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A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401
(2018)] measured for the first time the gradient of the Casimir force between two gold spheres at room
temperature. The theoretical analysis of the data was carried out using the standard proximity force
approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate
geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we
compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the
Casimir force that we construct is valid for all separations, and can be easily used to interpret future
experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct para-
metrization of the corrections to PFA for two spheres that should be used in data analysis.
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I. INTRODUCTION

The Casimir force [1] is the tiny long-range force
between (neutral) macroscopic polarizable bodies that
originates from the modification of the spectrum of
quantum and thermal vacuum fluctuations of the electro-
magnetic (em) field, caused by the presence of the bodies.
This phenomenon represents one of the rare manifestations
of the quantum properties of the em field at the macro-
scopic scale. For reviews see Refs. [2–6].
A characteristic feature of the Casimir force is its

nonadditivity, reflecting the many-body character of fluc-
tuation forces. This property enormously complicates the
computation the Casimir force in nonplanar geometries. We
recall that in his original paper Casimir worked out the
force in the highly idealized geometry of two perfectly
conducting plane-parallel surfaces at zero temperature.
Planar systems were the exclusive object of consideration
also in the famous paper by Lifshitz [7], who derived a
general formula for the Casimir interaction between two
plane-parallel slabs, taking into full account realistic
material properties of the plates, i.e., their frequency-
dependent dielectric permittivity and finite temperature.
Unfortunately, the theoretically simple planar geometry

studied by Casimir and Lifshitz has been rarely used in
experiments [8,9], because of severe difficulties connected
with controlling the parallelism of twomacroscopic surfaces
separated by a submicron gap. To avoid these problems, the
vast majority of Casimir experiments adopt the sphere-plate

geometry (see for example [10–20] and references therein),
which is obviously immune from parallelism issues.
Very recently, a new experiment [21] has measured for

the first time the (gradient of the) Casimir force between
two gold-coated spheres. Following the practice of pre-
vious experiments, also in this new experiment the Casimir
force has been computed using the simple proximity force
approximation (PFA) [22], which expresses the Casimir
force between two curved surfaces as the average of
the plane-parallel force (as given by Lifshitz formula) over
the local separation between the surfaces. The results of the
experiment have been found to be in good agreement with
theoretical predictions based on Lifshitz formula. By using
the measurements made with nine sphere-sphere and three
sphere-plate systems of different radii, the authors of [21]
could also place a bound on themagnitude of deviations from
PFA, using the same parametrization of the force that was
used in the sphere-plate experiment of the IUPUI group [23].
Motivated by the new experiment, in this paper we

compute beyond-PFA curvature corrections to the Casimir
force gradient for two gold spheres at room temperature, and
we describe the correct parametrization of the force that
should be used in the data analysis to measure corrections to
PFA in this geometry. TheCasimir interaction of twometallic
spheres in the limit of large separations was investigated in
[24]. We remind the reader that the computation of the
Casimir force for nonplanar geometries has been an intrac-
table problem until recently. Only in the early 2000s, an exact
scattering formula for the Casimir interaction between
dielectric objects of any shape, generalizing early results
ofBalian andDuplantier [25] andLangbein [26],wasworked*giuseppe.bimonte@na.infn.it
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out [27–29]. At finite temperature T, the scattering formula
has the form of a sum over so-called Matsubara (imaginary)
frequencies ξn¼2πnkBT=ℏ, n¼0;1;… (with kB Boltzmann
constant, and ℏ Planck constant) of functional determinants
involving the multipole expansions of the T-operators of the
two bodies. Unfortunately, the scattering formula converges
very slowly in the characteristic regime of Casimir experi-
ments, in which the (minimum) separation a between the two
surfaces is very small compared to their characteristic radius
of curvature R. In order to obtain a precise estimate of the
Casimir force, as it is needed for a proper interpretation of
current precision experiments, it is necessary to push the
computation to very high multipole orders, which represents
a very challenging task even for present day computers. In
[30] simulations of the sphere-plate problem for Drude
conductorswere done up tomultipole order lmax ¼ 24, which
were later [31] pushed to lmax ¼ 45, allowing one to calculate
the force for a=R ≥ 0.1. Very recently [32], a large-scale
numerical simulation of the sphere-plate system going up to
mutipole order lmax ¼ 2 × 104 reached for the first time the
experimentally important region a=R ∼ 10−3.
Large numerical simulations of the scattering formula like

that of [32] require sophisticated algorithms for the compu-
tation of determinants of hierarchical matrices, which not
every researcher may master or be willing to spend time on.
This led us to investigate whether the new analytical tools
that have been developed recently in the Casimir field could
be exploited to construct easy-to-use formulas for the
Casimir force having the high degree of precision demanded
by current experiments. In Ref. [33] a formula with these
features was constructed for the sphere-plate system.
The approach followed in [33] can be described as follows.

As we said earlier, the scattering formula has the form of a
sum over Matsubara modes ξn. The first term of this series,
corresponding to n ¼ 0, represents a classical contribution to
the Casimir interaction, which becomes dominant in the high
temperature limit a=λT ≫ 1, where λT ¼ ℏc=2πkBT
(λT ¼ 1.2 μm for room temperature) is the thermal length.
In Ref. [34], it was shown that this classical term can be
evaluated exactly in the geometry of two metallic spheres of
any radii, including the sphere-plate case as a special limit. Of
course, knowledge of the n ¼ 0 term is not sufficient to
compute the full Casimir energy. Unfortunately, the n > 0
terms of the scattering formula cannot be computed exactly,
but in [33] it was shown that they can be computed very
precisely using an asymptotic small-distance formula, which
includes corrections to PFA, based on a recently proposed
derivative expansion (DE) of theCasimir interaction [35–39].
In [33] it was proved that the semianalytic approximate
formula for the sphere-plate Casimir force, resulting from the
combination of the exact n ¼ 0 term with the approximate
expression of then > 0 terms, is indeed extremely precise for
all separations. The formula derived in [33] is in excellent
agreement with the results of the large numerical simulation
of [32]. In this paper, we extend the construction of [33] to the
sphere-sphere system.

The paper is organized as follows: in Sec. II we review
the PFA for two spheres, the scattering formula, and display
the exact solution for the classical Casimir energy of two
Drude spheres discovered in [34]. In Sec. III we compute
the contribution of the positive Matsubara modes using the
DE. In Sec. IV we display our complete formula for the
Casimir energy of two spheres at finite temperature, and
use it to compute deviations from PFA. In Sec. IV we also
review the recent two-sphere experiment [21] and describe
the correct parametrization of corrections to PFA that
should be used in the data analysis of experiments with
two spheres. In Sec. V we present our conclusions. Finally,
in Appendix A.1 we review the DE and in Appendix A.2
we use the DE to compute the leading curvature correction
to the force gradient between two spheres.

II. CASIMIR INTERACTION OF TWO SPHERES

We consider a system composed by two spheres of
respective radii R1 and R2 placed in a vacuum and
separated by a gap of width a (see Fig. 1).

FIG. 1. The sphere-sphere Casimir setup. The sphere-sphere
geometry is characterized by the effective radius R̃ ¼
R1R2=ðR1 þ R2Þ and the dimensionless parameter u ¼ R̃2=R1R2.
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As it was explained in the introduction, until recently
there were no tools to exactly compute the Casimir force in
nonplanar geometries, and so one had to resort to the old-
fashioned PFA. In the case of two spheres [3] the PFA
formula for the Casimir force is

FðPFAÞða; R1; R2Þ ¼ 2πR̃F ðppÞðaÞ; ð1Þ
where R̃ is the effective radius of the two spheres,

R̃ ¼ R1R2

R1 þ R2

; ð2Þ

and F ðppÞðaÞ is the unit-area Casimir free energy for two
plane-parallel slabs respectively made of the same materials
as the sphere and plate, whose expression was derived long
ago by Lifshitz [7],

F ðppÞða; TÞ ¼ kBT
2π

X0

n≥0

Z
∞

0

k⊥dk⊥

×
X

α¼TE;TM

ln ½1 − r2αðiξn; k⊥Þe−2aqn �; ð3Þ

where the prime in the sum over n indicates that the n ¼ 0
term is taken with a weight 1=2, T is the temperature of the
plates, k⊥ is the in-plane momentum, rαðiξn; k⊥Þ denotes
the Fresnel reflection coefficient for polarization α ¼
TE;TM of a thick slab, evaluated for the imaginary
frequency ω ¼ iξn and qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n=c2 þ k2⊥

p
. The PFA for

the force gradient F0 ≡ ∂F=∂a (here and in what follows a
prime denotes a derivative with respect to the separation)
easily follows from Eq. (1),

F0ðPFAÞða; R1; R2Þ ¼ −2πR̃FðppÞðaÞ; ð4Þ

where FðppÞðaÞ ¼ −∂F ðppÞ=∂a is the unit-area Casimir
force for two parallel slabs. The PFA force and force-
gradient for a sphere of radius R opposite a plane is
recovered from Eqs. (1) and (4), respectively, by taking the
radius of one of the two spheres to infinity, i.e., substituting
R̃ by R. It is important to remark that within the PFA, both
F and F0 depend on the radii of the two spheres only via the
effective radius R̃.
For a proper interpretation of current precision Casimir

experiments it has become important to estimate curvature
corrections beyond PFA. This has been impossible until
recently, when an exact scattering formula providing the
Casimir energy of two compact dielectric bodies was
worked out [27–29]. The general structure of the scattering
formula is

F ¼ kBT
X0

n≥0
Tr ln½1 − M̂ðiξnÞ�; ð5Þ

where the prime sign in the sum indicates again that the
n ¼ 0 term is taken with weight 1=2. The trace Tr in this

equation is over both spherical multipoles indices ðl; mÞ
and polarization indices α ¼ TE;TM,

Tr ¼
X∞

m¼−∞

X∞
l¼jmj

tr; ð6Þ

where tr denotes the trace over α. The matrix elements
Mlmα;m0l0α0 of M̂ are not reported here for brevity. Their
explicit expressions can be found for example in
Refs. [40,41]. We just recall that the matrix Mlmα;m0l0α0

involves a product of the T-matrices for the two bodies (i.e.,
the Mie scattering coefficients in the case of two spheres),
both evaluated for the imaginary Matsubara frequencies
iξn, intertwined with translation matrices that serve to
convert the multipole basis relative to either body into
the multipole basis relative to the other body (see
Refs. [40,41] for details). The expressions for the
Casimir force F ¼ −F 0 and its gradient F0 are obtained
by taking derivatives of Eq. (5) with respect to the
separation a. Using the scattering formula it has been
possible to prove eventually that the PFA formula is indeed
asymptotically exact for small separation in the sphere-
plate and cylinder-plate geometries [42].
Having at our disposal the exact representation Eq. (5), it

is natural to ask whether it can be used efficiently to
accurately compute the Casimir force in concrete exper-
imental situations. Unfortunately, this is not easy at all.
Consider as an example the geometry of a sphere of radius
R at a minimum distance a from a plate. The problem is that
to obtain a precise estimate of the Casimir force for
experimentally relevant sphere-plate separations (typical
aspect ratios a=R ∼ 10−3) it is necessary to include a huge
number of multipoles in the computation. Previous works
[28,30–33] found that the multipole order lmax for which
convergence is achieved scales as lmax ∼ R=a. To date, the
largest numerical simulation of the sphere-plate scattering
formula reached up to lmax ¼ 2 × 104 [32], which allowed
the authors of [32] to probe the Casimir force in the
experimentally relevant region a=R ∼ 10−3. Managing such
a large number of multipoles on a computer is not easy at
all, and sophisticated algorithms are needed to handle the
problem.
At this point we turn to our objective of deriving a simple

and very accurate formula for the Casimir force between
two spheres. To do this, we go back to the general scattering
formula Eq. (5). As we see, it has the form of a sum of terms
F ¼ P0

n≥0 F n over the Matsubara frequencies ξn,
n ¼ 0; 1;…. It is convenient for our purposes to separate
the first term F n¼0 of the series from the remaining terms
with n > 0. We accordingly decompose Eq. (5) as

F ¼ F n¼0 þ F n>0; ð7Þ

where we set F n>0 ¼
P

n>0 F n. Consider first F n¼0. This
term represents a classical contribution to the Casimir
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energy, which provides the dominant contribution to the
full Casimir energy F of the system in the limit of large
separations a ≫ λT .
In Ref. [34], it was shown that this classical term can be

evaluated exactly in the following two cases. The first one
is that of a scalar field obeying Dirichlet (D) boundary
conditions (bc) on the surfaces of two spheres of arbitrary
radii, including the sphere-plate geometry as a special case.
The second case is that of a scalar field obeying so-called
Drude bc on the surfaces of a sphere opposite a plate [43]
The latter bc is identical to D bc, apart from the fact that in
the Drude case charge monopoles (corresponding to index
l ¼ 0) are excluded from the scattering formula. Both sets
of bc can be used to describe ohmic conductors, depending
on the electric configuration of the system. Drude bc
describe isolated conductors, whose total charge is fixed,
while D bc describe conductors whose voltages are fixed.
The latter is the experimentally important situation, since in
all Casimir experiments (including the experiment [21])
one plate is grounded, while the other is connected with a
voltage generator that serves to apply a bias potential, to
compensate for unavoidable potential differences between
the plates, resulting from differences in the respective
work functions. The classical sphere-sphere Casimir ener-
gies implied by D and Drude bc are undistinguishable
for separations much smaller than the spheres radii, while
the two models lead to distinct asymptotic behaviors in

the limit of large separations a ≫ ðR1; R2Þ, since F ðDÞ
n¼0∼

−kBTR1R2=a2, while F ðDrÞ
n¼0 ∼ −kBTR3

1R
3
2=a

6.
For two metallic spheres obeying D bc the exact solution

worked out in [34] is

F ðexÞ
n¼0 ¼

kBT
2

X∞
l¼0

ð2lþ 1Þ ln½1 − Z2lþ1�; ð8Þ

where Z is

Z ¼ ½1þ xþ x2u=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ x2u=2Þð2þ xþ x2u=2Þ

q
�−1:
ð9Þ

In the above equation, x ¼ a=R̃, and u ¼ R̃2=R1R2. The
parameter u depends only on the ratio between R1 and R2

and takes values in the interval ½0; 1=4�, the upper bound
u ¼ 1=4 corresponding to two equal spheres R1 ¼ R2,
while the lower bound u ¼ 0 is approached as either of the
two radii becomes infinite. The special case of a sphere of
radius R opposite a plate is thus recovered by taking u ¼ 0

into Eq. (9), and setting R̃ ¼ R. The range of the variable Z
in Eq. (9) is the interval [0, 1], the upper (lower) bound
Z ¼ 1 (Z ¼ 0) corresponding to the limit of vanishing
(infinite) separation x → 0 (x → ∞). The corresponding

expression for the Casimir force FðexÞ
n¼0 ¼ −F 0ðexÞ

n¼0 and its

derivative F0ðexÞ
n¼0 are easily obtained by deriving Eq. (8) with

respect to a. As we see from the expression of Z in Eq. (9),

the exact classical energy F ðexÞ
n¼0 depends not only on the

effective radius R̃, but also on the ratio among the radii via
the variable u. This feature marks an important difference
with respect to the PFA formula.

In [34] the small distance expansion of F ðexÞ
n¼0 for the

sphere-plate system was worked out, by setting Z ¼
expð−μÞ and then taking the small-μ asymptotic expansion
of the series on the rhs of Eq. (8). Using the formulas of
Ref. [34], it is easy to verify that for small separations the
sphere-sphere force gradient has the expansion

F0ðexÞ
n¼0 ¼ kBT

ζð3ÞR̃
4a3

�
1þ 1

12ζð3Þ
a

R̃
þ oða=R̃Þ

�
; ð10Þ

where ζðxÞ is the Riemann zeta function. The leading term
coincides with the PFA Eq. (4), since from the Lifshitz

formula we find FðppÞ
n¼0 ¼ −kBTζð3Þ=ð8πa3Þ for two Drude-

metal plates, while the next term provides the leading
correction to PFA. Interestingly, like the PFA, also the latter
correction is independent of the parameter u. The correction
to PFA in Eq. (10) is consistent with the DE [see Eq. (A17)].
At this point we need to consider the contribution F n>0

of the positive Matsubara modes n > 0 to the free energy.
Unfortunately, differently from the classical term F n¼0, the
quantityF n>0 cannot be computed exactly. Of courseF n>0
can be computed numerically, using the scattering formula
truncated to a finite multipole order lmax. As we explained
earlier, such a computation is however very challenging,
because the multipole order lmax that is necessary is very
large for experimentally relevant values of the radii and
separation. Below we obtain a very precise and simple
analytical formula for F n>0, by using the so-called deriva-
tive expansion [35–37,39].

III. DERIVATIVE EXPANSION OF F n>0

The DE [35–39] is an analytical technique to compute
curvature corrections to proximity forces between two
surfaces of small slope. For the benefit of the reader, we
provide in Appendix A.1 a short review to the DE and a
guide to the relevant references.
In this section we use the DE to estimate the contribution

F n>0 of the nonzero Matsubara modes to the Casimir
energy. The DE is particularly well suited to this task, as we
now explain. By it very nature, the DE is expected to be
very precise in situations in which the slope of the surfaces
is small within the interaction region. A little reasoning
shows that this condition is met in the problem at hand for
all separations a between the spheres, just provided (as it
always is the case in current experiments) that the radii of
the spheres are both large compared to the thermal length
λT (λT ¼ 1.2 μm at room temperature).
It is a well-known fact [3,4] that the Casimir interaction

between two surfaces, with a characteristic radius of
curvature R, is localized inside a disk of radius ρ ∼

ffiffiffiffiffiffi
aR

p
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around the point of either surface which is closest to the
other. Thus, one is led to expect that the DE is applicable in
general only for separations a such that ρ=R¼ ffiffiffiffiffiffiffiffiffi

a=R
p

≪1.
This condition is usually well satisfied in Casimir experi-
ments, for which typically a=R < 0.01. A closer inspection
reveals however that the DE of F n>0 is in fact valid for all
separations, provided that R1 and R2 are both larger than
λT . The point to consider is that positive Matsubara modes
of (imaginary) frequency ξn can only propagate across a
distance of order ln ¼ c=ξn ¼ λT=n ≤ λT. Because of this
constraint, the true size of the interaction region is actually
not

ffiffiffiffiffiffi
aR

p
, but instead ρ ¼ minð ffiffiffiffiffiffi

aR
p

;
ffiffiffiffiffiffiffiffi
λTR

p Þ. This implies
that the DE for F n>0 is actually valid for separations such
that ρ=R ¼ minð ffiffiffiffiffiffiffiffiffi

a=R
p

;
ffiffiffiffiffiffiffiffiffiffiffi
λT=R

p Þ ≪ 1. The latter condition
is clearly satisfied for all separations, provided that R1 and
R2 are both much larger than λT .
We have thus established that the DE is a valid method

forF n>0. In Appendix A.2 it is shown that the DE leads to a
simple general formula Eq. (A17) for the force gradient
between two spheres. The formula for the DE expansion of
F n>0 can obtained by making in Eq. (A17) the appropriate
substitutions,

F0
n>0 ¼ −2πR̃FðppÞ

n>0ðaÞ
�
1 − ðθ̃ðaÞ þ uκðaÞÞ a

R̃

�
; ð11Þ

where the coefficients θ̃ðaÞ and κðaÞ are [see Eqs. (A18)
and (A19)]

θ̃ ¼ F ðppÞ
n>0ðaÞ − 2αn>0ðaÞ

aFðppÞ
n>0ðaÞ

; ð12Þ

κðaÞ ¼ 1 − 2
F ðppÞ

n>0ðaÞ
aFðppÞ

n>0ðaÞ
: ð13Þ

In the above equations, F ðppÞ
n>0 denotes the contribution of

the n > 0 modes to Lifshitz formula Eq. (3), and FðppÞ
n>0 ¼

−∂F ðppÞ
n>0=∂a is the corresponding (unit-area) force.

An important ingredient of Eqs. (11)–(13) is the coef-
ficient αn>0ðaÞ which enters into the expression of θ̃ in
Eq. (12). As it is explained in Appendix A.1, this

coefficient can be extracted from the Green function
G̃ð2Þðk; aÞ of the second-order perturbative expansion of
F n>0 for a small amplitude deformation of one of the plates
around the plane-parallel geometry. The computation of
this coefficient for gold plates at room temperature can be
carried out following the procedure described in [39], and
we address the interested reader to that reference for details.
The coefficients θ̃ and κ for perfect conductors (PC) in
the limit of zero temperature are both independent of the
separation. Their values can be determined using the
formulas listed in [36],

θ̃ðPCÞT¼0 ¼ 20

3π2
−
1

9
¼ 0.564; κðPCÞT¼0 ¼ 1

3
: ð14Þ

For gold surfaces at room temperature, both coefficients
depend on the separation (as well as on the temperature and
on the material lengths characterizing the optical properties
of gold, in particular, the plasma length). In Table I we list
the values of θ̃ðaÞ and κðaÞ for gold at room temperature
that we computed using tabulated [44] optical data [45], for
several values of the separation in the range from 100 nm to
2 micron. Using these values of θ̃ðaÞ and κðaÞ together with
Eq. (A17), it is easily possible to compute F0

n>0 for any
combinations of sphere radii.
In view of later applications, it is important to note that

while in the proximity approximation F0
n>0 depends only

on the effective radius R̃ [see Eq. (4)], the more accurate
expression of F0

n>0 in Eq. (11), which includes curvature
corrections to PFA, depends also on the parameter u, i.e., on
the ratio of the radii of the two spheres.

IV. BEYOND-PFA CORRECTIONS

Combining Eq. (8) with Eq. (11) we obtain the following
formula for the force gradient between two gold spheres:

F0 ¼ F0ðexÞ
n¼0 − 2πR̃FðppÞ

n>0ðaÞ
�
1 − ðθ̃ðaÞ þ uκðaÞÞ a

R̃

�
; ð15Þ

which constitutes the main result of the present work. A
nice feature of the formula above is that, by construction, it
is exact in both limits a=R̃ → 0 and a=λT → ∞. This is so
because, on one hand, Eq. (15) is exact for a=R̃ → 0, since

TABLE I. Values of the coefficients θ̃ and κ for Au at room temperature.

aðμmÞ 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

θ̃ 0.456 0.4715 0.470 0.463 0.454 0.4445 0.435 0.425 0.415 0.4055 0.396 0.387
κ 0.245 0.270 0.289 0.305 0.319 0.331 0.342 0.353 0.362 0.371 0.380 0.389

aðμmÞ 0.70 0.75 0.8 0.85 0.9 0.95 1 1.2 1.4 1.6 1.8 2

θ̃ 0.379 0.370 0.362 0.3545 0.347 0.3395 0.332 0.306 0.282 0.261 0.242 0.225
κ 0.397 0.405 0.413 0.421 0.429 0.437 0.444 0.474 0.502 0.529 0.554 0.578
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in this limit the DE, which we used to compute the
contribution of the positive Matsubara modes, is asymp-
totically exact. On the other hand, Eq. (15) is exact also for
a=λT → ∞, because for separations larger than the thermal
length a ≫ λT the relative contribution of the positive
Matsubara modes vanishes exponentially fast, and then
Eq. (15) reduces to the exact n ¼ 0mode. Comparison with
high precision numerical computations of the sphere-plate
scattering formula in [33] revealed that Eq. (15) is in fact
very accurate also for all intermediate separations. For a
gold sphere as small as 8 micron, the maximum error made
by Eq. (15) was only of 0.1%, and this was for the large
aspect ratio a=R ¼ 0.12. The error is expected to be far
smaller in the conditions of the experiment [21], which
used spheres with radii larger than 29.8 micron, and probed
distances corresponding to aspect ratios smaller than 0.017.
For later use, it is useful to work out the small distance

limit of our formula for the sphere-sphere force gradient.

This can be easily done substituting F0ðexÞ
n¼0 on the rhs of

Eq. (15) by its small distance expansion Eq. (10). After
simple algebraic manipulations, one finds

F0 ¼ −2πR̃FðppÞðaÞ
�
1 − ðθ̂ðaÞ þ uκ̂ðaÞÞ a

R̃
þ oða=R̃Þ

�
:

ð16Þ

The coefficients θ̂ðaÞ and κ̂ðaÞ are

θ̂ðaÞ ¼ FðppÞ
n>0

FðppÞ θ̃ −
FðppÞ
n¼0

FðppÞ
1

12ζð3Þ ; ð17Þ

κ̂ðaÞ ¼ FðppÞ
n>0

FðppÞ κ̃: ð18Þ

In Table II, we provide the values of the coefficients θ̂
and κ̂ for gold at room temperature. We note that the
coefficient θ̂ introduced here coincides with the opposite of
the coefficient θ̂1 of [39].
In order to show the deviations of the force gradient from

PFA predicted by our formula, in Fig. 2 we plot the quantity
ðR̃=aÞðF0=F0

PFA − 1Þ for a system of two identical spheres
of radius R1 ¼ R2 ¼ 30 μm (lower solid line) and R1 ¼
R2 ¼ 100 μm (lower dashed line). The upper solid and
dashed lines in Fig. 2 refer to a sphere-plate system, for a
sphere of radius R ¼ 30 μm (solid line) and R ¼ 100 μm
(dashed line). Figure 2 demonstrates that deviations from

PFA of the force gradient are practically independent of the
effective radius R̃, for fixed value of u. However deviations
from PFA depend significantly on the ratio among the radii
of the spheres via the parameter u. This is clearly seen from
Fig. 3, where the quantity ðR̃=aÞðF0=F0

PFA − 1Þ is displayed
versus the parameter u (for constant R̃ and a). In Fig. 3
solid lines are for R̃ ¼ 30 μm, while dashed lines are for
R̃ ¼ 100 μm. The four pairs of solid and dashed lines from
top to bottom correspond to the four separations a ¼ 1 μm,
800 nm, 400 nm, and 100 nm, respectively. We recall that
the extreme values u ¼ 0 and u ¼ 1=4 correspond, respec-
tively, to a sphere plate and to two spheres of equal radii.
Figure 3 shows that the u dependence of the deviations
from PFA is linear for the considered separations.
For small values of a=R̃, the quantity displayed in Figs. 2

and 3 can be basically identified with the parameter β0 that
was introduced in the sphere-plate experiment [23] as a
measure of the deviation of the data from PFA. In [23]
starting from the force gradient F0, an effective pressure
PðeffÞða; RÞ was defined as

PðeffÞða; RÞ≡ −
F0

2πR
: ð19Þ

If the PFA Eq. (4) was exact, PðeffÞða; RÞ ¼ FðppÞðaÞ.
However, the PFA is not exact, and so the authors of
[23] parametrized deviations from PFA by a coefficient
β0ðaÞ such that

PðeffÞ ¼ FðppÞðaÞ
�
1þ β0

a
R
þ oða=RÞ

�
: ð20Þ

It is clear from Eq. (20) that, up to higher order corrections,
β0ðaÞ coincides with the quantity ðR̃=aÞðF0=F0

PFA − 1Þ. The
parameter β0 was determined in [23] by measuring the
effective pressure PðeffÞ for certain fixed sphere plate
separations using spheres of different radii, and then fitting
PðeffÞ versus 1=R with a straight line. The experiment [23]
placed a bound jβ0j < 0.4 at 95% C.L. in the separation
range from 150 to 300 nm. This bound is in substantial
agreement with the theoretical prediction (see the upper
curves of Fig. 2).
The authors of [21] used the same procedure to study

deviations of their data from PFA. In particular, they
assumed that the measured forces can be parametrized as

TABLE II. Values of the coefficients θ̂ and κ̂ for Au at room temperature.

aðμmÞ 0.05 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

θ̂ 0.378 0.439 0.449 0.443 0.432 0.419 0.405 0.392 0.378 0.365 0.352 0.340
κ̂ 0.209 0.237 0.259 0.275 0.288 0.298 0.306 0.313 0.320 0.325 0.330 0.334
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F0

R̃
¼ −2πFðppÞðaÞ

�
1þ β0

a

R̃
þ oða=R̃Þ

�
; ð21Þ

i.e., by a function of the same form as that of the sphere-
plate system, apart from the substitution of R by the
effective radius R̃ of the two-sphere system. Importantly,
they assumed that β0 is independent of the radii of the
spheres. Based on this assumption, the authors of [21] tried
to determine β0ðaÞ by doing a linear fit of F0=R̃ versus 1=R̃
using for that purpose 12 measurements of F0. Three sets of

data were taken in sphere-plate setups (as in the experiment
[23]), using three different spheres of radii R ¼ 40.7 μm,
36.1 μm, and 34.2 μm, while the remaining nine data sets
were taken with nine different sphere-sphere setups, cor-
responding to the different combinations of each of three
spheres with radii R1 ¼ 34.2 μm, 36.1 μm, and 40.7 μm,
with each of the three spheres of radii R2 ¼ 29.8, 38.0, and
46.9 μm. The measurements and the corresponding fits
were repeated for 26 values of the separation, in the interval
from 40 to 300 nm. It was found that β0 ¼ −6� 27 was
within the 2σ confidence interval of their calculated β0 for
all considered separations.
The procedure used in [21] to determine β0 is not entirely

correct, however, because the parametrization in Eq. (21)
misses the dependence of β0 on the parameter u. Indeed, by
comparing Eq. (21) with the small distance expansion of
the sphere-sphere force Eq. (16) one finds that β0 has the
expression

β0 ¼ −ðθ̂ðaÞ þ uκ̂ðaÞÞ: ð22Þ

This formula shows that in the two-sphere case, contrary to
the assumption made in [21], β0 does depend on the radii of
the spheres via the parameter u. Of course, this dependence
disappears in the sphere-plate case, for which u ¼ 0. The
linear dependence on u of deviations from PFA is clearly
visible from Fig. 3. Since in [21] the 12 combinations of
radii used to determine β0 correspond to values of u that
vary from 0 (for the three sphere-plate setups) to 0.2498
(corresponding to the sphere-sphere setup with R1 ¼
36.1 μm and R2 ¼ 38 μm), the dependence of β0 on u
should be considered in the data analysis. Substituting
Eq. (22) into Eq. (21), we find that in a two-sphere system
F0=R̃ has the expression

F0

R̃
¼ −2πFðppÞðaÞ

�
1 −

aθ̂

R̃
−

aκ̂
R1 þ R2

þ oða=R̃Þ
�
; ð23Þ

where in the second term between the brackets we used the
relation u=R̃ ¼ 1=ðR1 þ R2Þ. This formula shows that the
correct procedure to determine the coefficients θ̂ and κ̂ is to
make a joint two-dimensional linear fit of F0=R̃ versus 1=R̃
and 1=ðR1 þ R2Þ.
The present sensitivity of the experiment [21] is not yet

sufficient to detect the small deviations from PFA predicted
by Eq. (23). We estimate that an increase in the sensitivity
by over 1 order of magnitude would be necessary for that
purpose. It is hoped that future improvements of the
apparatus will achieve this goal.

V. CONCLUSIONS

Motivated by the recent experiment in [21], we have
performed a precise computation of the gradient of the
Casimir force between two gold spheres at room

FIG. 2. Beyond-PFA corrections for the gradient of the Casimir
force between two gold spheres at room temperature are shown as
a function of the separation for two identical spheres of radius
R ¼ 30 μm (lower solid line) and R ¼ 100 μm (lower dashed
line). The upper pair of lines is for a sphere-plate system with
sphere radius R ¼ 30 μm (upper solid line) and R ¼ 100 μm
(upper dashed line).

FIG. 3. Beyond-PFA corrections for the gradient of the Casimir
force between two gold spheres at room temperature are shown as
a function of the parameter u ¼ R̃2=ðR1R2Þ (for constant R̃ and
a). Solid lines are for R̃ ¼ 30 μm; dashed lines for R̃ ¼ 100 μm.
The four pairs of solid and dashed lines from top to bottom
correspond to the four separations a ¼ 1 μm, 800 nm, 400 nm,
and 100 nm, respectively. The extreme values u ¼ 0 and u ¼ 1=4
correspond, respectively, to a sphere-plate configuration and to
two spheres of equal radii.
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temperature. Our computation provides an accurate esti-
mate of beyond-PFA corrections for this system. The
semianalytic formula for the Casimir force that we con-
struct is valid for all separations and can be easily used to
interpret future experiments in both the sphere-plate and
sphere-sphere configurations. We have also described the
correct parametrization of the corrections to PFA that
should be used to carry out the data analysis in experiments
using the sphere-sphere geometry.
In our computations we modeled the gold plates as

ohmic conductors (connected to charge reservoirs). In
recent years it has been argued by some researchers [4]
that a better agreement with Casimir experiments is
obtained if metallic bodies are modeled as dissipationless
plasmas. The main change introduced by this model is in
the classical n ¼ 0 Matsubara term for transverse electric
(TE) polarization, which is 0 within the Drude prescription,
but different from 0 in the plasma model. A detailed
comparison between the Drude and plasma models for
the sphere-plate configuration, based on a large-scale
numerical simulation of the scattering formula, has been
reported in [32], where it was shown that the deviations
from PFA engendered by the plasma prescription have the
same qualitative behavior as the Drude model, but are
slightly larger in magnitude and show a more pronounced
dependence on the aspect ration a=R. We plan to study the
plasma prescription for the sphere-sphere case in a forth-
coming work [47].
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APPENDIX: THE DE EXPANSION

1. General formulae

For the convenience of the reader, in this appendix we
briefly review general properties of the DE that are useful
for the present work. The DE [35–39] is an asymptotic
expansion that allows one to compute curvature corrections
of any sufficiently local functional F̂ that describes the
interaction between two (nonintersecting) surfaces Σ1 and
Σ2. The idea behind the DE is intuitive. One considers that
the two surfaces can be described by smooth height profiles
z ¼ H1ðx; yÞ and z ¼ H2ðx; yÞ, where ðx; yÞ are Cartesian
coordinates spanning some reference plane Σ and z is a
coordinate perpendicular to Σ (see Fig. 1). Since the two
surfaces are nonintersecting, it can always be assumed that
H2ðx; yÞ < H1ðx; yÞ. At this point one considers that for
surfaces of small slopes j∇Hij ≪ 1; i ¼ 1, 2 [48] it should
be possible to expand F̂ ½H1; H2� in powers of derivatives of
increasing order of the height profiles, at least up to some
order. It is rather easy to convince oneself that for a
functional F̂ ½H1; H2� that is invariant under simultaneous

rotations and translations of H1 and H2 in the reference
plane Σ (like the Casimir force between two plates made of
a homogeneous and isotropic material) the most general
expression of the DE valid to second order in the slopes of
the surfaces is of the form

F̂ ½H1; H2� ¼
Z
Σ
d2x½F̂ ðppÞðHÞ þ α1ðHÞð∇H1Þ2

þ α2ðHÞð∇H2Þ2 þ α×ðHÞ∇H1 · ∇H2

þ α−ðHÞ∇H1 ×∇H2� þ ρð2Þ; ðA1Þ

where we set H ¼ H1 −H2 and ρð2Þ is a remainder that
becomes negligible as the local radii of curvature of the
surfaces go to infinity for fixed minimum surface-surface
distance a. Note that invariance of F̂ under translations of
Σ in the z direction implies that F̂ ðppÞ and the α’s can
depend only on the height difference H and not on the
individual heights H1 and H2. It is evident that the quantity
F̂ ðppÞðaÞ in Eq. (A1) provides the (unit-area) interaction of
two plane-parallel surfaces at distance a, and thus the first
term on the rhs of Eq. (A1) reproduces the Derjaguin
approximation (DA) [49] for the functional F̂ ,

F̂ ðDAÞ ¼
Z
Σ
d2xF̂ ðppÞðHÞ: ðA2Þ

The integrals on the rhs of Eq. (A1) that are proportional to
α’s represent curvature corrections beyond the DA, and
thus we see that the DE provides a systematic way to
improve the old-fashioned DA. Arbitrariness in the choice
of the reference plane Σ further constrains the three
coefficients α in Eq. (A1) [36]. In particular, invariance
of F̂ with respect to tilting of Σ (for details, see [36])
implies

2ðα1ðHÞ þ α2ðHÞ þ α×ðHÞÞ þH
dF̂ ðppÞ

dH
− F̂ ðppÞ ¼ 0;

α−ðHÞ ¼ 0:

ðA3Þ

The above relations show that, to second order in the
gradient expansion, the two-surface problem actually
reduces to the simpler problem of a single curved surface
opposite a plane, since α1 and α2 can be determined in that
case, and then α× follows from the first of Eqs. (A3). We
now make the simplifying assumption that the field(s) that
mediate the interaction obeys the same boundary condi-
tions on Σ1 and Σ2. Then

α1ðHÞ ¼ α2ðHÞ≡ αðHÞ: ðA4Þ

Taking advantage of Eqs. (A3) and (A4) the DE can then be
recast in the form

GIUSEPPE BIMONTE PHYS. REV. D 97, 085011 (2018)

085011-8



F̂ ½H1; H2� ¼ F̂ ðDAÞ þ
Z
Σ
d2xαðHÞð∇HÞ2

þ 1

2

Z
Σ
d2x

�
F̂ ðppÞ −H

dF̂ ðppÞ

dH

�
∇H1 ·∇H2

þ ρð2Þ: ðA5Þ

We thus see that to second order in the slope the interaction
F̂ is fully determined by knowledge of the (unit-area)
interaction F̂ ðppÞðaÞ of two parallel plates and by the single
coefficient αðHÞ.
The latter coefficient can be determined by comparing

the DE Eq. (A5) to a perturbative expansion of the
functional F̂ ½H; 0� around flat plates H ¼ aþ hðx; yÞ to
second order in the deformation hðx; yÞ. Note that the latter
perturbation requires a deformation of small amplitude
hðx; yÞ=a ≪ 1, while the DE relies on the condition that the
slope of the surface be small. To second order in h the
perturbative expansion of F̂ reads

F̂ ½aþ hðxÞ� ¼ AF̂ ðppÞðaÞ þ μðaÞh̃ð0Þ

þ
Z

d2k
ð2πÞ2 G̃

ð2Þðk; aÞjh̃ðkÞj2 þ ρ̃ð2Þ½h�;

ðA6Þ

where A is the surface area, k is the in-plane wave vector,
h̃ðkÞ is the Fourier transform of hðxÞ, and ρ̃ð2Þ½h� refers to
higher order corrections. The function αðHÞ can now be
determined if the kernel G̃ð2Þðk; aÞ can be expanded to
second order in k. Indeed, matching the expansion

G̃ð2Þðk; aÞ ¼ γðaÞ þ δðaÞk2 þ oðk2Þ ðA7Þ

to Eq. (A5) one finds

F̂ ðppÞ0ðaÞ ¼ μðaÞ; F̂ ðppÞ00ðaÞ ¼ 2γðaÞ; αðaÞ ¼ δðaÞ;
ðA8Þ

where a prime denotes a derivative with respect to a. The
above equation shows that a necessary condition for
existence of the second-order DE is existence of the
Taylor expansion of the perturbative kernel G̃ð2Þðk; aÞ to
second order in the in-plane momentum. Indeed, it can be
shown that the DE can be formally recovered by an
(infinite) resummation of the perturbative series for small
in-plane momenta [38].
Whenever applicable, the DE has been successfully used

to compute curvature corrections beyond the PA in various
problems involving interactions among gently curved
surfaces. In the context of Casimir physics, it was used
in [35] to compute curvature corrections to the zero
temperature Casimir energy for a scalar field obeying D
bc in the sphere-plate and cylinder-plate geometries. The

zero temperature Casimir problem for the em field with PC
bc, as well as a scalar field obeying Neumann bc, or mixed
DN bc (i.e., D bc on one surface and N on the other), was
studied in [36] for two spheres and for two inclined
cylinders. The curvature corrections obtained in the latter
work for the em field with PC bc in the sphere-plate and
sphere-sphere geometries were subsequently confirmed in
[41,50] by working out a rigorous small distance expansion
of the scattering formula. The experimentally important
case of the Casimir interaction between gold sphere and
plate at finite temperature was instead studied in [39]. Even
in this case, the results obtained by the DE were later shown
to be in agreement with the small distance expansion of the
scattering formula [51]. Curvature corrections obtained by
the DE have also been found to be in agreement with the
small distance expansion of the rare exact Casimir energies
in nonplanar geometries that have been discovered so far,
i.e., in the cases of two Drude or D spheres in the classical
limit [34], and for two three-spheres with D or PC bc in four
Euclidean dimensions [52]. The DE has been also used to
study curvature effects in the Casimir-Polder interaction of
a particle with a gently curved surface [53,54], and to
estimate the shifts of the rotational levels of a diatomic
molecule due to its van der Waals interaction with a curved
dielectric surface [55]. In a non-Casimir context, the DE
hase been also used to compute curvature corrections to the
scattering amplitude for an em wave impinging on a curved
surface [56] and to the electrostatic interaction among two
curved plates [57].

2. Computing the leading curvature correction
to the force gradient

The small-slope approximation of the interaction energy
F̂ provided by Eq. (A5) still involves a surface integral over
Σ of functions depending on the height profiles of the
surfaces. As such, Eq. (A5) is not very convenient for a
practical use. A better route is to expand Eq. (A5) in powers
of the small parameter a=R, where R is the characteristic
radius of curvature of the surfaces. The leading order of this
expansion reproduces the standard PFA, while in the next
order it provides us with the desired curvature correction
beyond the PFA. We carry out this expansion not directly
for the energy F̂, but rather for the gradient of the force
F̂0 ¼ −F̂ 00, which is the quantity that was measured in the
experiment [21]. Moreover, we restrict attention to the
sphere-sphere system, which is again the geometry used
in [21].
According to Eq. (A5), the formula for the force gradient

F̂0 can be split as

F̂0 ¼ F̂0ðDAÞ þ I2 þ I3; ðA9Þ

where
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F̂0ðDAÞ ¼
Z
Σ
d2xF̂0ðppÞðHÞ ðA10Þ

and we set

I2 ¼
1

2

Z
Σ
d2xðHF̂ ðppÞ00Þ0∇H1 ·∇H2;

I3 ¼ −
Z
Σ
d2xα00ðHÞð∇HÞ2: ðA11Þ

We consider proximity forces that decay rapidly with the
distance, like the Casimir force. For forces of this nature,
the interaction among the surfaces is localized within a
small area, typically of radius ρ ∼

ffiffiffiffiffiffi
aR̃

p
, around the point of

closest approach. Under such circumstances, it is legitimate
to take the Taylor expansion of the height profiles H1ðx; yÞ
andH2ðx; yÞ of the two spheres around their tips, which we
imagine placed at x ¼ y ¼ 0. Since the position of the
reference plane Σ in Fig. 1 is immaterial, we are free to take
for Σ the tangent plane to the sphere of radius R2, passing
through the sphere tip. Then,

H1ðx; yÞ ¼ aþ r2

2R1

þ r4

8R3
1

þ � � � ;

H2ðx; yÞ ¼ −
r2

2R2

−
r4

8R3
2

þ � � � ; ðA12Þ

where r2 ¼ x2 þ y2. To evaluate the integrals Ij it is
convenient to introduce polar coordinates ðr; θÞ in the
ðx; yÞ plane, and then substitute r by the dimensionless
quantity ξ ¼ r2=aR̃. An essential property of the integrals
Ij is that they involve derivatives of certain functions (i.e.,

F̂ ðppÞ and α) of the height difference H with respect to the
separation a. These derivatives can be converted into
derivatives with respect to ξ, using the identity

U0 ¼ U;ξðH;ξÞ−1

¼ 2
U;ξ

a

�
1 −

ξ

2

�
aR̃2

R3
1

þ aR̃2

R3
2

�
þ oða=R̃Þ

�
ðA13Þ

(comas denote derivatives), which holds for any function U
of H. We are ready now to take the small distance
expansion of F̂0. We start from F̂0ðDAÞ. Using Eq. (A13),
and omitting corrections of order oða=R̃Þ we find

F̂0ðDAÞ ¼ 2πR̃
Z

∞

0

dξF̂ðDAÞ
;ξ

�
1−

ξ

2

�
aR̃2

R3
1

þ aR̃2

R3
2

��

¼ −2πR̃F̂ðppÞðaÞ− aπ
�
R̃3

R3
1

þ R̃3

R3
2

�Z
∞

0

dξF̂ ðppÞ0

¼ −2πR̃F̂ðppÞðaÞ þ 2π

�
R̃3

R3
1

þ R̃3

R3
2

�
F̂ ðppÞðaÞ: ðA14Þ

The first term on the last line of Eq. (A14) coincides with
the standard PFA for the force gradient [see Eq. (4)], while
its second term represents a curvature correction.
By following an analogous procedure for I2, and again

omitting higher order terms, we obtain

I2 ¼ −π
aR̃2

R1R2

Z
∞

0

dξðHF̂ ðppÞ00Þ;ξξ

¼ π
aR̃2

R1R2

Z
∞

0

dξðHF̂ ðppÞ00Þ ¼ 2πR̃2

R1R2

Z
∞

0

dξHðF̂ ðppÞ0Þ;ξ

¼ 2πR̃2

R1R2

aF̂ðppÞðaÞ − 2πR̃2

R1R2

Z
∞

0

dξF̂ ðppÞ
;ξ

¼ 2πR̃2

R1R2

½aF̂ðppÞðaÞ þ F̂ ðppÞðaÞ�: ðA15Þ

Finally, for I3 we obtain

I3 ¼ −4π
Z

∞

0

dξα;ξξξ ¼ −4παðaÞ: ðA16Þ

Upon combining Eqs. (A14)–(A16), after simple algebraic
transformations, we obtain the following small distance
expansion of the force gradient, correct up to terms of order
oða=R̃Þ:

F̂0 ¼ −2πR̃F̂ðppÞðaÞ þ 2π½F̂ ðppÞðaÞ − 2αðaÞ�
þ 2πu½aF̂ðppÞðaÞ − 2F̂ ðppÞðaÞ�

≡ −2πR̃F̂ðppÞðaÞ
�
1 − ðθ̃ðaÞ þ uκðaÞÞ a

R̃

�
; ðA17Þ

where the coefficients θ̃ðaÞ and κðaÞ are

θ̃ ¼ F̂ ðppÞðaÞ − 2αðaÞ
aF̂ðppÞðaÞ ; ðA18Þ

κðaÞ ¼ 1 − 2
F̂ ðppÞðaÞ
aF̂ðppÞðaÞ : ðA19Þ

GIUSEPPE BIMONTE PHYS. REV. D 97, 085011 (2018)

085011-10



[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[2] K. A. Milton, The Casimir Effect: Physical Manifestations

of Zero-Point Energy (World Scientific, Singapore,
2001).

[3] V. A. Parsegian, Van der Waals Forces (Cambridge
University Press, Cambridge, 2005).

[4] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.
Mostepanenko, Advances in the Casimir Effect (Oxford
University Press, Oxford, 2009).

[5] L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-
Lopez, A. W. Rodriguez, and R. Podgornik, Rev. Mod.
Phys. 88, 045003 (2016).

[6] G. Bimonte, T. Emig, M. Kardar, and M. Krüger, Annu.
Rev. Condens. Matter Phys. 8, 119 (2017).

[7] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov.
Phys. JETP 2, 73 (1956)].

[8] M. Sparnaay, Physica (Amsterdam) 24, 751 (1958).
[9] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys.

Rev. Lett. 88, 041804 (2002).
[10] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[11] U. Mohideen and A. Roy, Phys. Rev. Lett. 81, 4549

(1998).
[12] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M.

Mostepanenko, Phys. Rev. A 72, 020101(R) (2005).
[13] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,

D. E.Krause, andV.M.Mostepanenko,Eur. Phys. J.C51, 963
(2007).

[14] J. N. Munday, F. Capasso, and V. A. Parsegian, Nature
(London) 457, 170 (2009).

[15] S. de Man, K. Heeck, R. J. Wijngaarden, and D. Iannuzzi,
Phys. Rev. Lett. 103, 040402 (2009).

[16] G. Torricelli, P. J. van Zwol, O. Shpak, C. Binns, G.
Palasantzas, B. J. Kooi, V. B. Svetovoy, and M. Wuttig,
Phys. Rev. A 82, 010101 (2010).

[17] A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K.
Lamoreaux, Nat. Phys. 7, 230 (2011).

[18] C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L.
Klimchitskaya, V. M. Mostepanenko, and U. Mohideen,
Phys. Rev. B 85, 165443 (2012).

[19] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko,
and U. Mohideen, Phys. Rev. Lett. 110, 137401 (2013).

[20] G. Bimonte, D. López, and R. S. Decca, Phys. Rev. B 93,
184434 (2016).

[21] J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev.
Lett. 120, 040401 (2018).

[22] B. Derjaguin, Kolloid Z. 69, 155 (1934).
[23] D. E. Krause, R. S. Decca, D. López, and E. Fischbach,

Phys. Rev. Lett. 98, 050403 (2007).
[24] P. Rodriguez-Lopez, Phys. Rev. B 84, 075431 (2011).
[25] R. Balian and B. Duplantier, Ann. Phys. (N.Y.) 104, 300

(1977); 112, 165 (1978).
[26] D. Langbein, Theory of van der Waals Attraction (Springer,

New York, 1974).
[27] A. Lambrecht, P. A. M. Neto, and S. Reynaud, New J. Phys.

8, 243 (2006).

[28] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev.
Lett. 99, 170403 (2007).

[29] O. Kenneth and I. Klich, Phys. Rev. Lett. 97, 160401
(2006); Phys. Rev. B 78, 014103 (2008).

[30] A. Canaguier-Durand, P. A. M. Neto, I. Cavero-Pelaez, A.
Lambrecht, and S. Reynaud, Phys. Rev. Lett. 102, 230404
(2009).

[31] A. Canaguier-Durand, P. A. M. Neto, A. Lambrecht, and S.
Reynaud, Phys. Rev. A 82, 012511 (2010).

[32] M. Hartmann, G.-L. Ingold, and P. A. M. Neto, Phys. Rev.
Lett. 119, 043901 (2017).

[33] G. Bimonte, Europhys. Lett. 118, 20002 (2017).
[34] G. Bimonte and T. Emig, Phys. Rev. Lett. 109, 160403

(2012).
[35] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.

Rev. D 84, 105031 (2011).
[36] G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar, Europhys.

Lett. 97, 50001 (2012).
[37] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.

Rev. D 86, 045021 (2012).
[38] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.

Rev. A 89, 062120 (2014).
[39] G. Bimonte, T. Emig, and M. Kardar, Appl. Phys. Lett. 100,

074110 (2012).
[40] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar,

Phys. Rev. D 80, 085021 (2009).
[41] L. P. Teo, Phys. Rev. D 85, 045027 (2012).
[42] M. Bordag, Phys. Rev. D 73, 125018 (2006).
[43] The sphere-plate solution with Drude bc presented in [34]

does not extend to the sphere-sphere geometry.
[44] Handbook of Optical Constants of Solids, edited by E. D.

Palik (Academic, New York, 1995).
[45] The weighted Kramers-Kronig dispersion relations [46]

was used to compute precisely ϵðiξnÞ starting from the
real-frequency optical data given by Palik.

[46] G. Bimonte, Phys. Rev. A 83, 042109 (2011).
[47] G. Bimonte (to be published).
[48] In fact it is sufficient that the small slope condition is

satisfied only in the relevant interaction area around the
point of closest approach between the two surfaces

[49] The DA approximation is sometimes referred to as the
“exact” PFA.

[50] L. P. Teo, M. Bordag, and V. Nikolaev, Phys. Rev. D 84,
125037 (2011).

[51] L. P. Teo, Phys. Rev. D 88, 045019 (2013).
[52] G. Bimonte, Phys. Rev. D 94, 085021 (2016).
[53] G. Bimonte, T. Emig, and M. Kardar, Phys. Rev. D 90,

081702(R) (2014).
[54] G. Bimonte, T. Emig, and M. Kardar, Phys. Rev. D 92,

025028 (2015).
[55] G. Bimonte, T. Emig, R. L. Jaffe, and M. Kardar, Phys. Rev.

A 94, 022509 (2016).
[56] G. Bimonte, Phys. Lett. B 760, 149 (2016).
[57] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Ann.

Phys. (Amsterdam) 327, 2050 (2012).

BEYOND-PROXIMITY-FORCE-APPROXIMATION CASIMIR … PHYS. REV. D 97, 085011 (2018)

085011-11

https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1016/S0031-8914(58)80090-7
https://doi.org/10.1103/PhysRevLett.88.041804
https://doi.org/10.1103/PhysRevLett.88.041804
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevLett.81.4549
https://doi.org/10.1103/PhysRevA.72.020101
https://doi.org/10.1140/epjc/s10052-007-0346-z
https://doi.org/10.1140/epjc/s10052-007-0346-z
https://doi.org/10.1038/nature07610
https://doi.org/10.1038/nature07610
https://doi.org/10.1103/PhysRevLett.103.040402
https://doi.org/10.1103/PhysRevA.82.010101
https://doi.org/10.1038/nphys1909
https://doi.org/10.1103/PhysRevB.85.165443
https://doi.org/10.1103/PhysRevLett.110.137401
https://doi.org/10.1103/PhysRevB.93.184434
https://doi.org/10.1103/PhysRevB.93.184434
https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1103/PhysRevLett.120.040401
https://doi.org/10.1007/BF01433225
https://doi.org/10.1103/PhysRevLett.98.050403
https://doi.org/10.1103/PhysRevB.84.075431
https://doi.org/10.1016/0003-4916(77)90334-7
https://doi.org/10.1016/0003-4916(77)90334-7
https://doi.org/10.1016/0003-4916(78)90083-0
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1103/PhysRevLett.99.170403
https://doi.org/10.1103/PhysRevLett.99.170403
https://doi.org/10.1103/PhysRevLett.97.160401
https://doi.org/10.1103/PhysRevLett.97.160401
https://doi.org/10.1103/PhysRevB.78.014103
https://doi.org/10.1103/PhysRevLett.102.230404
https://doi.org/10.1103/PhysRevLett.102.230404
https://doi.org/10.1103/PhysRevA.82.012511
https://doi.org/10.1103/PhysRevLett.119.043901
https://doi.org/10.1103/PhysRevLett.119.043901
https://doi.org/10.1209/0295-5075/118/20002
https://doi.org/10.1103/PhysRevLett.109.160403
https://doi.org/10.1103/PhysRevLett.109.160403
https://doi.org/10.1103/PhysRevD.84.105031
https://doi.org/10.1103/PhysRevD.84.105031
https://doi.org/10.1209/0295-5075/97/50001
https://doi.org/10.1209/0295-5075/97/50001
https://doi.org/10.1103/PhysRevD.86.045021
https://doi.org/10.1103/PhysRevD.86.045021
https://doi.org/10.1103/PhysRevA.89.062120
https://doi.org/10.1103/PhysRevA.89.062120
https://doi.org/10.1063/1.3686903
https://doi.org/10.1063/1.3686903
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevD.85.045027
https://doi.org/10.1103/PhysRevD.73.125018
https://doi.org/10.1103/PhysRevA.83.042109
https://doi.org/10.1103/PhysRevD.84.125037
https://doi.org/10.1103/PhysRevD.84.125037
https://doi.org/10.1103/PhysRevD.88.045019
https://doi.org/10.1103/PhysRevD.94.085021
https://doi.org/10.1103/PhysRevD.90.081702
https://doi.org/10.1103/PhysRevD.90.081702
https://doi.org/10.1103/PhysRevD.92.025028
https://doi.org/10.1103/PhysRevD.92.025028
https://doi.org/10.1103/PhysRevA.94.022509
https://doi.org/10.1103/PhysRevA.94.022509
https://doi.org/10.1016/j.physletb.2016.06.058
https://doi.org/10.1016/j.aop.2012.04.006
https://doi.org/10.1016/j.aop.2012.04.006

