðLÞi j0Mi:
ð62Þ

These relations and the Eqs. (37), (40), (43) imply that [17]:

h0Mjâ†ðRÞi âðRÞj j0Mi ¼ h0Mjâ†ðLÞi âðLÞj j0Mi ¼ δij
1

e2πωi=a − 1

ð63Þ

which is the celebrated Unruh result.
We are now in a position to evaluate the Minkowski

vacuum expectation value. This is but the same expression
as in Eq. (45) with h0Mjj0Mi replacing hi:

h0MjAψ̂Bψ̂ j0Mi

¼
Z þ∞

0

dω
Z

d2kT ½fω;kT
ðxÞh0Mjâ†ðRÞω;kT

âðRÞω;kT
j0Mi

þ fω;kT
ðxÞ�h0MjâðRÞω;kT

â†ðRÞω;kT
j0MiÞ�:

Hence, by using the above equation along with the (37),
(55), and the (63), the Eq. (59) becomes:

hAψ̂Bψ̂iren ¼
Z þ∞

0

dω
Z

d2kTðfω;kT
ðxÞ þ fω;kT

ðxÞ�Þ

×

�
1

eω=T0 − 1
−

1

e2πω=a − 1

�
: ð64Þ

The above expression is very suggestive. Any quadratic
operator in the fields, including the stress-energy tensor,

vanishes at T0 ¼ a=ð2πÞ≡ TU. This may lead to different
conclusions: if the functions fω;kT

are positive definite,
then the mean value turns negative when the temperature T0

becomes lower than the Unruh temperature T0U ¼ a=ð2πÞ.
Alternatively, T0U is an absolute lower bound for the
temperature T0, where the mean values vanish. It is
important to stress that this conclusion holds locally, for
a comoving observer or thermometer. Because of the
relation (17), the inequality T0 > a=ð2πÞ implies:

T ¼ T0

a

ffiffiffiffiffiffiffiffiffi
−A2

p
>

ffiffiffiffiffiffiffiffiffi
−A2

p

2π
≡ TU ð65Þ

that is the temperature measured by a comoving thermom-
eter cannot exceed the magnitude of the four-acceleration
divided by 2π, which can be rightly defined as the
comoving Unruh temperature TU ¼ jAj=ð2πÞ.
This feature is apparent in the renormalized mean value

of a scalar quantity, such as the one in Eq. (56). Applying
the general expression (64) to the mean value in Eq. (56)
and taking (58) into account, we obtain:

hu · ∂ψ̂u · ∂ψ̂iren ¼ hu · ∂ψ̂u · ∂ψ̂i − h0Mju · ∂ψ̂u · ∂ψ̂ j0Mi
¼ π2

30
ðT4 − T4

UÞ:

If the mean value at equilibrium with the density operator
(12) of a scalar quantity also depends on the magnitude of
the acceleration (see Refs. [19,22] for a study of the
stress-energy tensor with a perturbative expansion in
a=T0) this conclusion holds. Indeed, as has been men-
tioned, any mean local scalar quantity can be written as a
function of the two scalars at our disposal, that is T2, and
A2=T2. In formula:

F
�
T2;

A2

T2

�
¼ F

�
T2
0

k2a2
;
a2

T2
0

�

where we have used the Eqs. (15) and (17). By sub-
tracting the term with T0 ¼ a=ð2πÞ according to the
Eq. (64) one has:

F

�
T2
0

k2a2
;
a2

T2
0

�
− F

�
1

ð2πÞ2k2 ; ð2πÞ
2

�

¼ F

�
T2;

A2

T2

�
− F

�
T2
U;

A2

T2
U

�

that is, for any local thermodynamic function we must
subtract the corresponding value setting T ¼ TU.
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VIII. DISCUSSION

The usual phrasing of the Unruh effect is that an
accelerated observer will measure a thermal radiation bath
while the inertial observer sees none in the Minkowksi
vacuum state. In this work we have actually shown that the
effect can be rephrased as follows: an ideal thermometer
comoving in an accelerated fluid at thermodynamic equi-
librium [that is, with the acceleration field pertaining to the
global thermodynamic equilibrium situation described by
the four-temperature Killing field in Eq. (13)] cannot
measure a temperature lower than jAj=ð2πÞ (see Fig. 2).
This conclusion perfectly agrees with the above phrasing of
the Unruh effect insofar as the accelerated comoving
thermometer still sees a thermal radiation when the fluid
stress-energy tensor vanishes in the Minkowski vacuum
state. We stress that this effect is local: in the Killing flow
(13) the comoving Unruh temperature depends on the
magnitude of the acceleration, which is constant along a
single Killing flow line but varies for different flow lines3

Although we have shown this for a free real scalar field,
the argument can be extended. Particularly, the Unruh
effect was rederived for an interacting scalar field theory in
Ref. [23] where it was shown that:

h0MjT½ψ̂ðxÞ;…; ψ̂ðx0Þ�j0Mi

¼ trðexp½−2πK̂0=a� T½ψ̂ðxÞ;…; ψ̂ðx0Þ�Þ
trðexp½−2πK̂0=a�Þ

where T is the time-ordered product. This result implies, if
ρ̂ is the density operator in Eq. (12):

hÔðxÞiren ¼ trðρ̂ðT0ÞÔðxÞÞ − h0MjÔðxÞj0Mi
¼ trðρ̂ðT0ÞÔðxÞÞ − trððρ̂ða=ð2πÞÞÔðxÞÞ ð66Þ

for any local operator. The Eq. (66), as we have shown at
the end of the previous section, entails that scalar thermo-
dynamic functions like energy density or pressure, for an
accelerated fluid at equilibrium can be written as:

pðT2; A2Þ ¼ pthðT2; A2Þ − pthðT2
U; A

2Þ ð67Þ

where pth is the function calculated with the density
operator (12).
This conclusion is likely to hold for any interacting field

theory, i.e. for any fluid. Indeed, the Unruh effect was
derived for a general interacting field theories in

Refs. [20,21] within axiomatic quantum field theory
approach taking advantage of the KMS feature of the
mean values for the density operator at hand (for recent
studies see Refs. [24,25]).
Finally, we briefly address the issue of an arbitrary

motion of the fluid. As has been mentioned in Sec. II, a
density operator like (12) can be obtained from a local
Taylor expansion of the four-temperature β field, which in
local thermodynamic equilibrium is not constrained to be a
Killing vector field. Thus, the question arises whether the
found lower bound for the local temperature holds. Indeed,
the local form of the bound (65), which states that the
comoving local temperature is limited by the comoving
acceleration, seemingly suggest that the thermodynamic
bound may apply to local thermodynamic equilibrium as
well, provided that the corresponding a and T0 obtained
from the Taylor expansion of β vary much more slowly in
space and time compared to the microscopic lengths.
However, one should take into account that the Unruh
phenomenon arises because of a non-local property, which
is the presence of an event or Killing horizon hypersurface
where β2 ¼ 0. For an arbitrarily moving fluid, in general,
there is no Killing horizon for the actual four-temperature
vector field. Therefore, the existence of a lower bound for
local temperature in hydrodynamics, as well as for general
gravitational fields, remains an open issue.
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FIG. 2. In the T − jAj phase diagram of an accelerated fluid at
global equilibrium there is a forbidden region delimited by the
line T ¼ ðh=4π2cKÞjAj.

3In this respect, our conclusion differs from the one in
Ref. [14].
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