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Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in
flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free
scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic
case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge
covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the
gravitational anomaly for a nonrelativistic scalar vanishes.
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I. INTRODUCTION

Trace anomaly gives powerful constraints on the possible
degreesoffreedomthatcanemerge in the infraredofa strongly
coupled relativistic and unitary theory: the Zamolodchikov c-
theorem ind ¼ 2 [1] and thea-theorem ind ¼ 4 [2–7]give us
examples ofmonotonically decreasing quantities between the
UVand the IR conformal fixed points. For condensed matter
applications, it would be interesting to generalize such results
to the nonrelativistic case.
Newton-Cartan (NC) geometry was originally intro-

duced as a covariant formulation of Newtonian gravity.
In recent years, it found several applications in condensed
matter systems such as quantum Hall effect and fermions at
unitarity; see, e.g., [8–11]. For theories with Schrödinger
invariance, NC gravity provides a natural set of sources for
the operators in the energy-momentum tensor multiplet.
Promising candidates for nonrelativistic a-theorems are

given by type-A trace anomalies [12]. In the case of
Schrödinger-invariant theories coupled to NC geometry
in 2þ 1 dimensions, a natural candidate for a monotonically
decreasing a-function was introduced in [13] and further
studied in [14–20]. All these works (with the exception of
[19]) assume that the trace anomaly is invariant under diffeo-
morphisms, Milne andUð1Þ gauge transformations. The case
ofLifshitz theorieswas studied, e.g., in [21–27], andnonatural

candidate for a monotonically decreasing type-A term in the
trace anomaly was found so far.
In general, anomalies correspond to violations of current

conservation in the presence of background fields. In the
simplest incarnations, such as theABJ chiral anomaly [28,29],
theycanbewrittenasgauge-invariant functions.Subsequently,
Bardeen [30] showed that anomalies may not be gauge
covariant: gauge invariance for background fields might be
formally lost in the regularization procedure. Such gauge-
violating terms are not just a feature of chiral anomalies; they
can appear also in trace anomalies [31]. As discussed in [32],
the presence of these terms in supersymmetric theories is
instrumental in deriving a-maximization [33] using Osborn’s
local renormalization group formalism [3–5].
The first explicit calculation of the Schrödinger trace

anomaly in NC background was performed in [17] for the
scalar case and in [18] for the fermionic case. There, the heat
kernel procedure was used and a NC background with
vanishing particle number gauge potential was chosen. With
thisassumption, the traceanomaly resultwasgaugeandMilne-
boost invariant. Subsequently, Ref. [19] did a related calcu-
lation in the scalar case using the Fujikawa method with a NC
backgroundwithanonvanishingUð1Þparticlenumber.1gauge
field. Surprisingly, the trace anomaly was not Uð1Þ gauge
invariant.
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1More correctly, this Uð1Þ symmetry in the presence of
different species of fields ψ i corresponds to the mass, because
in the minimal coupling it enters the action as −

P
imiA0jψ ij2,

where mi is the mass of the field ψ i. In the presence of a single
species, mass and particle number are proportional to each other.
For simplicity, we refer to thisUð1Þ symmetry as particle number.
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In this paper, we investigate such violations with the heat
kernel formalism. We consider the cases of a free non-
relativistic scalar and a free fermion in 2þ 1 dimensions,
and we compute the expectation value of the trace of the
energy-momentum tensor for a flat background geometry
and a generic source Aμ for the particle number.
Moreover, Ref. [19] also found a nonvanishing diffeo-

morphism anomaly, both in the presence of spacetime
curvature and a Uð1Þ gauge field. Given the recent
interesting applications of diffeomorphism anomaly in
condensed matter systems (see, e.g., [34–36]), one of the
motivations for this work is also to deepen and understand
the nature of this anomaly in nonrelativistic theories. We
compute this anomaly in the presence of a background
gauge field and, surprisingly, we find a vanishing result. As
we shall explain, this is not necessarily in contradiction to
[19]: we find that it is possible to define a “subtracted”
energy-momentum tensor which is conserved, in the spirit
of [37]. Therefore, the apparent difference may be all due to
a different renormalization and subtraction procedure.
This paper is organized as follows: in Sec. II, we

introduce the notation and the sources for the background
currents. In Sec. III, we compute the trace anomaly in a
particle number background both for a nonrelativistic
boson and a fermion. In Sec. IV, we discuss diffeomor-
phism anomaly for a nonrelativistic scalar and we compare
the results with [19]. We conclude in Sec. V, and technical
details are deferred to the Appendixes.

II. PRELIMINARIES AND NOTATION

Wewill consider a nonrelativistic free scalar and fermion
in 2þ 1 dimensions coupled to a NC background geom-
etry. As a useful method to deal in a convenient way with
all the spacetime symmetries, we will use the null-reduction
trick [38] from an extra-dimensional relativistic 3þ
1-dimensional theory. Useful references about NC geom-
etry formalism include [39–46].
Since we are dealing with fermions, we will need both

curved spacetime indices and tangent space ones for the
frame field. The index conventions that we shall use are as
follows: late latin capital indices (e.g., M;N;…), denote
3þ 1-dimensional curved spacetime indices; early latin
capital indices (e.g., A;B;…,) denote tangent space indi-
ces, whose metric is locally flat. The coordinate x−

corresponds to the null-reduction direction. The extra-
dimensional indices of the curved space and of the locally
flat tangent space are as follows:

M ¼ ð−; μÞ ¼ ð−;þ; iÞ ði ¼ 1; 2Þ
A ¼ ð−; αÞ ¼ ð−;þ; aÞ ða ¼ 1; 2Þ; ð2:1Þ

where þ denotes the nonrelativistic time direction and i, a
the space ones (for the curved, tangent space case,
respectively).

The NC spacetime geometry is described by a positive
definite symmetric rank-two tensor hμν (which corresponds
to the spatial inverse metric) and by a nowhere vanishing
vector nμ (defining the local time direction), with the
hortogonality condition

nμhμν ¼ 0: ð2:2Þ

A velocity field vμ is also introduced, with the condition

nμvμ ¼ 1: ð2:3Þ

Given ðhμν; nμ; vνÞ, one can then uniquely define the spatial
metric hμν, with

hμρhρν ¼ δμν − vμnν ≡ Pμ
ν ; hμαvα ¼ 0; ð2:4Þ

where Pμ
ν is the projector onto spatial directions. We

introduce also a nondynamical gauge field Aμ as a source
for the particle number symmetry.2 In terms of the 2þ
1-dimensional quantities, the extra-dimensional metric
used in the null reduction is

GMN ¼
�

0 nν
nμ nμAν þ nνAμ þ hμν

�
;

GMN ¼
�
A2 − 2v · A vν − hνσAσ

vμ − hμσAσ hμν

�
; ð2:5Þ

where A2 − 2v · A ¼ hμνAμAν − 2vμAμ. The determinant of
the metric is then

ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detGAB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhμν þ nμnνÞ

q
: ð2:6Þ

The symmetries of the Newton-Cartan theory include,
besides diffeomorphisms and local U(1) gauge invariance,
a local version of Galilean boosts, namely the Milne boosts.
Transformation properties of fields under Weyl and Milne
boosts are reported in Appendix A.
To deal with spinors, it is necessary to introduce an

orthonormal frame field which relates the metric in the
curved spacetime with the flat tangent space. The flat
tangent space metric is

GAB ¼ GAB ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð2:7Þ

and the frame fields are defined by

2The presence of the vector field is related to the arbitrariness
vμ → vμ þ hμνAν one has in defining the velocity field.
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GMN ¼ eAMGABeBN; GAB ¼ eMAGMNeNB;

eAMeMB ¼ δAB; eMAeAN ¼ δMN: ð2:8Þ

The spin connection associated to the vielbein is

ωMAB ¼ 1

2
½eNAð∂MeNB − ∂NeMBÞ− eNBð∂MeNA − ∂NeMAÞ

− eNAePBð∂NePC − ∂PeNCÞeCM�: ð2:9Þ

The explicit form of the fierbein, dreibein, and their
inverses as well as conventions on gamma matrices are
summarized in Appendix B.

A. Sources and conserved currents

Let us consider a generic nonrelativistic matter field ϕ
coupled to a NC background (collectively denoted by g).
The vacuum functional W½g� is defined as the quantum
average of the action over the matter fields, namely as the
path integral:

eiW½g� ¼
Z

Dϕ�DϕeiS½ϕ;ϕ�;g�: ð2:10Þ

The NC fields act as sources in the vacuum functional, so
that it is possible to generate all the Ward identities by
functional differentiation of W½g� with respect to the NC
sources. However, due to the constraints (2.2)–(2.4) relat-
ing the NC entrees, arbitrary variations on background
fields are not allowed, and one must first identify the
independent variations, e.g., [11]. These can be parame-
trized in terms of an arbitrary δnμ, a transverse perturbation
δuμ with δuμnμ ¼ 0, and a transverse metric perturbation
δh̃αβnβ ¼ 0. Then, the variation of the NC metric in terms
of the independent variations can be written as

δnμ; δvμ ¼ −vμvαδnα þ δuμ;

δhμν ¼ −vμδnν − δnμvν − δh̃μν: ð2:11Þ

Consequently, the NC metric nearby the flat limit (2.7)
gives

nμ ¼ ð1þ δn0; δniÞ; vμ ¼ ð1 − δn0; δuiÞ;

δh̃0i ¼ 0; hμν ¼
�

0 −δui
−δui δij þ δh̃ij

�
;

hμν ¼
�

0 −δni
−δni δij − δh̃ij

�
: ð2:12Þ

The null reduction metric is

GAB ¼

0
B@

0 1þ δn0 δni
1þ δn0 2δA0 δAi − δui
δni δAi − δui δij þ δh̃ij

1
CA;

GAB ¼

0
B@

−2A0 1 − δn0 −δAi þ δui
1 − δn0 0 −δni

−δAi þ δui −δni δij − δh̃ij

1
CA: ð2:13Þ

We can use these sources to define the currents of the
energy-momentum tensor multiplets: under the above
infinitesimal variations, the vacuum functional varies
according to

δW ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

2
Tijδh̃ij þ jμδAμ − ϵμδnμ − piδui

�
:

ð2:14Þ

Here, pi is the momentum density, Tij is the spatial stress
tensor, jμ ¼ ðj0; jiÞ contains the Uð1Þ number density and
current, and ϵμ ¼ ðϵ0; ϵiÞ is the energy density and current.
Here, ϵμ includes also the contribution coming from the
“chemical potential” A0; see, e.g., Eq. (3.2). Note that in
Eq. (2.13), the variations δAi and δui do not appear
independently but always in the combination δAi − δui.
As a consequence of this fact, the Uð1Þ number particle
current is always proportional to the momentum density, as
it should be in a nonrelativistic theory.
Ward identities in the flat limit can be easily obtained in

the usual way: consider a symmetry of the classical action,
specify the corresponding infinitesimal variation of the NC
metric, and impose invariance of the functional, δW ¼ 0.
Then, associated with particle number conservation, there
is conservation of the Uð1Þ current:

h∂μjμi ¼ 0: ð2:15Þ

Associated with diffeomorphism invariance, there are the
conservation of the spatial stress tensor and the energy
current conservation:

h∂tpj þ ∂iTiji ¼ 0; h∂μϵ
μi ¼ 0: ð2:16Þ

Finally, local Weyl transformation entails the Ward identity
associated with the conservation of the scale current, which
is found to be3

J0S ¼ pixi − 2tϵ0; JiS ¼ xjTi
j − 2tϵi; h∂μJ

μ
Si ¼ 0:

ð2:17Þ

3Strictly speaking, the scale current has an additional term
proportional to the scaling dimension Δ of the matter field.
However, such a term is a total derivative and can always be
reabsorbed by a current redefinition.
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By expanding explicitly the scale Ward identity, we have

h∂μJ
μ
Si ¼ hTi

i − 2ϵ0i − 2th∂μϵ
μi þ xjh∂tpj þ ∂iTi

ji ¼ 0:

ð2:18Þ
Equation (2.18) is interesting, as it reveals the relations
intertwining between tracelessness of the energy-momen-
tum tensor, conservation of the energy momentum tensor,
and scale conservation. A quantum violation of the scale
symmetry manifests as a nonconservation of the scale
current JμS which, in turn, is equivalent to a violation of the
tracelessness condition hTi

i − 2ϵ0i ¼ 0 only if the energy-
momentum tensor does not have a diffeomorphism
anomaly, i.e., only if the conditions (2.16) are satisfied.
On the contrary, if the energy-momentum tensor is not
conserved at the quantum level, not only the trace anomaly
but also the diffeomorphism anomaly contribute to the
scale anomaly.

B. Flat spacetime with Uð1Þ gauge field

Wewill compute the trace anomaly for a flat background
where only the nondynamical Uð1Þ gauge potential is
switched on,

nμ ¼ ð1; 0Þ; vμ ¼ ð1; 0Þ; hij ¼ δij;

Aμ ¼ ðA0ðt; xiÞ; Aiðt; xiÞÞ; ð2:19Þ
which corresponds to the extra-dimensional metric

GMN ¼

0
BBB@

0 1 0 0

1 2A0 A1 A2

0 A1 1 0

0 A2 0 1

1
CCCA;

GMN ¼

0
BBB@

−2A0 þ AiAi 1 −A1 −A2

1 0 0 0

−A1 0 1 0

−A2 0 0 1

1
CCCA: ð2:20Þ

The vielbein is

eAM ¼

0
BBB@

1 A0 A1 A2

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA;

eMA ¼

0
BBB@

1 −A0 −A1 −A2

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð2:21Þ

Starting from these data, we can compute the nonvanishing
components of the spin connection

ωþþi ¼ −F0i; ωþij ¼ −
1

2
Fij; ωiþj ¼ −

1

2
Fij;

ð2:22Þ

and the nonvanishing components of the Christoffel
symbol4:

Γ−
μν ¼

1

2
ðvAÞσðQAÞμνσ; Γρ

μν ¼
1

2
hρσðQAÞμνσ; ð2:23Þ

where

Fμν ¼ ∂μAν − ∂νAμ;

ðvAÞμ ¼ vμ − hμνAν;

ðhAÞμν ¼ hμν þ Aμnν þ Aνnμ;

ðQAÞμνσ ¼ ∂μðhAÞνσ þ ∂νðhAÞμσ − ∂σðhAÞμν: ð2:24Þ

III. TRACE ANOMALY

The action for a nonrelativistic boson is

S ¼
Z

d3x
ffiffiffi
g

p ½imvμϕ†Dμϕ − imvμðDμϕÞ†ϕ

− hμνðDμϕÞ†Dνϕ − ξRϕ†ϕ�; ð3:1Þ

where Dμ ¼ ∂μ − imAμ. Specializing to a flat background
and performing an integration by parts, we find

S ¼
Z

d3x½2imϕ†∂tϕþ ϕ†∂2
iϕ − 2imAiϕ

†∂iϕ

þ ð2m2A0 −m2AiAi − im∂iAiÞϕ†ϕ�: ð3:2Þ

Note that A0 plays the role of a grand canonical chemical
potential coupled to the particle number J0 ¼ 2m2ϕ†ϕ. As
a consequence, ϵ0 ¼ Eþ A0J0, where E is the particle
energy density.

A. The unperturbed case

We shall compute the trace anomaly using the heat
kernel (HK) method in imaginary time space. The follow-
ing substitutions are used [47]

t → −itE; ∂t → i∂tE ; m → imE: ð3:3Þ

For a generic operator ÔE, the HK operator of ÔE is
defined as

K̂ÔE
ðsÞ ¼ expðsÔEÞ: ð3:4Þ

4In the following, the presence of the subscript A denotes that
the corresponding quantity is Milne-boost invariant
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The following matrix elements are introduced,

KÔE
ðs; x; t; x0; t0Þ ¼ hxtjK̂ÔE

ðsÞjx0t0i; ð3:5Þ

and we denote by K̃ÔE
the diagonal matrix elements,

K̃ÔE
ðs; x; tÞ ¼ hxtjK̂ÔE

ðsÞjxti: ð3:6Þ

The HK is an efficient method to compute the one-loop
effective action; in the unpertubed flat nonrelativistic case
with Aμ ¼ 0, the free Schrödinger operator △ entering the
action is given by

△ ¼ ð−2im∂t þ ∂2
i Þ ¼

�
−2m

ffiffiffiffiffiffiffiffi
−∂2

t

q
þ ∂2

i

�
: ð3:7Þ

The HK matrix elements K△ have been computed in [17],

K△ðsÞ ¼ hxtjes△jx0t0i

¼ 1

2π

ms

m2s2 þ ðt−t0Þ2
4

1

ð4πsÞ exp
�
−
ðx − x0Þ2

4s

�
: ð3:8Þ

B. The perturbative expansion

In curved space one introduces the following scalar
product in coordinate representation:

hxtjx0t0ig ¼
δðx − x0Þδðt − t0Þffiffiffi

g
p : ð3:9Þ

In a generic background, it is convenient to expand the
complete Schrödinger operator △̂ as the sum of its free part
△ plus a perturbation V̂. We can then evaluate the HK as a
perturbative expansion around (3.8). The diagonal elements
of the HK operator can be expanded in powers of s as

K̃
△̂
ðsÞ ¼ Trhxtjes△̂jxtig

¼ 1

s2
ða0ð△̂Þ þ a2ð△̂Þsþ a4ð△̂Þs2 þ � � �Þ: ð3:10Þ

This expansion provides the definition of the De Witt–
Seeley-Gilkey coefficients a2kð△̂Þ. For a nonrelativistic
2þ 1-dimensional theory, the trace anomaly is propor-
tional to the a4 coefficient [17].
In general, it is convenient to work in a quantum

mechanical space with flat inner product

hxtjx0t0i ¼ δðx − x0Þδðt − t0Þ: ð3:11Þ

Consequently, for any operator Ô we can define the
operator M̂Ô such that

hxtjÔjx0t0ig ¼ hxtjM̂Ôjx0t0i: ð3:12Þ

The “effective” operator M̂Ô keeps track of the metric in the
inner product. In this way we can expand the diagonal
elements of the HK as

K̃M̂ðsÞ ¼ TrhxtjesM̂jxti

¼ 1

s2
½a0ðM̂Þ þ sa2ðM̂Þ þ s2a4ðM̂Þ þ � � ��

≡ ffiffiffi
g

p
K̃

△̂
ðsÞ: ð3:13Þ

In our flat case,
ffiffiffi
g

p ¼ 1 and so Ô ¼ M̂Ô.
We can parametrize the perturbation from the flat

contribution as

hxtjM̂jx0t0i ¼ hxtj△þ V̂jx0t0i
¼ hxtj△þ PðxÞδðx − x0Þδðt − t0Þ

þ SðxÞ
ffiffiffiffiffiffiffiffi
−∂2

t

q
δðx − x0Þδðt − t0Þ

þQiðxÞ∂iδðx − x0Þδðt − t0Þjx0t0i: ð3:14Þ

The perturbative calculation starts by considering the
expansion

KM̂ðsÞ ¼ exp ðsð△þ V̂ÞÞ ¼
X∞
n¼0

KnðsÞ; ð3:15Þ

where the single terms entering the series are obtained via a
Dyson recursive procedure:

KnðsÞ ¼
Z

s

0

dsn

Z
sn

0

dsn−1…

×
Z

s2

0

ds1eðs−snÞ△V̂…eðs2−s1Þ△V̂es1△: ð3:16Þ

The terms KnðsÞ consists of insertions of n operators
among the set

fPðxÞ; SðxÞ; QiðxÞg ð3:17Þ

and then the computation is performed when we find the
value of KnðsÞ for all the nonvanishing combinations of
terms in the previous set.
The imaginary time rotation of the gauge field gives5:

A0 → A0 Ai → −iAi; ð3:18Þ

and the imaginary time action reads:

5The unconventional redefinition of the gauge field in the
imaginary time formalism is required by consistency with
½Dμ; Dν� ¼ −imFμν and the prescription m → im. The imaginary
mass is required in order to get a positive definite euclidean
action.
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SE ¼ −
Z

d3xϕ†½△ − 2imAi∂i − 2m2A0

−m2AiAi − imð∂iAiÞ�ϕ: ð3:19Þ

We can immediately identify

Sðt; xiÞ ¼ 0; Pðt; xiÞ ¼ −2m2A0 −m2AiAi − imð∂iAiÞ;
Qiðt; xiÞ ¼ −2imAi; ð3:20Þ

so that all the insertions containing at least one operator
Sðt; xiÞ vanish. Therefore, at the first order (n ¼ 1), there
are just two terms, denoted by K1P and K1Qi

. At the second
order (double insertion, n ¼ 2) we have four possible
insertions, K2PP, K2PQj

, K2QiP, K2QiQj
.

For time independent backgrounds, the calculation of the
coefficients can be found in [17–18] with the exception of
the K1Qi

term, which was not needed neither for the scalar
nor for the fermion anomaly. Here in Appendix C we

calculate such a term. In Appendix D, instead, we provide
all the generalizations needed for all the terms when the
background is time dependent. For the single insertion,
we get

K̃1P ¼ 1

8mπ2s2
Tr

�
sPþ 1

6
s2∂2

xPþ � � �
�
; ð3:21Þ

K̃1Qi
¼ 1

8mπ2s2
Tr

�
−
s
2
∂iQi −

s2

12
∂i∂2Qi þ � � �

�
; ð3:22Þ

where Tr denotes a trace over indices such as internal or
spinorial ones (in the scalar case the trace is redundant).
Substituting Eq. (3.20) in (3.21) and (3.22), and matching
the powers of s in Eq. (3.13), one can get the contribution to
the a2 and a4 coefficients coming from the single insertion.
Concerning the contribution coming from the double

insertion, from Appendix D one gets the general formulae

K̃2PP ¼ 1

8mπ2s2
Tr

�
s2

2
PðxÞ2 þ � � �

�
; ð3:23Þ

K̃2QjQi
¼ 1

8mπ2s2
Tr

�
−
s
4
QiQi −

s2

12
Qið∂i∂jQjÞ þ

s2

12
ð∂i∂jQiÞQj −

s2

24
ð∂jQiÞð∂iQjÞ

þ s2

8
ð∂iQiÞð∂jQjÞ −

s2

12
Qið∂2QiÞ −

s2

24
ð∂iQjÞ2 þ � � �

�
; ð3:24Þ

K̃2QiP ¼ 1

8mπ2s2
Tr

�
−
s2

3
Pð∂iQiÞ −

s2

6
ð∂iPÞQi þ � � �

�
; ð3:25Þ

K̃2PQi
¼ 1

8mπ2s2
Tr

�
s2

6
Qið∂iPÞ −

s2

6
ð∂iQiÞPþ � � �

�
: ð3:26Þ

With the above formulas, in a similar way, one gets the contributions to a2 and a4 coming from the double insertions.
Summing all together, and extracting the null power of s in (3.13), we easily get the a4 coefficient up to the second order in
the fields, and therefore the trace anomaly

a4 ¼ hTi
i − 2ϵ0i ¼ −

m
8π2

�
1

3
∂2A0 þ

1

6
B2 − 2m2A2

0 þOðA3
μÞ
�
≡A; ð3:27Þ

where B ¼ F12. Equation (3.27) deserves few comments.
First of all, the anomaly breaks both Milne boost and gauge
invariance. Due to the intimate relationship intertwining the
two symmetries,6 it is not surprising that breaking one of
them does entail the breaking of the other. In addition, note
that in (3.27) the ∂2A0 term does not serve to rebuild a
divergence of the electric field, as it would be if the result
were gauge invariant. Rather, in (3.27), A0 should be

considered as vμAμ, otherwise the first two terms would
not have the correct Weyl weight (see Appendix A).
Concerning the ∂2ðvμAμÞ term in Eq. (3.27), it can be

reabsorbed by a local counterterm in the vacuum functional
W proportional to RvμAμ. This is not possible for the
ðvμAμÞ2 term, that is therefore a (type-B) genuine anomaly.
Both in the free scalar and free fermion examples, the

field A0 plays the role of an external chemical potential for
the particle number J0; in the multiple species case, J0
plays the role of mass density. Moreover, studying geo-
desics in a NC background, one sees that A0 can also be

6In the Bargmann algebra, the commutator of the momentum
and a boost is the particle number generator.
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identified as the Newtonian gravitational potential. On
physical ground one would expect mass conservation in
an external gravitational field. On the other hand, the
breaking of gauge invariance in Eq. (3.27) may hint a
violation of the conservation of the Uð1Þ current; if this
would be the case, this would be puzzling because it would
not be consistent with the physical intuition. This point is
beyond the purpose of the present paper and deserves
further investigation.

C. The fermion

The Dirac operator is expressed as

=D ¼ γMDM ¼ γAeMADM; ð3:28Þ
Conventions on gamma matrices with lightcone indices are
summarized in Appendix B and are the same used in [18].
The covariant derivative acting on fermions is

DMΨ ¼
�
∂M þ 1

4
ωMABγ

AB

�
Ψ

¼
�
∂M þ 1

8
ωMAB½γA; γB�

�
Ψ; ð3:29Þ

ωMAB being the spin connection. We can write the non-
relativistic fermion action in 2þ 1-dimensions from the
null reduction of the 3þ 1-dimensional Dirac action:

S ¼
Z

d4x
ffiffiffi
g

p
iΨ̄=DΨ; ð3:30Þ

using the following profile for the fermion along the extra
dimension:

ΨðxMÞ ¼ ψðxμÞeimx− : ð3:31Þ

In the fermionic case, the imaginary-time Dirac
operator =D is not elliptic. In order to avoid this difficulty,
the squared Dirac operator =D2 is used to compute the
vacuum functional:

iW ¼ 1

2
log detð=D2Þ: ð3:32Þ

This trick is used both in the relativistic, see, e.g., [48], and
nonrelativistic case [18]. Specializing to a flat background
geometry, i.e.,

ffiffiffi
g

p ¼ 1, R ¼ 0, and going to imaginary
time, we find:

=D2
EΨ ¼ △Ψ − 2m2A0Ψ −m2AkAkΨ − imð∂iAiÞΨ − 2imAið∂iΨÞþ

−mFi0γ
þiΨ −

1

4
imFijγ

ijΨþ 1

2
mAiFijγ

þjΨþ 1

2
iFijγ

þjð∂iΨÞ þ
1

4
ið∂iFijÞγþjΨ: ð3:33Þ

According to Eq. (3.14), we can identify

Sðt; xiÞ ¼ 0; Qiðt; xiÞ ¼ ð−2imAiÞ1þ
1

2
iFijγ

þj; ð3:34Þ
Pðt; xiÞ ¼ ½−2m2A0 −m2AkAk − imð∂iAiÞ�1

−mFi0γ
þi −

1

4
imFijγ

ij þ 1

2
mAiFijγ

þj þ 1

4
ið∂iFijÞγþj; ð3:35Þ

where the Dirac matrices read:

γþ1 ¼

0
BBB@

0
ffiffiffi
2

p
0 0

0 0 0 0

0 0 0 0

0 0 −
ffiffiffi
2

p
0

1
CCCA; γþ2 ¼

0
BBB@

0 −
ffiffiffi
2

p
i 0 0

0 0 0 0

0 0 0 0

0 0 −
ffiffiffi
2

p
i 0

1
CCCA; γ12 ¼

0
BBB@

−i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 i

1
CCCA: ð3:36Þ

We can now use Eqs. (3.21)–(3.22) and Eqs. (3.23)–(3.26) to evaluate the single and double insertion contributions.
Summing both the first and the second order terms in the external background fields, we find

a4ð=D2
EÞ ¼ −

m
48π2

B2 −
m
6π2

∂2A0 þ
m3

π2
A2
0 þOðA3

μÞ: ð3:37Þ

The trace of the stress-energy tensor is finally given by

hTi
i − 2T0

0i ¼ −
1

2
a4ð=D2

EÞ ¼
m

12π2
∂2A0 −

m3

2π2
A2
0 þ

m
96π2

B2 þOðA3
μÞ: ð3:38Þ

The structure is the same as the bosonic case.
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IV. DIFFEOMORPHISM ANOMALY

The previous calculation of the Weyl anomaly, which
related the trace of the energy-momentum tensor with the
a4 coefficient, relies on the ζ function regularization. This
method is described in [49] and here we sketch the
derivation.7 For an operator D defining a classical action,
the regularized vacuum functional is defined by

WregðsÞ ¼ −
1

2
μ̃2s

Z
∞

0

dt
t1−s

K̃DðtÞ ¼ −
1

2
μ̃2sΓðsÞζðs;DÞ;

ð4:1Þ
where the regulator is s, and μ̃ is the mass parameter that
any regularization procedure entails. The last equality gives
the relation between the HK spectral function and the zeta
function of an operator

ζðs;DÞ ¼ 1

ΓðsÞ
Z

∞

0

dt
t1−s

K̃DðtÞ ¼ TrðD−sÞ: ð4:2Þ

The physical limit of the regularized vacuum functional is
attained for s → 0 that, due to the presence of the Γ function,
develops an UV singularity that needs to be subtracted. The
renormalized vacuum functional is the s → 0 limit of the
subtracted vacuum functional, leading to

Wren ¼ −
1

2
ζ0ð0;DÞ − 1

2
logμ2ζð0;DÞ; ð4:3Þ

where μ2 ¼ e−γE μ̃2 is the renormalization scale and γE the
Euler Mascheroni constant.
Next, we need to see how the renormalized vacuum

functional varies under a variation δD. This is completely
determined by the variation of the ζðs;DÞ function,8

δζðs;DÞ ¼ −sTrððδDÞD−s−1Þ: ð4:4Þ
To compute the diffeomorphism anomaly, we need the
variation δD under diffeomorphisms. In the scalar case,
after integration by parts, the imaginary-time action can be
put in the form

SE ¼
Z

d3x
ffiffiffi
g

p
ϕ†Dϕ; ð4:5Þ

with

Dϕ ¼ imvμDμϕþ imffiffiffi
g

p Dμð
ffiffiffi
g

p
vμϕÞ − 1ffiffiffi

g
p Dμð

ffiffiffi
g

p
hμνDνϕÞ:

ð4:6Þ

We will only consider the variation under diffeomorphisms
of this operator specializing to a flat background with a
nonvanishing gauge field. The scalar operator specialized
to this background is

D0 ¼ 2im∂0 − ∂2
i þ 2m2A0 þm2AiAi

þ 2imAi∂i þ imð∂iAiÞ; ð4:7Þ

and it transforms under diffeomorphisms as

δD0 ¼ −2imð∂0ε
μÞ∂μ þ 2ð∂iε

μÞ∂i∂μ

þ ð∂2
i ε

μÞ∂μ þ 2m2εμð∂μA0Þ
þ 2imεμð∂μAiÞ∂i − 2imAið∂iε

μÞ∂μ

þ imεμð∂i∂μAiÞ þ 2m2Aiε
μð∂μAiÞ: ð4:8Þ

Now comes an important point, which permits us to
understand which terms in Eq. (4.8) do indeed contribute to
the anomaly. The ζ function (4.2) is a trace and, as such,
due to the cyclicity properties, is invariant under the
similarity transformation

ζðs; D̃Þ ¼ ζðs;DÞ if D̃ ¼ eÔDe−Ô: ð4:9Þ

Strictly speaking, this means that D and D̃ have the same
functional determinant. If we consider the redefinition (4.9)
with

Ô ¼ αξμ∂μ; ð4:10Þ

with α a real coefficient and ξμ transforming under diffeo-
morphisms as δξμ ¼ εμ, we find that

D̃0 ¼ eαξ
μ∂μD0e−αξ

ν∂ν ¼ D0 − 2imαð∂0ξ
μÞ∂μ

þ 2αð∂iξ
μÞ∂i∂μ þ αð∂2

i ξ
μÞ∂μ þ 2m2αξμð∂μA0Þ

þ 2m2αAiξ
μð∂μAiÞ þ 2imαξμð∂μAiÞ∂i

þ imαξμð∂μ∂iAiÞ − 2imαAið∂iξ
μÞ∂μ þOðξ2Þ:

ð4:11Þ

Using Eq. (4.8) and setting α ¼ −1, we obtain δD̃0 ¼ 0.
This means that δWren ¼ 0, and there is no gravitational
anomaly:

h∂μTμ
νi ¼ 0: ð4:12Þ

As a consequence, the divergence of the scale current in
Eq. (2.18) takes the form h∂μJ

μ
Si ¼ hTi

i − 2ϵ0i. On the
contrary, in Ref. [19], a nonvanishing diffeomorphism
anomaly was found using Fujikawa’s method, i.e.,

h∂μðTFÞμνi ¼
1

2
∂νA; ð4:13Þ

7Reference [49] is very exhaustive but also pretty long. For the
benefit of the reader, we recall that Sec. II B in Ref. [49] deals
with the spectral functions relevant to this section, whereas the
part relevant to the conformal anomaly can be found in Sec. VII A
of Ref. [49].

8Note that we need to compute the variation for s ≠ 0 and
eventually perform the s → 0 limit.
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where A is the trace anomaly evaluated from the energy-
momentum tensor ðTFÞμν, regularized as in Ref. [19]. This
is not in contradiction with our result, as a “subtracted”
energy-momentum tensor, in the spirit of Ref. [37], can be
defined

T̂μ
ν ¼ ðTFÞμν −

1

2
δμνA; ð4:14Þ

in such a way that it satisfies the conservation equation

h∂μT̂
μ
νi ¼ 0: ð4:15Þ

It seems that the zeta function regularization method we
used automatically selects the conserved energy-momen-
tum tensor Tμ

ν ¼ T̂μ
ν. In fact, if we compare the trace of the

subtracted T̂μ
ν with Eq. (3.27), we find a substantial

agreement with [19]9

V. CONCLUSIONS

In this paper we found that a nonzero trace anomaly
occurs for a nonrelativistic scalar and fermion fields in 2þ
1 dimensions, coupled to a particle number background Aμ.
This agrees with the results of [19]. Analogous calculations
[17,18] performed in curved backgrounds without Aμ lead
to a result proportional to the trace anomaly of a relativistic
scalar/fermion in 3þ 1 dimensions. Instead, the anomaly in
Aμ background is genuinely nonrelativistic, as it has no
counterpart in the relativistic case. The resulting anomaly is
not gauge invariant in the background source vector field;
similar non-gauge-invariant anomalies are known to occur
also in the relativistic case; see, e.g., [30,31].
We also computed the diffeomerphism anomaly for a

scalar and we found a vanishing result; this may be not in
contradiction with the results of [19], because our energy-
momentum tensor may correspond to a subtracted version
of the one studied in [19].
Several open question are left for further investigation:
(i) An analysis of the Wess-Zumino consistency con-

ditions for trace anomalies in presence of gauge and
Milne-boost violations would clarify the nature of the
anomalies and their possible relevance for the proper-
ties of the RG flow. Due to the large number of terms
involved, this seems a rather challenging task.

(ii) It would be interesting to study nonrelativistic
anomalies for supersymmetric theories. In the
Schrödinger case it is likely that, in analogy to the
relativistic case, a nontrivial relation between super-
conformal R-charge and trace anomaly exists at the
fixed point [33,50]. In the relativistic case, the tradi-
tional derivation of these result relies on the equality
of the flavor-Uð1ÞR-Uð1ÞR and flavor-gravity-gravity

triangle anomaly, due to supersymmetry. No axial
anomaly is known in the Schrödinger case,10 and this
makes the extension to the nonrelativistic case not
straightforward. Another derivation of the relation
between R-charges and a-anomaly was given in [32],
using the local RG approach by Osborn [5]; the
relevant Wess-Zumino consistency conditions con-
cerned terms in the trace anomaly which are not
formally gauge invariant [31]. It could be that a
similar analysis might be extended to the nonrelativ-
istic case.

(iii) An understanding of the case of anyons would be
important for possible condensed matter applications.
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APPENDIX A: WEYL AND MILNE-BOOST
TRANSFORMATIONS

The Newton-Cartan fields transform under Milne boosts
in the following way:

v0μ ¼ vμ þ hμνψν

h0μν ¼ hμν − ðnμPρ
ν þ nνP

ρ
μÞψρ þ nμnνhρσψρψσ;

A0
μ ¼ Aμ þ Pρ

μψρ −
1

2
nμhρσψρψσ; ðA1Þ

where ψμ is the local parameter of the trasformations. The
fields nμ and hμν are invariant. These transformations are
naturally implemented via null reduction technique.
The fundamental fields of Newton-Cartan geometry

change as follow under 2þ 1-dimensional Weyl trans-
formations:

nμ → e2σnμ; vμ → e−2σvμ;

hμν → e2σhμν; hμν → e−2σhμν; ðA2Þ
where σ is a local parameter and coordinates do not
transform. Note that the gauge field Aμ is invariant.
The Newton-Cartan measure

ffiffiffi
g

p
changes under 2þ 1

dimensional Weyl transormations as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhμν þ nμnνÞ

q
¼ ffiffiffi

g
p

→ e4σ
ffiffiffi
g

p
: ðA3Þ

APPENDIX B: CONVENTIONS ON GAMMA
MATRICES AND VIELBEIN

The 2þ 1-dimensional dreibein eaμ is defined by dimen-
sional reduction of the 3þ 1-dimensional fierbein eAM:

9The disagreement concerns essentially an overall sign. We
were not able to figure out what is the origin of the discrepancy.

10Axial anomaly instead was already studied in the Lifshitz
case; see [51].
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eAM ¼

0
B@

e−M
eþM

eaM

1
CA ¼

0
B@

e−− e−μ

eþ− eþμ

ea− eaμ

1
CA ¼

0
B@

1 Aμ

0 nμ
0 eaμ

1
CA: ðB1Þ

The inverse vielbein are

eMA ¼
�
eM− eMþ eMa

�
¼

�
e−− e−þ e−a

eμ− eμþ eμa

�

¼
�
1 −vσAσ −hνσAσeaν
0 vμ hμνeaν

�
: ðB2Þ

The 2þ 1-dimensional dreibein eaμ are not completely
free, but they are related to other Newton-Cartan fields via
the relations

eMAeBM ¼ δA
B; eAMeNA ¼ δM

N: ðB3Þ

In order to deal with nonrelativistic fermions using the
null-reduction method, it is necessary to introduce Pauli

and Dirac matrices in four dimensions in light-cone indices.
The usual convention is

σA ¼ ð1; σαÞ; σ̄A ¼ ð−1; σαÞ: ðB4Þ

In light-cone coordinates, they become

σ� ¼ 1ffiffiffi
2

p ðσ3 � σ0Þ; σ̄� ¼ 1ffiffiffi
2

p ðσ̄3 � σ̄0Þ;

σ− ¼
ffiffiffi
2

p �
0 0

0 −1

�
; σþ ¼

ffiffiffi
2

p �
1 0

0 0

�
;

σ̄− ¼
ffiffiffi
2

p �
1 0

0 0

�
; σ̄þ ¼

ffiffiffi
2

p �
0 0

0 −1

�
;

σ1 ¼ σ̄1 ¼
�
0 1

1 0

�
; σ2 ¼ σ̄2 ¼

�
0 −i
i 0

�
: ðB5Þ

The associated Gamma matrices in four dimensions are

γ− ¼ 1ffiffiffi
2

p ðγ3 − γ0Þ ¼
ffiffiffi
2

p
0
BBB@

0 0 0 0

0 0 0 −1
1 0 0 0

0 0 0 0

1
CCCA; γþ ¼ 1ffiffiffi

2
p ðγ3 þ γ0Þ ¼

ffiffiffi
2

p
0
BBB@

0 0 1 0

0 0 0 0

0 0 0 0

0 −1 0 0

1
CCCA;

γ1 ¼
�

0 σ1

σ1 0

�
; γ2 ¼

�
0 σ2

σ2 0

�
: ðB6Þ

The corresponding Lorentz generators, needed to compute covariant derivatives, are

σAB ¼ 1

2
ðσAσ̄B − σBσ̄AÞ; γAB ¼ 1

2
½γA; γB�: ðB7Þ

APPENDIX C: TIME-INDEPENDENT INSERTION CONTRIBUTIONS TO HEAT KERNEL

In this Appendix, we will compute time-independent insertion of operators in the heat kernel expansion. We derive the
formula for a single insertion of the termQiðxÞmultiplying a spatial derivative; all the other nonvanishing insertions can be
found in [17–18]. We compute

K1Qi
ðsÞ ¼

Z
s0

0

ds0
Z

ddx̃
Z

dt̃hxtjeðs−s0Þ△jx̃ t̃iQiðx̃Þ
∂
∂x̃i hx̃ t̃ je

s0△jx0t0i ¼ ðC1Þ

¼ −
∂
∂x0i

�Z
s0

0

ds0
Z

ddx̃
Z

dt̃hxtjeðs−s0Þ△jx̃ t̃iQiðx̃Þhx̃ t̃ jes0△jx0t0i
�
; ðC2Þ

where we used the parity properties of the flat solution of the heat kernel and of the derivative operation. In this way we
recognize that the term in parenthesis is the definition of the single insertion of a term without derivatives of kind

K1PðsÞ ¼
Z

s0

0

ds0
Z

ddx̃
Z

dt̃hxtjeðs−s0Þ△jx̃ t̃iPðx̃Þhx̃ t̃ jes0△jx0t0i; ðC3Þ

where we only have to rename the operator as QiðxÞ.
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The computation for this quantity was performed in [17] and gave as a result

K1PðsÞ ¼
Z

s

0

ds0
1

2π2
1

ð4πsÞd=2
8πms

4m2s2 þ ðt − t0Þ2

×
Z

ddk

ð2πÞd=2 exp
�
−
ðx − x0Þ2

4s
þ ik ·

�
x
s0

s
þ x0

s − s0

s

�
− k2

s0

s
ðs − s0Þ

�
QiðkÞ: ðC4Þ

If we now differentiate this expression with respect to x0 and we put t ¼ t0, x ¼ x0, we obtain

K̃1Qi
ðsÞ ¼

Z
s

0

ds0
Z

ddk

ð2πÞd=2
2

mð4πsÞd=2þ1

�
−iki

s − s0

s

�
exp

�
ikx − k2

s0

s
ðs − s0Þ

�
QiðkÞ: ðC5Þ

Performing the inverse Fourier transform and expanding the exponential around s ¼ 0, we find the result

K̃1Qi
ðsÞ ¼ 2

mð4πsÞd=2þ1

�
−
s
2
∂iQiðxÞ −

s2

12
∂i∂2QiðxÞ þOðs3Þ

�
: ðC6Þ

APPENDIX D: TIME-DEPENDENT INSERTION CONTRIBUTIONS TO HEAT KERNEL

We want to generalize the results of the previous section concerning the heat kernel expansion by considering time-
dependent insertions of operators.

1. Single-insertion computations

Let us start with the single insertion of a term without derivatives acting on the fields. We consider the Fourier
decomposition,

Pðx; tÞ ¼
Z

ddk

ð2πÞd=2
Z

dωffiffiffiffiffiffi
2π

p Pðk;ωÞeiðkx−ωtÞ; ðD1Þ

in order to find

K1PðsÞ ¼
Z

s

0

ds0
Z

ddx̃
Z

dt̃hxtjeðs−s0Þ△jx̃ t̃iPðx̃; t̃Þhx̃ t̃ jes0△jx0t0i

¼
Z

s

0

ds0
1

ð2πÞ2
1

ð4πðs − s0ÞÞd=2
1

ð4πs0Þd=2
Z

dωffiffiffiffiffiffi
2π

p
Z

dt̃e−iωt̃
mðs − s0Þ

m2ðs − s0Þ2 þ ðt−t̃Þ2
4

×
ms0

m2s02 þ ðt̃−t0Þ2
4

Z
ddk

ð2πÞd=2 e
ikx̃ exp

�
−
ðx − x̃Þ2
4ðs − s0Þ −

ðx̃ − x0Þ2
4s0

�
Pðk;ωÞ; ðD2Þ

where we used the explicit expression of the flat-space heat kernel for the Schrödinger operator, Eq. (3.8).
We observe that the time and spatial parts of the integral decouple and appear as distinct multiplicative factors. We can

then use the result for the spatial part that is presented in [17]:

Z
ddx̃

Z
ddk

ð2πÞd=2 e
ikx̃ exp

�
−
ðx − x̃Þ2
4ðs − s0Þ −

ðx̃ − x0Þ2
4s0

�

¼
Z

ddk

2πd=2
exp

�
−
ðx − x0Þ2

4s
þ ik ·

�
x
s0

s
þ x0

s − s0

s

�
− k2

s0

s
ðs − s0Þ

�
: ðD3Þ

In particular, the x ¼ x0 result for the spatial part of the integral is

Z
ddk

2πd=2
exp

�
ik · x − k2

s0

s
ðs − s0Þ

�
: ðD4Þ
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In order to compute the temporal part IðωÞ of the integral, we need to find the analytic structure in the complex plane of the
integrand,

IðωÞ ¼
Z

dt̃e−iωt̃
mðs − s0Þ

m2ðs − s0Þ2 þ ðt−t̃Þ2
4

ms0

m2s02 þ ðt̃−t0Þ2
4

¼ 4αβe−iωt
0
Z

dt̃
e−iωt̃

ðt̃þ iβÞðt̃ − iβÞðt̃ − Δtþ iαÞðt̃ − Δt − iαÞ ; ðD5Þ

where we sent t̃ → t̃þ t0 and we defined

α ¼ 2mðs − s0Þ; β ¼ 2ms0; Δt ¼ t − t0: ðD6Þ

The quantities α, β are positive by definition. We use the residue theorem to find

IðωÞ ¼ 4αβe−iωt
0
θðωÞ

�
πe−βω

βððΔtþ iβÞ2 þ α2Þ þ
πe−αω−iΔtω

αððΔt − iαÞ2 þ β2Þ
�

þ 4αβe−iωt
0
θð−ωÞ

�
πeβω

βððΔt − iβÞ2 þ α2Þ þ
πeαω−iΔtω

αððΔtþ iαÞ2 þ β2Þ
�
: ðD7Þ

It can be found that the expression for ω ¼ 0 gives the time-independent results found in [17–18] if we choose the
prescription θð0Þ ¼ 1=2 for the Heaviside distribution:

Ið0Þ ¼ 8πms
4m2s2 þ ðt − t0Þ2 ¼

Z
dt̃

mðs − s0Þ
m2ðs − s0Þ2 þ ðt−t̃Þ2

4

ms0

m2s02 þ ðt̃−t0Þ2
4

: ðD8Þ

The heat kernel computation only requires equal-time insertions, then we put Δt ¼ 0 to obtain

Iðω;Δt ¼ 0Þ ¼ 2π

ms
1

s − 2s0
½e−2ms0jωjðs − s0Þ − s0e−2mðs−s0Þjωj� ¼ 2π

ms
þOðsÞ: ðD9Þ

Using Eqs. (D4) and (D9) inside Eq. (D2) and expanding in the auxiliary time s, we finally obtain the result:

K̃1PðsÞ ¼
2

mð4πsÞd=2þ1

�
sPðx; tÞ þ 1

6
s2∂2

i Pðx; tÞ þOðs3Þ
�
: ðD10Þ

This is the same result as the case without time dependence because the first order of the expansion of exponential terms
vanishes.
Let us now consider the single insertion of an operator with a spatial derivative acting on the fields. Once again, we find

that Eq. (C2) is satisfied and then the calculation reduces to applying a spatial derivative to the single insertion K1PðsÞ∶

K1Qi
ðsÞ ¼ −

∂
∂x0i

�Z
s0

0

ds0
Z

ddx̃
Z

dt̃hxtjeðs−s0Þ△jx̃ t̃iQiðx̃; t̃Þhx̃ t̃ jes0△jx0t0i
�
: ðD11Þ

Since the expression in parentheses does not change if we add a time dependence to the operators of the heat-kernel
expansion, and since spatial and temporal parts of the integral factorize, we obtain an equivalent formula also for

K̃1Qi
ðsÞ ¼ 2

mð4πsÞd=2þ1

�
−
s
2
∂iQiðx; tÞ −

s2

12
∂i∂2Qiðx; tÞ þOðs3Þ

�
: ðD12Þ

Single insertions of operators with a time derivative applied to the dynamical fields Sðx; tÞ can be modified by time
dependence, but since they vanish on our background, we will not consider this kind of term.
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2. Double-insertion computations

We consider the double insertion of operators of type Pðx; tÞ, which is given by

K2PðsÞ ¼
Z

s

0

ds2

Z
s2

0

ds1

Z
ddx1

Z
ddx2

Z
dt1

Z
dt2hxtjeðs−s2Þ△jx2t2i

Pðx2; t2Þhx2t2jeðs2−s1Þ△jx1t1iPðx1; t1Þhx1t1jes1△jx0t0i

¼
Z

s

0

ds2

Z
s2

0

ds1
1

ð2πÞ3
1

ð4πðs − s2ÞÞd=2
1

ð4πðs2 − s1ÞÞd=2
1

ð4πs1Þd=2
Z

ddx1

Z
ddx2

Z
dt1

Z
dt2

×
Z

ddk1
ð2πÞd=2

Z
ddk2

ð2πÞd=2 exp
�
ik1x1 þ ik2x2 −

ðx0 − x2Þ2
4ðs − s2Þ

−
ðx2 − x1Þ2
4ðs2 − s1Þ

−
ðx1 − xÞ2

4s1

�Z
dω1ffiffiffiffiffiffi
2π

p
Z

dω2ffiffiffiffiffiffi
2π

p

× e−iω1t1−iω2t2
mðs − s2Þ

m2ðs − s2Þ2 þ ðt−t2Þ2
4

mðs2 − s1Þ
m2ðs2 − s1Þ2 þ ðt2−t1Þ2

4

ms1

m2s21 þ ðt1−t0Þ2
4

Pðk2;ω2ÞPðk1;ω1Þ: ðD13Þ

It is evident that also in this situation the time and spatial parts of the integral factorize. The latter was found in [17] to be

Ξðx; x0Þ ¼
Z

ddx1

Z
ddx2 exp

�
−
ðx0 − x2Þ2
4ðs − s2Þ

−
ðx2 − x1Þ2
4ðs2 − s1Þ

−
ðx1 − xÞ2

4s1
þ ik1x1 þ ik2x2

�

¼ ð4πÞd
�
s1ðs − s2Þðs2 − s1Þ

s

�
d=2

exp

�
ik1s1x0

s
þ ik2s2x0

s
−
ik1s1x

s
−
ik2s2x

s
þ k21s

2
1

s
þ k22s

2
2

s

− k21s1 − 2k1k2s1 − k22s2 þ
2k1k2s1s2

s
þ ik1xþ ik2x −

x2

4s
þ xx0

2s
−
ðx0Þ2
4s

�
:

At coincident points, it becomes

Ξðx; xÞ ¼ ð4πÞd
�
s1ðs − s2Þðs2 − s1Þ

s

�
d=2

× exp

�
ik1x1 þ ik2x2 þ k21

�
s21
s
− s1

�
þ k22

�
s22
s
− s2

�
þ 2k1k2

�
s1s2
s

− s1

��
: ðD14Þ

Now we analyze the temporal part:

Ψðt; t0;ω1;ω2Þ ¼
Z

dt1

Z
dt2e−iω1t1−iω2t2

mðs − s2Þ
m2ðs − s2Þ2 þ ðt−t2Þ2

4

mðs2 − s1Þ
m2ðs2 − s1Þ2 þ ðt2−t1Þ2

4

ms1

m2s21 þ ðt1−t0Þ2
4

: ðD15Þ

The integral in the variable t1 can be performed using the previous technique. If we set

α ¼ 2mðs2 − s1Þ; β ¼ 2ms1; Δt ¼ t2 − t0; ðD16Þ

we find

Iðω1Þ ¼
Z

dt1e−iω1t1
mðs2 − s1Þ

m2ðs2 − s1Þ2 þ ðt−t̃Þ2
4

ms1

m2s21 þ ðt−t̃Þ2
4

¼ 4αβe−iωt
0
θðω1Þ

�
πe−βω1

βððΔtþ iβÞ2 þ α2Þ þ
πe−αω−iΔtω

αððΔt − iαÞ2 þ β2Þ
�

þ 4αβe−iωt
0
θð−ω1Þ

�
πeβω

βððΔt − iβÞ2 þ α2Þ þ
πeαω−iΔtω

αððΔtþ iαÞ2 þ β2Þ
�
: ðD17Þ

The last step in the time integration consists in evaluating
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Ψðt; t0;ω1;ω2Þ ¼
Z

dt2e−iω2t2
mðs − s2Þ

m2ðs − s2Þ2 þ ðt−t2Þ2
4

Iðω1Þ:

ðD18Þ

The result of the evaluation is very cumbersome, but it can
be checked that, assuming the prescription θð0Þ ¼ 1=2, it
gives the exact time-independent result in the limit of
vanishing frequencies:

Ψðt ¼ t0;ω1 ¼ ω2 ¼ 0Þ ¼ 16π2θ2ð0Þ
ms

¼ 4π2

ms
: ðD19Þ

Moreover, in order to compute the insertions of time-
dependent operators, we only need the lowest orders of the
expansion in s of the solution at coincident points, which
turns out to be

Ψðt ¼ t0;ω1;ω2Þ ¼
4π2

ms
e−iðω1þω2Þt þOðsÞ: ðD20Þ

The zeroth order in the variable s vanishes.

Combining Eqs. (D14) and (D20) into (D13), we find the
same result as the time-independent case:

K̃2PP ¼ 2

mð4πsÞd=2þ1

�
s2

2
Pðx; tÞ2 þOðs3Þ

�
: ðD21Þ

Additional new terms will contribute only to higher orders
in s, and therefore they do not modify the a4 coefficient.
Since time and space integrals factorize and there are no

contributions to lower-order terms in the heat-kernel
expansion, we can similarly find that K̃2X have the same
expressions of the time-independent case, if we choose
among the set

X ¼ fPðx; tÞ; Qiðx; tÞg: ðD22Þ

Additional terms could appear in insertions concerning the
operator Sðx; tÞ. They will not be considered here because
Sðx; tÞ vanishes in all the backgrounds studied in this paper.
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